Science.gov

Sample records for materials science iv

  1. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  2. Gen IV Materials Handbook Implementation Plan

    SciTech Connect

    Rittenhouse, P.; Ren, W.

    2005-03-29

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product

  3. New Materials for NGNP/Gen IV

    SciTech Connect

    Robert W. Swindeman; Douglas L. Marriott

    2009-12-18

    The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

  4. Gen IV Materials Handbook Functionalities and Operation

    SciTech Connect

    Ren, Weiju

    2009-12-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  5. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  6. Materials science and engineering

    SciTech Connect

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  7. Materials science and engineering

    SciTech Connect

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  8. Materials science and engineering

    SciTech Connect

    Lesuer, D R

    1998-01-01

    During FY-97, work within the Materials Science and Engineering thrust area was focused on material modeling. Their motivation for this work is to develop the capability to study the structural response of materials as well as materials processing. These capabilities have been applied to a broad range of problems, which support many programs at Lawrence Livermore National Laboratory. Recent examples of structural response problems studied include material fracture (such as interface failure), damage in laser optics, the response of weapons components (such as high explosives) and the failure of composite materials. For materials processing, typical problems studied include metal forming, laser processing, casting, and heat treating. To improve our ability to model material behavior, much of the work involves developing new material models and failure models, as well as applying the codes to new problems. Most investigations involve experimental studies to gather basic information on material response and to validate codes or material models. Projects are inherently multi-disciplinary, involving several investigators with expertise in materials and mechanics. The thrust area studies for FY-97 are described in the following three articles: (1) Evolution of Anisotropic Yield Behavior; (2) Modeling of She Localization in Materials; and (3) Modeling of Casting Microstructures and Defects.

  9. EDITORIAL: Computational materials science Computational materials science

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Kresse, Georg

    2011-10-01

    Special issue in honour of Jürgen Hafner On 30 September 2010, Jürgen Hafner, one of the most prominent and influential members within the solid state community, retired. His remarkably broad scientific oeuvre has made him one of the founding fathers of modern computational materials science: more than 600 scientific publications, numerous contributions to books, and a highly cited monograph, which has become a standard reference in the theory of metals, witness not only the remarkable productivity of Jürgen Hafner but also his impact in theoretical solid state physics. In an effort to duly acknowledge Jürgen Hafner's lasting impact in this field, a Festsymposium was held on 27-29 September 2010 at the Universität Wien. The organizers of this symposium (and authors of this editorial) are proud to say that a large number of highly renowned scientists in theoretical condensed matter theory—co-workers, friends and students—accepted the invitation to this celebration of Hafner's jubilee. Some of these speakers also followed our invitation to submit their contribution to this Festschrift, published in Journal of Physics: Condensed Matter, a journal which Jürgen Hafner served in 2000-2003 and 2003-2006 as a member of the Advisory Editorial Board and member of the Executive Board, respectively. In the subsequent article, Volker Heine, friend and co-worker of Jürgen Hafner over many decades, gives an account of Hafner's impact in the field of theoretical condensed matter physics. Computational materials science contents Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH) D Tunega, H Pašalić, M H Gerzabek and H Lischka Ethylene epoxidation catalyzed by chlorine-promoted silver oxide M O Ozbek, I Onal and R A Van Santen First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applicationsA Nagoya, R Asahi and G Kresse Renormalization group study of random quantum magnetsIstván A Kovács and

  10. Microgravity Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.

    1985-01-01

    A Microgravity Materials Science Laboratory (MMSL) has been planned, designed, and is being developed. This laboratory will support related efforts to define the requirements for the Microgravity and Materials Processing Laboratory (MMPF) and the MMPF Test Bed for the Space Station. The MMSL will serve as a check out and training facility for science mission specialists for STS, Spacelab and Space Station prior to the full operation of the MMPF Test Bed. The focus of the MMSL will be on experiments related to the understanding of metal/ceramic/glass solidification, high perfection crystal growth and fluid physics. This ground-based laboratory will be used by university/industry/government researchers to examine and become familiar with the potential of new microgravity materials science concepts and to conduct longer term studies aimed at fully developing a l-g understanding of materials and processing phenomena. Such research will help create new high quality concepts for space experiments and will provide the basis for modeling, theories, and hypotheses upon which key space experiments can be defined and developed.

  11. Me and My Environment. Unit IV: Transfer and Cycling of Materials in My Environment.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Boulder, CO.

    Presented is the experimental edition of Unit IV: Transfer and Cycling of Materials in My Environment, which consists of 29 life science curriculum activities intended for the 13-to-15-year-old educable mentally retarded child. The curriculum guide is being used in the final field test prior to revision. Stressed throughout the program are…

  12. Panel 3 - material science

    SciTech Connect

    Sarrao, John L; Yip, Sidney

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  13. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  14. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  15. Alternative Approaches to Group IV Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Snedaker, Matthew Loren

    In the pursuit of energy efficiency, there is a demand for systems capable of recovering waste heat. A temperature gradient across a thermoelectric material results in the thermal diffusion of charge carriers from the hot side to the cold side, giving rise to a voltage that can be used to convert waste heat to electricity. Silicon germanium (SiGe) alloys are the standard materials used for thermoelectric generators at high temperatures. We report an alternative method for preparing p-type Si1- xGex alloys from a boron-doped silica-germania nanocomposite. This is the first demonstration of the thermoelectric properties of SiGe-based thermoelectrics prepared at temperatures below the alloy's melting point through a magnesiothermic reduction of the (SiO 2)1-x(GeO2) x. We observe a thermoelectric power factor that is competitive with the literature record for the conventionally prepared SiGe. The large grain size in our hot pressed SiGe limits the thermoelectric figure of merit to 0.5 at 800°C for an optimally doped p-type Si80Ge 20 alloy. A phosphorus-doped oxide can yield n-type Si1- xGex; however, the current processing method introduces a background boron content that compensates ~10% of the donor impurities and limits the thermoelectric power factor. Spark plasma sintering of the nano-Si1-xGe x yields a heterogeneous alloy with thermal conductivity lower than that of the hot pressed homogeneous alloy due to a reduction in the average crystallite size. Magnesiothermic reduction in the presence of molten salts allows some control over crystallite growth and the extent of Si-Ge alloying.

  16. Critical Issues on Materials for Gen-IV Reactors

    SciTech Connect

    Caro, M; Marian, J; Martinez, E; Erhart, P

    2009-02-27

    Within the LDRD on 'Critical Issues on Materials for Gen-IV Reactors' basic thermodynamics of the Fe-Cr alloy and accurate atomistic modeling were used to help develop the capability to predict hardening, swelling and embrittlement using the paradigm of Multiscale Materials Modeling. Approaches at atomistic and mesoscale levels were linked to build-up the first steps in an integrated modeling platform that seeks to relate in a near-term effort dislocation dynamics to polycrystal plasticity. The requirements originated in the reactor systems under consideration today for future sources of nuclear energy. These requirements are beyond the present day performance of nuclear materials and calls for the development of new, high temperature, radiation resistant materials. Fe-Cr alloys with 9-12% Cr content are the base matrix of advanced ferritic/martensitic (FM) steels envisaged as fuel cladding and structural components of Gen-IV reactors. Predictive tools are needed to calculate structural and mechanical properties of these steels. This project represents a contribution in that direction. The synergy between the continuous progress of parallel computing and the spectacular advances in the theoretical framework that describes materials have lead to a significant advance in our comprehension of materials properties and their mechanical behavior. We took this progress to our advantage and within this LDRD were able to provide a detailed physical understanding of iron-chromium alloys microstructural behavior. By combining ab-initio simulations, many-body interatomic potential development, and mesoscale dislocation dynamics we were able to describe their microstructure evolution. For the first time in the case of Fe-Cr alloys, atomistic and mesoscale were merged and the first steps taken towards incorporating ordering and precipitation effects into dislocation dynamics (DD) simulations. Molecular dynamics (MD) studies of the transport of self-interstitial, vacancy and

  17. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  18. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  19. Plant Science. IV-A-1 to IV-F-2. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains six units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a plant science course in vocational agriculture. Designed especially for use in Texas, the first unit introduces the course through the following topics: economic importance of major crops, major areas of…

  20. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  1. Materials Science and Engineering

    SciTech Connect

    Lesuer, D.R.

    1993-03-01

    Five papers are included: processing/characterization of laminated metal composites, casting process modeling, characterizing the failure of composite materials, fiber-optic Raman spectroscopy for cure monitoring of advanced polymer composites, and modeling superplastic materials. The papers are processed separately for the data base.

  2. Modelling of advanced structural materials for GEN IV reactors

    NASA Astrophysics Data System (ADS)

    Samaras, M.; Hoffelner, W.; Victoria, M.

    2007-09-01

    The choice of suitable materials and the assessment of long-term materials damage are key issues that need to be addressed for the safe and reliable performance of nuclear power plants. Operating conditions such as high temperatures, irradiation and a corrosive environment degrade materials properties, posing the risk of very expensive or even catastrophic plant damage. Materials scientists are faced with the scientific challenge to determine the long-term damage evolution of materials under service exposure in advanced plants. A higher confidence in life-time assessments of these materials requires an understanding of the related physical phenomena on a range of scales from the microscopic level of single defect damage effects all the way up to macroscopic effects. To overcome lengthy and expensive trial-and-error experiments, the multiscale modelling of materials behaviour is a promising tool, bringing new insights into the fundamental understanding of basic mechanisms. This paper presents the multiscale modelling methodology which is taking root internationally to address the issues of advanced structural materials for Gen IV reactors.

  3. Weightless Materials Science

    ERIC Educational Resources Information Center

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  4. Setting science free from materialism.

    PubMed

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains.

  5. Material Science Smart Coatings

    SciTech Connect

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  6. Materials Science Research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1995-01-01

    Microgravity materials processing experiments provide an opportunity to perform scientific research in an environment which allows one to observe various phenomena without the masking effects of gravity-driven convective flows, buoyancy, or contaminating influences of walled containers. Even for the most experienced scientists, it is still difficult to predict beforehand, whether or not microgravity experimentation can be successfully performed in space and achieve solutions to problems which are not attainable in 1 g. Consequently, experimentation in ground based facilities which are capable of simulating, in somewhat lesser time frames and to a lesser degree of microgravity, provides a unique low-cost approach to determine the feasibility of continuing research in a particular experiment. The utilization of these facilities in developing the full requirements for a space experiment does present a very cost-effective approach to microgravity experimentation. The Drop Tube Facility at Marshall Space Flight Center (MSFC) provides an excellent test bed for containerless processing experiments such as described here. These facilities have demonstrated for a number of years the capability to develop insight into space experiments involving containerless processing, rapid solidification, and wetting phenomena through the use of lower-cost ground facilities. Once sufficient data has been obtained, then a space-based experiment can be better defined.

  7. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  8. Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2002-10-01

    The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.

  9. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  10. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect

    Matyas, Dr Josef; Ohji, Tatsuki; Liu, Xingbo; Paranthaman, Mariappan Parans; Devanathan, Ram; Fox, Kevin; Singh, Mrityunjay; Wong-ng, Winnie

    2013-01-01

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  11. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  12. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  13. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  14. The Current Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    A description will be made of the current materials science program within the microgravity research division. This presentation will be made at a plenary session of the biennial materials Science Conference.

  15. Homeostatic Systems--Mechanisms for Survival. Science IV.

    ERIC Educational Resources Information Center

    Pfeiffer, Carl H.

    The two student notebooks in this set provide the basic outline and assignments for the fourth and last year of a senior high school unified science program which builds on the technical third year course, Science IIIA (see SE 012 149). An introductory section considers the problems of survival inherent in living systems, matter-energy…

  16. Analysis of cadmium in undissolved anode materials of Mark-IV electro-refiner

    SciTech Connect

    Yoo, Tae-Sic; Fredrickson, G.L.; Vaden, D.; Westphal, B.

    2013-07-01

    The Mark-IV electro-refiner (Mk-IV ER) is a unit process in the FCF (Fuel Conditioning Facility), which is primarily assigned to treating the used driver fuels. Mk-IV ER contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation. (authors)

  17. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  18. Processing science and materials development

    NASA Astrophysics Data System (ADS)

    Gegel, Harold L.

    1988-08-01

    The development of advanced technologies for the fabrication of close-tolerance parts, in conjunction with the development of advanced materials, plays a key role in the design and manufacturing of affordable aerospace systems. New process and product-design concepts must be evolved in parallel with the development of advanced materials for future systems in order to exploit the achievements being made in materials science and to tailor specific properties while simultaneously producing controlled geometrical shapes. A scientific description of production equipment and, in general, physical objects, media, fields, and interface and material-related phenomena requires theoretical models which are capable of predicting the response of the fabricating system to the initial inputs. The design of a product and the corresponding manufacturing process generally requires both deterministic models and expert systems which utilize designer intuition and logic in finding acceptable solutions. Reviewed here are some of the recent developments in process modeling as related primarily to metalworking systems and how they aid in the understanding of the role of computer and human expertise in modern computer-aided engineering (CAE).

  19. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds.

    PubMed

    Ding, Guangqian; Gao, Guoying; Yao, Kailun

    2015-01-01

    Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS,GeSe,SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials.

  20. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds

    PubMed Central

    Ding, Guangqian; Gao, Guoying; Yao, Kailun

    2015-01-01

    Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS,GeSe,SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials. PMID:26045338

  1. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  2. NASA Now: Materials Science: Thermal Protection Systems

    NASA Video Gallery

    Metallurgical and materials engineers use science, technology and mathematics to study different types of materials. They analyze the materials to determine what they are made of and evaluate their...

  3. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  4. Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner

    SciTech Connect

    Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden; Brian R. Westphal

    2013-10-01

    The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation.

  5. Plumbing Specialist IV & V, 3-23. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists IV and V. Covered in the course blocks are fixtures and appurtenances and utility equipment. Block IV on fixtures and appurtenances deals with…

  6. Nuffield Secondary Science, Theme 7, Using Materials.

    ERIC Educational Resources Information Center

    Blackledge, J.; And Others

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable for other countries. The Teachers' Guide to the entire set of materials is described in SE 015…

  7. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.

  8. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  9. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  10. End of Project Report. Volume IV, Center Instructional Material.

    ERIC Educational Resources Information Center

    Maine Township Diagnostic and Remedial Learning Center, Park Ridge, IL.

    Reported are the results of an inservice diagnostic demonstration center for children with learning problems. Information is provided on testing materials, referral interviews, a survey of reading disabilities, an instructional materials listing, a professional bibliography, descriptions of remediation material, and a parent survey. Also included…

  11. The Colorado Plateau IV: shaping conservation through science and management

    USGS Publications Warehouse

    Wakeling, Brian F.; Sisk, Thomas D.; van Riper, Charles

    2010-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers some 130,000 square miles of sparsely vegetated plateaus, mesas, canyons, arches, and cliffs in Arizona, Utah, Colorado, and New Mexico. With elevations ranging from 3,000 to 14,000 feet, the natural systems found within the plateau are dramatically varied, from desert to alpine conditions. This book focuses on the integration of science and resource management issues in this unique and highly varied environment. Broken into three subsections, this volume addresses conservation biology, biophysical resources, and inventory and monitoring concerns. The chapters range in content, addressing conservation issues–past, present, and future–on the Colorado Plateau, measurement of human impacts on resources, grazing and wildland-urban interfaces, and tools and methods for monitoring habitats and species. An informative read for people interested in the conservation and natural history of the region, the book will also serve as a valuable reference for those people engaged in the management of cultural and biological resources of the Colorado Plateau, as well as scientists interested in methods and tools for land and resource management throughout the West.

  12. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural

  13. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  14. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  15. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  16. The Science of Smart Materials

    ERIC Educational Resources Information Center

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  17. Geology Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume IV.

    ERIC Educational Resources Information Center

    Webster, Gary

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…

  18. Core IV Materials for Metropolitan Agriculture/Horticulture Programs.

    ERIC Educational Resources Information Center

    Hemp, Paul; And Others

    This core curriculum guide consists of materials for use in presenting a 13-unit vocational agriculture course geared toward high school students living in metropolitan areas. Addressed in the individual units of the course are the following topics: employment in agricultural occupations, supervised occupational experience, leadership in…

  19. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  20. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  1. Material Objects. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide for an elementary science unit designed for use with first grade students in the Trust Territory of Micronesia. Although there is a degree of similarity to the curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of the SCIS…

  2. Dissecting microbiological systems using materials science.

    PubMed

    Muralimohan, Abishek; Eun, Ye-Jin; Bhattacharyya, Basudeb; Weibel, Douglas B

    2009-03-01

    Materials science offers microbiologists a wide variety of organic and inorganic materials with chemical and physical properties that can be precisely controlled. These materials present new capabilities for isolating, manipulating and studying bacteria and other microorganisms and are poised to transform microbiology. This review summarizes three classes of materials that span a range of length scales (nano, micro and meso) and describes a variety of fundamental questions in microbiology that can be studied by leveraging their properties.

  3. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  4. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  5. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  6. Federally Funded Math and Science Materials.

    ERIC Educational Resources Information Center

    Shaul, Marnie S.

    This correspondence presents additional information on the July report "Math and Science Education: Comprehensive Information about Federally Funded Materials Not Available by the United States General Accounting Office." It provides information on each of the 61 materials, including the topics covered and a summary of their instructional goals. A…

  7. The Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2008-03-01

    While materials scientists don't typically consult comic books when selecting research topics, innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming. Smart fabrics used in hiking clothing expand at low temperatures, while other materials increase their porosity at higher temperatures, allowing body heat and water vapor to escape. Some polymers can be stretched to over twice their normal dimensions and return to their original state when annealed, a feature appreciated by Mr. Fantastic. In order to keep track of the Invisible Woman, the Fantastic Four's arch nemesis Dr. Doom employed sensors in the eye-slits of his armored face-plate, using the same physics underlying night vision goggles. Certain forms of blindness may be treated using an artificial retina consisting of silicon microelectrode arrays, surgically attached to the back of the eye, that transmit a voltage to the optic nerve proportional to the incident visible light intensity (one of the few positive applications of Dr. Doom's scheming). Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have recently developed ``gecko tape,'' consisting of arrays of fibers that provide a strong enough attraction to support a modest weight. Before this tape is able to support a person, however, major materials constraints must be overcome (if this product ever becomes commercially available, I for one will never wait for the elevator again!) All this, and the chemical composition of Captain America's shield, will be discussed.

  8. Materials Science and Technology Teachers Handbook

    SciTech Connect

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  9. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  10. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  11. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  12. Project NECESSITIES, Phase III. Volume IV: Teaching Materials for Kindergarten and First Grade.

    ERIC Educational Resources Information Center

    Abt Associates, Inc., Cambridge, MA.

    Phase III, Volume IV, Part A of Project NECESSITIES consists of 10 activities intended for kindergarten-aged American Indian (including Eskimo) children. Some of the supplementary materials needed to teach these activities ("Symbol Formation" and "An Animal Alphabet") are appended. The unit, entitled Learning to Communicate, begins with non-verbal…

  13. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  14. Use of temporary filling material for index fabrication in Class IV resin composite restoration.

    PubMed

    Kim, Kun-Young; Kim, Sun-Young; Kim, Duck-Su; Choi, Kyoung-Kyu

    2013-05-01

    When a patient with a fractured anterior tooth visits the clinic, clinician has to restore the tooth esthetically and quickly. For esthetic resin restoration, clinician can use 'Natural Layering technique' and an index for palatal wall may be needed. In this case report, we introduce pre-restoration index technique on a Class IV defect, in which a temporary filling material is used for easy restoration. Chair-side index fabrication for Class IV restoration is convenient and makes a single-visit treatment possible.

  15. Annual review of materials science. Vol. 21

    SciTech Connect

    Huggins, R.A.; Giordmaine, J.A.; Wachtman, J.B. NEC Research Institute, Princeton, NJ Rutgers University, New Brunswick, NJ )

    1991-01-01

    Various papers on materials science are presented. Individual topics addressed include: ESR microscopy in materials science, NMR methods for solid polymers, metastable growth of diamondlike phases, characterization of polymer interfaces, adhesion between polymers, study of sol-gel chemical reaction kinetics by NMR, air/liquid interfaces and adsorbed molecular monolayers studied with nonlinear optical techniques, containerless undercooling and solidification of pure metals, microstructure and mechanical properties of electroless copper deposits, atomic layer epitaxy of III-V electronic materials. Also addressed are: self-heating synthesis of materials, molecular films, chemical processes applied to reactive extrusion of polymers, growth and characterization of diamond thin films, nanophase materials, defects in hydrogenated amorphous silicon, crystal chemistry of oligophosphates, molecular composites and self-reinforced liquid crystalline polymer blends, the palladium-hydrogen system, and thermodynamic considerations in superconducting oxides.

  16. Density functional theory in materials science

    PubMed Central

    Neugebauer, Jörg; Hickel, Tilmann

    2013-01-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. PMID:24563665

  17. Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondrites.

    PubMed

    Matthewman, Richard; Martins, Zita; Sephton, Mark A

    2013-04-01

    Understanding the processes involved in the evolution of organic matter in the early Solar System requires extensive experimental work. The scientifically valuable carbonaceous chondrites are principal targets for organic analyses, but these meteorites are rare. Meteoritic analog materials available in larger quantities, on which experiments can be performed, would be highly beneficial. The bulk of the organic inventory of carbonaceous chondrites is made up of solvent-insoluble macromolecular material. This high-molecular-weight entity provides a record of thermal and aqueous parent-body alteration of precursor organic structures present at the birth of the Solar System. To identify an effective analogue for this macromolecular material, we analyzed a series of terrestrial kerogens by pyrolysis-gas chromatography-mass spectrometry. Type I and II kerogens are unsuitable analogues owing to their highly aliphatic nature. Type III kerogens show some similarities to meteoritic macromolecular materials but display a substantial biological heritage. Type IV kerogens, in this study derived from Mesozoic paleosols and produced by the reworking and oxidation of organic matter, represent an effective analogue. Some isomeric differences exist between meteoritic macromolecular materials and type IV kerogens, and stepped pyrolysis indicates variations in thermal stability. In addition to being a suitable material for novel experimentation, type IV kerogens also have the potential to aid in the optimization of instruments for deployment on Mars. PMID:23551239

  18. Fusion power: a challenge for materials science.

    PubMed

    Duffy, D M

    2010-07-28

    The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted. PMID:20566513

  19. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  20. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  1. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  2. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  3. Survey of Health Sciences CAI Materials.

    ERIC Educational Resources Information Center

    Kamp, Martin

    A project to develop an automated index of information about existing computerized instruction in the health sciences is reported and described. Methods of obtaining and indexing materials for the catalog are detailed. Entry and recovery techniques and selection of descriptors are described. Results to date show that the data base contains…

  4. Structural and thermochemical Aspects of (III-V)IV3 Material Assembly from First Principles

    NASA Astrophysics Data System (ADS)

    Chizmeshya, Andrew; Kouvetakis, John

    2014-03-01

    Alloys with (III-V)-(IV) compositions, including Si3(AlP), Si5-2y(AlP)y, Si3Al(As1-xNx), Si5-2yAl(P1-xNx)y and Ge5-2y(InP)y and have recently been synthesized as mono-crystalline films on Si substrates, using a synthesis route specifically designed to avoid phase separation between the III-V and IV constituents. Molecular ``building blocks'' containing group-V-centered III-V-IV3 cores, formed via interactions of group-III atoms and reactive silyly/germyl hydride precursors of desired composition (e.g, P(SiH3)3 , P(GeH3)3 , etc), assemble to form stable, covalent, diamond-like materials with the inherent tetrahedral symmetry and composition of the III-V-IV3 units. The resulting systems may provide access to a broad range of new semiconductor systems with extended optoelectronic properties, provided that the required molecular sources are available, the thermodynamic processes are viable, and the resulting alloy composition can be tuned to lattice-match the growth substrate. Molecular/solid-state simulations are used to identify promising synthetic pathways and guide the epitaxial creation of new (III-V)-(IV) materials. The thermodynamics of gas phase synthesis reactions, energetic stability of the alloys, and their epitaxial/chemical compatibility with the substrate are combined to form a global figure of merit. The latter corroborates the synthesis of known systems and predicts that formation of GaPSi3/Si(100), GaAsSi3/SiGe(100), AlPGe3/Ge(100) and InAsSi3/Ge(100) may also be favorable. Supported by NSF-DMR under SusChEM award #1309090.

  5. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  6. Gen IV Materials Handbook Beta Release for Structural and Functional Evaluation

    SciTech Connect

    Ren, Weiju; Luttrell, Claire

    2006-09-12

    Development of the Gen IV Materials Handbook is briefly summarized up to date. Current status of the Handbook website construction is described. The developed Handbook components and access control of the beta version are discussed for the present evaluation release. Detailed instructions and examples are given to provide guidance for evaluators to browse the constructed parts and use all the currently developed functionalities of the Handbook in evaluation.

  7. Chemistry and Materials Science Strategic Plan

    SciTech Connect

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme

  8. Learning about the Human Body. Superific Science Book IV. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Designed to supplement a basic life science or biology program, this document provides teachers with experiential learning activities dealing with the human body. The learning activities vary in the length of time needed for their completion, and require a minimum of equipment and materials. The activities focus on: (1) the human skeleton; (2)…

  9. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  10. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  11. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  12. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  16. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  17. Thermal Boundary Conductance: A Materials Science Perspective

    NASA Astrophysics Data System (ADS)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  18. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  19. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  20. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect

    Zhang, Z Y

    2008-06-25

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  1. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  2. A programmable high voltage electrical switching analyzer for I-V characterization of phase change materials

    NASA Astrophysics Data System (ADS)

    Bhanu Prashanth, S. B.; Asokan, S.

    2007-07-01

    Ovonic Phase-Change Materials have found a renewed interest in the recent times owing to their applications in Non-Volatile Random Access Memories. In the present work, a cost-effective high voltage electrical switching analyzer has been developed to enable investigations on the I-V characteristics and electrical switching of bulk solids, which are necessary for identifying suitable materials for memory and other applications such as power control. The developed set up mainly consists of a PC based programmable High Voltage DC Power Supply which acts as an excitation source and a high speed Digital Storage Oscilloscope. For flexible control options, a Graphical User Interface has also been developed using LabVIEW-6i to control the excitation source through the analog outputs of a data acquisition card. Options are made in the system to sweep the output voltage from 45 to 1750 V or the output current in the range 0-45 mA with resolutions of 1.5 V & 5 or 50 μA at variable rates. I-V characteristics and switching behavior of the sample material are instantaneously acquired on the storage oscilloscope and transferred to PC for post processing. The system can be used to investigate a broad range of materials and some typical results are presented to illustrate the capability of the system developed. The closed-loop stability of the system has also been confirmed by frequency response plots.

  3. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  4. Chemistry and materials science research report

    SciTech Connect

    Not Available

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  5. Material science lesson from the biological photosystem

    NASA Astrophysics Data System (ADS)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  6. Nanobiotechnology: synthetic biology meets materials science.

    PubMed

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation.

  7. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  8. Gen IV Materials Handbook Functionalities and Operation (4A) Handbook Version 4.0

    SciTech Connect

    Ren, Weiju

    2013-09-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  9. Gen IV Materials Handbook Functionalities and Operation (2B) Handbook Version 2.0

    SciTech Connect

    Ren, Weiju

    2011-08-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  10. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  11. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  12. Annual report, Materials Science Branch, FY 1992

    SciTech Connect

    Padilla, S.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  13. Chemistry and Materials Science research report

    SciTech Connect

    Not Available

    1991-03-01

    The research reported here in summary form was conducted during the second half of FY90 under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The results reported here are for work in progress; as such, they may be preliminary, fragmentary, or incomplete. Areas covered are as follows: Synchrotron-Radiation-Based Materials Science; Fundamental Aspects of Metal Processing; Energetic Materials; Tritium; High-Transition-Temperature Superconductivity; Plutonium; Interfaces, Adhesion, and Bonding; Photocatalysis on Doped Aerogel; Structural Transformation and Precursor Phenomena in Advanced Materials: Theory and Experiments; Laser-Induced Chemistry; Molecular Plasmas; Chemistry of Defects; The Use of Short Pulses with Energetic Materials; NMR Investigations of Crosslinking in Melamine Formaldehyde Aerogels; Surface Magnetism in Ultrathin Films of Fe/Cu(001); Damage Initiation and Accumulation during Fatigue in Metal-Matrix Composites; Reactivity of the V{double bond}O Bond; The Structure-Property Link in Subnanometer Materials; and Thermodynamic and Mechanical Properties of Al-Li alloys.

  14. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  15. PREFACE: Workshop on `The Physics of Group IV Materials', 7 10 April 2003, Exeter

    NASA Astrophysics Data System (ADS)

    Evans-Freeman, Jan, Dr; Mainwood, Alison, Dr

    2003-10-01

    This special issue contains a collection of papers presented at the workshop entitled `The Physics of Group IV Materials' held in Exeter on 7-10 April 2003. The workshop was sponsored by the two EPSRC-funded Research Networks on `Defects in Silicon and Si/Ge' and `Diamond and Diamond-Like Carbon'. It was attended by about 100 delegates, most of them students and postdoctoral researchers from the UK, who heard 17 invited talks from speakers prominent in their fields from all over the world. Eight additional oral presentations selected from the contributed papers and 36 posters were presented at the workshop. The discussions were very illuminating, and we hope that the workshop fulfilled its objective in informing quite a wide, and generally young, audience about the very diverse and excellent current research work on Group IV materials. We would like to thank the local organizers, Professor Bob Jones and his students James Adey and Stephen Sque, for the smooth running of the workshop. We would like to thank the editorial committee: Dr David Carey, Professor Paul Coleman, Professor Phillip John, Dr Mark Newton and Professor Arthur Willoughby for their help with the selection of papers for the workshop and with the proceedings.

  16. Structure and properties of phosphorene-like IV-VI 2D materials

    NASA Astrophysics Data System (ADS)

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-01

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices.

  17. Structure and properties of phosphorene-like IV-VI 2D materials.

    PubMed

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices.

  18. Structure and properties of phosphorene-like IV-VI 2D materials.

    PubMed

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices. PMID:27608201

  19. Visualization for materials science and nanoscience

    SciTech Connect

    Graf, Matthias J; Balatsky, Alexander V

    2008-01-01

    The Center for Integrated Nanotechnology (CINT) is a Department of Energy funded center jointly operated by Sandia National Laboratory and Los Alamos National Laboratory. As part of the Los Alamos located CINT facilities, we have developed a visualization capability hosted in the VIZ lab at CINT that is focused on using established applications and developing new visualization tools for the use in materials science and more specifically for the nanosciences. The utility of the visualization process is captured by the motto 'To see is to know', which is so ingrained in the way we do science that often we forget that it is one of the pillars of the scientific methods, namely to record or demonstrate an effect and its causal connection in a reproducible way. Visualization is one of the tools that enables scientists to convincingly demonstrate and present their results. This idea underpins the logic of many visualization facilities in the United States and elsewhere. Where visualization at CINT is unique is its focus on the nanoscience and nanoscale effects that control materials properties. In this article, we will give specific examples on how visualization helps scientists and users at the Center.

  20. Preparation of Zeolite-like Pillared Metal(IV) Phosphate Materials

    NASA Astrophysics Data System (ADS)

    González, J. Santamaría.; Jiménez-López, A.; Lara, María. Martínez

    1995-12-01

    It is possible to obtain mixed aminopropyl sil-aluminum sesquioxanes by simultaneous hydrolysis of (3-aminopropyl)triethoxysilane and aluminum (III) diisopropoxide-2,4-pentanedionate with the stoichiometric amount of water in methanol. These oligomers are intercalated in a M(IV)-phosphate in which the number of POH groups are controlled substituting POH groups by phenyl phosphonates. The zeolite-like pillared materials obtained after thermal treatment at 600°C have high surface areas (up to 126 m 2 g -1) and high total acidity (up to 2.11 mmol of NH 3 desorbed between 100-500°C). XPS reveals that Al has tetrahedral coordination in these materials.

  1. Gender Equity in Materials Science and Engineering

    SciTech Connect

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to

  2. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    NASA Astrophysics Data System (ADS)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  3. Me and My Environment, Unit IV: Transfer and Cycling of Materials in My Environment, Experimental Edition 1973-74.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Boulder, CO.

    The experimental 1973-74 edition of Unit IV consists of 28 life science curriculum activities for 13- to 16-year-old educable mentally handicapped children. The role of the teacher in continuing field trials is noted and environmental themes and elements, inquiry skills, problem solving skills, and applicational behaviors and attitudes are…

  4. Native american related materials in elementary science instruction

    NASA Astrophysics Data System (ADS)

    Matthews, Catherine E.; Smith, Walter S.

    The low achievement of Native American students, as measured by standardized tests, results from a number of factors, including the lack of cultural relevance of curriculum materials used in their instruction. Using a pretest-posttest control group design, Native American students in Bureau of Indian Affairs schools in Grades 4-8 who were taught science using culturally relevant materials achieved significantly higher and displayed a significantly more positive attitude toward Native Americans and science than comparable students who were taught science without the culturally relevant materials. It is suggested that when educators of Native Americans teach science, they should use materials that incorporate frequent reference to Native Americans and science.

  5. Innovative Video Diagnostic Equipment for Material Science

    NASA Technical Reports Server (NTRS)

    Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.

    2012-01-01

    Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.

  6. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  7. Structure and magnetism in novel group IV element-based magnetic materials

    SciTech Connect

    Tsui, Frank

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  8. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  9. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  10. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  11. Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology.

    PubMed

    Kaynar, Ümit H; Şabikoğlu, Israfil; Kaynar, Sermin Çam; Eral, Meral

    2016-09-01

    The silicon dioxide nano-balls (nano-SiO2) were prepared for the adsorption of thorium (IV) ions from aqueous solution. The synthesized silicon dioxide nano-balls were characterized by Scanning Electron Microscopy/Energy Dispersive X-ray, X-ray Diffraction, Fourier Transform Infrared and BET surface area measurement spectroscopy. The effects of pH, concentration, temperature and the solid-liquid ratio on the adsorption of thorium by nano-balls were optimized using central composite design of response surface methodology. The interaction between four variables was studied and modelled. Furthermore, the statistical analysis of the results was done. Analysis of variance revealed that all of the single effects found statistically significant on the sorption of Th(IV). Probability F-values (F=4.64-14) and correlation coefficients (R(2)=0.99 for Th(IV)) indicate that model fit the experimental data well. The ability of this material to remove Th(IV) from aqueous solution was characterized by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption capacity of thorium (IV) achieved 188.2mgg(-1). Thermodynamic parameters were determined and discussed. The batch adsorption condition with respect to interfering ions was tested. The results indicated that silicon dioxide nano-balls were suitable as sorbent material for adsorption and recovery of Th(IV) ions from aqueous solutions. PMID:27451112

  12. Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology.

    PubMed

    Kaynar, Ümit H; Şabikoğlu, Israfil; Kaynar, Sermin Çam; Eral, Meral

    2016-09-01

    The silicon dioxide nano-balls (nano-SiO2) were prepared for the adsorption of thorium (IV) ions from aqueous solution. The synthesized silicon dioxide nano-balls were characterized by Scanning Electron Microscopy/Energy Dispersive X-ray, X-ray Diffraction, Fourier Transform Infrared and BET surface area measurement spectroscopy. The effects of pH, concentration, temperature and the solid-liquid ratio on the adsorption of thorium by nano-balls were optimized using central composite design of response surface methodology. The interaction between four variables was studied and modelled. Furthermore, the statistical analysis of the results was done. Analysis of variance revealed that all of the single effects found statistically significant on the sorption of Th(IV). Probability F-values (F=4.64-14) and correlation coefficients (R(2)=0.99 for Th(IV)) indicate that model fit the experimental data well. The ability of this material to remove Th(IV) from aqueous solution was characterized by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption capacity of thorium (IV) achieved 188.2mgg(-1). Thermodynamic parameters were determined and discussed. The batch adsorption condition with respect to interfering ions was tested. The results indicated that silicon dioxide nano-balls were suitable as sorbent material for adsorption and recovery of Th(IV) ions from aqueous solutions.

  13. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  14. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  15. Animals, science, and ethics -- Section IV. Ethical review and the animal care and use committee.

    PubMed

    Rowan, Andrew N

    1990-01-01

    Section IV takes a close practical look at Animal Care and Use Committees, their history, mandates, and the impediments they still experience in trying to promote animal welfare and an ethical scientific use of animals.

  16. Skylab IV Hand-Held Photography: A Useful Tool for Earth Science Teaching

    ERIC Educational Resources Information Center

    Muehlberger, W. R.

    1975-01-01

    A portion of the 2,000 plus photographs taken on Skylab IV to document various features of interest are catalogued according to certain geologic, geographic, and atmospheric condition categories. Information concerning procedures for purchase are included. (CP)

  17. Chemistry and materials science progress report, FY 1994

    SciTech Connect

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  18. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  19. The Science of Electrode Materials for Lithium Batteries - Progress Report

    SciTech Connect

    Brent Fultz

    2003-08-15

    OAK-B135 (IPLD Cleared) Basic materials science research on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. The emphasis is on the thermodynamics and kinetics of how lithium is intercalated and de-intercalleted into anode and cathod materials.

  20. General Physics, Physics 12 [Science Curriculum Materials].

    ERIC Educational Resources Information Center

    Rochester City School District, NY.

    The Physics 12 curriculum guide represents one in a series of science guides especially designed to provide for the pupil whose primary interests are in non-science fields. The program provides study in physics in which fundamental concepts and understandings are developed, mathematical concepts are limited, and students are encouraged to relate…

  1. Graphene challengers: silicene, germanene and stanene, group IV elemental synthetic electronic materials

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy

    Silicene, germanene and stanene, graphene's group IV elemental cousins, have attracted considerable interest since the birth of silicene in 2012. These novel synthetic two-dimensional (2D) Si, Ge and Sn allotropes are artificially created in situ under ultra high vacuum, since, at variance with graphene, which descents from graphite, they have no parent crystal in nature. They are considered as promising candidates for ultimate scaling of nanoelectronic devices. Indeed, the recent fabrication of the first silicene field effect transistors with ambipolar characteristics operating at room temperature demonstrates their potential as emerging 2D electronic materials. In this invited talk, I will present the archetype 3x3 silicene phase formed on a silver (111) substrate, its sister phases and the growth of multilayer silicene, which hosts Dirac fermions and which is stable in ambient air, protected by its ultra-thin native oxide. The recent synthesis of single layer germanene and stanene, near room temperature 2D topological insulators will be also presented, while multilayer germanene will be further addressed. Challenging graphene, silicene, germanene and stanene, which are directly compatible with the current semiconductor industry, could lead to the development of a new class of low energy consumption nanoelectronic devices.

  2. Materials testing at the Hanna IV in situ coal gasification site

    SciTech Connect

    Keefer, D W; Scoonover, T M

    1980-01-01

    Candidate structural alloy specimens were exposed for about 800 hours to the direct product gas stream from the Hanna IV underground coal gasification experiment. When the specimens were removed from the line, they were coated with a high-sulfur deposit from the product gas. A chemical analysis and the physical appearance of the coatings suggest that they are mixtures of condensed hydrocarbons, coal char, coal ash, and mineral particles from the overburden. Attack on the specimens was primarily corrosion rather than erosion. Mean penetration rates expressed in millimetres per year (mm/y) were calculated from weight loss data. Microscopic examination revealed areas of rather severe local attack on all alloys tested. There was no consistent difference in the amount of material removed from specimens with welds and those without welds. All specimens exposed at 45/sup 0/ to the product gas flow had surface dents from impacting particles, while parallel specimens had none. Energy-dispersive X-ray and Auger electron spectra indicate that the few particles of deposits and/or corrosion products still clinging to the specimen surfaces after cleaning were oxides, rather than sulfides, with significant contents of aluminum and silicon in addition to iron.

  3. Evaluation of Different Disinfactants on Dimensional Accuracy and Surface Quality of Type IV Gypsum Casts Retrieved from Elastomeric Impression Materials

    PubMed Central

    Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak

    2014-01-01

    Background: The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. Materials and Methods: In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. Results: All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. Conclusion: All the three disinfectants produced complete disinfection, and didn’t cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81. PMID:25083038

  4. PREFACE: Tsukuba International Conference on Materials Science 2013

    NASA Astrophysics Data System (ADS)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  5. Challenge of Materials at the Science Museum: A Resource for GNVQ Science and Engineering.

    ERIC Educational Resources Information Center

    Bazley, Martin

    1997-01-01

    Describes "Challenge of Materials," a gallery where visitors can experience a wide variety of materials in different ways. Materials include familiar structural items such as steel and glass, and new materials that can change form and color. The gallery also provides opportunities for work with schools in materials science and technology.…

  6. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  7. First principles calculation of material properties of group IV elements and III-V compounds

    NASA Astrophysics Data System (ADS)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  8. X-ray Analysis of Erbium Doping in Group IV Nanocrystalline Materials

    NASA Astrophysics Data System (ADS)

    Meulenberg, Robert

    2005-03-01

    We have produced erbium-doped germanium nanoparticles using a new two cell physical vapor deposition system. Doped nanoparticles are fabricated using two methods: 1) by co-evaporation of Er and Ge and 2) by Er deposition on the surface of undoped Ge nanoparticles. Using elemental specific x-ray techniques [x-ray absorption (XAS) and photoemission (PES) spectroscopy], we are able to monitor band edge shifts as a function of both particle size and Er concentration. In addition, we have used XAS and PES to probe the chemical environment of Er in Ge nanoparticles. We find that large Er/Ge ratios lead to strong spectroscopic signatures in the core level PES spectra. Lower Er/Ge ratios show very little effects in the core level spectra; however, the valence band density of states is altered which allows PES to probe dilute concentrations of Er in Ge nanoparticles. Impact of Er doping on the Ge nanoparticle electronic structure will be discussed. This work was supported by the Division of Materials Sciences, Office of Basic Energy Science, and performed under the auspices of the U. S. DOE by LLNL under contract No. W-7405-ENG-48.

  9. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  10. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  11. Diamond detector - material science, design and application

    NASA Astrophysics Data System (ADS)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  12. 2005 Research Briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  13. 2003 research briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  14. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  15. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  16. Educational Materials Development in Primary Science: Dial Thermometer Instructional Unit

    ERIC Educational Resources Information Center

    Franks, Frank L.; Huff, Roger

    1976-01-01

    Described in the fourth of a series of articles dealing with primary science instructional materials for visually handicapped students, is a field test (with 61 Ss in grades 2 to 4) of a dial thermometer instructional unit. (IM)

  17. Selecting Audiovisual Materials for Teaching in the Behavioral Sciences

    ERIC Educational Resources Information Center

    Maas, James B.

    1973-01-01

    A guide to methods for selection and utilization of commercially available or self-produced media-related educational materials in the behavioral sciences includes lists of catalogs and reviews, outstanding films, and slide series. (Author/KM)

  18. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  19. Materials science and engineering in space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1980-01-01

    The influences of gravitational forces on processes used in the preparation of materials employed in earth-based applications are addressed and the benefits which may be derived from the microgravity environment of space in improving on such constraints are considered. Attention is given to the fact that Materials Processing in Space is directed toward the utilization of the unique space environment as a tool to establish a scientific characterization of materials processes for technological exploitation in the public benefit. In the context of enhancement to earth-based technology or implementation of space-based processes for specialized, low volume, high value materials, the thrust of the Materials Processing in Space program is surveyed.

  20. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite. PMID:20795298

  1. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  2. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  3. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  4. Materials science: Like cartilage, but simpler

    NASA Astrophysics Data System (ADS)

    Ladegaard Skov, Anne

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partly on repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties. See Letter p.68

  5. Computational materials science: Predictions of pinning

    NASA Astrophysics Data System (ADS)

    Paruch, Patrycja; Ghosez, Philippe

    2016-06-01

    A multiscale model has been implemented that provides accurate predictions of the behaviour of ferroelectric materials in electric fields, and might aid efforts to design devices such as sensors and digital memory. See Letter p.360

  6. Material Science in Cervical Total Disc Replacement.

    PubMed

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  7. Peptide nucleic acids in materials science

    PubMed Central

    Bonifazi, Davide; Carloni, Laure-Elie; Corvaglia, Valentina; Delforge, Arnaud

    2012-01-01

    This review highlights the recent methods to prepare PNA-based materials through a combination of self-assembly and self-organization processes. The use of these methods allows easy and versatile preparation of structured hybrid materials showing specific recognition properties and unique physicochemical properties at the nano- and micro-scale levels displaying potential applications in several directions, ranging from sensors and microarrays to nanostructured devices for biochips. PMID:22925824

  8. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart.

  9. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  10. Ionized cluster beam technology for material science

    NASA Astrophysics Data System (ADS)

    Takagi, Toshinori

    1997-06-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  11. Aqueous processing in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Mooiman, Michael B.; Sole, Kathryn C.

    1994-06-01

    Reviews of aqueous processing in JOM have traditionally focused on hydrometallurgical process routes. This article, however, addresses the application of aqueous processing in materials engineering and presents some promising developments that employ aqueous-based routes for the manufacture of high-tech components and specialty products. Such applications include producing metallic and ceramic powders; etching; surface modification by electroplating and electroless plating; manufacturing jewelry and intricate components by electroforming; and producing advanced ceramics, composites, and nanophase materials by sol-gel and biomimetic processing.

  12. MateriApps — a Portal Site of Materials Science Simulation

    NASA Astrophysics Data System (ADS)

    Konishi, Yusuke; Igarashi, Ryo; Kasamatsu, Shusuke; Kato, Takeo; Kawashima, Naoki; Kawatsu, Tsutomu; Kouta, Hikaru; Noda, Masashi; Sasaki, Shoichi; Terada, Yayoi; Todo, Synge; Tsuchida, Shigehiro; Yoshimi, Kazuyoshi; Yoshizawa, Kanako

    "MateriApps" is a portal website of computational materials science simulation that has a database containing over 100 application software including density functional theory calculation, quantum chemistry, molecular dynamics, etc. On the MateriApps website, researchers can find applications suitable for their own research in materials science by browsing the website or searching by keywords. We also provide forums and tutorial courses of applications. In order to avoid troublesome installation procedures and provide users an environment in which they can try out various applications easily, we develop and freely distribute "MateriApps LIVE!," a live Linux system, in which several applications introduced in MateriApps are pre-installed.

  13. Materials science: Clockwork at the atomic scale

    NASA Astrophysics Data System (ADS)

    Ležaić, Marjana

    2016-05-01

    Design rules for exotic materials known as polar metals have been put into practice in thin films. The findings will motivate studies of how a phenomenon called screening can be manipulated to generate new phases in metals. See Letter p.68

  14. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  15. Skylab Experiments, Volume 3, Materials Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…

  16. Social Science and Historical Materials on the Asian American Experience.

    ERIC Educational Resources Information Center

    Endo, Russell

    This paper provides an introduction to social science and historical materials on Asian Americans. The first part examines perspectives which guide recent research and some of the limitations of existing work. The second part contains two extensive lists of materials: (1) a list of bibliographic sources and literature reviews dealing with Asian…

  17. An Overview of the History of Library Science Teaching Materials.

    ERIC Educational Resources Information Center

    Metzger, Philip A.

    1986-01-01

    This introduction to, and overview of, history of library science instructional materials covers the Williamson Report, teaching materials from early Columbia days onward, American Library Association book publishing activity, media in curricula and library school publication of syllabi, commercial publishing of textbooks, and periodicals in…

  18. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  19. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  20. Chemistry and Materials Science 2004 Annual Report, Preview Edition

    SciTech Connect

    Shang, S; Diaz de la Rubia, T; Rennie, G

    2005-05-16

    Thriving from change is a constant element at LLNL. Through our commitment to scientific accomplishments, we have met the challenges posed by our evolving missions in 2004. It is the scientific breakthroughs that substantiate our strategic directions. Investments based on our strategic directions are bearing fruit, as illustrated in this preview of the 2004 Annual Report. We describe how our science is built around a strategic plan with four organizing themes: {sm_bullet} Materials properties and performance under extreme conditions {sm_bullet} Chemistry under extreme conditions and chemical engineering in support of national-security programs {sm_bullet} Science supporting national objectives at the intersection of chemistry, materials science, and biology {sm_bullet} Applied nuclear science for human health and national security We are particularly pleased with achievements within the 'intersection of chemistry, materials science, and biology,' an emerging area of science that may reshape the landscape of our national-security mission. CMS continues to have an unambiguous role both as a technology leader and as a partner for all of the four theme areas. We look forward to expanding the frontiers of science and continuing our partnership with the worldwide scientific community, as we firmly respond to the changing environment with agility and flexibility.

  1. General Science, Ninth Grade: Theme III and Theme IV. Student Laboratory Manual. Experimental.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This document is the student laboratory manual that was designed to accompany some of the experimental activities found in the teacher's guide to this general science course for ninth graders. It contains laboratory worksheets for lessons on such topics as: (1) soil; (2) hazardous waste; (3) wildlife refuges; (4) the water cycle; (5) water…

  2. Strategic Research Directions in Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G.; Semmes, Ed; Cook, Beth; Wargo, Michael J.; Marzwell, Neville

    2003-01-01

    The next challenge of space exploration is the development of the capabilities for long-term missions beyond low earth orbit. NASA s scientific advisory groups and internal mission studies have identified several fundamental issues which require substantial advancements in new technology if these goals are to be accomplished. Crews must be protected from the severe radiation environment beyond the earth s magnetic field. Chemical propulsion must be replaced by systems that require less mass and are more efficient. The overall launch complement must be reduced by developing repair and fabrication techniques which utilize or recycle available materials.

  3. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  4. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  5. A Review of Online Physical Sciences and Mathematics Databases. Part 3: Astronomy, Earth Sciences, and Materials Science.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.

    1985-01-01

    Last article in a series reviews online databases in fields of astronomy, earth sciences (geology, oceanography, other geosciences), and materials science (interdisciplinary subject encompassing ceramics, polymers, metals, glasses, etc.), noting coverage and search strategies. A table of 28 databases citing major subjects, producers, and starting…

  6. Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene

    NASA Astrophysics Data System (ADS)

    Kamal, C.; Chakrabarti, Aparna; Ezawa, Motohiko

    2016-03-01

    We perform systematic investigation on the geometric, energetic, and electronic properties of group IV-VI binary monolayers (XY ), which are the counterparts of phosphorene, by employing density functional theory based electronic structure calculations. For this purpose, we choose the binary systems X Y consisting of equal numbers of group IV (X = C, Si, Ge, Sn) and group VI elements (Y = O, S, Se, Te) in three geometrical configurations, the puckered, buckled and planar structures. The results of binding energy calculations show that all the binary systems studied are energetically stable. It is observed that, the puckered structure, similar to that of phosphorene, is the energetically most stable geometric configuration. Moreover, the binding energies of buckled configuration are very close to those of the puckered configuration. Our results of electronic band structure predict that puckered SiO and CSe are direct band semiconductors with gaps of 1.449 and 0.905 eV, respectively. Band structure of CSe closely resembles that of phosphorene. Remaining group IV-VI binary monolayers in the puckered configuration and all the buckled monolayers are also semiconductors, but with indirect band gaps. Importantly, we find that the difference between indirect and direct band gaps is very small for many puckered monolayers. Thus there is a possibility of making these systems undergo transition from indirect to direct band gap semiconducting state by a suitable external influence. Indeed, we show in the present work that seven binary monolayers, namely, SnS, SiSe, GeSe, SnSe, SiTe, GeTe, and SnTe become direct band gap semiconductors when they are subjected to a small mechanical strain (≤3 % ). This makes nine out of sixteen binary monolayers studied in the present work direct band gap semiconductors. Thus there is a possibility of utilizing these binary counterparts of phosphorene in future light-emitting diodes and solar cells.

  7. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  8. Materials Science Standard Rack on Interntional Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center

  9. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  10. Stability and electronic structure of two-dimensional allotropes of group-IV materials

    NASA Astrophysics Data System (ADS)

    Matusalem, Filipe; Marques, Marcelo; Teles, Lara K.; Bechstedt, Friedhelm

    2015-07-01

    We study six different two-dimensional (2D) allotropes of carbon, silicon, germanium, and tin by means of the ab initio density functional theory for the ground state and approximate methods to calculate their electronic structures, including quasiparticle effects. Four of the investigated allotropes are based on dumbbell geometries, one on a kagome lattice, and one on the graphenelike hexagonal structure for comparison. Concerning carbon, our calculations of the cohesive energies clearly show that the hexagonal structure (graphene) is most stable. However, in the case of Si and Ge, the dumbbell structures, particularly the large honeycomb dumbbell (LHD) geometries, are energetically favored compared to the s p2/s p3 -bonded hexagonal lattice (i.e., silicene and germanene). The main reason for this is the opening of a band gap in the honeycomb dumbbell arrangements. The LHD sheet crystals represent indirect semiconductors with a K →Γ gap of about 0.5 eV. In the Sn case we predict the MoS2-like symmetry to be more stable, in contrast to the stanene and LHD geometries predicted in literature. Our results for freestanding group-IV layers shine new light on recent experimental studies of group-IV overlayers on various substrates.

  11. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    ERIC Educational Resources Information Center

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  13. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  14. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  15. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  16. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  17. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  18. Zirconium(IV) Phosphonate-Phosphates as Efficient Ion-Exchange Materials.

    PubMed

    Silbernagel, Rita; Martin, Caroline H; Clearfield, Abraham

    2016-02-15

    Layered metal phosphonate-phosphate hybrid materials are known to be ion-exchange materials. Hybrids with zirconium metal centers were synthesized at varying phosphonate-phosphate ratios in order to explore the function and charge preference. The zirconium hybrid materials were found to have a range of applicable uses with preference for highly charged ions (3+) over lower charged ions (1+ and 2+). The addition of a large excess of phosphate altered the selectivity, and these materials were able to remove all ions from solution regardless of charge. In this paper, we describe newly synthesized compounds that are simple to prepare, reproducible, stable, and offer a variety of separation schemes.

  19. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  20. Perspective: Codesign for materials science: An optimal learning approach

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.

    2016-05-01

    A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.

  1. Chemistry and Materials Science progress report, first half FY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  2. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    SciTech Connect

    Carpenter, John

    2014-04-24

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  3. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2016-07-12

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  4. Elements of informatics for combinatorial solid-state materials science

    NASA Astrophysics Data System (ADS)

    Meguro, S.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.

    2005-01-01

    The main purpose of using combinatorial techniques for materials science studies is to achieve higher experimental throughput than what is possible when samples are synthesized and characterized one at a time. The instrumentation needed for performing high-throughput synthesis and characterization has seen rapid development in recent years. The software tools needed to connect all parts of the materials development process are still largely lacking. In this paper we discuss the requirements of a combinatorial informatics system for materials science experiments. Specifically, we focus on solid-state thin film synthesis. We also describe an implementation of such a system that is based on widely-available open-source software. The system offers features such as remote access via a Web browser, an electronic notebook-style Web interface, automatic upload of new measurement or processing results and rapid preview of experimental data.

  5. Nature of science in instruction materials of science through the model of educational reconstruction

    NASA Astrophysics Data System (ADS)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  6. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume IV - pictures

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.

  7. Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials.

    PubMed

    Heo, Yunhoe; Shin, Young Min; Lee, Yu Bin; Lim, Youn Mook; Shin, Heungsoo

    2015-10-01

    Regeneration of healthy endothelium onto vascular graft materials is imperative for prevention of intimal hyperplasia and thrombogenesis. In this study, we investigated the effect of collagen type IV (COL-IV) immobilized onto electrospun nanofibers on modulation of endothelial cell (EC) function, as a potential signal to rapid endothelialization of vascular grafts. COL-IV is assembled in basement membrane underneath intimal layer and regulates morphogenesis of blood vessels. For immobilization of COL-IV, poly(l-lactic acid) (PLLA) nanofibers (PL) were prepared as a model vascular graft substrate, onto which acrylic acid (AAc) was then grafted by using gamma-ray irradiation. AAc graft was dependent on irradiation doses and AAc concentrations, which allowed us to select the condition of 5% (v/v) AAc and 10 kGy for further conjugation of COL-IV. COL-IV immobilization was proportionally controlled as a function of its concentration. Atomic force microscope (AFM) analysis qualitatively supported immobilization of COL-IV, demonstrating increase in root mean square roughness of the PL from 665.37 ± 13.20 nm to 1440.74 ± 33.24. However, the Young's modulus of nanofibers was retained as approximately 1 MPa, regardless of surface modification. The number of ECs attached on the nanofibers with immobilized COL-IV was significantly increased by 5 times (1052 ± 138 cells/mm(2)) from pristine PL (234 ± 41 cells/mm(2)). In addition, the effect of immobilized COL-IV was profound for enhancing proliferation and up-regulation of markers implicated in rapid endothelialization. Collectively, our results suggest that COL-IV immobilized onto electrospun PLLA nanofibers may serve as a promising instructive cue used in vascular graft materials.

  8. Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials.

    PubMed

    Heo, Yunhoe; Shin, Young Min; Lee, Yu Bin; Lim, Youn Mook; Shin, Heungsoo

    2015-10-01

    Regeneration of healthy endothelium onto vascular graft materials is imperative for prevention of intimal hyperplasia and thrombogenesis. In this study, we investigated the effect of collagen type IV (COL-IV) immobilized onto electrospun nanofibers on modulation of endothelial cell (EC) function, as a potential signal to rapid endothelialization of vascular grafts. COL-IV is assembled in basement membrane underneath intimal layer and regulates morphogenesis of blood vessels. For immobilization of COL-IV, poly(l-lactic acid) (PLLA) nanofibers (PL) were prepared as a model vascular graft substrate, onto which acrylic acid (AAc) was then grafted by using gamma-ray irradiation. AAc graft was dependent on irradiation doses and AAc concentrations, which allowed us to select the condition of 5% (v/v) AAc and 10 kGy for further conjugation of COL-IV. COL-IV immobilization was proportionally controlled as a function of its concentration. Atomic force microscope (AFM) analysis qualitatively supported immobilization of COL-IV, demonstrating increase in root mean square roughness of the PL from 665.37 ± 13.20 nm to 1440.74 ± 33.24. However, the Young's modulus of nanofibers was retained as approximately 1 MPa, regardless of surface modification. The number of ECs attached on the nanofibers with immobilized COL-IV was significantly increased by 5 times (1052 ± 138 cells/mm(2)) from pristine PL (234 ± 41 cells/mm(2)). In addition, the effect of immobilized COL-IV was profound for enhancing proliferation and up-regulation of markers implicated in rapid endothelialization. Collectively, our results suggest that COL-IV immobilized onto electrospun PLLA nanofibers may serve as a promising instructive cue used in vascular graft materials. PMID:26196092

  9. L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.

    PubMed

    Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo

    2016-05-01

    A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight. PMID:27483787

  10. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  11. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  12. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  13. Overview of the US Fusion Materials Sciences Program

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven

    2004-11-01

    The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.

  14. The web-enabled database of JRC-EC, a useful tool for managing European Gen IV materials data

    NASA Astrophysics Data System (ADS)

    Over, H. H.; Dietz, W.

    2008-06-01

    Materials and document databases are important tools to conserve knowledge and experimental materials data of European R&D projects. A web-enabled application guarantees a fast access to these data. In combination with analysis tools the experimental data are used for e.g. mechanical design, construction and lifetime predictions of complex components. The effective and efficient handling of large amounts of generic and detailed materials data with regard to properties related to e.g. fabrication processes, joining techniques, irradiation or aging is one of the basic elements of data management within ongoing nuclear safety and design related European research projects and networks. The paper describes the structure and functionality of Mat-DB and gives examples how these tools can be used for the management and evaluation of materials data of European (national or multi-national) R&D activities or future reactor types such as the EURATOM FP7 Generation IV reactor types or the heavy liquid metals cooled reactor.

  15. Electronic Principles IV, 7-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This fourth of 10 blocks of student and teacher materials for a secondary/postsecondary level course in electronic principles comprises one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Prerequisites are the previous blocks. This block on…

  16. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    SciTech Connect

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill; Roberto, Jim

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has

  17. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  18. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  19. Development of a Positron Generator Dedicated to Materials Science Applications

    NASA Astrophysics Data System (ADS)

    Rey, Jean-Michel G.; Barthe, Marie-France; Debu, Pascal; Desgardin, Pierre; Echegut, Patrick; Liszkay, Laszlo; Pérez, Patrice; Sacquin, Yves; Visière, Serge

    Positron beams are getting increasing interest for materials science and for fundamental research. Recent progress on positron production using a compact electron accelerator made at CEA-IRFU for the GBAR experiment is providing new prospect for material analysis and non-destructive testing technology using positrons. CNRS-CEMHTI is defining a long term strategy to boost its positron laboratory using an upgraded version of the CEA positron generator manufactured by the POSITHÔT company. This new generator is designed to produce between 2 and 3 x 107 slow positrons per second to feed in parallel several experiments. It will be presented here as well as the future beam developments.

  20. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  1. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  2. Use of electron-trapping materials in optical signal processing. IV - Parallel incoherent image subtraction

    NASA Astrophysics Data System (ADS)

    Jutamulia, Suganda; Storti, George M.; Seiderman, William; Lindmayer, Joseph; Gregory, Don A.

    1993-02-01

    The application of electron trapping (ET) materials to parallel incoherent image subtraction over a wide dynamic range is examined in detail. A new incoherent image-subtraction technique based on ET materials is presented which can be applied to automation for microcircuit manufacture and inspection and potentially to data compression for videophones, teleconferencing, and high-definition TV. It is suggested that a high-quality ET thin-film could be coupled directly with a CCD chip to perform real-time image subtraction between two simultaneous scenes or subsequent frames. The advantages of the ET-based technique over the incoherent image-subtraction technique based on two liquid-crystal light valves include absence of coherent noise, high resolution, high space-bandwidth product, high speed, and cost effectiveness.

  3. Evaluation of Student Outcomes in Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  4. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    SciTech Connect

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  5. Mineral Surface Reactivity in teaching of Science Materials

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  6. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype.

    PubMed

    Li, Jingan; Zhang, Kun; Chen, Huiqing; Liu, Tao; Yang, Ping; Zhao, Yuancong; Huang, Nan

    2014-05-01

    The method of stent implantation is currently considered an effective means of treating atherosclerosis. However, implanting of cardiovascular stent often leads to intimal breakage and hyperplasia. The phenomenon that vascular smooth muscle cells (SMCs) transform from contractile to synthetic phenotype becomes a serious obstacle to intimal recovery. To improve how SMCs transform from a synthetic to contractile phenotype, a technique of coimmobilization was used to form type IV collagen (CoIV) and hyaluronic acid (HA) coating on the widely used stent material, titanium (Ti). In this work, several bio-functional coatings made of CoIV/HA mixtures in different ratios were fabricated on the Ti surface. The quantitative characterization of CoIV showed that introducing HA could enhance the amount of the immobilized CoIV on the alkali activated Ti (TiOH) surface. The immunofluorescence staining results of myosin heavy chain (MHC) and DAPI showed that the coating of CoIV/HA in ratios of 200 μg/ml (M200) and 500 μg/ml (M500) also could promote SMCs expressing more contractile phenotype compared with TiOH/CoIV control samples, while the AO/PI staining results indicated that SMCs on the M200 and M500 samples showed less apoptosis ratio. Thus, we hope that this study can provide more helpful exploration and application for promoting the SMC contractile phenotype on the cardiovascular stents. PMID:24656374

  7. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials. PMID:24013196

  8. The Future of Boundary Plasma and Material Science

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2012-03-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We outline the future of boundary research required to address this deficit. The boundary should be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are assessed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. This methodology suggests an intriguing way forward to prescribe and understand the boundary issues of an eventual reactor in intermediate devices. A particularly critical issue is that the physical chemistry of the material, which is mostly determined by the material temperature, has been too neglected; pointing to the requirement for boundary plasma experiments at appropriate material temperatures. Finally the boundary plasma requirements for quiescent heat exhaust and control of transient events, such as ELMs, will be examined.

  9. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  10. The surface and materials science of tin oxide

    NASA Astrophysics Data System (ADS)

    Batzill, Matthias; Diebold, Ulrike

    The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO 2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn 4+ surface cations into a reduced surface with Sn 2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO 2. Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO 2 are discussed and the few surface science studies of doped SnO 2 are reviewed. Epitaxial SnO 2 films may facilitate the surface science studies of doped films in the future. To this end film growth

  11. Cooperation between NASA and ESA for the first microgravity materials science glovebox

    NASA Technical Reports Server (NTRS)

    Chassay, Roger P.

    1992-01-01

    Two major space organizations have collaborated to develop the first microgravity materials science glovebox and 16 materials science experiments. The glovebox and its experiments will fly initially on USML-1, currently scheduled for launch in mid-1992.

  12. Epitaxial Development of Advanced Group IV Materials and High Performance Optical Devices for Applications in Silicon-photonics and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Beeler, Richard

    Group IV alloy films exhibit the ability to tune both band structure and lattice parameters and have recently attracted attention for their potential applications in Si-photonics and photovoltaics. In this work, several new approaches to produce these alloys directly on Si(100) and Ge(100) wafers are developed. For photovoltaics, use of Ge-buffered Si(100) wafers as a low cost platform for epitaxy of In1-xGaxAs layers was explored. The results indicate that this approach has promise for transitioning from bulk Ge platforms to virtual substrates for a significant cost reduction. The electrical and optical properties of Ge and Ge1-ySn y layers produced using several different techniques were explored via fabrication of high performance heterostructure photodiodes. First, a new CVD approach to Ge-like materials was developed in which germanium is alloyed with very small amounts of tin. These alloys exhibited no significant difference in their structural properties or band gap compared to pure Ge, however superior photo response and reduced dark currents were observed from fabricated devices relative to pure Ge on Si reference diodes. Additionally, pure Ge/Si(100) photodiodes were fabricated using layers grown via reactions of Ge4H 10 on Si(100) and found to exhibit low dark current densities with high collection efficiencies. Ge1-x-ySixSny materials represent the newest member of group IV alloy family. The ability to decouple the lattice constant and the band gap in this system has led to strong interest both for strain/confinement layers in quantum well structures, and as the possible "missing" 1 eV junction in multijunction photovoltaics. Recent progress in this field has allowed for the first time growth, fabrication and measurement of novel photodiodes based on Ge1-x-ySixSn y. This work presents the material, electrical and optical properties of Ge1-x-ySixSny layers and photodiodes grown directly on Ge and Si wafers using two different synthetic approaches. A

  13. Recent advances in material science for developing enzyme electrodes.

    PubMed

    Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D

    2009-04-15

    The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.

  14. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-01

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  15. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  16. Quantitative Energy-filtering Transmission Electron Microscopy in Materials Science.

    PubMed

    Grogger; Hofer; Warbichler; Kothleitner

    2000-03-01

    Energy-filtered transmission electron microscopy (EFTEM) can be used to acquire elemental distribution images at high lateral resolution within short acquisition times. In this article, we present an overview of typical problems from materials science which can be preferentially solved by means of EFTEM. In the first example, we show how secondary phases in a steel specimen can be easily detected by recording jump ratio images of the matrix element under rocking beam illumination. Secondly, we describe how elemental maps can be converted into concentration maps. A Ba-Nd-titanate ceramics serves as a typical materials science example exhibiting three different compounds with varying composition. In order to reduce diffraction and/or thickness variation effects which may be a problem for quantification of crystalline specimens, we calculated atomic ratio maps by dividing two elemental maps and subsequent normalizing by the partial ionization cross-sections (or k-factors). Additionally, the atomic ratio maps are correlated using the scatter diagram technique thus leading to quantitative chemical phase maps. Finally, we show how the near-edge structures (electron energy-loss near edge fine structures, or ELNES) can be used for mapping chemical bonding states thus differentiating between various modifications of an element. In order to distinguish between diamond and non-diamond carbon in diamond coated materials, we have investigated a diamond layer on a substrate with the help of ELNES mapping utilizing the pi*-peak of the C-K ionization edge. PMID:10742404

  17. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  18. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  19. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was

  20. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  1. The Materials Science beamline upgrade at the Swiss Light Source

    PubMed Central

    Willmott, P. R.; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A.; Böge, M.; Calvi, M.; Cancellieri, C.; Casati, N.; Cervellino, A.; Chen, Q.; David, C.; Flechsig, U.; Gozzo, F.; Henrich, B.; Jäggi-Spielmann, S.; Jakob, B.; Kalichava, I.; Karvinen, P.; Krempasky, J.; Lüdeke, A.; Lüscher, R.; Maag, S.; Quitmann, C.; Reinle-Schmitt, M. L.; Schmidt, T.; Schmitt, B.; Streun, A.; Vartiainen, I.; Vitins, M.; Wang, X.; Wullschleger, R.

    2013-01-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  2. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  3. Materials Science Constraints on the Development of Aluminium Reduction Cells

    NASA Astrophysics Data System (ADS)

    Metson, James; McIntosh, Grant; Etzion, Ronny

    The Hall-Heroult process for the production of Aluminium metal is some 125 years old. The process is energy constrained by the need to shed around half of the (electrical) energy supplied to the cell as waste heat. The molten cryolite electrolyte is sufficiently aggressive that the only reliable method of protecting the side wall of the cell is to maintain a frozen layer of electrolyte at the hot face of the sidewall. Thus the lack of a cryolite resistant sidewall is but one of several materials science constraints which still limit the energy efficiency of the process. An inert anode and non-consumable cathode are also significant challenges which limit cell life and energy efficiency. Thus there are major challenges in both materials development and new conceptual cell designs to improve the efficiency of this process.

  4. The material science of minimally invasive esthetic restorations.

    PubMed

    Nový, Brian B; Fuller, Cameron E

    2008-01-01

    The term esthetic dentistry usually conjures up mental images of porcelain crowns and veneers. To some dentists, the term minimally invasive dentistry evokes thoughts of observing early lesions, and postponing treatment until lesions are closer to the pulp. (The World Congress of Minimally Invasive Dentistry defines minimally invasive dentistry as those techniques which respect health, function, and esthetics of oral tissue by preventing disease from occurring, or intercepting its progress with minimal tissue loss.) It would seem these two niches within dentistry are on opposite ends of the spectrum; however, composite resin and glass ionomer restorative materials unite these two ideologies. Understanding the limitations, benefits, and science behind each material allows clinicians to produce highly esthetic restorations that can resist future decay, internally remineralize the tooth, and help protect adjacent teeth from cariogenic attack.

  5. Multiple-probe scanning probe microscopes for nanoarchitectonic materials science

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomonobu; Shingaya, Yoshitaka; Aono, Masakazu

    2016-11-01

    Nanoarchitectonic systems are of interest for utilizing a vast range of nanoscale materials for future applications requiring a huge number of elemental nanocomponents. To explore the science and technology of nanoarchitectonics, advanced characterization tools that can deal with both nanoscale objects and macroscopically extended nanosystems are demanded. Multiple-probe scanning probe microscopes (MP-SPMs) are powerful tools that meet this demand because they take the advantages of conventional scanning probe microscopes and realize atomically precise electrical measurements, which cannot be done with conventional microprobing systems widely used in characterizing materials and devices. Furthermore, an MP-SPM can be used to operate some nanoarchitectonic systems. In this review, we overview the indispensable features of MP-SPMs together with the past, present and future of MP-SPM technology.

  6. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  7. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  8. International Conference on Materials Science and Technology (ICMST 2012)

    NASA Astrophysics Data System (ADS)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has

  9. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  10. Chemistry and Materials Science Directorate Annual Report 2003

    SciTech Connect

    Diaz de la Rubia, T; Shang, S P; Kitrinos, G A; Fluss, M; Westbrook, C; Rennie, G

    2004-04-21

    Evolving challenges and solid accomplishments define the year 2003 for us. Our scientific breakthroughs validate our strategic directions and reaffirm our critical role in fulfilling the Laboratory's missions. Our growth continues in new research projects and significant new programmatic support. Our mission is clear: to enable the Laboratory to accomplish its primary mission through excellence in the chemical and materials sciences. The directorate's common theme and determination has remained constant: Deliver on our commitments, while anticipating and capitalizing on opportunities through innovation in science and technology. In this, the 2003 Annual Report, we describe how our science is built around a strategic plan with four organizing themes, each with key scientific accomplishments by our staff and collaborators. Our strategic plan is synergistic with the Laboratory's Long-Range Science and Technology Plan, which identifies six areas of institutional research and development strategy. This 2003 CMS Annual Report is organized into two major sections: research themes and dynamic teams. The research-theme section addresses challenges, achievements, and new frontiers within each of the four research themes. The dynamic-teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that supports a team environment across disciplinary and institutional boundaries. The research presented gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with the institutional strategy. Our organizational structure offers an environment of collaborative problem-solving opportunities, an environment that attracts and retains the best and the brightest from across the Laboratory and around the world.

  11. Direct Energy Conversion: Chemistry, Physics, Materials Science and Thermoelectrics.

    NASA Astrophysics Data System (ADS)

    Kanatzidis, Mercouri

    2006-03-01

    Interest in all-solid-state thermal to electrical conversion has been steadily increasing in recent years and this has been coinciding with an increasing recognition of rising energy demands in the future. Thus there is now renewed awareness of the need to find new energy sources and make conservation efforts more efficient. In this context thermoelectric materials seem poised to have an impact. Research is needed to understand at the fundamental level the scientific issues that are crucial in designing and discovering new highly efficient thermoelectrics. The progress in the field of thermoelectrics has been significant both at the concept level and at the materials discovery level thanks to a convergence of chemistry, physics and materials science efforts. I will describe how each of these disciplines impact each other to produce synergies that propel advances in this area. I will present recent progress in novel nanostructured chalcogenide materials that stimulate new experimentation and hold considerable promise for higher efficiencies in heat to electricity conversion.

  12. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  13. Bipolar electrochemistry: from materials science to motion and beyond.

    PubMed

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the

  14. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-07-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  15. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-08-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  16. Science Reference Materials for Children and Young Adults

    ERIC Educational Resources Information Center

    Strickler, Richard L.

    1974-01-01

    After a brief discussion of science reference service, there is a list of science reference books. First are general science books, then specific lists by broad Dewey decimal classes. Grade levels are given for each work. (LS)

  17. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  18. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  19. To Kit or Not to Kit? Evaluating and Implementing Science Materials and Resources

    ERIC Educational Resources Information Center

    Schiller, Ellen; Melin, Jacque; Bair, Mary

    2016-01-01

    With the release of the "Next Generation Science Standards," many schools are reexamining the science materials they are using. Textbook companies and kit developers are eager to meet the demand for "NGSS"-aligned teaching materials. Teacher may have been asked to serve on a science curriculum committee, or to evaluate current…

  20. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  1. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  2. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  3. Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980

    SciTech Connect

    Truhan, J.J.; Hopper, R.W.; Gordon, K.M.

    1980-10-28

    Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

  4. Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980

    SciTech Connect

    Truhan, J.J.; Gordon, K.M.

    1980-08-01

    Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

  5. A materials science vision of extracellular matrix mineralization

    NASA Astrophysics Data System (ADS)

    Reznikov, N.; Steele, J. A. M.; Fratzl, P.; Stevens, M. M.

    2016-08-01

    From an engineering perspective, skeletal tissues are remarkable structures because they are lightweight, stiff and tough, yet produced at ambient conditions. The biomechanical success of skeletal tissues is largely attributable to the process of biomineralization — a tightly regulated, cell-driven formation of billions of inorganic nanocrystals formed from ions found abundantly in body fluids. In this Review, we discuss nature's strategies to produce and sustain appropriate biomechanical properties in mineralizing (by the promotion of mineralization) and non-mineralizing (by the inhibition of mineralization) tissues. We review how perturbations of biomineralization are controlled over a continuum that spans from the desirable (or defective in disease) mineralization of the skeleton to pathological cardiovascular mineralization, and to mineralization of bioengineered constructs. A materials science vision of mineralization is presented with an emphasis on the micro- and nanostructure of mineralized tissues recently revealed by state-of-the-art analytical methods, and on how biomineralization-inspired designs are influencing the field of synthetic materials.

  6. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  7. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  8. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  9. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  10. The Best Science Books & A-V Materials for Children.

    ERIC Educational Resources Information Center

    O'Connell, Susan M., Ed.; And Others

    Some scientists and science educators believe that the most effective strategy for raising science literacy among future workers and voters is to focus on the youngest members of the public. The reviews in this publication were undertaken to increase public understanding and appreciation of the importance and promise of the methods of science in…

  11. 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science.

    PubMed

    Ariga, Katsuhiko; Yamauchi, Yusuke; Mori, Taizo; Hill, Jonathan P

    2013-12-01

    The Langmuir-Blodgett (LB) technique is known as an elegant method for fabrication of well-defined layered structures with molecular level precision. Since its discovery the LB method has made an indispensable contribution to surface science, physical chemistry, materials chemistry and nanotechnology. However, recent trends in research might suggest the decline of the LB method as alternate methods for film fabrication such as layer-by-layer (LbL) assembly have emerged. Is LB film technology obsolete? This review is presented in order to challenge this preposterous question. In this review, we summarize recent research on LB and related methods including (i) advanced design for LB films, (ii) LB film as a medium for supramolecular chemistry, (iii) LB technique for nanofabrication and (iv) LB involving advanced nanomaterials. Finally, a comparison between LB and LbL techniques is made. The latter reveals the crucial role played by LB techniques in basic surface science, current advanced material sciences and nanotechnologies.

  12. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions.

  13. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  14. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions. PMID:27018779

  15. CRC materials science and engineering handbook. Third edition

    SciTech Connect

    Shackelford, J.F.; Alexander, W.

    1999-01-01

    This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

  16. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-04-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  17. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  18. Advances in materials science, Metals and Ceramics Division. Triannual progress report, October 1979-January 1980

    SciTech Connect

    Not Available

    1980-03-31

    Progress is summarized concerning magnetic fusion energy materials, laser fusion energy, aluminium-air battery and vehicle, geothermal research, oil-shale research, nuclear waste management, office of basic energy sciences research, and materials research notes. (FS)

  19. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  20. A paradigm for the integration of biology in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Roeder, Ryan K.

    2010-07-01

    The integration of biology in materials science and engineering can be complicated by the lack of a common framework and common language between otherwise disparate disciplines. History may offer a valuable lesson as modern materials science and engineering itself resulted from the integration of traditionally disparate disciplines that were delineated by classes of materials. The integration of metallurgy, ceramics, and polymers into materials science and engineering was facilitated, in large part, by a unifying paradigm based upon processing-structure-property relationships that is now well-accepted. Therefore, a common paradigm might also help unify the vast array of perspectives and challenges present in the interdisciplinary study of biomaterials, biological materials, and biomimetic materials. The traditional materials science and engineering paradigm was modified to account for the adaptive and hierarchical nature of biological materials. Various examples of application to research and education are considered.

  1. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  2. From Witnessing to Recording--Material Objects and the Epistemic Configuration of Science Classes

    ERIC Educational Resources Information Center

    Roehl, Tobias

    2012-01-01

    Drawing on concepts developed in actor-network theory and postphenomenology this article shows how material objects in the science classroom become part of epistemic configurations and thus co-shape science education. An ethnographic study on epistemic objects in science education is the basis for the analysis of two of these objects: experimental…

  3. Opportunities for Teacher Learning during Enactment of Inquiry Science Curriculum Materials: Exploring the Potential for Teacher Educative Materials

    ERIC Educational Resources Information Center

    Schneider, Rebecca M.

    2013-01-01

    The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape…

  4. CVT/GPL phase 2 integrated testing. [in earth observations, space physics, and material sciences

    NASA Technical Reports Server (NTRS)

    Shurney, R. E.; Maybee, G.; Schmitt, S.

    1974-01-01

    Experiments representing earth observations, space physics, and material sciences disciplines were installed in the General Purpose Laboratory (GPL). The experiments and the GPL are described. The experiments interfaces the GPL and GPL support systems are assessed. The experiments were cloud physics, ionospheric disturbances, material sciences, high energy astronomy, and superfluid helium.

  5. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  6. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Foreign-Trade Zones Board Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe, Texas Pursuant to its authority under the Foreign... Materials Science Technology, Inc., located in Conroe, Texas, (FTZ Docket 46-2009, filed October 27,...

  7. Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…

  8. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect

    Parkin, D.M.; Boring, A.M.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  9. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  10. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    NASA Astrophysics Data System (ADS)

    Eick, Charles J.; Stewart, Bethany

    2010-11-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs about the teaching and learning of science through structured inquiry. Supportive dispositions included curiosity and questioning, investigating first-hand, learning together, and active learning. These dispositions supported early science teaching despite candidates limited science content knowledge, and may contribute to candidates’ further learning of science.

  11. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  12. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    ERIC Educational Resources Information Center

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  13. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  14. Advanced Density Functional Theory Methods for Materials Science

    NASA Astrophysics Data System (ADS)

    Demers, Steven

    In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description. Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems. Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via 'classical' molecular

  15. Pb-free electronics: from nanotechnology to combinatorial materials science

    NASA Astrophysics Data System (ADS)

    Diaz Gonzalez, Alfredo J.

    , alloys that are prone to tin whiskers growth. These libraries are samples containing a range of sub-samples with varying compositions within it than can be processed simultaneously. Using sputtering, a physical vapor deposition technique, a gradient composed of Ag-Cu was deposited over a Sn-plated Cu substrate. After reflow, the growth mechanism of the whiskers was accelerated using the IEC60068-82-2 standard. SEM and EDS analysis was used to charac-terize the growth of the tin whiskers at different elemental compositions. The gradients found across the samples are in accordance with the theoretical geometrical spacing. Tin whiskers were found on control samples, whereas almost all elemental compositions showed mitigation or elimination of the whiskers. This combinatorial material science methodology proved to be an efficient and fast screening method for the plating materials selection process in Pb-free electronics.

  16. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  17. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  18. Derivation of residual radioactive material guidelines for 13 radionuclides present in Operable Unit IV at Brookhaven National Laboratory, Upton, New York

    SciTech Connect

    Faillace, E.; Nimmagadda, M.; Yu, C.

    1994-12-01

    Residual radioactive material guidelines for 13 radionuclides (americium-241; cobalt-60; cesium-137; europium-152, -154, and -155; plutonium-238, -239, and -240; strontium-90; and uranium-234, -235, and -238) were derived for Operable Unit (OU) IV at Brookhaven National Laboratory. This site has been identified for remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Single-nuclide guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of OU IV should not exceed a dose constraint of 30 mrem/yr following remedial action for the current use and plausible future use scenarios or a dose limit of 100 mrem/yr for plausible but less likely future use scenarios. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for determining residual radioactive material guidelines. Four potential scenarios were considered; each assumed that, for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The four scenarios varied with regard to the type of site use, time spent at the site, and sources of food consumed.

  19. NASA Now: Materials Science: International Space Station Testing

    NASA Video Gallery

    The Materials International Space Station Experiment, or MISSE, provides NASA with a means to study the effects of long-term exposure to space on various materials, computer components and electron...

  20. Five experiments in materials science for less than $10.00

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1992-01-01

    Diffusion, twinning, fatigue, acoustic emission, and aging can be studied using readily available materials and the household oven. Each experiment can be expanded to a more extensive investigation of the properties of the material investigated, as well as other materials, and offers an opportunity for the student to learn about the relationship between engineering, science, society, and politics.

  1. The material co-construction of hard science fiction and physics

    NASA Astrophysics Data System (ADS)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  2. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  3. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  4. Equity Materials in Mathematics, Science, & Technology: A Resource Guide.

    ERIC Educational Resources Information Center

    Hulme, Marylin A.

    This annotated bibliography is a resource guide designed to assist schools in promoting the interest, engagement, and achievement of all students, especially those populations (poor, immigrant, female, and minority) that are underrepresented among students who elect advanced mathematics and science courses and pursue related careers. These…

  5. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  6. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    NASA Astrophysics Data System (ADS)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  7. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  8. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  9. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  10. Developing Inquiry-Based Science Materials: A Guide for Educators.

    ERIC Educational Resources Information Center

    Thier, Herbert D.

    This book provides guidance to beginning and experienced educational material developers. The targeted objectives are guiding developers on external funding, explaining the complex process of developing instructional materials, and pointing out the human interactions and issues involved in the development process. Chapters include: (1) "The…

  11. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema

    John Sarrao

    2016-07-12

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  12. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  13. Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…

  14. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  15. Sciences: A Select List of U.S. Government Produced Audiovisual Materials - 1978.

    ERIC Educational Resources Information Center

    National Archives and Records Service (GSA), Washington, DC. National Audiovisual Center.

    This publication is a catalog that contains the National Audiovisual Center's materials on Science. There are twelve areas in this catalog: Aerospace Technology, Astronomy, Biology, Chemistry, Electronics and Electricity, Energy, Environmental Studies, Geology, Mathematics and Computer Science, Oceanography, Physics, and Weather/Meteorology. Each…

  16. Heat Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide the first of a series of six, contains teacher and student materials for a unit on heat energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  17. Content Structure in Science Instructional Materials and Knowledge Structure in Students' Memories.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    The research reported in this paper concerns the design of instructional materials that represent the content structure of a science discipline and the development of methods of probing and representing the knowledge structure in a student's memory. The science discipline selected for the study was geology. Specifically, the conceptual structures…

  18. Enacting Reform-Based Science Materials: The Range of Teacher Enactments in Reform Classrooms

    ERIC Educational Resources Information Center

    Schneider, Rebecca M.; Krajcik, Joseph; Blumenfeld, Phyllis

    2005-01-01

    To promote large-scale science education reform, developers must create innovations that teachers can use to learn and enact new practices. As part of an urban systemic reform effort, science materials were designed to reflect desired reforms and to support teacher thinking by addressing necessary content, pedagogy, and pedagogical content…

  19. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    ERIC Educational Resources Information Center

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  20. Mechanical Advantage. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fourth in a set of six, contains teacher and student materials for a unit on mechanical engineering prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in…

  1. Evaluation of Online, On-Demand Science Professional Development Material Involving Two Different Implementation Models

    ERIC Educational Resources Information Center

    Sherman, Greg; Byers, Al; Rapp, Steve

    2008-01-01

    This report presents pilot-test results for a science professional development program featuring online, on-demand materials developed by the National Science Teachers Association. During the spring 2006 semester, 45 middle school teachers from three different school districts across the United States participated in a professional development…

  2. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    ERIC Educational Resources Information Center

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  3. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    ERIC Educational Resources Information Center

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  4. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  5. Solar Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the third in a set of six, contains teacher and student materials for a unit on solar energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  6. Apollo-Soyuz pamphlet no. 9: General science. [experimental design in Astronomy, Biology, Geophysics, Aeronomy and Materials science

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored.

  7. Science: Promising and Exemplary Programs and Materials in Elementary and Secondary Schools. [Science Education Information Report.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    This document contains 36 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…

  8. Materials science in pre-plated leadframes for electronic packages

    NASA Astrophysics Data System (ADS)

    Liu, Lilin

    Au/Pd/Ni pre-plated leadframes (PPF) are high performance frames for accommodating high-end electronic packages. Cost and reliability are major concerns in their wide application. The present work, from a materials science point view, deepens the understanding of PPFs, optimizes the conventional PPFs, develops a novel PPF architecture and models the residual stress relaxation in heteroepitaxial thin films. The wire pull test, the solderability test, and High-Resolution Transmission Electron Microscopy (HRTEM) were employed to characterize the PPFs in order to understand the relationship between performance and microstructure. We optimized the electroplating profiles and determined the minimum thickness of the Pd layer with the PPF performance satisfying the industry standards. Further increasing the Pd layer thickness beyond the critical thickness will not enhance the performance more, but increase the product cost. With the optimized electroplating profile, the electroplated Au layer is epitaxially deposited on the Pd layer, and so does the Pd layer on the Ni layer. Misfit dislocations and nanotwins are present at the interface between the Pd and Ni layers, which are generated to release the about 10.4% misfit strain between the Pd and Ni lattices. This work demonstrates that the electro-deposition technique can electroplate epitaxy-like Pd films on the highly (200) textured Ni films, which are grown on the Cu substrates. A novel technique for impeding Cu out-diffusion in Cu alloy based pre-plated leadframes was developed by electroplating a 3-4 nm thick Sn layer on a Cu alloy base prior to electroplating a Ni layer. A 10-14 nm thick epitaxy-like and dense (Cu,Ni)3Sn intermetallic compound (IMC) layer is automatically formed en route of diffuse reaction, which leads to a drastic reduction in Cu out-diffusion and hence improves significantly the protection of the leadframes against oxidation and corrosion attack. The oxidation behaviours were quantified by Electron

  9. A Model Framework for Science and Other Course Materials Construction.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    A model is presented to provide guidance for Coast Guard writers, curriculum developers, course coordinators, and instructors who intend to update, or draft course materials. Detailed instructions are provided for developing instructor's guides and student's guides. (CS)

  10. The Use of X-Ray Microbeams in Materials Science

    SciTech Connect

    Budai, J.D.; Chung, J.-S.; Ice, G.E.; Larson, B.C.; Lowe, W.P.; Norton, D.P.; Tamura, N.; Tischler, J.Z.; Williams, E.L.; Yoon, M.; Zschack, P.

    1998-10-13

    Most materials are heterogeneous on mesoscopic length scales (tenths-to-tens of microns), and materials properties depend critically on mesoscopic structures such as grain sizes, texture, and impurities. The recent availability of intense, focused x-ray microbeams at synchrotron facilities has enabled new techniques for mesoscale materials characterization. We describe instrumentation and experiments on the MHATT-CAT and UNICAT undulator beamlines at the Advanced Photon Source which use micron and submicron-size x-ray beams to investigate the grain orientation, local strain and defect content in a variety of materials of technological interest. Results from a combinatorial study on epitaxial growth of oxide films on textured metal substrates will be described to illustrate x-ray microbeam capabilities.

  11. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  12. New Hydrophobic IOL Materials and Understanding the Science of Glistenings.

    PubMed

    Tetz, Manfred; Jorgensen, Matthew R

    2015-01-01

    An introduction to the history of intraocular lenses (IOLs) is given, leading up to modern hydrophobic examples. The roles of hydrophobicity, hygroscopy, materials chemistry, and edge design are discussed in the context of IOLs. The four major types of IOL materials are compared in terms of their chemistry and biocompatibility. An example of a modern "hydrophobic" acrylic polymer with higher water content is discussed in detail.

  13. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  14. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

  15. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  16. Academic Entrepreneurship and Exchange of Scientific Resources: Material Transfer in Life and Materials Sciences in Japanese Universities

    ERIC Educational Resources Information Center

    Shibayama, Sotaro; Walsh, John P.; Baba, Yasunori

    2012-01-01

    This study uses a sample of Japanese university scientists in life and materials sciences to examine how academic entrepreneurship has affected the norms and behaviors of academic scientists regarding sharing scientific resources. Results indicate that high levels of academic entrepreneurship in a scientific field are associated with less reliance…

  17. Figures and Institutions of the neurological sciences in Paris from 1800 to 1950. Part IV: Psychiatry and psychology.

    PubMed

    Poirier, J; Clarac, F; Barbara, J-G; Broussolle, E

    2012-05-01

    We present a short historical review on the major institutions and figures who contributed to make Paris a renowned centre of physiology and neurology during the XIXth and the first half of the XXth century. We purposely chose to focus on the period 1800-1950, as 1800 corresponds to the actual beginning of neurosciences, and as 1950 marks their exponential rise. Our presentation is divided into four chapters, matching the main disciplines that have progressed and contributed most to the knowledge we have of the brain sciences: anatomy, physiology, neurology, and psychiatry-psychology. The present article is the fourth of the four parts of this review, which deals with the chapter on psychiatry and psychology. When the French Revolution occurred, only a few institutions were taking care of the mentally ill. In the Paris area, these included Maison Royale de Charenton, Les Petites Maisons, and one of the departments of larger hospitals such as Hôtel-Dieu, the Salpêtrière Hospital and Bicêtre Hospital. One of the founders of psychiatry in Paris at that time and thereafter was Philippe Pinel (1745-1826) who was the first to distinguish insane/alienated patients from misfits, beggars, and other vagabonds. During the first half of the XIXth century, his student Jean-Étienne Esquirol (1772-1840) also played a major role with his treatise on mental diseases and the 1838 law and the creation of asylums in all parts of France. Alienists were in general caregivers and learned by themselves. In contrast, at the academic level, the emerging disciplines psychiatry and neurology were very close to each other in the second half of the XIXth century, the best example being Jules Baillarger (1809-1890). The actual development of psychiatry and psychology and the foundation of psychoanalysis later in the XIXth century and in the first half of the XXth century owed much to several European doctors and scientists, particularly those from British institutions and from German

  18. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  19. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  20. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted. PMID:23432390

  1. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    ERIC Educational Resources Information Center

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  2. Chemistry and Materials Science. Progress report, first half, FY 1993

    SciTech Connect

    Not Available

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  3. Materials science challenges for high-temperature superconducting wire.

    PubMed

    Foltyn, S R; Civale, L; Macmanus-Driscoll, J L; Jia, Q X; Maiorov, B; Wang, H; Maley, M

    2007-09-01

    Twenty years ago in a series of amazing discoveries it was found that a large family of ceramic cuprate materials exhibited superconductivity at temperatures above, and in some cases well above, that of liquid nitrogen. Imaginations were energized by the thought of applications for zero-resistance conductors cooled with an inexpensive and readily available cryogen. Early optimism, however, was soon tempered by the hard realities of these new materials: brittle ceramics are not easily formed into long flexible conductors; high current levels require near-perfect crystallinity; and--the downside of high transition temperature--performance drops rapidly in a magnetic field. Despite these formidable obstacles, thousands of kilometres of high-temperature superconducting wire have now been manufactured for demonstrations of transmission cables, motors and other electrical power components. The question is whether the advantages of superconducting wire, such as efficiency and compactness, can outweigh the disadvantage: cost. The remaining task for materials scientists is to return to the fundamentals and squeeze as much performance as possible from these wonderful and difficult materials.

  4. Third generation synchrotron radiation applied to materials science

    SciTech Connect

    Kaufmann, E.N.; Yun, W.

    1993-11-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines.

  5. Indian-Related Materials in Elementary Science Instruction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.; Smith, Walter S.

    The purpose of this study was to investigate the hypothesis that if selected instruction materials were more culturally-relevant, Native American students should be more motivated and better able to make connections between school learning and their own lives. This increased motivation and improved connections between school learning and their own…

  6. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  7. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  8. Materials science approaches to solve problems with emerging mycotoxins in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Materials science technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors. These materials are especially well suited to address issues with emerging toxins for which a better understanding is needed to establish levels of ...

  9. A Procedure for Determining the Level of Abstraction of Science Reading Material.

    ERIC Educational Resources Information Center

    Vachon, Myra K.; Haney, Richard E.

    Classroom teachers frequently express concern that textbooks and other curriculum materials are too difficult for their students. The objectives of this investigation were to develop a method for scoring the Level of Abstraction (LOA) of science reading material, and explore its relationship with certain other known methods for assessing…

  10. A Procedure for Determining the Level of Abstraction of Science Reading Material.

    ERIC Educational Resources Information Center

    Vachon, Myra K.; Haney, Richard E.

    1991-01-01

    The objectives of this study were to develop a method for scoring the level of abstraction (LOA) of science reading material and explore its relationship with other methods for assessing curriculum materials. LOA is defined as the ratio of the nonconcrete concepts to the total number of concepts in a written passage expressed as a percent.…

  11. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  12. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  13. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  14. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  15. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  16. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  17. FOREWORD: Some thoughts about Jürgen Hafner's work in computational materials science Some thoughts about Jürgen Hafner's work in computational materials science

    NASA Astrophysics Data System (ADS)

    Heine, Volker

    2011-10-01

    Jürgen Hafner started in the early 1970s with pseudopotential calculations on the structures and properties of sp-bonded metals, improving on work done elsewhere [1]. This expanded in four directions: transition metals, molten metals, magnetism and alloys, and combinations of these. As well as electronic structure calculations, he helped to advance the statistical mechanical classical theory of liquids for the molten metals [2]. In magnetism he was one of the pioneers of calculations with non-collinear spins [3, 4]. As well as simple (solid and molten) alloys, he also treated materials with strong chemical interaction such as sulphides and liquids such as arsenic and tellurium [5, 6]. All this fed into two directions which dominated much of his work for many years, namely the theory of glassy metals [7] and that of quasicrystals [8]. One notable result in the latter was to show that it was possible to construct hypothetical materials for which the quasicrystalline state is indeed the lowest energy structure. This displaced the established wisdom of the time that quasicrystals were necessarily metastable forms. In more recent years he has turned to calculations in surface science [9, 10], including catalysis of chemical reactions on surfaces [11, 12]. What really brought Jürgen first to my attention was that he had managed to do a better job than we had of calculations with the new approach of pseudopotentials, particularly regarding the screening part of the calculation. This is very important in alloys where there is a large difference in the electron density in the two types of atom due to their different volumes or valences such as in the phase diagram and structure of LiK or KPb [5, 13]. We have been in contact over many years including one close collaboration and I always learned something new in talking with Jürgen. In the late 1970s in Cambridge we performed phonon calculations on models of amorphous silicon [14], to see if these could distinguish between

  18. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    SciTech Connect

    Schwartz, Justin

    2014-06-30

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.

  19. Serial snapshot crystallography for materials science with SwissFEL

    SciTech Connect

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.

  20. The High Energy Materials Science Beamline (HEMS) at PETRA III

    NASA Astrophysics Data System (ADS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  1. Crystal chemistry of uranium (V) and plutonium (IV) in a titanate ceramic for disposition of surplus fissile material

    NASA Astrophysics Data System (ADS)

    Fortner, J. A.; Kropf, A. J.; Finch, R. J.; Bakel, A. J.; Hash, M. C.; Chamberlain, D. B.

    2002-07-01

    We report X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra for the plutonium LIII and uranium LIII edges in titanate pyrochlore ceramic. The titanate ceramics studied are of the type proposed to serve as a matrix for the immobilization of surplus fissile materials. The samples studied contain approximately 10 wt% fissile plutonium and 20 wt% natural uranium, and are representative of material within the planned production envelope. Based upon natural analogue models, it had been previously assumed that both uranium and plutonium would occupy the calcium site in the pyrochlore crystal structure. While the XANES and EXAFS signals from the plutonium LIII are consistent with this substitution into the calcium site within pyrochlore, the uranium XANES is characteristic of pentavalent uranium. Furthermore, the EXAFS signal from the uranium has a distinct oxygen coordination shell at 2.07 Å and a total oxygen coordination of about 6, which is inconsistent with the calcium site. These combined EXAFS and XANES results provide the first evidence of substantial pentavalent uranium in an octahedral site in pyrochlore. This may also explain the copious nucleation of rutile (TiO 2) precipitates commonly observed in these materials as uranium displaces titanium from the octahedral sites.

  2. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    ERIC Educational Resources Information Center

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  3. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    SciTech Connect

    McHargue, C.J.

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  4. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    ERIC Educational Resources Information Center

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  5. The Effectiveness of Substituting Locally Available Materials in Teaching Chemistry in Nigeria: A Case for Science Education in Developing Countries

    ERIC Educational Resources Information Center

    DomNwachukwu, Nkechi S.; DomNwachukwu, Chinaka S.

    2006-01-01

    This article investigates the effectiveness of improvising locally available materials for teaching chemistry in Nigeria, as a case for a culture of improvisation for teaching the sciences in developing countries. The scarcity and cost of imported materials for teaching science has remained a major challenge to teaching sciences in developing…

  6. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  7. ISIS muons for materials and molecular science studies

    NASA Astrophysics Data System (ADS)

    King, Philip J. C.; de Renzi, Roberto; Cottrell, Stephen P.; Hillier, Adrian D.; Cox, Stephen F. J.

    2013-12-01

    This paper marks the first 25 years of muon production at ISIS and the creation in that time of a facility dedicated to the use of these elementary particles as unique microscopic probes in condensed matter and molecular science. It introduces the basic techniques of muon spin rotation, relaxation and resonance, collectively known as μSR, that were already in use by specialist groups at other accelerator labs by the mid-1980s. It describes how these techniques have been implemented and made available at ISIS, beginning in 1987, and how they have evolved and improved since then. Ever widening applications embrace magnetism, superconductivity, interstitial diffusion and charge transport, semiconductors and dielectrics, chemical physics and radical chemistry. Over these first 25 years, a fully supported user facility has been established, open to all academic and industrial users. It presently comprises four scheduled instruments, optimized for different types of measurement, together with auxiliary equipment for radiofrequency or microwave spin manipulation and future plans for pump-probe laser excitation.

  8. Materials Science and Technology, Volume 16, Processing of Semiconductors

    NASA Astrophysics Data System (ADS)

    Jackson, Kenneth A.

    1996-09-01

    This self-contained handbook deals with the enabling materials technology for the electronics industry. World renowned authors have contributed to this unique treatment of the processing of semiconductors and related technologies. Contents: Wilkes: Silicon Processing. Mullin: Compound Semiconductor Processing, Kuech/BleLagally/Tischler: Epitaxial Growth. Leuschner/Pawlowski: Photolithography. Griffin: Doping. Turner/Donohoe: Etching Processes in Semiconductor Manufacturing. Chang/Sze: Silicon Device Structures. Lam/Stanchina: Compound Semiconductor Device Structures. Kwong: Silicon Device Processing. Parsey, Jr: Compound Semiconductor Device Processing. Amey: Chip Carriers. Knausenberger/Turlik: Interconnection Systems.

  9. Addgene: Making Materials Sharing “Science As Usual”

    PubMed Central

    Kamens, Joanne

    2014-01-01

    Addgene (www.addgene.org) is a nonprofit organization that facilitates biomedical research and discovery by improving access to useful research materials and information. To fulfill this mission, Addgene works with hundreds of laboratories all over the world to collect high-quality published plasmids and data for the repository that can then be distributed to academic institutions and used to further research. Biological resource centers such as Addgene are an important part of the scientific infrastructure. They play a key role in helping scientists overcome logistical barriers to sharing, improving experimental reproducibility, and optimizing use of limited resources. PMID:25387006

  10. 50 years of ion channeling in materials science

    NASA Astrophysics Data System (ADS)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  11. Serial snapshot crystallography for materials science with SwissFEL

    PubMed Central

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-01-01

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies. PMID:25995845

  12. OCRWM SCIENCE & TECHNOLOGY PROGRAM MATERIALS PERFORMANCE TARGETED THRUST FACT SHEET

    SciTech Connect

    DOE

    2005-10-06

    In severe corrosive or abrasive environments, steel is rarely used since the range of properties available, in existing steels, are insufficient, resulting in the prevalent usage of either corrosion resistant materials like nickel based superalloys or abrasion resistant materials like tungsten carbide based hardmetals. Recently, a host of carbide based alloys including WC-Co-Cr, NiCr-Cr{sub 3}C{sub 2}, WC-Cr{sub 3}C{sub 2}-Ni etc. have been developed in an attempt to bridge the gap between providing both wear and corrosion protection. In this presentation, data will be presented showing how a newly developed steel coating, SAM2X5, with an amorphous/nanocomposite structure can bridge the gap between conventional metallic alloys and ceramic hardmetal performance with excellent combinations of properties including corrosion resistance superior to nickel superalloys in a number of environments and wear resistance approaching that of tungsten carbide cobalt. The unique combination of damage tolerance developed should be especially applicable for the replacement of electrolytic hard chromium.

  13. Serial snapshot crystallography for materials science with SwissFEL

    DOE PAGES

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of datamore » can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.« less

  14. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    PubMed

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  15. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    PubMed

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use. PMID:27184494

  16. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  17. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  18. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science. PMID:27400510

  19. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  20. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  1. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    NASA Technical Reports Server (NTRS)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  2. Education and training for implementation science: our interest in manuscripts describing education and training materials.

    PubMed

    Straus, Sharon E; Sales, Anne; Wensing, Michel; Michie, Susan; Kent, Bridie; Foy, Robbie

    2015-09-28

    Alongside the growth in interest in implementation science, there has been a marked increase in training programs, educational courses, degrees, and other offerings in implementation research and practice to meet the demand for this expertise. We believe that the science of capacity building has matured but that we can advance it further by shining light on excellent work in this area and by highlighting gaps for future research. At Implementation Science, we regularly receive manuscripts that describe or evaluate training materials, competencies, and competency development in implementation curricula. We are announcing a renewed interest in manuscripts in this area, with specifications described below.

  3. Opportunities for Teacher Learning During Enactment of Inquiry Science Curriculum Materials: Exploring the Potential for Teacher Educative Materials

    NASA Astrophysics Data System (ADS)

    Schneider, Rebecca M.

    2013-03-01

    The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape were collected. Analysis focused on engagement in planning and teaching, pedagogical content knowledge, and the match to teacher learning needs. Findings indicate that this teacher's ideas developed as she interacted with materials and her students. Information about student ideas, task- and idea-specific support, and model teacher language was most helpful. Supports for understanding goals, assessment, and the teacher's role, particularly during discussions and group work, were most needed.

  4. Growth and optical properties of novel doped and undoped group IV materials based on silicon, germanium, and tin

    NASA Astrophysics Data System (ADS)

    Cook, Candi S.

    The development of a new class of semiconductors in the silicon-germanium-tin system, based on novel deuterium-stabilized tin hydrides epitaxially grown on silicon substrates, provides a new low-temperature chemical vapor deposition route to a broad range of highly metastable compositions and structures that cannot be obtained by other methods. This research focuses on the continued synthesis, characterization, and performance evaluation of Ge1-xSn x binary and Ge1-x-ySixSny ternary semiconductors. The Ge1-xSnx alloys are grown as thin films directly on Si(100) via ultrahigh vacuum chemical vapor deposition (UHV-CVD) reactions of gaseous SnD4 and Ge2H6. The alloys display random diamond-cubic monocrystalline structures and unique morphological and optical properties such as atomically flat surfaces and tunable bandgaps. The large lattice mismatch of the layers and the Si substrates is accommodated by Lomer edge dislocations located at the interface. In this study a detailed determination of the Ge1- xSnx alloys optical properties is conducted via spectroscopic ellipsometry. The materials display a Ge like band gap structure with critical point energies (E 1, E1+Delta, E0, E2) that decrease monotonically with increasing Sn content from 1-20 at.%. Another aspect of this research is the use of the Ge1-xSnx alloys as buffer layers to grow Ge1-x-ySixSny ternaries. The ternaries demonstrate good crystallinity with low defect densities. Deep ultraviolet spectroscopic ellipsometry analysis of the materials yields dielectric functions consistent with crystalline alloys of cubic symmetry. The primary focus of this study is the growth of n-type doped Ge 1-xSnx alloys via in situ reactions of SnD4/Ge 2H6 with appropriate concentrations of the newly prepared As(GeH3)3 single source hydride. The thin films demonstrate excellent microstructural quality and high doping concentrations (10 19). The levels of activated As atoms incorporated in the Ge-Sn lattice are determined by

  5. Teachers' use of educative curriculum materials to engage students in science practices

    NASA Astrophysics Data System (ADS)

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Sullivan Palincsar, Annemarie

    2016-06-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials - materials explicitly designed to support teacher and student learning - have been posited as a way to support teachers to achieve these ambitious goals, yet little is known about how elementary teachers actually use educative curriculum materials to support student engagement in science practices. To address this gap, this study investigated how five upper elementary teachers supported students to engage in science practices during an enactment of two curriculum units. Three of the teachers had units enhanced with educative features, informed by current research and reforms, while two of the teachers had units without these features. The teachers varied in how they supported students in the science practices of justifying predictions, constructing evidence-based claims, recording observations, and planning investigations. For example, some of the teachers with the educative features supported students in constructing evidence-based claims and justifying predictions in ways called for by the educative features. Implications for curriculum developers and teacher educators are discussed based on the patterns found in the teachers' use of the educative curriculum materials.

  6. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  7. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  8. Interfacing materials science and biology for drug carrier design.

    PubMed

    Such, Georgina K; Yan, Yan; Johnston, Angus P R; Gunawan, Sylvia T; Caruso, Frank

    2015-04-01

    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.

  9. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing.

  10. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  11. FOREWORD: Some thoughts about Jürgen Hafner's work in computational materials science Some thoughts about Jürgen Hafner's work in computational materials science

    NASA Astrophysics Data System (ADS)

    Heine, Volker

    2011-10-01

    Jürgen Hafner started in the early 1970s with pseudopotential calculations on the structures and properties of sp-bonded metals, improving on work done elsewhere [1]. This expanded in four directions: transition metals, molten metals, magnetism and alloys, and combinations of these. As well as electronic structure calculations, he helped to advance the statistical mechanical classical theory of liquids for the molten metals [2]. In magnetism he was one of the pioneers of calculations with non-collinear spins [3, 4]. As well as simple (solid and molten) alloys, he also treated materials with strong chemical interaction such as sulphides and liquids such as arsenic and tellurium [5, 6]. All this fed into two directions which dominated much of his work for many years, namely the theory of glassy metals [7] and that of quasicrystals [8]. One notable result in the latter was to show that it was possible to construct hypothetical materials for which the quasicrystalline state is indeed the lowest energy structure. This displaced the established wisdom of the time that quasicrystals were necessarily metastable forms. In more recent years he has turned to calculations in surface science [9, 10], including catalysis of chemical reactions on surfaces [11, 12]. What really brought Jürgen first to my attention was that he had managed to do a better job than we had of calculations with the new approach of pseudopotentials, particularly regarding the screening part of the calculation. This is very important in alloys where there is a large difference in the electron density in the two types of atom due to their different volumes or valences such as in the phase diagram and structure of LiK or KPb [5, 13]. We have been in contact over many years including one close collaboration and I always learned something new in talking with Jürgen. In the late 1970s in Cambridge we performed phonon calculations on models of amorphous silicon [14], to see if these could distinguish between

  12. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  13. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  14. Analyzing standards-based science instructional materials: An opportunity for professional development

    NASA Astrophysics Data System (ADS)

    Short, James Bennett

    This phenomenological study focused on a group of teachers who applied the Analyzing Instructional Materials (AIM) Process and Tools to select standards-based instructional materials for science curriculum reform. The purpose of this study was to identify, based on teachers' beliefs, perceptions, and experiences, the conditions for supporting professional development that involve standards-based reform and the use of instructional materials that were developed with funding from the National Science Foundation (NSF). The design of this qualitative study involved a series of three separate in-depth interviews with six participants. A first person narrative profile of each participant was constructed from the interviews and analyzed. Three themes were represented in the data: a focus on teaming, professional development and the change and reform process. Teachers in this study believed that instructional materials needed to explicitly support concept development and students doing science in order to learn about inquiry. Participants thought NSF-funded instructional materials supported inquiry-based learning and the teacher as a facilitator of learning. Based on this study, one finding about standards-based reform is that selecting instructional materials can be a structured professional development opportunity. A second finding is that teachers' beliefs about standards-based reform and the use of materials can be influenced during the selection of high quality instructional materials. Participants in this study believed that selecting NSF-funded instructional materials was critical to changing the learning and teaching of science in their district. A third finding is that professional development can push teachers to think critically about the materials they use to teach students science. Teachers in this study believed that their experiences associated with learning and using AIM provided them opportunities for reflection and dialogue about how instructional

  15. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  16. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  17. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  18. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented. PMID:24866174

  19. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  20. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  1. Values in School Science: Some Practical Materials and Suggestions. Third Edition.

    ERIC Educational Resources Information Center

    Brinckerhoff, Richard F.

    The collection of vignettes in this book provide science teachers with a multitude of source materials and useful alternatives for incorporation into their curricula and teaching. Teachers may select topics as brief issues for casual reflection or as a means for promoting deeper investigation and analysis. Most of the vignettes can be extended and…

  2. New developments in the application of synchrotron radiation to material science.

    SciTech Connect

    Sinha, S. K.

    1999-04-21

    Recent developments in the application of synchrotrons radiation to materials science are discussed, using techniques which exploit the high brilliance of the newer synchrotrons sources, such as microbeam techniques and correlation spectroscopy. These include studies of environmental systems, residual stress, slow dynamics of condensed matter systems and studies of liquid surfaces and thin magnetic films.

  3. Unit Messengers, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education Project is producing material designed for use in grades 7-10 of Australian schools. This is the first trial version of a unit concerned with sight, hearing, touch, taste, and smell. The teacher's guide outlines the use of the two booklets ("Messengers" and "Use of the Senses") intended for all students, where…

  4. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    ERIC Educational Resources Information Center

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  5. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  6. The Relationship between MSPAP and Science Classroom Instruction and Assessment Materials.

    ERIC Educational Resources Information Center

    Cerrillo, Tracy L.; Hansen, Mary A.; Parke, Carol S.; Lane, Suzanne; Scott, Kathryn

    As part of a research project being conducted to determine the impact that the Maryland Learning Outcomes and the Maryland State Performance Assessment Program (MSPAP) are having on classroom instruction and assessment practices, science classroom materials were collected from elementary and middle schools in Maryland during the 1997-1998 school…

  7. An Annotated Bibliography for Curriculum Materials Analysis. Social Science Education Consortium, Publication 127.

    ERIC Educational Resources Information Center

    Knight, Merle M.

    This bibliography is an annotated reading guide for teachers and others in the social sciences who seek a better understanding of the many facets of curriculum theory, concepts, and the terminology used in the Curriculum Materials Analysis System (CMAS). The references have been arranged by the categories of the analysis system and alphabetically…

  8. AREAL low energy electron beam applications in life and materials sciences

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Aroutiounian, R. M.; Amatuni, G. A.; Aloyan, L. R.; Aslanyan, L. G.; Avagyan, V. Sh.; Babayan, N. S.; Buniatyan, V. V.; Dalyan, Y. B.; Davtyan, H. D.; Derdzyan, M. V.; Grigoryan, B. A.; Grigoryan, N. E.; Hakobyan, L. S.; Haroutyunian, S. G.; Harutiunyan, V. V.; Hovhannesyan, K. L.; Khachatryan, V. G.; Martirosyan, N. W.; Melikyan, G. S.; Petrosyan, A. G.; Petrosyan, V. H.; Sahakyan, A. A.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Tatikyan, S. Sh.; Tsakanova, G. V.; Tsovyan, E.; Vardanyan, A. S.; Vardanyan, V. V.; Yeremyan, A. S.; Yeritsyan, H. N.; Zanyan, G. S.

    2016-09-01

    The AREAL laser-driven RF gun provides 2-5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  9. Science, Eighth Year - Resource Material for Teachers. Career Guidance Series 1967-68.

    ERIC Educational Resources Information Center

    Anker, Irving; Lloyd, Helene M.

    This resource guide contains practical suggestions for teaching of Grade 8 science to the pupils in the Career Guidance Program. The Career Guidance Program was developed for students who are over-age, frustrated, retarded in the school subject, and indifferent to education. The selection and organization of the material parallels the regular…

  10. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  11. Unit The World of the Soil, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education project is producing materials designed for use in grades 7 - 10 of Australian schools. This is the first trial version of a unit expected to take about 20 40-minute periods to complete. Included are a teacher's guide to the unit, four pupil booklets ("Looking at Soils,""Things to do With Soils,""What is it…

  12. Materials: Renewable and Nonrenewable Resources. No. 4 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 36 articles originally published in "Science" during 1973-75. The articles are divided into six sections entitled: (1) Policy Considerations; (2) Energy, Environment and Conservation; (3) Perspectives on Needs and Supplies of Resources; (4) Finding the Processing Minerals; (5) High Technology Materials; and (6) Wood and Plant…

  13. Developing Teaching Materials PISA-Based for Mathematics and Science of Junior High School

    ERIC Educational Resources Information Center

    Somakim; Suharman, Andi; Madang, Kodri; Taufiq

    2016-01-01

    This research aims to develop valid and practical teaching materials for mathematics and science lesson PISA-based for junior high school students and to determine potential effects on students in scientific activity. Subjects of this study were students of Junior High School 9 Palembang (SMP Negeri 9 Palembang). The method used in this study is…

  14. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY... quality criteria and National Ambient Air Quality Standards (NAAQS) for Lead (Pb), EPA is announcing...

  15. Population and Family Education. Draft Sample Instructional Materials. Science/Mathematics.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sample first-draft materials, produced by participants at a UNESCO regional workshop on population and family life, are designed as a reference tool to be used by curriculum developers. Divided into two major parts -- in biological science and in mathematics -- the teaching guide is for secondary level students. The first part, consisting of…

  16. Science and Mathematics Books for Elementary and Secondary Schools, A Bibliography from the Educational Materials Center.

    ERIC Educational Resources Information Center

    Watt, Lois B.; And Others

    This is an annotated bibliography of science and mathematics textbooks and juvenile trade books received in the Educational Materials Center between January, 1969 and February, 1970. The contents are divided into two major sections: Juvenile Literature, and Textbooks for Elementary and Secondary Schools. The first section includes only those books…

  17. Identifying Characteristics of Science Teaching/Learning Materials Promoting Students' Intrinsic Relevance

    ERIC Educational Resources Information Center

    Kotkas, Tormi; Holbrook, Jack; Rannikmäe, Miia

    2016-01-01

    This article focuses on concerns related to a lack of students' perception of relevance in school science seen as differing from educators' perception of relevance. In order to determine how relevance is portrayed in teaching and learning materials (TLMs), the titles and introductory texts (scenarios) from 77 TLMs, aiming to induce students'…

  18. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  19. Marine Science Technician Second Class, 15-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…

  20. A Bibliography of Elementary and Secondary Marine Science Curriculum Projects and Educational Materials.

    ERIC Educational Resources Information Center

    Morgan, Myra J.

    This annotated bibliography reviews marine science curriculum projects and other educational resource materials. The items are listed in a concise form for value to both elementary and secondary teachers, as well as students. It includes about 40 publishers--industries, school systems and governmental agencies--with entries from 14 of the 21 ocean…

  1. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    ERIC Educational Resources Information Center

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  2. A Working Bibliography of Commercially Available Audio-Visual Materials for the Teaching of Library Science.

    ERIC Educational Resources Information Center

    Lieberman, Irving

    Commercially available audiovisual materials to be used in conjuncton with the teaching of library science is the subject of this selective, non-evaluative bibliography. Unless otherwise specified, the entries are films. The citations were found in various general bibliographies. Annotations are presented as given in the various bibliographic…

  3. Computational techniques in tribology and material science at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  4. New Curricular Material for Science Classes: How Do Students Evaluate It?

    ERIC Educational Resources Information Center

    Freire, Sofia; Faria, Claudia; Galvao, Cecilia; Reis, Pedro

    2013-01-01

    Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in…

  5. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  6. Exploring Preservice Elementary Teachers' Critique and Adaptation of Science Curriculum Materials in Respect to Socioscientific Issues

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-01-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students' learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers' critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate…

  7. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    PubMed

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  8. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  9. Review on the EFDA programme on tungsten materials technology and science

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  10. Synthesis of Ge1-xSnx alloys by ion implantation and pulsed laser melting: Towards a group IV direct bandgap material

    NASA Astrophysics Data System (ADS)

    Tran, Tuan T.; Pastor, David; Gandhi, Hemi H.; Smillie, Lachlan A.; Akey, Austin J.; Aziz, Michael J.; Williams, J. S.

    2016-05-01

    The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6.5 - 11 at . % . Such Sn concentrations can be realized by non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition. In this report, the combination of ion implantation and pulsed laser melting is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with a good crystal quality. The structural properties of the alloys such as soluble Sn concentration, strain distribution, and crystal quality have been characterized by Rutherford backscattering spectrometry, Raman spectroscopy, x ray diffraction, and transmission electron microscopy. It is shown that it is possible to produce a high quality alloy with up to 6.2 at . % Sn . The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Γ valley. Limitations and possible solutions to introducing higher Sn content into Ge that is sufficient for a direct bandgap transition are also discussed.

  11. The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory

    SciTech Connect

    Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K.

    2010-06-23

    BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

  12. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  13. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  14. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  15. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    ERIC Educational Resources Information Center

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  16. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  17. Immersive Visualization for Materials Science Data Analysis using the Oculus Rift

    SciTech Connect

    Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E; Proffen, Thomas E; Daniel, Jamison R; Matheson, Michael A

    2015-01-01

    In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective on the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.

  18. Time-resolved materials science opportunities using synchrotron x-ray sources

    SciTech Connect

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by {approximately}tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities.

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  20. Global Systems Science and Hands-On Universe Course Materials for High School

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2011-09-01

    The University of California Berkeley's Lawrence Hall of Science has a project called Global Systems Science (GSS). GSS produced a set of course materials for high school science education that includes reading materials, investigations, and software for analyzing satellite images of Earth focusing on Earth systems as well as societal issues that require interdisciplinary science for full understanding. The software has general application in analysis of any digital images for a variety of purposes. NSF and NASA funding have contributed to the development of GSS. The current NASA-funded project of GSS is Lifelines for High School Climate Change Education (LHSCCE), which aims to establish professional learning communities (PLCs) to share curriculum resources and best practices for teaching about climate change in grades 9-12. The project explores ideal ways for teachers to meet either in-person or using simple yet effective distance-communication techniques (tele-meetings), depending on local preferences. Skills promoted include: how to set up a website to share resources; initiating tele-meetings with any available mechanism (webinars, Skype, telecons, moodles, social network tools, etc.); and easy ways of documenting and archiving presentations made at meetings. Twenty teacher leaders are forming the PLCs in their regions or districts. This is a national effort in which teachers share ideas, strategies, and resources aimed at making science education relevant to societal issues, improve students' understanding of climate change issues, and contribute to possible solutions. Although the binding theme is climate change, the application is to a wide variety of courses: Earth science, environmental science, biology, physics, and chemistry. Moreover, the PLCs formed can last as long as the members find it useful and can deal with any topics of interest, even if they are only distantly related to climate change.

  1. Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration

    SciTech Connect

    Rehr, John J.

    2012-08-02

    This document reports progress on the project “Computational Materials and Chemical Sciences Network Administration,” which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSN’s website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSN’s success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the “glue” money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

  2. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Employment and Training Administration Bayer Material Science, LLC, Formally Known as Sheffield Plastics... Material Science, LLC, formally known as Sheffield Plastics, including on-site leased workers from... 25, 2010 (75 FR 3934). At the request of the State Agency, the Department reviewed the...

  3. An Analysis of Teaching Competence in Science Teachers Involved in the Design of Context-Based Curriculum Materials

    ERIC Educational Resources Information Center

    De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…

  4. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    NASA Astrophysics Data System (ADS)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  5. Teaching-materials study of the elementary science using an extraterrestrial material

    NASA Astrophysics Data System (ADS)

    Shida, N.; Matsumoto, I.

    2013-12-01

    The schoolchild of a Japan likes the universe primarily and an inquisitive mind is also considered to be a high. It appears also in children having raised interest concern to astronomical phenomena, such as the space probe "Hayabusa", solar eclipse, and solar Face passage of Venus, in recent Japan. However, generally aside from a child's interest concern, a time and a space concept are difficult for the astronomical phenomenon requested by school education. It is a big problem not only for student but also for teacher. In this presentation, we propose the teaching-materials development which used a meteorite and cosmic dust. Since these teaching materials can touch thing, a student actually taking in his hand, or observing under a microscope, leading to the study understanding accompanied by realization is expected. It looks up at and observes a Star Burst and a constellation. However, acquisition of recognition that it is possible to take in its hand simultaneously and to observe is important. About the meteorite to observe, we can purchase from a special contractor. About cosmic dust, the sample extraction from the concrete floor of the roof of a school building is possible.

  6. Science as a Way of Knowing IV--Developmental Biology. Proceedings of the Annual Meeting (Nashville, TN, December 27-30, 1986).

    ERIC Educational Resources Information Center

    Moore, John A.; And Others

    1987-01-01

    This fourth volume of the Science as a Way of Knowing project contains 12 papers given at a conference in 1986 which was cosponsored by a variety of scientific and science education organizations. The presentations include: (1) "Science as a Way of Knowing--Developmental Biology" (John A. Moore); (2) "Embryonic Induction" (Richard M. Eakin,…

  7. Teachers' Resource Material for Integrated Science: Ideas for Teaching Integrated Science in Secondary Schools. Series of Caribbean Volunteer Publications, No. 8.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This book contains questions for secondary school science students that require them to analyze data presented in various forms and apply knowledge and skills developed in novel situations. The content for the questions is derived from a science curriculum developed by a group of Caribbean nations. The material is organized into four sections: (1)…

  8. Sources of Information about Promising and Exemplary Programs and Materials for Elementary School Science. ERIC/SMEAC Science Education Digest No. 1, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about pupil achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  9. Sources of Information about Promising and Exemplary Programs and Materials for Secondary School Science. ERIC/SMEAC Science Education Digest No. 2, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about student achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  10. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  11. Costs and Their Assessment to Users of a Medical Library, Part IV: Differences in the Use of a Health Science Library by Various User Groups.

    ERIC Educational Resources Information Center

    Bres, E.; And Others

    Part IV is a summary analysis of sample and survey data collected to facilitate the structure of the cost assessment models and to find out which, if any, subgroups of HAM-TMC user population make more (or less) use of various library services. Sampling data were obtained from brief interviews and in-house files of various user institutions to…

  12. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  13. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  14. Submicron X-Ray Diffraction and Its Applications to Problems in Materials and Environmental Science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Spolenak, R.; Valek, B. C.; Manceau, A.; Chang, N. M.

    2002-08-01

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction techniques at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  15. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  16. DOE workshop meeting on the application of positron spectroscopy to materials sciences: Proceedings

    SciTech Connect

    Zeigler, C.H.

    1993-04-01

    Positron spectroscopy has advanced to the point where it is in the best interest of DOE to assess past progress and to identify research needs/opportunities that can be exploited to advance the understanding of materials problems important to DOE. Purpose of the workshop is to identify areas of materials science where positron spectroscopy can serve to advance goals of DOE in energy research: problem areas for which positron spectroscopy can serve as a unique or complementary tool for materials characterization and analysis, possible sources of positrons at high intensities and instrumentation, and possible applications (defect profiles at surfaces/interfaces, composite materials, superconductors). Separate abstracts and indexing were prepared for the 23 papers.

  17. Progress of research on plasma facing materials in University of Science and Technology Beijing

    NASA Astrophysics Data System (ADS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-06-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting.

  18. Preparation for microgravity - The role of the Microgravity Material Science Laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.

  19. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  20. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    NASA Astrophysics Data System (ADS)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  1. PREFACE: APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology (AMSN08)

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen

    2009-09-01

    Dear friends To contribute to the enhancement of the international scientific cooperation of the ASEAN countries and in reply to the proposal of the Vietnam Academy of Science and Technology (VAST), the Asia-Pacific Center for Theoretical Physics (APCTP) and the Sub Committee on Materials Science and Technology (SCMST) of the ASEAN Committee of Science and Technology (ASEAN COST) agreed to organize this APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology with the participation of the Ministry of Science and Technology of Vietnam, the Vietnam Academy of Science and Technology, Rencontres du Vietnam, the Vietnam Physical Society, the Vietnam National University in Ho Chi Minh City and the Vietnam National University in Hanoi. As well as the participants from 9 of the 10 ASEAN countries and many other countries/regions of APCTP (Australia, China, Chinese Taipei, Japan and Korea) we warmly welcome the guests from Europe, the United States, Canada and Israel. Without the financial support of the Asia-Pacific Center for Theoretical Physics APCTP, Abdus Salam International Center for Theoretical Physics ICTP, the Asian Office of Aerospace Research and Development AOARD, the US Office of Naval Research Global-Asia ONRG, the Ministry of Science and Technology of Vietnam MOST, the Vietnam Academy of Science and Technology VAST, the Vietnam National University in Ho Chi Minh City VNU HCMC and other Sponsors, we would have been unable to hold this Workshop. On behalf of the International and Local Organizing Committees I would like to express our deep gratitude to the Sponsors. We highly appreciate the support and advice of the members of the International Advisory Committee, the scientific contribution of the invited speakers and all participants. We acknowledge the warm reception of the Khanh Hoa province Administration and citizens, and the hard work of the VAST staff for the success of the Workshop. We cordially wish all participants lively scientific

  2. Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Its application in making Cd(II) ion selective membrane electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Akhtar, Tabassum

    2011-03-01

    An organic-inorganic composite, poly-o-toluidine Ce(IV) phosphate was chemically synthesized by mixing ortho-toluidine into the gel of Ce(IV) phosphate in different mixing volume ratios. Effect of eluant concentration, elution behavior and pH-titration studies were carried out to understand the ion-exchange capabilities. The physico-chemical properties of the material were determined using AAS, CHN elemental analysis, UV-VIS spectrophotometry, FTIR, SEM/EDX, TGA-DTA, TEM (Transmission electron microscopy), XRD and SEM studies. The distribution studies revealed that the cation-exchange material is highly selective for Cd(II). Due to selective nature of the cation-exchanger, ion selective membrane electrode was fabricated for the determination of Cd(ІІ) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  3. Application of chemical structure and bonding of actinide oxide materials for forensic science

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  4. Material Science Image Analysis using Quant-CT in ImageJ

    SciTech Connect

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  5. Studies of hollow carbon nanospheres and grain boundary phase transitions in metals as examples of plasma material science

    SciTech Connect

    Skovoroda, A. A. Andreev, V. F.; Kas'yanova, N. V.; Spitsyn, A. V.

    2013-07-15

    Results are presented from studies of the material of hollow carbon nanospheres (nanocapsules) that form in tokamaks as a result of plasma interaction with the chamber wall and are similar in structure to meteorite onions. The possibility is demonstrated of studying the material properties in the grain boundary phase transitions in solid materials (metals) by using the plasma-stimulated permeability for hydrogen. The term 'plasma material science' is proposed for such material studies.

  6. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.

    PubMed

    Romashov, Leonid V; Ananikov, Valentine P

    2013-12-23

    Self-assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur-based self-assembled monolayers and newly developed selenium-based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.

  7. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  8. Science in the community: An ethnographic account of social material transformation

    NASA Astrophysics Data System (ADS)

    Lee, Stuart Henry

    This dissertation is about the learning and use of science at the level of local community. It is an ethnographic account, and its theoretical approach draws on actor-network theory as well as neo-Marxist practice theory and the related notion of situated cognition. This theoretical basis supports a work that focuses on the many heterogeneous transformations that materials and people undergo as science is used to help bring about social and political change in a quasi-rural community. The activities that science becomes involved in, and the hybrid formations as it encounters local issues are stressed. Learning and knowing as outcomes of community action are theorized. The dissertation links four major themes throughout its narrative: scientific literacy, representations, relationships and participatory democracy. These four themes are not treated in isolation. Different facets of their relation to each other are stressed in different chapters, each of which analyze different particular case studies. This dissertation argues for the conception of a local scientific praxis, one that is markedly different than the usual notion of science, yet is necessary for the uptake of scientific information into a community.

  9. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  10. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  11. Materials science in the time domain using Bragg coherent diffraction imaging

    DOE PAGES

    Robinson, Ian; Clark, Jesse; Harder, Ross

    2016-03-14

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  12. Materials science in the time domain using Bragg coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Clark, Jesse; Harder, Ross

    2016-05-01

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth’s crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials such as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide ‘hidden phase’ living only nanoseconds and an electronically ordered excited phase of fullerene C60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Prospective methods for carrying out such XFEL experiments are discussed.

  13. PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)

    NASA Astrophysics Data System (ADS)

    Ruda, H. E.; Khotsianovsky, A.

    2015-12-01

    IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the

  14. A Model for Science Teaching in High Schools- Toward Better Retention of The Learnt Material

    NASA Astrophysics Data System (ADS)

    Arshed, Tahira

    1998-04-01

    The time arrangement of science courses in most high schools results in promoting short term memory with little incentive to retain the learned material in any of the sciences. Consequently, much of the subject matter has to be re-taught in college. This takes time meant for teaching college level topics. Weakness in knowledge base is carried over from year to year in high school, building up to higher levels in college and causing stress and anxiety to both students and teachers. From personel experience of teaching in five countries, a model is developed by which the problem can be overcome. This involves a collaborative effort on the part of teachers and educational policy makers and support of college faculty. The results are measurable within five years and do not incur any increase in funding. Suggestions for practical adoption of the system will be presented. The outcomes are measurable and hold promise in view of success in other countries.

  15. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    PubMed Central

    Habuchi, Satoshi

    2014-01-01

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology. PMID:25152893

  16. Technical Appendices to the National Day Care Study: Background Materials. Final Report of the National Day Care Study. Volume IV-A.

    ERIC Educational Resources Information Center

    Ruopp, Richard; And Others

    This final report of the National Day Care Study (NDCS), Volume IV-A, contains three papers that help to set a context for interpreting overall study results. "Research Issues in Day Care, A Focused Review of the Literature" focuses on effects of group care and regulatable characteristics of the day care environment. The second paper, "Case…

  17. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  18. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  19. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    SciTech Connect

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  20. Evaluation of the Effect of Laboratory-Oriented Science Curriculum Materials on the Attitudes of Students with Reading Difficulties.

    ERIC Educational Resources Information Center

    Milson, James L.

    1979-01-01

    Investigated how the use of laboratory-oriented science curriculum materials affected the attitudes of students with reading difficulties. Both the ninth grade experimental and control classes used a six-week instructional unit on heat and temperature. (HM)

  1. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  2. The Effects of Activity and Gain Based Virtual Material on Student's Success, Permanency and Attitudes towards Science Lesson

    ERIC Educational Resources Information Center

    Tas, Erol

    2015-01-01

    The main objective of this study is to research the effects of a student gains and activity based virtual material on students' success, permanence and attitudes towards science lesson, developed for science and technology lesson 6th grade "Systems in our body" unit. The study, which had a quasi-experimental design, was conducted with…

  3. The Effects of Various Formative Evaluation Procedures on Instructional Material Revision in a Large Scale Individualized Science Curriculum Development Project.

    ERIC Educational Resources Information Center

    Ciesla, Jerome L.

    The purpose of this study was to determine which types of feedback had the most influence on the revisions of instructional materials performed by writers in an individualized science curriculum development project. Each of the Individualized Science Instructional System (ISIS) project staff members, whose job was to revise minicourse drafts…

  4. Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science.

    PubMed

    de la Fuente, Jesús M; Penadés, Soledad

    2006-04-01

    Nanoparticles are the subject of numerous papers and reports and are full of promises for electronic, optical, magnetic and biomedical applications. Although metallic nanoparticles have been functionalized with peptides, proteins and DNA during the last 20 years, carbohydrates have not been used with this purpose until 2001. Since the first synthesis of gold nanoparticles functionalized with carbohydrates (glyconanoparticles) was reported, the number of published articles has considerably increased. This article reviews progress in the development of nanoparticles functionalized with biological relevant oligosaccharides. The glyconanoparticles constitute a good bio-mimetic model of carbohydrate presentation at the cell surface, and maybe, excellent tools for Glycobiology, Biomedicine and Material Science investigations. PMID:16529864

  5. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    SciTech Connect

    Altiero, Nicholas

    2014-10-28

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  6. PREFACE: 1st International Conference in Applied Physics and Materials Science

    NASA Astrophysics Data System (ADS)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  7. Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science.

    PubMed

    de la Fuente, Jesús M; Penadés, Soledad

    2006-04-01

    Nanoparticles are the subject of numerous papers and reports and are full of promises for electronic, optical, magnetic and biomedical applications. Although metallic nanoparticles have been functionalized with peptides, proteins and DNA during the last 20 years, carbohydrates have not been used with this purpose until 2001. Since the first synthesis of gold nanoparticles functionalized with carbohydrates (glyconanoparticles) was reported, the number of published articles has considerably increased. This article reviews progress in the development of nanoparticles functionalized with biological relevant oligosaccharides. The glyconanoparticles constitute a good bio-mimetic model of carbohydrate presentation at the cell surface, and maybe, excellent tools for Glycobiology, Biomedicine and Material Science investigations.

  8. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    PubMed

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  9. PREFACE: National Seminar on Current Trends in Materials Science (CTMS-2011)

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, R.; Vijayakumar, K. P.; Unnikrishnan, N. V.

    2013-05-01

    India is going through an era of many changes in its higher education system. Emphasis is being given to research and development initiatives at Universities and colleges. The teaching community is faced with the challenge of coping with both regular academic activities and research initiatives. The teaching faculties need to keep in step with the momentous research output being generated globally. To mold young talent that will be sought after, teachers need to undertake challenging initiatives. Research in emerging areas like nanotechnology, meta materials, functional materials and structures is being pursued vigorously in Universities and colleges in the state of Kerala. Awareness of the impact of integrating teaching and research in basic science has inspired the teaching faculty. The number of seminars and conferences is not commensurate with the amount of research being conducted in this state. The state lags behind in the number of institutes with state of the art facilities and human resource with cutting edge knowledge. The national seminar on Current Trends in Materials Science (CTMS-2011) is organized by the Department of Physics, Christian College, Chengannur. It is a continuation of the initiatives of the Department to bridge the haitus between teaching and research. Current Trends in Materials Science (CTMS-2007) was successfully conducted with over 80 research paper presentations and participation of delegates from the states of Karnataka, Andhrapradesh, Tamilnadu and Kerala. CTMS-2011 is a sequel envisaged to serve as an effective platform for teachers to interact with eminent scientists and share their knowledge and experience. Papers were invited from the subject area comprising glasses and ceramics, crystal growth, nanotechnology, semiconductors thin films and polymers. We are delighted that after a peer review process of the papers we have selected ten of the best papers presented at the seminar for publication in IOP Conference Series

  10. The RIKEN Materials Science Beamline at SPring-8: Towards Visualization of Electrostatic Interaction

    SciTech Connect

    Kato, Kenichi; Higuchi, Masakazu; Hirose, Raita; Matsuda, Ryotaro; Kitagawa, Susumu; Takemoto, Michitaka; Kim, Jungeun; Ha, Sunyeo; Takata, Masaki

    2010-06-23

    In order to visualize molecular interaction by the experimental electrostatic potential analysis we have optimized the optical parameters and developed the high-resolution Debye-Scherrer camera at the RIKEN materials science beamline, BL44B2 of SPring-8. For the purpose the camera was designed to be equipped with the hybrid X-ray detector system. One is the conventional detector, the imaging plate readout off-line to carry out high d(interplanar spacing)-resolution measurements and the other is the CCD detector, which can be operated in a camera at variable distances for high angle-resolution measurements. In addition we have been developing an in-situ properties measurement system to visualize the electrostatic interaction completely synchronized with material functions.

  11. Interdisciplinary Materials Science at a Small Liberal Arts College: Integration of Curriculum and Research

    NASA Astrophysics Data System (ADS)

    Dukan, Sasha; Sibley, Scott

    2005-03-01

    Faculty members from the departments of Physics and Chemistry at Goucher College have begun an NSF-funded project to increase the exposure of undergraduates to topics in materials science. The centerpiece of the project was development of a team-taught course offered jointly by two departments. The hands-on projects in the course use investigative methods that model modern research collaborations in physics and chemistry and include study of metals, semiconductors, superconductors and other materials presented from the perspective of both disciplines. In this presentation we will report on the progress in the curriculum development as well as discuss the impact that the project has had on the interdisciplinary student/faculty summer research at a small liberal arts college.

  12. X-ray microimaging of elemental composition and microstructure for materials science

    SciTech Connect

    Ice, G.E.; Sparks, C.J.

    1991-01-01

    X rays have many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in photoejecting inner shell electrons which results in characteristic x-ray fluorescence. X rays also produce less Bremsstrahlung which yields far higher signal-to-background than obtained with electrons. Minimum detectable limits (MDL) for X ray excited fluorescence can be a few parts per billion; 10{sup {minus}3} to 10{sup {minus}5} less than for electron excitation. The third generation synchrotron radiation sources such as the Advanced Photon Source will for the first time provide x-ray sources as brilliant as the most advanced electron probes. It will therefore soon be possible to develop a submicron x-ray probe with unprecedented low levels of detection in diffraction, EXAFS, Auger, Photoelectron and fluorescence spectroscopies for structural and chemical characterization. Some applications to materials science are shown.

  13. [Darwinism, materialism and the revolution of 1848 in Germany. On the interaction of politics and science].

    PubMed

    Junker, T

    1995-01-01

    In recent years, the question of national styles in science has received increasing attention. The different forms of Darwinism that emerged in the nineteenth century provide an impressive example of the role of non-scientific factors in the development of scientific ideas. Although the reception of Darwinian theory has been acknowledged to differ according to distinct national traditions even in Darwin's time, there have been few systematic efforts to understand the underlying causal factors. Usually these explanations have conceived of the relationship of science to its social and political context as a distortion of science by ideology. In contrast to this picture, I attempt to demonstrate here how a scientific research program was situated in a concrete historical context. The German tradition of Darwinism in the nineteenth century will be described as a coalition of political liberalism, materialism, and morphology. Whereas the liberals used Darwinism to give their anti-religious and progressive program a naturalistic foundation, the morphologists appreciated that Darwinian theory allowed them to dispense with the idealistic origins of their research program, and the materialist were provided with a naturalistic explanation of the origin of organic form.

  14. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  15. Quasi-appropriation of dialectical materialism: a critical reading of Marxism in Vygotskian approaches to cultural studies in science education

    NASA Astrophysics Data System (ADS)

    Rodrigues, André; Camillo, Juliano; Mattos, Cristiano

    2014-09-01

    In this review essay we examine five categories of dialectical materialism proposed by Paulo Lima Junior, Fernanda Ostermann, and Flavia Rezende in their study of the extent to which the articles published in Cultural Studies of Science Education, that use a Vygotskian approach, are committed to Marxism/dialectical materialism. By closely examining these categories ("thesis, antithesis and synthesis," "unity of analysis," "History," "revolution," "materialism") we expect to enrich the general discussion about the possible contributions of Marxism to science education. We perceive part of science education practice as orientating toward positivism, which reduces human beings—teachers, learners and researchers—to isolated individuals who construct knowledge by themselves. The very same approach aggravates the inner contradiction of the capitalist society demanding commitments from researchers to continually build innovative science education from human praxis. Nevertheless, it is necessary to situate ourselves beyond a formal commitment with dialectical materialism and hence reach the heart of this method. Besides understanding the researchers' commitments, we question the extent to which the respective research helps to radically refresh the current view on science, science education practice, and research in science education.

  16. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  17. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    NASA Astrophysics Data System (ADS)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  18. An exploration of how pre-service early childhood teachers use educative curriculum materials to support their science teaching practices

    NASA Astrophysics Data System (ADS)

    Englehart, Deirdre

    Research indicates that a proportion of elementary teachers are not comfortable teaching science to young children. These teachers are unaware of the best methods of approaching science and don't have the science background knowledge to support teaching through inquiry methods. This case study explores the role educative curriculum materials play in supporting pre-service early childhood education teachers' knowledge with science content and teaching practices. Specifically, I examine how educative materials impact pre-service teacher's content knowledge in science and their pedagogical content knowledge related to inquiry methods. Three pre-service early childhood teachers participated in this research. The teachers were initially interviewed about teaching science based upon three instruments: Views of Science Inquiry, Views of the Nature of Science and the Science Teachers Efficacy Beliefs Inventory. Each subject was observed teaching science in their internship site: the first lessons taught were guided or approved by their teachers and the next lessons were conducted using the support of educative curriculum materials. Finally, the initial instruments were once again administered along with an interview to obtain changes in teacher's knowledge, beliefs and understandings of science and science teaching. Results from this research indicate that educative curriculum was supportive of teachers in a variety of ways. Most importantly, this curriculum helped teachers to target more aspects of scientific inquiry during their science lessons than lessons without the use of educative curriculum. The important considerations regarding the effectiveness of the educative curriculum for these pre-service teachers were their underlying beliefs about how science should be taught, their uses of the curriculum materials and reflective practices regarding their own teaching. Results specifically related to early childhood educators include the level of inquiry implemented with

  19. Multi-Label Segmentation Propagation for Materials Science Images Incorporating Topology and Interactivity

    NASA Astrophysics Data System (ADS)

    Waggoner, Jarrell

    Segmentation propagation is the problem of transferring the segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have prior-known shape, appearance, and/or topology among the underlying structures which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice; and some materials may exhibit specific topology which constrains their structure or neighboring relations. In this work, we develop a framework for materials image segmentation that segments a variety of materials image types by repeatedly propagating a 2D segmentation from one slice to another, and we formulate each step of this propagation as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. During this propagation, we propose novel strategies to enforce the shape, appearance, and topology of the segmented structures, as well as handling local topology inconsistency. Most recent works on topology-constrained image segmentation focus on binary segmentation, where the topology is often described by the connectivity of both foreground and background. We develop a new multi-labeling approach to enforce topology in multiple-label image segmentation. In this case, we not only require each segment to be a connected region (intra-segment topology), but also require specific adjacency relations between each pair of segments (inter-segment topology). Finally, we integrate an interactive approach into the proposed framework that improves the segmentation by allowing minimal and simplistic human annotations. We justify the effectiveness of the proposed framework by testing it on various 3

  20. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.