Science.gov

Sample records for materials science processing

  1. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  2. Materials and processing science: Limits for microelectronics

    NASA Astrophysics Data System (ADS)

    Rosenberg, R.

    1988-09-01

    The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.

  3. 2003 research briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  4. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  5. 2005 Research Briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  6. Science Processes.

    ERIC Educational Resources Information Center

    Finley, Fred N.

    1983-01-01

    Reports an investigation of the epistomologic foundations of Gagne's conception of science processes. Results indicate that a commitment to inductive empiricism pervades the presently held view of science processes. Implications for science education are considered. (Author/JN)

  7. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  8. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  9. Materials processing in space, 1980 science planning document. [crystal growth, containerless processing, solidification, bioprocessing, and ultrahigh vacuum processes

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.

  10. Materials science and engineering

    SciTech Connect

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  11. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  12. Materials science and engineering

    SciTech Connect

    Lesuer, D R

    1998-01-01

    During FY-97, work within the Materials Science and Engineering thrust area was focused on material modeling. Their motivation for this work is to develop the capability to study the structural response of materials as well as materials processing. These capabilities have been applied to a broad range of problems, which support many programs at Lawrence Livermore National Laboratory. Recent examples of structural response problems studied include material fracture (such as interface failure), damage in laser optics, the response of weapons components (such as high explosives) and the failure of composite materials. For materials processing, typical problems studied include metal forming, laser processing, casting, and heat treating. To improve our ability to model material behavior, much of the work involves developing new material models and failure models, as well as applying the codes to new problems. Most investigations involve experimental studies to gather basic information on material response and to validate codes or material models. Projects are inherently multi-disciplinary, involving several investigators with expertise in materials and mechanics. The thrust area studies for FY-97 are described in the following three articles: (1) Evolution of Anisotropic Yield Behavior; (2) Modeling of She Localization in Materials; and (3) Modeling of Casting Microstructures and Defects.

  13. Materials Science and Technology (MST) Division, Nuclear Materials Process Technology Group (MST-12), chemical process research and development report

    SciTech Connect

    Clifton, D.G.

    1984-04-01

    A process for the recovery of plutonium and americium from molten salt extraction (MSE) salt residues has been demonstrated. It is based upon a new chloride anion-exchange process at low acidity that eliminates corrosive HCl fumes. The Los Alamos americium oxide production line has been improved to give more product with a concurrent lowering of personnel radiation exposure. A cost study has been made for the disposal of americium-contaminated calcium metal buttons that were obtained by pyrochemical recovery of plutonium from MSE salts. The waste form used in the study conforms to WIPP-Facility standards and current state-of-the-art radioactive waste disposal. The cost estimate is approx. $300/g /sup 241/Am. Plutonium decontamination factors of approx. 300 have been obtained from lead-platinum alloy dissolution experiments carried out in alumina crucibles using lead oxide slag to getter the plutonium.

  14. Panel 3 - material science

    SciTech Connect

    Sarrao, John L; Yip, Sidney

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  15. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  16. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  17. Materials Science and Technology, Volume 17B, Processing of Ceramics Part II

    NASA Astrophysics Data System (ADS)

    Brook, Richard J.

    1996-12-01

    Progress in the processing of ceramics has made these materials very important for current and future technologies. Internationally renowned experts have contributed to this second of two volumes which provide a wealth of information indispensable for materials scientists and engineers. Contents of Volume B: Riedel: Advanced Ceramics from Inorganic Polymers. Calvert: Biomimetic Processing. Eisele: Sintering and Hot Pressing. Kwon: Liquid-Phase Sintering. Leriche/Cambier: Vitrification. Larker/Larker: Hot Isostatic Pressing. Harmer/Chan: Fired Microstructures and Their Charactzerization. Subramanian: Finishing. Nicholas: Joining of Ceramics. Hirai: Functional Gradient Materials.

  18. Materials Science and Technology.

    ERIC Educational Resources Information Center

    Piippo, Steven W.

    1989-01-01

    Describes a materials science and technology course for high school students, which combines chemistry, physics, engineering, math, technology education, and crafts to introduce students to the atomic make-up and physical properties of materials and to apply this knowledge in creative activities. (SK)

  19. Materials science and engineering

    SciTech Connect

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  20. Materials Science and Engineering

    SciTech Connect

    Lesuer, D.R.

    1993-03-01

    Five papers are included: processing/characterization of laminated metal composites, casting process modeling, characterizing the failure of composite materials, fiber-optic Raman spectroscopy for cure monitoring of advanced polymer composites, and modeling superplastic materials. The papers are processed separately for the data base.

  1. EDITORIAL: Computational materials science Computational materials science

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Kresse, Georg

    2011-10-01

    Special issue in honour of Jürgen Hafner On 30 September 2010, Jürgen Hafner, one of the most prominent and influential members within the solid state community, retired. His remarkably broad scientific oeuvre has made him one of the founding fathers of modern computational materials science: more than 600 scientific publications, numerous contributions to books, and a highly cited monograph, which has become a standard reference in the theory of metals, witness not only the remarkable productivity of Jürgen Hafner but also his impact in theoretical solid state physics. In an effort to duly acknowledge Jürgen Hafner's lasting impact in this field, a Festsymposium was held on 27-29 September 2010 at the Universität Wien. The organizers of this symposium (and authors of this editorial) are proud to say that a large number of highly renowned scientists in theoretical condensed matter theory—co-workers, friends and students—accepted the invitation to this celebration of Hafner's jubilee. Some of these speakers also followed our invitation to submit their contribution to this Festschrift, published in Journal of Physics: Condensed Matter, a journal which Jürgen Hafner served in 2000-2003 and 2003-2006 as a member of the Advisory Editorial Board and member of the Executive Board, respectively. In the subsequent article, Volker Heine, friend and co-worker of Jürgen Hafner over many decades, gives an account of Hafner's impact in the field of theoretical condensed matter physics. Computational materials science contents Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH) D Tunega, H Pašalić, M H Gerzabek and H Lischka Ethylene epoxidation catalyzed by chlorine-promoted silver oxide M O Ozbek, I Onal and R A Van Santen First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applicationsA Nagoya, R Asahi and G Kresse Renormalization group study of random quantum magnetsIstván A Kovács and

  2. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  3. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  4. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  5. Weightless Materials Science

    ERIC Educational Resources Information Center

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  6. Cassini science planning process

    NASA Technical Reports Server (NTRS)

    Paczkowski, Brian G.; Ray, Trina L.

    2004-01-01

    The mission design for Cassini-Huygens calls for a four-year orbital survey of the Saturnian system and the descent into the Titan atmosphere and eventual soft-landing of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 44 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that will perform a wide range of observations on a multitude of designated targets. The science opportunities, frequency of encounters, the length of the Tour, and the use of distributed operations pose significant challenges for developing the science plan for the orbiter mission. The Cassini Science Planning Process is the process used to develop and integrate the science and engineering plan that incorporates an acceptable level of science required to meet the primary mission objectives far the orbiter. The bulk of the integrated science and engineering plan will be developed prior to Saturn Orbit Insertion (Sol). The Science Planning Process consists of three elements: 1) the creation of the Tour Atlas, which identifies the science opportunities in the tour, 2) the development of the Science Operations Plan (SOP), which is the conflict-free timeline of all science observations and engineering activities, a constraint-checked spacecraft pointing profile, and data volume allocations to the science instruments, and 3) an Aftermarket and SOP Update process, which is used to update the SOP while in tour with the latest information on spacecraft performance, science opportunities, and ephemerides. This paper will discuss the various elements of the Science Planning Process used on the Cassini Mission to integrate, implement, and adapt the science and engineering activity plans for Tour.

  7. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  8. Materials science through electron microscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroshi

    1992-03-01

    Electron microscopy has greatly contributed as a powerful tool in both the characterization and identification of materials in the atomic scale. In these contributions, the most important advantage is it's ability for dynamic study of phenomena, i.e., in situ experiments. This research has been carried out using high voltage electron microscopes, but some results have been obtained with high resolution electron microscopes under critical conditions. Electron microscopy has been improved further to become an indispensable ?Micro-Laboratory? in which formation of various advance materials can also be carried out precisely in the atomic scale. Electron beam science and engineering is a typical example in this research field, and detailed processes of crystalline-amorphous transition and electron irradiation induced foreign atom implantation have been clarified by this method. Recently, new applications to the research fields of non-linear material behavior, such as the behavior of atom clusters and the role of electric dipoles on diffusion, have been carried out.

  9. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  10. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  11. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  12. Materials Science Research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1995-01-01

    Microgravity materials processing experiments provide an opportunity to perform scientific research in an environment which allows one to observe various phenomena without the masking effects of gravity-driven convective flows, buoyancy, or contaminating influences of walled containers. Even for the most experienced scientists, it is still difficult to predict beforehand, whether or not microgravity experimentation can be successfully performed in space and achieve solutions to problems which are not attainable in 1 g. Consequently, experimentation in ground based facilities which are capable of simulating, in somewhat lesser time frames and to a lesser degree of microgravity, provides a unique low-cost approach to determine the feasibility of continuing research in a particular experiment. The utilization of these facilities in developing the full requirements for a space experiment does present a very cost-effective approach to microgravity experimentation. The Drop Tube Facility at Marshall Space Flight Center (MSFC) provides an excellent test bed for containerless processing experiments such as described here. These facilities have demonstrated for a number of years the capability to develop insight into space experiments involving containerless processing, rapid solidification, and wetting phenomena through the use of lower-cost ground facilities. Once sufficient data has been obtained, then a space-based experiment can be better defined.

  13. JPRS Report, Science & Technology, USSR: Materials Science.

    DTIC Science & Technology

    2007-11-02

    SCIENCE & TECHNOLOGY USSR: MATERIALS SCIENCE CONTENTS ANALYSIS, TESTING Solubility of GaAs in Bi-Ga Melts (N. A. Yakusheva, S . I. Chikichev...Interaction of Vitreous P-Se Compounds and Silver (Z. U. Borisova, V. S . Vorobyev, et al.; IZVESTIYA AKADEMII NAUK SSSR: NEORGANICHESKIYE MATERIALY...10, Oct 87) IT Introducing Technology for Rolling Sleeve Blanks for Production of Nuclear Power Plant Equipment ( S . A. Yeletskiy, V. A. Reshetnikov

  14. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  15. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters.

  16. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  17. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  18. Materials Sciences Research.

    DTIC Science & Technology

    1975-07-01

    mechanical properties , electron microscopy), b) thermodynamic properties and solubility of oxygen in vanadium and in 8-V 0 (emf of solid 9 galvanic...the electromotive force of solid electrolyte cells in controlled atmospheres is used to • 146 "" determine thermodynamic properties . Effects of...17 A. Anderson - Properties of Materials at Very Low Temperatures (NSF) ............................ 20 J. Mochel

  19. Process Simulation Role in the Development of New Alloys Based on Integrated Computational Material Science and Engineering

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D; Roy, Shibayan; Shyam, Amit

    2014-01-01

    To accelerate the introduction of new materials and components, the development of metal casting processes requires the teaming between different disciplines, as multi-physical phenomena have to be considered simultaneously for the process design and optimization of mechanical properties. The required models for physical phenomena as well as their validation status for metal casting are reviewed. The data on materials properties, model validation, and relevant microstructure for materials properties are highlighted. One vehicle to accelerate the development of new materials is through combined experimental-computational efforts. Integrated computational/experimental practices are reviewed; strengths and weaknesses are identified with respect to metal casting processes. Specifically, the examples are given for the knowledge base established at Oak Ridge National Laboratory and computer models for predicting casting defects and microstructure distribution in aluminum alloy components.

  20. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  1. Setting science free from materialism.

    PubMed

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains.

  2. Material Science Smart Coatings

    SciTech Connect

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  3. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  4. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  5. Materials processing in space

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.

    1982-01-01

    Processing-refining of raw materials from extraterrestrial sources is detailed for a space materials handling facility. The discussion is constrained to those steps necessary to separate desired components from raw or altered input ores, semi-purified feedstocks, or process scrap and convert the material into elements, alloys, and consumables. The materials are regarded as originating from dead satellites and boosters, lunar materials, and asteroids. Strong attention will be given to recycling reagent substances to avoid the necessity of transporting replacements. It is assumed that since no aqueous processes exist on the moon, the distribution of minerals will be homogeneous. The processing-refining scenario will include hydrochemical, pyrochemical, electrochemical, and physical techniques selected for the output mass rate/unit plant mass ratio. Flow charts of the various materials processing operations which could be performed with lunar materials are provided, noting the necessity of delivering several alloying elements from the earth due to scarcities on the moon.

  6. Research in Materials Science

    DTIC Science & Technology

    1974-12-31

    following section the .ransfer processes between Yb3+ and Tm3 + in YLF are treated in detail. Based on the results, the possibility of a Ho laser s•nsitized...absorbed in the levels of Er 3+ and Tm3 + , where the absorption coefficient is high owing to the high concntration of these ions, and the energy is then...miniature laser of alphabet Ho; YLF can be operated at room temperature with pump power that can reasonably be expected from a GaAs light-emitting

  7. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  8. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  9. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  10. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  11. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  12. Density functional theory in materials science

    PubMed Central

    Neugebauer, Jörg; Hickel, Tilmann

    2013-01-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. PMID:24563665

  13. Femtosecond laser materials processing

    NASA Astrophysics Data System (ADS)

    Banks, Paul S.; Stuart, Brent C.; Komashko, Aleksey M.; Feit, Michael D.; Rubenchik, Alexander M.; Perry, Michael D.

    2000-05-01

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biological materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  14. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  15. Materials Science and Technology Teachers Handbook

    SciTech Connect

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  16. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  17. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  18. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  19. Materials science in the sunshine

    SciTech Connect

    Whitney, E.D.

    1985-11-01

    The University of Florida, offering degrees in more than 100 different fields and located at Gainesville, Florida, is in the heart of a rapidly growing population and industrial region. The scholarly environment of the community, coupled with the near-ideal climate of north central Florida, provides unusually pleasant surroundings as well as stimulating atmosphere for undergraduate and graduate study in materials science and engineering. A large faculty of international reputation, equipped with the most modern research facilities, offer instruction in a broad range of aspects of materials science and engineering. Research is strongly emphasized in the department and this is based on the philosophy that good research makes good teaching possible by placing the faculty at the forefront of their fields. Curriculum development in the courses offered is strongly influenced by both the strong research program in this department as well as Florida's rapidly developing high-technology industrial environment.

  20. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  1. Microwave Processing of Materials

    DTIC Science & Technology

    1994-01-01

    of peak output power of 100 megawatts at 10 GHz. Microwave Fundamentals 11 RESONANT HELIX TWT STO KLYSTRON CTf C 0 Grid oShadow Grid PPM FOCUS SPACE C...Rather, broadband and high-temperature measurement techniques that have been used in conjunction with microwave processing of materials-specifically... Broadband Dielectric Properties Measurement Techniques. Pp. 527-539 in Materials Research Society Symposium Proceedings, Vol. 269, Microwave Processing

  2. Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1982-01-01

    A report describes investigations of materials processing in low-gravity environment. Ultimately, research could lead to new commercially-applicable materials and processes and to an understanding of constraints imposed by gravity. NASA-supported work is carried out in 46 academic, industrial, and Government laboratories, and covers a number of areas. An overview is given of objective and current state of development for over 100 tasks.

  3. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  4. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  5. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  6. Materials processing in low gravity

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1989-01-01

    Work is reported on the Materials Processing Low Gravity Program in which the University of Alabama worked with scientists and engineers at Marshall Space Flight Center to design, implement and perform low gravity experiments with various scientific investigators in materials processing science through March 15, 1989. The facilities used in these short duration low gravity experiments include the Drop Tube and Drop Tower at MSFC, and the KC-135 aircraft at Ellington Field. The utilization of these ground-based low gravity facilities for materials processing was instrumental in determining the feasibility of either performing a particular experiment in the microgravity of Space or continuing on-going activities which may have been delayed due to the absence of shuttle flights during this contractual effort.

  7. Extraterrestrial materials processing

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.

    1982-01-01

    The first year results of a multi-year study of processing extraterrestrial materials for use in space are summarized. Theoretically, there are potential major advantages to be derived from the use of such materials for future space endeavors. The types of known or postulated starting raw materials are described including silicate-rich mixed oxides on the Moon, some asteroids and Mars; free metals in some asteroids and in small quantities in the lunar soil; and probably volatiles like water and CO2 on Mars and some asteroids. Candidate processes for space materials are likely to be significantly different from their terrestrial counterparts largely because of: absence of atmosphere; lack of of readily available working fluids; low- or micro-gravity; no carbon-based fuels; readily available solar energy; and severe constraints on manned intervention. The extraction of metals and oxygen from lunar material by magma electrolysis or by vapor/ion phase separation appears practical.

  8. Ultrasonic Processing of Materials

    SciTech Connect

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  9. Superconducting materials processing

    NASA Astrophysics Data System (ADS)

    Hurley, John S.; Karikari, Emmanuel K.; Hiamang, S. O.; Danjaji, M.; Bassey, Affiong; Morgan, Andre

    1995-08-01

    The effects of materials processing on the properties and behavior of high temperature yttrium barium copper oxide (YBCO) superconductors were investigated. Electrical, magnetic, and structural characteristics of thin films (300 nm) YBA2CU3O(delta) structures grown by pulsed laser deposition on LaAlO3 and SrTiO3 substrates were used to evaluate processing. Pole projection and thin film diffraction measurements were used to establish grain orientation and verify structural integrity of the samples. Susceptibility magnetization, and transport measurements were used to evaluate the magnetic and electrical transport properties of the samples. Our results verified that an unfortunate consequence of processing is inherent changes to the internal structure of the material. This effect translates into modifications in the properties of the materials, and undesired feature that makes it very difficult to consistently predict material behavior. The results show that processing evaluation must incorporate a comprehensive understanding of the properties of the materials. Future studies will emphasize microstructural characteristics of the materials, in particular, those microscopic properties that map macroscopic behavior.

  10. Superconducting materials processing

    NASA Technical Reports Server (NTRS)

    Hurley, John S.; Karikari, Emmanuel K.; Hiamang, S. O.; Danjaji, M.; Bassey, Affiong; Morgan, Andre

    1995-01-01

    The effects of materials processing on the properties and behavior of high temperature yttrium barium copper oxide (YBCO) superconductors were investigated. Electrical, magnetic, and structural characteristics of thin films (300 nm) YBA2CU3O(delta) structures grown by pulsed laser deposition on LaAlO3 and SrTiO3 substrates were used to evaluate processing. Pole projection and thin film diffraction measurements were used to establish grain orientation and verify structural integrity of the samples. Susceptibility magnetization, and transport measurements were used to evaluate the magnetic and electrical transport properties of the samples. Our results verified that an unfortunate consequence of processing is inherent changes to the internal structure of the material. This effect translates into modifications in the properties of the materials, and undesired feature that makes it very difficult to consistently predict material behavior. The results show that processing evaluation must incorporate a comprehensive understanding of the properties of the materials. Future studies will emphasize microstructural characteristics of the materials, in particular, those microscopic properties that map macroscopic behavior.

  11. The Center for Nanophase Materials Sciences

    ScienceCinema

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2016-07-12

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  12. The Center for Nanophase Materials Sciences

    SciTech Connect

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2016-03-11

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  13. Plasma Processing of Materials

    DTIC Science & Technology

    1985-02-22

    Estimates for Producing Alu -.. a from Domestic Raw Materials. U.S. Bureau ot Mines Information Circ lar 8648. 6. Barclay, James A., arti Frank A...heating occurs via joule -type heating, whereas cleaning is believed to occur via vaporization of thin oxide films from cathodic arc spots caused by a...Research Society Symposium on Plasma Processing and Synthesis of Materials, Boston, November. 43. Frind, G., C. P. Goody, and L. E. Prescott . 1983

  14. Chemistry and materials science progress report, FY 1994

    SciTech Connect

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  15. Phospholipid Vesicles in Materials Science

    SciTech Connect

    Granick, Steve

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  16. Processing Materials in Space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1982-01-01

    Suggested program of material processing experiments in space described in 81 page report. For each experiment, report discusses influence of such gravitational effects as convection, buoyancy, sedimentation, and hydrostatic pressure. Report contains estimates of power and mission duration required for each experiment. Lists necessary equipment and appropriate spacecraft.

  17. Materials and Processes Technology.

    ERIC Educational Resources Information Center

    Ritz, John M.; And Others

    This instructional resource guide is intended to assist the industrial arts (IA) teacher in implementing a comprehensive materials and Processes Technology program at the technical level in Virginia high schools. The course is designed to help students make informed educational and occupational choices and prepare them for advanced technical or…

  18. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  19. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  20. Space processing of materials

    SciTech Connect

    Ramachandran, N.

    1996-12-31

    Materials processing in space derives unique benefits from reduced levels of gravity and hydrostatic pressure. The attenuation of buoyancy-driven convection and sedimentation have led to the realization of close-to-diffusion-limited conditions for the growth of semiconductors, metals/alloys, proteins, etc., in novel crystal growth configurations. One of the aims of the conference was to bring together scientists, experiment designers/engineers, and educators in a common forum to highlight different aspects of low-gravity research. Two spotlight topics were picked for the conference: materials for detectors and electronics, and thin film technology--theory and applications. In addition, the conference focused on space hardware, low-gravity experiment design, and educational outreach programs. Presentations in materials processing included low-gravity and terrestrial experiments on the growth of mercury cadmium telluride, crystal characterization techniques, and modeling efforts. The growth of heavy metal fluoride glasses and metal alloys in low gravity was also featured in presentations. The session on thin film technology was mainly comprised of papers reporting on investigations in nonlinear optics. The growth, response, and characterization of organic and polymeric thin film materials were discussed. Microgravity experiments ranging from the diverse areas of diffusion studies and thermo-solutal convection to optical pyrometry and the behavior of granular materials in low gravity, were presented in a separate session devoted to space experiment design and implementation. Educational outreach programs for student involvement in ground-based and low-gravity research for materials processing and device fabrication were also featured in a separate conference session. Existing hardware for experiments in low gravity and future hardware concepts for the International Space Station and beyond were presented. Separate abstracts were prepared for most papers.

  1. Science Process Skills in Science Curricula Applied in Turkey

    ERIC Educational Resources Information Center

    Yumusak, Güngör Keskinkiliç

    2016-01-01

    One of the most important objectives of the science curricula is to bring in science process skills. The science process skills are skills that lie under scientific thinking and decision-making. Thus it is important for a science curricula to be rationalized in such a way that it brings in science process skills. New science curricula were…

  2. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  3. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. NASA Now: Materials Science: Thermal Protection Systems

    NASA Video Gallery

    Metallurgical and materials engineers use science, technology and mathematics to study different types of materials. They analyze the materials to determine what they are made of and evaluate their...

  5. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  6. Role of Audio and Audio-Visual Materials in Enhancing the Learning Process of Health Science Personnel.

    ERIC Educational Resources Information Center

    Cooper, William

    The material presented here is the result of a review of the Technical Development Plan of the National Library of Medicine, made with the object of describing the role of audiovisual materials in medical education, research and service, and particularly in the continuing education of physicians and allied health personnel. A historical background…

  7. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect

    Zhang, Z Y

    2008-06-25

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  8. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  9. Chemistry and Materials Science Strategic Plan

    SciTech Connect

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.

  10. Nuffield Secondary Science, Theme 7, Using Materials.

    ERIC Educational Resources Information Center

    Blackledge, J.; And Others

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable for other countries. The Teachers' Guide to the entire set of materials is described in SE 015…

  11. Materials Data Science: Current Status and Future Outlook

    NASA Astrophysics Data System (ADS)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  12. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  13. Textile composite processing science

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.

    1993-01-01

    A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.

  14. Material science lesson from the biological photosystem

    NASA Astrophysics Data System (ADS)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  15. Chemistry and materials science research report

    SciTech Connect

    Not Available

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  16. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  17. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  18. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  19. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    2007-11-02

    Porous Sheet Sintered Materials (V. K. Sorokin; POROSHKOVAYA METALLURGIYA, No 2, Feb 88) 4 Elastic Properties of YBa2Cu307 at 4.2-300K (Ya. N...METALLOVEDENIYE, No 2, Feb 88) . . 6 FERROUS METALS Structure and Properties of Molybdenum-Vanadium High-Speed ’Steel With Aluminum (A, N...Popandopulo, et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: CHERNAYA METALLURGIYA, No 1, Jan 88) 7 Influence of Scandium on Properties of 35KhGSL

  20. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  1. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-01-11

    and inclusions, microplasticity , high reactive capacity and activity in solid phase processes, as well as easily regulated uniformity of the ceramic...and with crystallites measuring about 0.5 microns. Even this, however, is insufficient to demonstrate the effect of microplasticity , which reduces

  2. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  3. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  4. JPRS Report, Science & Technology, USSR: Materials Science.

    DTIC Science & Technology

    1988-04-04

    accordingly, their suitability as replacement of St08 rimmed carbon steel in agricultural transportation equipment. Some of the 1-2 mm thick strip...than carbon steel, the Al + 2% Mg alloy after low-temperature thermomechanical treatment having the highest, but not so much higher in...substrates of rectangular plates of low- carbon steel with width-wise ground surfaces. The three pairs of alloys thus simultaneously processed were: 1

  5. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    NASA Astrophysics Data System (ADS)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  6. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  7. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  8. JPRS report: Science and technology. Central Eurasia: Materials science

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A bibliography is given of Central Eurasian research in materials science. Topics covered include analysis and testing; corrosion resistance; ferrous metals; nonferrous alloys, brazes, and solders; heat treatment; welding, brazing, and soldering; and extractive metallurgy.

  9. The Science of Smart Materials

    ERIC Educational Resources Information Center

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  10. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  11. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  12. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  13. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  14. Visualization for materials science and nanoscience

    SciTech Connect

    Graf, Matthias J; Balatsky, Alexander V

    2008-01-01

    The Center for Integrated Nanotechnology (CINT) is a Department of Energy funded center jointly operated by Sandia National Laboratory and Los Alamos National Laboratory. As part of the Los Alamos located CINT facilities, we have developed a visualization capability hosted in the VIZ lab at CINT that is focused on using established applications and developing new visualization tools for the use in materials science and more specifically for the nanosciences. The utility of the visualization process is captured by the motto 'To see is to know', which is so ingrained in the way we do science that often we forget that it is one of the pillars of the scientific methods, namely to record or demonstrate an effect and its causal connection in a reproducible way. Visualization is one of the tools that enables scientists to convincingly demonstrate and present their results. This idea underpins the logic of many visualization facilities in the United States and elsewhere. Where visualization at CINT is unique is its focus on the nanoscience and nanoscale effects that control materials properties. In this article, we will give specific examples on how visualization helps scientists and users at the Center.

  15. PREFACE: Tsukuba International Conference on Materials Science 2013

    NASA Astrophysics Data System (ADS)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  16. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  17. The use of historical materials in elementary science classrooms

    NASA Astrophysics Data System (ADS)

    Kafai, Yasmin B.; Gilliland-Swetland, Anne J.

    2001-07-01

    Science educators have stressed in recent years the importance of providing students with an historical understanding of the development of scientific knowledge. Although many approaches have been suggested for building historical understanding of science, historical source materials have often been deemed too difficult to use with elementary school students. This article reports on a case study that used archival and contemporary source materials in project activities, such as photographs and field notes, to engage students in the processes of data generation, selection, annotation, and evaluation. The curricular science activities of one elementary classroom with 29 fourth and fifth grade students are decribed and analyzed as they build and use archives of historical and contemporary naturalist materials. The article concludes with a discussion of the feasibility and benefits of using historical source materials within elementary science education, as well as the implications for selecting and preparing historical source materials in digital format for use in elementary education.

  18. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  19. Recent progress in hybrid materials science.

    PubMed

    Sanchez, Clément; Shea, Kenneth J; Kitagawa, Susumu

    2011-02-01

    This themed issue of Chemical Society Reviews reviews recent progress made in hybrid materials science. Guest editors Clément Sanchez, Susumu Kitagawa and Ken Shea introduce the issue and the academic and industrial importance of the field.

  20. Materials processing in space program support

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James M.

    1987-01-01

    Activities in support of NASA's Materials Processing in Space (MPS) program are reported. The overall task of the MPS project support contract was to provide the organization and administration of colloquiums, science reviews, workshops, technical meetings, bibliographic services, and visiting scientist programs. The research objectives and accomplishments of the University Space Research Association visiting scientist team are also summarized.

  1. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  2. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  3. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  4. Transparent materials processing system

    NASA Technical Reports Server (NTRS)

    Hetherington, J. S.

    1977-01-01

    A zero gravity processing furnace system was designed that will allow acquisition of photographic or other visual information while the sample is being processed. A low temperature (30 to 400 C) test model with a flat specimen heated by quartz-halide lamps was constructed. A high temperature (400 to 1000 C) test model heated by resistance heaters, utilizing a cylindrical specimen and optics, was also built. Each of the test models is discussed in detail. Recommendations are given.

  5. Preparing Teachers to Teach Science: Learning Science as a Process.

    ERIC Educational Resources Information Center

    Cornell, Elizabeth A.

    1985-01-01

    Cites the lack of students' understanding and practicing of science processes as evidenced in science fair projects. Major contributors to the decline in science achievement are discussed. Author suggests teachers need experience with "sciencing" in the form of original investigative projects. Coursework designed to meet this goal is described.…

  6. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  7. Transport Phenomena and Materials Processing

    NASA Astrophysics Data System (ADS)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  8. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  9. Editorial: Defining materials science: A vision from APL Materials

    NASA Astrophysics Data System (ADS)

    MacManus-Driscoll, Judith

    2014-07-01

    These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  10. Gender Equity in Materials Science and Engineering

    SciTech Connect

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to

  11. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  12. The Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2008-03-01

    While materials scientists don't typically consult comic books when selecting research topics, innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming. Smart fabrics used in hiking clothing expand at low temperatures, while other materials increase their porosity at higher temperatures, allowing body heat and water vapor to escape. Some polymers can be stretched to over twice their normal dimensions and return to their original state when annealed, a feature appreciated by Mr. Fantastic. In order to keep track of the Invisible Woman, the Fantastic Four's arch nemesis Dr. Doom employed sensors in the eye-slits of his armored face-plate, using the same physics underlying night vision goggles. Certain forms of blindness may be treated using an artificial retina consisting of silicon microelectrode arrays, surgically attached to the back of the eye, that transmit a voltage to the optic nerve proportional to the incident visible light intensity (one of the few positive applications of Dr. Doom's scheming). Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have recently developed ``gecko tape,'' consisting of arrays of fibers that provide a strong enough attraction to support a modest weight. Before this tape is able to support a person, however, major materials constraints must be overcome (if this product ever becomes commercially available, I for one will never wait for the elevator again!) All this, and the chemical composition of Captain America's shield, will be discussed.

  13. Materials science. Electronics without lead.

    PubMed

    Li, Yi; Moon, Kyoung-sik; Wong, C P

    2005-06-03

    In conventional consumer electronics such as cell phones, lead-containing interconnects provide the conductive path between different circuit elements. Environmental concerns have led to a search for lead-free alternatives. In their Perspective, Li et al. review these efforts, which have focused on lead-free alloys and electrically conductive adhesives. Both of these approaches are showing promise, but no one lead-free interconnect material can serve as a substitute for the conventional tin-lead solder in all devices.

  14. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  15. Library Materials: Selection and Processing.

    ERIC Educational Resources Information Center

    Freeman, Michael; And Others

    This script of a slide-tape presentation, which describes the selection and processing of materials for a university library, includes commentary with indicators for specific slide placement. Distinction is made between books and serial publications and the materials are followed from the ordering decision through processing. The role of the…

  16. The materials science of collagen.

    PubMed

    Sherman, Vincent R; Yang, Wen; Meyers, Marc A

    2015-12-01

    Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.

  17. Medipix3 CT for material sciences

    NASA Astrophysics Data System (ADS)

    Procz, S.; Wartig, K.-A.; Fauler, A.; Zwerger, A.; Luebke, J.; Ballabriga, R.; Blaj, G.; Campbell, M.; Mix, M.; Fiederle, M.

    2013-01-01

    Innovative detector systems for non-destructive material analysis and for medical diagnosis are an important development to improve the performance and the quality of examination methods. For a number of years now photon-counting X-ray detectors are being developed to process incoming X-ray photons as single events. These detectors facilitate a higher signal-to-noise ratio (SNR) than conventional, non-photon-counting, scintillator based detector systems, which detect X-ray photons indirectly through conversion into visible light. The Medipix is a pixelated photon counting semiconductor detector which features adjustable energy thresholds allowing energy selective, multispectral X-ray imaging. The Medipix chip is under continued development by the ``Medipix2 Collaboration'' and ``Medipix3 Collaboration'' at CERN [1]. The Medipix electronic offers 256 × 256 pixels with a pixel pitch of 55 × 55 μm2 and can be hybridized with different sensor materials like Si, CdTe or GaAs. The newest member of the Medipix family is the Medipix3 (ASIC in 0.13 μm CMOS technology) providing up to eight separate 12-bit counters per pixel. It offers a couple of different working modes [2], which are useful for X-ray imaging applications. A Medipix3 CT X-ray measuring station was built up for small animal X-ray imaging and non-destructive material analysis [3]. The combination of the low energy threshold ( ~ 4 keV) of the Medipix3 with its multispectral capability enables tomographic investigations on objects with low absorption contrast. The advantage of photon counting, multispectral detectors like Medipix3 for material sciences will be presented here as well as a comparison with a scintillator based CT.

  18. Magnetohydrodynamics in Materials Processing

    NASA Astrophysics Data System (ADS)

    Davidson, P. A.

    1999-01-01

    Magnetic fields can be used to melt, pump, stir, and stabilize liquid metals. This provides a nonintrusive means of controlling the flow of metal in commercial casting and refining operations. The quest for greater efficiency and more control in the production of steel, aluminum, and high-performance superalloys has led to a revolution in the application of magnetohydrodynamics (MHD) to process metallurgy. Three typical applications are described here, chosen partially on the basis of their general interest to fluid dynamicists, and partially because of their considerable industrial importance. We look first at magnetic stirring, where a rotating magnetic field is used to agitate and homogenize the liquid zone of a partially-solidified ingot. This is a study in Ekman pumping. Next, we consider magnetic damping, where an intense, static magnetic field is used to suppress fluid motion. In particular, we look at the damping of jets, vortices, and turbulence. We conclude with a discussion of the magnetic destabilization of liquid-liquid interfaces. This is of particular importance in aluminum production.

  19. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  20. Extraterrestrial materials processing and construction

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1978-01-01

    Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.

  1. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  2. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  3. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  4. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  5. Processes for treating cellulosic material

    NASA Technical Reports Server (NTRS)

    Ladisch, Michael R. (Inventor); Kohlman, Karen L. (Inventor); Westgate, Paul L. (Inventor); Weil, Joseph R. (Inventor); Yang, Yiqi (Inventor)

    1998-01-01

    Disclosed are processes for pretreating cellulosic materials in liquid water by heating the materials in liquid water at a temperature at or above their glass transition temperature but not substantially exceeding 220.degree. C., while maintaining the pH of the reaction medium in a range that avoids substantial autohydrolysis of the cellulosic materials. Such pretreatments minimize chemical changes to the cellulose while leading to physical changes which substantially increase susceptibility to hydrolysis in the presence of cellulase.

  6. Microstructural processes in irradiated materials

    SciTech Connect

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  7. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  8. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  9. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  10. Energy Implications of Materials Processing

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1976-01-01

    Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…

  11. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  12. Science Learning: Processes and Applications.

    ERIC Educational Resources Information Center

    Santa, Carol Minnick, Ed.; Alvermann, Donna E., Ed.

    Reflecting a collaboration in terms of content areas, levels, and audience, this volume represents the efforts of science teachers and reading teachers to understand and help one another fine tune their craft. Chapters in the volume include: (1) "Metacognition, Reading and Science Education" (Linda Baker); (2) "Science and Reading:…

  13. CPT Word Processing Instructional Materials.

    ERIC Educational Resources Information Center

    Slaymaker, Josephine; Eakman, Donna

    A project to develop a student word processing manual was developed by using input from: (1) information specialists, employees, and educators; and (2) students using the manual. These instructional materials provide workbook assignments and reading for an individualized unit on CPT word processing to be used by 30 to 40 high school students per…

  14. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    fully funded by Ibaraki prefecture for the promotion of new industries based on advanced science and technologies. It is for the first time in neutron facilities in Japan that a prefecture owns neutron instruments as well as neutron beam will be provided widely to industrial users. To make it successful, the user system is quite important because those users are expected to use IPD like chemical analyzers in their materials development process. Based on questionnaire data to several hundreds industries, IPD is designed as a versatile diffractometer including texture measurement, small angle scattering and total scattering as well as usual powder diffraction. IPD covers d range 0.15materials with the highest resolution of Δd/d = 0.2% (corresponding to 10˜5 to 10˜6 strain precision). The typical gauge volume will be 1 mm3. JED has transmission

  15. Pulsed Neutron Powder Diffraction for Materials Science

    SciTech Connect

    Kamiyama, T.

    2008-03-17

    {sup -1}. IPD is fully funded by Ibaraki prefecture for the promotion of new industries based on advanced science and technologies. It is for the first time in neutron facilities in Japan that a prefecture owns neutron instruments as well as neutron beam will be provided widely to industrial users. To make it successful, the user system is quite important because those users are expected to use IPD like chemical analyzers in their materials development process. Based on questionnaire data to several hundreds industries, IPD is designed as a versatile diffractometer including texture measurement, small angle scattering and total scattering as well as usual powder diffraction. IPD covers d range 0.15materials with the highest resolution of {delta}d/d = 0.2% (corresponding to 10{approx}5 to 10{approx}6 strain precision). The typical

  16. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  17. Thermal Boundary Conductance: A Materials Science Perspective

    NASA Astrophysics Data System (ADS)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  18. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  19. Fiber lasers for material processing

    NASA Astrophysics Data System (ADS)

    Shiner, Bill

    2005-03-01

    Low power fiber lasers began entering the commercial markets in the early 1990s. Since their introduction, fiber lasers have rapidly progressed in power levels level with greatly improved beam quality to the point where they now exceed any other commercial material processing laser. These lasers, with single mode operation to 1 kilowatt and multi-mode operation to beyond 20 kilowatts, have high wall plug efficiency, an extremely compact footprint, are maintenance free and have a predicted diode life beyond 100,000 hours of continuous operation. Fiber lasers are making inroads into the scientific, medical, government, and in particular, material processing markets. These lasers have greatly expanded the application umbrella due to their unparallel performance combined with the ability to operate at different wavelengths, address remote applications and be propagated great distances in fiber. In the material processing markets, fiber lasers are rapidly gaining share in the automotive, microelectronic, medical device and marking markets, to name a few. The single mode lasers are redefining process parameters that have been accepted for decades. The high brightness multimode-kilowatt class lasers are achieving speeds and depths greater than comparable powered conventional lasers while providing the only commercial material processing lasers operating beyond 6 kilowatts at the 1 micron region.

  20. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  1. Science Process Skills: Their Nature and Interrelationships.

    ERIC Educational Resources Information Center

    Brotherton, Peter N.; Preece, Peter F. W.

    1995-01-01

    Assessed the science process skills and the Piagetian development level of about 90 secondary school students in years 7, 8, and 9. Found only a simple two-level hierarchy (basic and integrated) of process skills. Found considerable overlap between science process skills and Piagetian development level. (28 references) (Author)

  2. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  3. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  4. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  5. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  6. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  7. Progress in the materials science of silicene

    PubMed Central

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-01-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these ‘epitaxial silicene’ phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials. PMID:27877727

  8. Progress in the materials science of silicene.

    PubMed

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-12-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

  9. Nanobiotechnology: synthetic biology meets materials science.

    PubMed

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation.

  10. Landsat 7 Science Data Processing: An Overview

    NASA Technical Reports Server (NTRS)

    Schweiss, Robert J.; Daniel, Nathaniel E.; Derrick, Deborah K.

    2000-01-01

    The Landsat 7 Science Data Processing System, developed by NASA for the Landsat 7 Project, provides the science data handling infrastructure used at the Earth Resources Observation Systems (EROS) Data Center (EDC) Landsat Data Handling Facility (DHF) of the United States Department of Interior, United States Geological Survey (USGS) located in Sioux Falls, South Dakota. This paper presents an overview of the Landsat 7 Science Data Processing System and details of the design, architecture, concept of operation, and management aspects of systems used in the processing of the Landsat 7 Science Data.

  11. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  12. Trends in Materials Science for Ligament Reconstruction.

    PubMed

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field.

  13. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  14. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  15. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    SciTech Connect

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill; Roberto, Jim

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has

  16. Process for preparing energetic materials

    DOEpatents

    Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  17. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  18. Annual report, Materials Science Branch, FY 1992

    SciTech Connect

    Padilla, S.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  19. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Processing material. 18.51... material. (a) General. A proprietor may produce processing material or receive processing material produced elsewhere. Fermented processing material may not be used in the manufacture of concentrate....

  20. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Processing material. 18.51... material. (a) General. A proprietor may produce processing material or receive processing material produced elsewhere. Fermented processing material may not be used in the manufacture of concentrate....

  1. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Processing material. 18.51... material. (a) General. A proprietor may produce processing material or receive processing material produced elsewhere. Fermented processing material may not be used in the manufacture of concentrate....

  2. Laser processing of siliceous materials

    NASA Astrophysics Data System (ADS)

    Panzner, Michael; Lenk, Andreas; Wiedemann, Guenter R.; Hauptmann, Jan; Weiss, Hans J.; Ruemenapp, Thomas; Morgenthal, Lothar; Beyer, Eckhard

    2000-08-01

    Laser processing of siliceous materials becomes increasingly important. Analogous to the laser processing of conventional materials there are applications in the fields of cleaning, surface processing, cutting, etc. The present paper concerns the state of the art and new applications: (1) Laser cleaning of natural stone surfaces. The good disability allows restoration work to be carried out conveniently, as for example the complete removal of crusts or the removal to such degree that moisture is not trapped beneath. (2) Non-slip finish of polished natural stone surfaces: The excellent focusing of laser beams on spots as small as 100 micrometer and below can be exploited to produce macroscopically invisible structures on the surfaces of different materials. This permits microscopically small craters and lentil shaped depressions to be generated on the stone surface. Therefore it is possible to provide a non-slip finish to polished natural stone surfaces without noticeably impairing the gloss. (3) Concrete cutting: In Europe, and particularly in Germany, there is a growing demand for redevelopment of concrete apartment buildings, involving the removal of non-bearing walls and the cutting of openings. The temporal relocation of residents due to the noise and moisture from the use of diamond tools could be avoided by applying a laser cutting technology. With a 3 kW-Nd-YAG-laser, 70 mm concrete can be cut with rates up to 25 mm/min.

  3. Nature of science in instruction materials of science through the model of educational reconstruction

    NASA Astrophysics Data System (ADS)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  4. Peptide nucleic acids in materials science

    PubMed Central

    Bonifazi, Davide; Carloni, Laure-Elie; Corvaglia, Valentina; Delforge, Arnaud

    2012-01-01

    This review highlights the recent methods to prepare PNA-based materials through a combination of self-assembly and self-organization processes. The use of these methods allows easy and versatile preparation of structured hybrid materials showing specific recognition properties and unique physicochemical properties at the nano- and micro-scale levels displaying potential applications in several directions, ranging from sensors and microarrays to nanostructured devices for biochips. PMID:22925824

  5. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  6. Neutron scattering for materials science. Materials Research Society proceedings

    SciTech Connect

    Shapiro, S.M. ); Moss, S.C. ); Jorgensen, J.D. )

    1990-01-01

    Neutron Scattering is by now a well-established technique which has been used by condensed matter scientists to probe both the structure and the dynamical interactions in solids and liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposium presented in this book was assembled to bring together scientists with a wide range of interest, including high-T{sub c} superconducting materials, phase transformations, neutron depth profiling, structure and dynamics of glasses and liquids, surfaces and interfaces, porous media, intercalation compounds and lower dimensional systems, structure and dynamics of polymers, residual stress analysis, ordering and phase separation in alloys, and magnetism in alloys and multilayers. The symposium included talks covering the latest advances in broad areas of interest such as Rietveld structure refinement, triple axis spectrometry, quasi elastic scattering and diffusion, small angle scattering and surface scattering.

  7. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    PubMed

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives.

  8. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  9. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  10. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  11. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    NASA Astrophysics Data System (ADS)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  12. PREFACE: Processing, Microstructure and Performance of Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Yu Lung; Chen, John J. J.; Hodgson, Michael A.; Thambyah, Ashvin

    2009-07-01

    A workshop on Processing, Microstructure and Performance of Materials was held at the University of Auckland, School of Engineering, on 8-9 April 2009. Organised by the Department of Chemical and Materials Engineering, University of Auckland, this meeting consisted of international participants and aimed at addressing the state-of-the-art research activities in processing, microstructure characterization and performance integrity investigation of materials. This two-day conference brought together scientists and engineers from New Zealand, Australia, Hong Kong, France, and the United Kingdom. Undoubtedly, this diverse group of participants brought a very international flair to the proceedings which also featured original research papers on areas such as Materials processing; Microstructure characterisation and microanalysis; Mechanical response at different length scales, Biomaterials and Material Structural integrity. There were a total of 10 invited speakers, 16 paper presentations, and 14 poster presentations. Consequently, the presentations were carefully considered by the scientific committee and participants were invited to submit full papers for this volume. All the invited paper submissions for this volume have been peer reviewed by experts in the various fields represented in this conference, this in accordance to the expected standards of the journal's Peer review policy for IOP Conference Series: Materials Science and Engineering. The works in this publication consists of new and original research as well as several expert reviews of current state-of-the art technologies and scientific developments. Knowing some of the real constraints on hard-copy publishing of high quality, high resolution images, the editors are grateful to IOP Publishing for this opportunity to have the papers from this conference published on the online open-access platform. Listed in this volume are papers on a range of topics on materials research, including Ferguson's high strain

  13. Advancements in MEMS materials and processing technology

    NASA Astrophysics Data System (ADS)

    Olivas, John D.; Bolin, Stephen

    1998-01-01

    From achievements in display imaging to air bag deployment, microelectromechanical systems are becoming more commonplace in everyday life. With an abundance of opportunities for innovative R&D in the field, the research trends are not only directed toward novel sensor and actuator development, but also toward further miniaturization, specifically achieving micro- and nanoscaled integrated systems. R&D efforts in space, military, and commercial applications are directing specific research programs focused on the area of materials science as an enabling technology to be exploited by researchers and to further push the envelope of micrometerscaled device technology. These endeavors are making significant progress in bringing this aspect of the microelectro-mechanical field to maturation through advances in materials and processing technologies.

  14. Polyoxometalates: from inorganic chemistry to materials science.

    PubMed

    Casañ-Pastor, Nieves; Gómez-Romero, Pedro

    2004-05-01

    Polyoxometalates have been traditionally the subject of study of molecular inorganic chemistry. Yet, these polynuclear molecules, reminiscent of oxide clusters, present a wide range of structures and with them ideal frameworks for the deployment of a plethora of useful magnetic, electroionic, catalytic, bioactive and photochemical properties. With this in mind, a new trend towards the application of these remarkable species in materials science is beginning to develop. In this review we analyze this trend and discuss two main lines of thought for the application of polyoxometalates as materials. On the one hand, there is their use as clusters with inherently useful properties on themselves, a line which has produced fundamental studies of their magnetic, electronic or photoelectrochemical properties and has shown these clusters as models for quantum-sized oxides. On the other hand, the encapsulation or integration of polyoxometalates into organic, polymeric or inorganic matrices or substrates opens a whole new field within the area of hybrid materials for harnessing the multifunctional properties of these versatile species in a wide variety of applications, ranging from catalysis to energy storage to biomedicine.

  15. Diamond detector - material science, design and application

    NASA Astrophysics Data System (ADS)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  16. Innovative Video Diagnostic Equipment for Material Science

    NASA Technical Reports Server (NTRS)

    Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.

    2012-01-01

    Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.

  17. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  18. Integrated lunar materials manufacturing process

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  19. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  20. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  1. USSR Report: Materials Science and Metallurgy

    DTIC Science & Technology

    1985-10-29

    dispersion-hardening nickel alloys tend to crack during heat treatment. Most research has attributed this to residual welding stress , volume stress and...Defectoscopy and Structure Measurement of Amorphous Alloys (V.S. Boydenko, A.P. Potapov, et al.; DEFEKTOSKOPIYA, No 6, Jun 85) 12 Process of Crack ...T.A. Chernyshova, M.P. Arsentyeva, et al.; FIZIKA I KHIMIYA OBRABOTKI MATERIALOV, No 3, May-Jun 85) 23 - d - COMPOSITE MATERIALS The Stress

  2. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  3. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  4. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  5. Science Lessons from Industrial Processes--Sunderland.

    ERIC Educational Resources Information Center

    Nellist, J.

    1980-01-01

    Presents aims of an inservice course designed to encourage science teachers to incorporate material of relevance to the local industrial scene into their existing curricula. Projects required by participants in the course are listed with their brief descriptions and possible applications in the classroom. (CS)

  6. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  7. Evaluation of Student Outcomes in Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  8. Quantum information processing : science & technology.

    SciTech Connect

    Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David

    2010-09-01

    Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.

  9. NASA Science Data Processing for SNPP

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.

    2014-12-01

    NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.

  10. Using Amphibians and Reptiles to Learn the Process of Science

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  11. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  12. The Analysis of Nine Process-Concepts in Elementary Science. Technical Report No. 428.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; And Others

    Theory and research background regarding the teaching of concepts are presented. Procedures are given in detail on how a concept can be analyzed in order to aid in teaching and preparing instructional materials. Nine processes of science drawn from a published elementary science curriculum ("Science: A Process Approach") are treated as concepts…

  13. Emphasizing the process of science in biology

    NASA Astrophysics Data System (ADS)

    D'Augustino, Tracy Marie

    The purpose of this project was to emphasize the process of science which is used in all aspects of life. Students in an Introductory Biology class practiced making observations, identifying patterns and asking questions based on observed patterns. The questions led to the development of multiple hypotheses with students predicting possible results. Students had opportunities to discuss their predictions with peers and the instructor. They discussed additional steps, alternative observations and questions, further exploring the process of science. To objectively evaluate the increased knowledge, students were given a pre-test and post-test that covered the points presented. Data analysis indicated that participation in unit activities successfully increased the students' understanding of the process of science.

  14. Automated Science Processing for GLAST LAT Data

    SciTech Connect

    Chiang, James

    2007-07-12

    Automated Science Processing (ASP) will be performed by the GLAST Large Area Telescope (LAT) Instrument Science Operations Center (ISOC) on data from the satellite as soon as the Level 1 data are available in the ground processing pipeline. ASP will consist of time-critical science analyses that will facilitate follow-up and multi-wavelength observations of transient sources. These analyses include refinement of gamma-ray burst (GRB) positions, timing, flux and spectral properties, off-line searches for untriggered GRBs and gamma-ray afterglows, longer time scale monitoring of a standard set of sources (AGNs, X-ray binaries), and searches for previously unknown flaring sources in the LAT band. We describe the design of ASP and its scientific products; and we show results of a prototype implementation, driven by the standard LAT data processing pipeline, as applied to simulated LAT and GBM data.

  15. Automated Science Processing for GLAST LAT Data

    SciTech Connect

    Chiang, James; Carson, Jennifer; Focke, Warren; /SLAC

    2007-10-15

    Automated Science Processing (ASP) will be performed by the GLAST Large Area Telescope (LAT) Instrument Science Operations Center (ISOC) on data from the satellite as soon as the Level 1 data are available in the ground processing pipeline. ASP will consist of time-critical science analyses that will facilitate follow-up and multi-wavelength observations of transient sources. These analyses include refinement of gamma-ray burst (GRB) positions, timing, flux and spectral properties, off-line searches for untriggered GRBs and gamma-ray afterglows, longer time scale monitoring of a standard set of sources (AGNs, X-ray binaries), and searches for previously unknown flaring sources in the LAT band. We describe the design of ASP and its scientific products; and we show results of a prototype implementation, driven by the standard LAT data processing pipeline, as applied to simulated LAT and GBM data.

  16. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  17. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  18. General Physics, Physics 12 [Science Curriculum Materials].

    ERIC Educational Resources Information Center

    Rochester City School District, NY.

    The Physics 12 curriculum guide represents one in a series of science guides especially designed to provide for the pupil whose primary interests are in non-science fields. The program provides study in physics in which fundamental concepts and understandings are developed, mathematical concepts are limited, and students are encouraged to relate…

  19. Study Processing of Ceramic Material

    DTIC Science & Technology

    1983-01-01

    indicated for 30 min ................ 25 Fig. 10 (Same as Fig. 9) - Note change of agglomerate shape during grain grw h ...34... greatly affect the evolution of microstructure and * p is density, s, h , t denotes soft, hard and theoretical, respectively. C4698A/sn Rockwell...higher neck density for the group. 14 C4698A/sn h ] K.] .4 I ~1. I. 4 a 4 4 9 Rockwell Intemational Science Center SC5325.1PR Using this analysis, one

  20. Materials processing in space: Early experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Herring, H. W.

    1980-01-01

    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed.

  1. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  2. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  3. Challenge of Materials at the Science Museum: A Resource for GNVQ Science and Engineering.

    ERIC Educational Resources Information Center

    Bazley, Martin

    1997-01-01

    Describes "Challenge of Materials," a gallery where visitors can experience a wide variety of materials in different ways. Materials include familiar structural items such as steel and glass, and new materials that can change form and color. The gallery also provides opportunities for work with schools in materials science and…

  4. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  5. Sulfur and Its Role In Modern Materials Science.

    PubMed

    Boyd, Darryl A

    2016-12-12

    Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas.

  6. The TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; Smith, Jeffrey C.; Caldwell, Douglas A.; Chacon, Aaron; Henze, Christopher; Heiges, Cory A.; Latham, David; Morgan, Edward; Swade, Daryl; Rinehart, Stephen; Vanderspek, Roland

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth’s closest cousins starting in late 2017. TESS will discover approx.1,000 small planets and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NAS Pleiades supercomputer. The SPOC will search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes.

  7. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  8. Process Diagnostics: Materials, Combustion Fusion. Volume 117. Materials Research Society

    DTIC Science & Technology

    reference volume for professionals working in the area of materials process control as well as a graduate level textbook for a course in applied ... spectroscopy or process engineering that might be given as part of a chemistry, physics, chemical or materials engineering curriculum.

  9. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  10. Aqueous Processing Material Accountability Instrumentation

    SciTech Connect

    Robert Bean

    2007-09-01

    Increased use of nuclear power will require new facilities. The U.S. has not built a new spent nuclear fuel reprocessing facility for decades. Reprocessing facilities must maintain accountability of their nuclear fuel. This survey report on the techniques used in current aqueous reprocessing facilities, and provides references to source materials to assist facility design efforts.

  11. Materials science: Lessons from tooth enamel

    NASA Astrophysics Data System (ADS)

    Espinosa, Horacio D.; Soler-Crespo, Rafael

    2017-03-01

    A remarkable composite material has been made that mimics the structure of tooth enamel. This achievement opens up the exploration of new composite materials and of computational methods that reliably predict their properties. See Letter p.95

  12. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. Materials Processing Research and Development

    DTIC Science & Technology

    2010-08-01

    of microstructural evolution, (5) development of Gamma and Beta-Gamma titanium alloys towards rolled sheets for thermal protection applications, ( 6 ...the hydrostatic stress. This work was published in Metallurgical and Materials Transactions A by Nicolaou, Miller, and Semiatin [ 6 ]. 4 2.2.2 The...observed values for the Titanium 6242s measured by Porter and John, as well as Ti6- 4 alloy reported on by Chan in Mater. Trans, 2008. In addition

  14. Hybrid Laser Processing of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki

    The following chapter is an overview of processing fused silica and other transparent materials by pulsed-laser irradiation: (1) Direct excitation of materials with multi-wavelength excitation processes, and (2) Media-assisted process with a conventional pulsed laser. A method to etch transparent materials by using laserinduced plasma-assisted ablation (LIPAA), or laser-induced backside wet etching (LIBWE), has been described in detail.

  15. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  16. Multimission image processing and science data visualization

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1993-01-01

    The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.

  17. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  18. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  19. Materials processing in space bibliography

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Literature dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research is listed. Included are Government reports, contractor reports, conference proceedings, and journal articles. Subdivisions of the bibliography include the five categories: crystal growth; metals, alloys, and composites, fluids and transport; glasses and ceramics; and Ultrahigh Vacuum and Containerless Processing Technologies, in addition to a list of patents and a compilation of anonymously authored collections and reports and a cross reference index.

  20. Process material management in the Space Station environment

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  1. Biology Grade 10, Science Curriculum Materials.

    ERIC Educational Resources Information Center

    Bloom, Samuel W.

    This teaching guide and syllabus outline is intended for use with pupils whose primary interests are in non-science fields, or who do not intend to enter college. The guide contains suggested activities, both laboratory and discussion, for a course containing the following sections: Introduction to Cells and Life; Animal Physiology; Plant…

  2. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  3. Materials Science and Technology, Volume 5, Phase Transformations in Materials

    NASA Astrophysics Data System (ADS)

    Haasen, Peter

    1996-12-01

    This volume covers phase transformations, a general phenomenon central to understanding the behavior of materials and to creating high-performance materials. From the Contents: Pelton: Thermodynamics and Phase Diagrams of Materials. Murch: Diffusion in Crystalline Solids. Binder: Statistical Theories of Phase Transitions/Spinodal Decomposition. Wagner/Kampmann: Homogeneous Second Phase Precipitation. Purdy: Transformations Involving Interfacial Diffusion. Delaey: Diffusionless Transformations. Ruoff: High Pressure Phase Transformations. Pitsch/Inden: Atomic Ordering. Müller- Krumbhaar/Kurz: Solidification.

  4. Innovative Technologies for Science Data Processing

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Conover, H. T.; Graves, S. J.; Keiser, K.; Smith, M. R.

    2001-05-01

    The Information Technology and Systems Center (ITSC) at the University of Alabama has long been active in information technology research applied to Earth science data. This poster will showcase three key technologies being developed by ITSC: the Earth Science Markup Language (ESML), data mining applied to Earth science data, and data set independent subsetting tools. Each of these technologies is designed to ease data handling by Earth scientists, thereby freeing their time for research. ESML uses the eXtensible Markup Language (XML) as the basis for standardizing metadata or information about data formats, thus facilitating development of search, visualization, and analysis tools that are independent of data type or format. A unique feature of ESML is that it not only describes the content and structure of the data, but also provides semantic information, which allows an application to intelligently interpret the data. Thus, ESML provides a means for working with legacy, current, and future data sets in an integrated fashion, by defining a standard for external metadata to describe the content, structure, and semantics of a file. The Algorithm Development and Mining (ADaM) system applies data mining technologies to Earth science remote sensing data and other spatial data sets. The ADaM system consists of a series of interoperable data readers, preprocessing and analysis modules, and data writers, which can be linked together in many ways to create customized mining processes. This system has been applied to several Earth science problems including tropical cyclone detection, cloud classification, lightning detection, and mesoscale convective system identification. Current research is adapting data mining technologies for real-time processing on board satellites. ITSC has also developed several tools for science data subsetting. The HDF-EOS Web-Based Subsetter (HEW) is designed to work on any properly formatted HDF-EOS swath or grid data file. UAH is working with

  5. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  6. Space processing of electronic materials

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1982-01-01

    The bulk growth of solid solution alloys of mercury telluride and cadmium telluride is discussed. These alloys are usually described by the formula Hg1-xCdxTe, and are useful for the construction of infrared detectors. The electronic energy band gap can be controlled between zero and 1.6 electron volts by adjusting the composition x. The most useful materials are at x approximately 20%, suitable for detection wavelengths of about 10 micrometers. The problems of growing large crystals are rooted in the wide phase diagram of the HgTe-CdTe pseudobinary system which leads to exaggerate segregation in freezing, constitutional supercooling, and other difficulties, and in the high vapor pressure of mercury at the growth temperatures, which leads to loss of stoichiometry and to the necessity of working in strong, pressure resistant sealed containers.

  7. Educational Materials Development in Primary Science: Dial Thermometer Instructional Unit

    ERIC Educational Resources Information Center

    Franks, Frank L.; Huff, Roger

    1976-01-01

    Described in the fourth of a series of articles dealing with primary science instructional materials for visually handicapped students, is a field test (with 61 Ss in grades 2 to 4) of a dial thermometer instructional unit. (IM)

  8. Implementing New Science Curricula and Course Content Improvement Materials.

    ERIC Educational Resources Information Center

    Obradovic, Sylvia M.; And Others

    To identify factors affecting the implementation of new science curricula a questionnaire survey of principals and teachers in California and Nevada secondary schools was used to select a sample of schools using Chemical Education Materials Study (CHEM Study) or Introductory Physical Science (IPS). Interview data collected when these 67 schools…

  9. Educators Guide to Free Science Materials. Thirteenth Edition.

    ERIC Educational Resources Information Center

    Saterstrom, Mary H., Comp.

    The thirteenth edition of the guide lists a total of 1,729 selected free materials related to science instruction. Entries are listed under the subject categories of aerospace education, biology, chemistry, environmental education, general science, and physics. These categories are each listed under the different types of media indexed in the…

  10. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  11. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for

  12. Roadmap for Process Equipment Materials Technology

    SciTech Connect

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  13. NISAR ISRO science data processing and products

    NASA Astrophysics Data System (ADS)

    Agrawal, Krishna Murari; Mehra, Raghav; Ryali, Usha Sundari

    2016-05-01

    NASA-ISRO Synthetic Aperture Radar (NISAR) is a Dual Frequency (L & S band) mission which will be operating in SweepSAR mode. As compared to traditional SAR imaging modes in which Swath and resolution are at trade-off, SweepSAR imaging concept can acquire data over large swath (240 Km) without compromising azimuth resolution (6m approximately). NISAR L-band & S-band sensors will be developed by JPL-NASA and ISRO respectively. NISAR science data will be downloaded at both NASA and ISRO ground stations. SAC-ISRO will develop the SAR processor for both L & S band data to generate products in compliance with science requirements. Moreover, JPL will develop L-band SAR processor and all data products will be available to users. Distributed data processing architecture will be used for handling large volume of data resulting from moderate resolution and larger swath in SweepSAR mode. Data products will be available in multiple processing levels like raw signal products, signal processed single-look and multi-look products, ground range products and Geo-Referenced products in HDF5 & GeoTiff formats. Derived Geo-Referenced Polarimetric and Interferometric data products will also be available for dissemination to the users. A rigorous calibration exercise will be performed by acquiring data over reference targets like Amazon rain-forest & corner reflectors sites for the generation of calibrated data products. Furthermore, various science data products (for science applications) will also be derived from basic data products for operational dissemination.

  14. Materials, Processes, and Environmental Engineering Network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.

  15. Advanced processing and properties of superhard materials

    SciTech Connect

    Narayan, J.

    1995-06-01

    The author reviews fundamental aspects of Superhard Materials with hardness close to that of diamond. These materials include cubic boron nitride (c-BN), carbon nitride ({beta}-C{sub 3}N{sub 4}) and diamondlike carbon. Since these materials are metastable at normal temperatures and pressures, novel methods of synthesis and processing of these materials are required. This review focuses on synthesis and processing, detailed materials characterization and properties of c-BN and {beta}C{sub 3}N{sub 4} and diamondlike carbon films.

  16. Vision Based Instrumentation For Microelectronic Materials Processing

    NASA Astrophysics Data System (ADS)

    Lake, Donald W.

    1990-02-01

    Proper instrumentation, documentation, and analysis are crucial to the continued advance of micro-electronic materials science. Many important phenomenon are visible. Many of those are progressive events that need observation throughout their transitory period. Microelectronics scientists and engineers have long required optical systems tools which properly handle visible phenomena. An optical based system, called a high-resolution Still/Video system, to fulfill crucial microelec-tronic needs is available. Microelectronic dimensions require the highest possible resolution to resolve the small details. The system provides 1134 by 486 pixel video frames. The transient nature of many events requires video and the associated capability of video recording. The system stores over 14,000 high-resolution video frames on a single standard commercial VHS tape. The widespread use of microscopy requires the ability to operate with a variety of optical microscopes. The system is directly compatible with most microscopes. In addition, analysis requires the ability to produce film and computer processed results of all crucial images. The system has both a companion film printer and a direct computer interface.

  17. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  18. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  19. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  20. Materials science: Organic analogues of graphene

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Maryam; Rosei, Federico

    2017-02-01

    Chemists have long aspired to synthesize two-dimensional polymers that are fully conjugated -- an attribute that imparts potentially useful properties. Just such a material has been prepared using a solid-state polymerization reaction.

  1. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  2. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart.

  3. The TESS science processing operations center

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; Smith, Jeffrey C.; Caldwell, Douglas A.; Chacon, A. D.; Henze, Christopher; Heiges, Cory; Latham, David W.; Morgan, Edward; Swade, Daryl; Rinehart, Stephen; Vanderspek, Roland

    2016-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover 1,000 small planets with Rp < 4 R⊕ and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  4. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    PubMed

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  5. Thermal plasma processing of materials

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1992-02-01

    Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

  6. 3D construction and repair from welding and material science perspectives

    NASA Astrophysics Data System (ADS)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  7. How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

    ERIC Educational Resources Information Center

    Aslan, Oktay

    2015-01-01

    An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…

  8. Skylab Experiments, Volume 3, Materials Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…

  9. Preservice Elementary Teachers' Critique of Instructional Materials for Science

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.

    2006-01-01

    Science teachers must adapt curriculum materials, so preservice teachers must develop beginning proficiency with this authentic task of teaching. What criteria do they use when they critique these materials in preparation for adapting them, when they develop the criteria themselves and when they are given a set of criteria from which to choose?…

  10. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  11. OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

    SciTech Connect

    Jenkins, Jon M.; Caldwell, Douglas A.; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Tenenbaum, Peter; Wu, Hayley

    2010-04-20

    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the {approx}156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from {approx}4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1{sigma} are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.

  12. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  13. Planning for Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.

  14. Fluid bed technology in materials processing

    SciTech Connect

    Gupta, C.K.; Sathiyamoorthy, D.

    1999-01-01

    The author explores the various aspects of fluidization engineering and examines its applications in a multitude of materials processing techniques. Topics include process metallurgy, fluidization in nuclear engineering, and the pros and cons of various fluidization equipment. Gupta emphasizes fluidization engineering in high temperature processing, and high temperature fluidized bed furnaces.

  15. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  16. AMPERE Science Data Reduction and Processing

    NASA Astrophysics Data System (ADS)

    Korth, H.; Dyrud, L.; Anderson, B.; Waters, C. L.; Barnes, R. J.

    2010-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) uses the constellation of Iridium Communications satellites in 780-km-altitude, circular, near-polar orbits to monitor the electro-dynamic coupling of the ionosphere to the surrounding space environment in real time. The constellation consists of 66 satellites plus on-orbit spares, and each satellite carries a magnetometer for attitude determination. The magnetometer data are continuously sent from Iridium Satellite Network Operations Center to the AMPERE Science Data Center, where they are processed to extract the magnetic perturbation signatures associated with the Birkeland currents. This is accomplished by first merging real-time telemetry packets from each satellite into time-ordered sets of records, formatting and compiling a database. Subsequent processing automatically evaluates baselines, inter-calibrates magnetic field data between satellites, and quantifies the magnetic field residuals with the goal to reduce errors to the 30-nT digitization resolution of the magnetometers. The magnetic field residuals are then used to rank the quality of the data from the individual satellites and weight the data in subsequent science processing. Because magnetic fields generated by the Birkeland currents represent typically less than one percent of the total magnetic field, numerous challenges must be overcome to derive reliable magnetic perturbation signals. For example, corrections to the IGRF magnetic field model must be applied and adverse effects due to missing data must be mitigated. In the final processing step the Birkeland currents are derived by applying Ampere's law to the spherical harmonic fit of the perturbation data. We present the processing methodology, discuss the sensitivity of the Birkeland currents on the accuracy of the derived magnetic perturbations, and show a preliminary analysis of the 3-5 August 2010 geomagnetic storm.

  17. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  18. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  19. Application of EELS in Materials Science

    SciTech Connect

    Keast, V.J.

    2012-11-15

    Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) has become widely used for the analysis of the composition and electronic structure of materials at the nanoscale. This tutorial review provides an overview of the theory and applications of the technique and a few examples are provided to illustrate the type of information available. Some of the recent developments and future prospects of EELS are discussed.

  20. Laser Window Materials and Optical Coating Science

    DTIC Science & Technology

    1977-08-01

    10 Torr pressure , is presently the favored alternative RAP agent. Comparison studies of optical coatings prepared under conventional high...In principle , the uncoated surface heat also contributes to the first and second slopes but in practice, as discussed in the results in Sec. Ill...jim), CO (5.3 jim), and CO2 (9.27 and 10.6 fi.m). The window materials that are under investigation include selected alkali halides and

  1. Chemistry and Materials Science 2004 Annual Report, Preview Edition

    SciTech Connect

    Shang, S; Diaz de la Rubia, T; Rennie, G

    2005-05-16

    Thriving from change is a constant element at LLNL. Through our commitment to scientific accomplishments, we have met the challenges posed by our evolving missions in 2004. It is the scientific breakthroughs that substantiate our strategic directions. Investments based on our strategic directions are bearing fruit, as illustrated in this preview of the 2004 Annual Report. We describe how our science is built around a strategic plan with four organizing themes: {sm_bullet} Materials properties and performance under extreme conditions {sm_bullet} Chemistry under extreme conditions and chemical engineering in support of national-security programs {sm_bullet} Science supporting national objectives at the intersection of chemistry, materials science, and biology {sm_bullet} Applied nuclear science for human health and national security We are particularly pleased with achievements within the 'intersection of chemistry, materials science, and biology,' an emerging area of science that may reshape the landscape of our national-security mission. CMS continues to have an unambiguous role both as a technology leader and as a partner for all of the four theme areas. We look forward to expanding the frontiers of science and continuing our partnership with the worldwide scientific community, as we firmly respond to the changing environment with agility and flexibility.

  2. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  3. Near net shape processing: A necessity for advanced materials applications

    NASA Technical Reports Server (NTRS)

    Kuhn, Howard A.

    1993-01-01

    High quality discrete parts are the backbones for successful operation of equipment used in transportation, communication, construction, manufacturing, and appliances. Traditional shapemaking for discrete parts is carried out predominantly by machining, or removing unwanted material to produce the desired shape. As the cost and complexity of modern materials escalates, coupled with the expense and environmental hazards associated with handling of scrap, it is increasingly important to develop near net shape processes for these materials. Such processes involve casting of liquid materials, consolidation of powder materials, or deformation processing of simple solid shapes into the desired shape. Frequently, several of these operations may be used in sequence to produce a finished part. The processes for near net shape forming may be applied to any type of material, including metals, polymers, ceramics, and their composites. The ability to produce shapes is the key to implementation of laboratory developments in materials science into real world applications. This seminar presents an overview of near net shapemaking processes, some application examples, current developments, and future research opportunities.

  4. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  5. Process for gasification of carbonaceous material

    SciTech Connect

    Lancet, M.S.; Gorin, E.

    1984-04-03

    A process of tar destruction in gasification of carbonaceous material comprises providing a mixture of finely divided calcium compound of a particle size smaller than 65 mesh and finely divided carbonaceous material of a particle size smaller than 65 mesh, the calcium compound to carbonaceous material ratio being from about 0.5 to 1.0 and contacting the mixture with CO/sub 2/ and tar exothermally whereby the tar is destroyed.

  6. Energy storage improvement through material science approaches

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon Joseph

    A need for improved energy storage is apparent for the improvement of our society. Lithium ion batteries are one of the leading energy storage technologies being researched today. These batteries typically utilize coupled reduction/oxidation reactions with intercalation reactions in crystalline metal oxides with lithium ions as charge carriers to produce efficient and high power energy storage options. The cathode material (positive electrode) has been an emphasis in the recent research as it is currently the weakest link of the battery. Several systems of cathode materials have been studied with different structures and chemical makeup, all having advantages and disadvantages. One focus of the research presented below was creating a low cost and high performance cathode material by creating a composite of the low cost spinel structured LiMn2O4 and the higher capacity layered structure materials. Two compositional diagrams were used to map out the composition space between end members which include two dimensional layer structured LiCoO 2, LiNiO2, LiNi0.8Co0.2O2 and three dimensional spinel structured LiMn2O4. Several compositions in each composition map were electrochemically tested and structurally characterized in an attempt to discover a high performance cathode material with a lower cost precursor. The best performing composition in each system shows the desired mixed phase of the layered and spinel crystal structures, yielding improved performance versus the individual end member components. The surrounding compositions were then tested in order to find the optimum composition and performance. The best performing composition was 0.2LiCoO 2•0.7LiNi0.8Co0.2O2•0.1LiMn 2O4 and yielded a specific capacity of 182mAh/g. Another promising area of chemical energy storage is in the storage of hydrogen gas in chemical hydrides. Hydrogen gas can be used as a fuel in a variety of applications as a viable method for storing and transporting energy. Currently, the

  7. Analytical Chemistry at the Interface Between Materials Science and Biology

    SciTech Connect

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  8. Integrated processing of anthracite into sorption materials

    SciTech Connect

    Sych, N.V.; Kartel, N.T.; Nikolaichuk, A.D.; Strelko, V.V.; Tsyba, N.N.; Denisovich, V.A.

    2006-05-15

    The possibility of using anthracite to produce activated carbon in the form of microporous and mesoporous anthracite, a cation exchanger, and composite sorption materials was analyzed and the porometric properties of a variety of sorption materials based on anthracite from the Donets coal basin were studied. A flowsheet for integrated processing of anthracite to give a set of four products was composed.

  9. Electronic materials processing and the microgravity environment

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1988-01-01

    The nature and origin of deficiencies in bulk electronic materials for device fabrication are analyzed. It is found that gravity generated perturbations during their formation account largely for the introduction of critical chemical and crystalline defects and, moreover, are responsible for the still existing gap between theory and experiment and thus for excessive reliance on proprietary empiricism in processing technology. Exploration of the potential of reduced gravity environment for electronic materials processing is found to be not only desirable but mandatory.

  10. Science and technology of thermochromic materials

    SciTech Connect

    Day, J.H.; Willett, R.D.

    1990-12-31

    The color of a substance in general depends upon its state and upon the external forces it experiences, both past and present. One of the simplest methods of attempting to change the state of a material is to vary its temperature. Thermochromism is a noticeable dependence of the color of a substance on temperature. This is thus one of the easier chromogenic effects to detect. Since the changes triggered by temperature variation often are indicative of the effects that can be induced by other means, it is convenient to use the observation of thermochromism as an indication of the possible existence of other chromogenic behavior. Reversibility is an important factor to be considered for thermochromic materials. A compound which decomposes as it is heated may be totally irreversible or may be irreversible because a product of chemical change is removed and not replaced. For reversible systems, long term stability is important, although there are many uses in which stability over a few thermal cycles are adequate for the purpose. The possibility of an indefinitely large number of cycles is frequently limited by secondary and side reactions that may be present. There are a number of excellent reviews of the subject of thermochromism. The following sections of this chapter give an overview of the research done in polymeric, organic, and metal containing systems, as well as a summary of applications development, in the past two years. 165 refs., 9 figs., 1 tab.

  11. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  13. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  14. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  15. NASA's Earth Science Data Systems Standards Process

    NASA Astrophysics Data System (ADS)

    Enloe, Y.; Ullman, R.

    2008-12-01

    NASA's Standards Process Group (SPG) facilitates the approval of proposed standards that have proven implementation and operational benefit for use in NASA's Earth science data systems. After some initial experience in approving proposed standards, the SPG has tailored its Standards Process to remove redundant reviews to shorten the review process. We have found that the candidate submissions that self defined communities are proposing for endorsement to the SPG are one of 4 types: (1) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are expected to be developed from scratch, using the proposed standard as the implementation specification; (2) A standard already approved by an external standards organization but is being proposed for use for the NASA Earth science community; (3) A defacto standard already widely used; or a (4) Technical Note We will discuss real examples of the different types of candidate standards that have been proposed and endorsed (i.e. OPeNDAP's Data Access Protocol, Open Geospatial Consortium's Web Map Server, and the Hierarchical Data Format). We will discuss a potential defacto standard (NASA's Global Change Master Directory (GCMD) Directory Interchange Format (DIF)) that is currently being reviewed. This past year, the SPG has modified its Standards Process to provide a comprehensive but not redundant review of the submitted RFC. The end result of the process tailoring is that the reviews will be completed faster. At each RFC submission, the SPG will decide which reviews will be performed. These reviews are conducted simultaneously and can include these three types: (1) A Technical review to review the technical specification and associated implementations; (2) An Operational Readiness review to evaluate whether the proposed standard works in a NASA environment with NASA Earth

  16. Aircraft gas turbine materials and processes.

    PubMed

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  17. Materials Processing in Space (MPS) program description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

  18. A materials science vision of extracellular matrix mineralization

    NASA Astrophysics Data System (ADS)

    Reznikov, N.; Steele, J. A. M.; Fratzl, P.; Stevens, M. M.

    2016-08-01

    From an engineering perspective, skeletal tissues are remarkable structures because they are lightweight, stiff and tough, yet produced at ambient conditions. The biomechanical success of skeletal tissues is largely attributable to the process of biomineralization — a tightly regulated, cell-driven formation of billions of inorganic nanocrystals formed from ions found abundantly in body fluids. In this Review, we discuss nature's strategies to produce and sustain appropriate biomechanical properties in mineralizing (by the promotion of mineralization) and non-mineralizing (by the inhibition of mineralization) tissues. We review how perturbations of biomineralization are controlled over a continuum that spans from the desirable (or defective in disease) mineralization of the skeleton to pathological cardiovascular mineralization, and to mineralization of bioengineered constructs. A materials science vision of mineralization is presented with an emphasis on the micro- and nanostructure of mineralized tissues recently revealed by state-of-the-art analytical methods, and on how biomineralization-inspired designs are influencing the field of synthetic materials.

  19. Mimicry of natural material designs and processes

    SciTech Connect

    Bond, G.M.; Richman, R.H.; McNaughton, W.P.

    1995-06-01

    Biological structural materials, although composed of unremarkable substances synthesized at low temperatures, often exhibit superior mechanical properties. In particular, the quality in which nearly all biologically derived materials excel is toughness. The advantageous mechanical properties are attributable to the hierarchical, composite, structural arrangements common to biological systems. Materials scientists and engineers have increasingly recognized that biological designs or processing approaches applied to man-made materials (biomimesis) may offer improvements in performance over conventional designs and fabrication methods. In this survey, the structures and processing routes of marine shells, avian eggshells, wood, bone, and insect cuticle are briefly reviewed, and biomimesis research inspired by these materials is discussed. In addition, this paper describes and summarizes the applications of biomineralization, self-assembly, and templating with proteins to the fabrication of thin ceramic films and nanostructure devices.

  20. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  1. NASA's Earth Science Data Systems Standards Process

    NASA Astrophysics Data System (ADS)

    Ullman, R.; Enloe, Y.

    2006-12-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA. One of these Data Systems Working Groups is called the Standards Process Group (SPG). This group's goal is to facilitate broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the approval of proposed standards and directing the evolution of standards. We have found that the candidate standards that self defined communities are proposing for approval to the SPG are one of 3 types: (1) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are expected to be developed from scratch, using the proposed standard as the implementation specification; (2) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are not expected to be developed from scratch but use existing software libraries or code;. (3) A standard already approved by an external standards organization but is being proposed for use for the NASA Earth science community. There are 3 types of reviews potentially needed to evaluate a proposed standard: (1) A detailed technical review to determine the quality, accuracy, and clarity of the proposed specification and where a detailed technical review ensures that implementers can use the proposed standard as an implementation specification for any future implementations with confidence; (2) A "usefulness" user review that determines if the proposed standard is useful or helpful or necessary to the user to carry out his work; (3) An operational review that evaluates if the

  2. The Investigation of Science Process Skills of Science Teachers in Terms of Some Variables

    ERIC Educational Resources Information Center

    Aydogdu, Bülent

    2015-01-01

    This study aimed to investigate basic process skills, integrated process skills and overall science process skills of science teachers in terms of some variables. This study had a survey design. The study population consisted of 170 science teachers from a province located in the Central Anatolia Region of Turkey. The study data were obtained from…

  3. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  4. High power DUV lasers for material processing

    NASA Astrophysics Data System (ADS)

    Mimura, Toshio; Kakizaki, Kouji; Oizumi, Hiroaki; Kobayashi, Masakazu; Fujimoto, Junichi; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-11-01

    A frontier in laser machining has been required by material processing in DUV region because it is hard to get high power solid-state lasers in this spectral region. DUV excimer lasers are the only solution, and now the time has come to examine the new applications of material processing with DUV excimer lasers. The excimer lasers at 193nm and 248nm have been used in the semiconductor manufacturing for long years, and have field-proven stability and reliability. The high photon energy of 6.4 eV at 193nm is expected to interact directly with the chemical bond of hard-machining materials, such as CFRP, diamond and tempered glasses. We report the latest results of material processing by 193nm high power DUV laser.

  5. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  6. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  7. The metallurgy and processing science of metal additive manufacturing

    DOE PAGES

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; ...

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  8. USSR Report, Materials Science and Metallurgy, No. 90

    DTIC Science & Technology

    2007-11-02

    preliminary sintering with titanium carbides in the 1000-1100°C temperature interval for 1 to 6 hours by precipi- tation from the gas phase at...C •i Li 1 O O JPRS 83812 I July 1983 USSR Report MATERIALS SCIENCE AND METALLURGY No. 90 aaunOF Iff *i^??~;F^~T— �/ 6 139 FBIS...front cover 4 JPRS 83812 1 July 1983 USSR REPORT MATERIALS SCIENCE AND METALLURGY No. 90 CONTENTS ALUMINUM AND ITS ALLOYS Fracture Toughness of

  9. Synthesis and processing of nanostructured materials

    SciTech Connect

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented.

  10. Space Environmental Effects on Materials and Processes

    NASA Technical Reports Server (NTRS)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  11. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  12. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  13. An improved approach for process monitoring in laser material processing

    NASA Astrophysics Data System (ADS)

    König, Hans-Georg; Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-04-01

    Process monitoring is used in many different laser material processes due to the demand for reliable and stable processes. Among different methods, on-axis process monitoring offers multiple advantages. To observe a laser material process it is unavoidable to choose a wavelength for observation that is different to the one used for material processing, otherwise the light of the processing laser would outshine the picture of the process. By choosing a different wavelength, lateral chromatic aberration occurs in not chromatically corrected optical systems with optical scanning units and f-Theta lenses. These aberrations lead to a truncated image of the process on the camera or the pyrometer, respectively. This is the reason for adulterated measurements and non-satisfying images of the process. A new approach for solving the problem of field dependent lateral chromatic aberration in process monitoring is presented. Therefore, the scanner-based optical system is reproduced in a simulation environment, to predict the occurring lateral chromatic aberrations. In addition, a second deflecting system is integrated into the system. By using simulation, a predictive control is designed that uses the additional deflecting system to introduce reverse lateral deviations in order to compensate the lateral effect of chromatic aberration. This paper illustrates the concept and the implementation of the predictive control, which is used to eliminate lateral chromatic aberrations in process monitoring, the simulation on which the system is based the optical system as well as the control concept.

  14. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  15. Marrying Content and Process in Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  16. Neutron Scattering for Materials Science. Materials Research Society Symposium Proceedings, Volume 166

    DTIC Science & Technology

    1990-01-01

    liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposiuam was...NEUTRON SCATTERING *NEUTRONS: THE KINDER, GENTLER PROBE OF CONDENSED MATTER 3 John D. Axe *NEUTRON SCATTERING METHODS FOR MATERIAL SCIENCE 15 Roger...DIFFUSE SCATTERING IN NEUTRON TIME-OF-FLIGHT POWDER PATTERNS 67 Michael J. Radler REAL SPACE METHOD OF POWDER DIFFRACTION FOR NON-PERIODIC AND NEARLY

  17. The Use of the "Indoor-Outdoor-Indoor" Approach to Teaching Science Conservation with Concentration on Methods of Inquiry and Emphasis on Processes of Science, Grades K-3.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    Contained are instructional materials developed by the Science Project Related to Upgrading Conservation Education. The lesson plans given are intended to demonstrate the "indoor-outdoor-indoor" approach to teaching science conservation, with concentration on methods of inquiry and emphasis on processes of science. Four subject areas are…

  18. Teaching the process of science: faculty perceptions and an effective methodology.

    PubMed

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  19. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  20. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  1. Basic Research in Materials Science and Economic Sustainable Growth

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2000-09-01

    The necessity of public funding of basic research has been proclaimed by V. Bush 1945 in the `social contract for science' and this concept has been unanimously accepted as a vital prerequisite for the wealth of nations during the past 50 years. Recent developments gave rise to a paradigm shift away from the Bush's concept. In this paper this development is critically explored and the economical impact of research is discussed. Current evolution in knowledge generation and a change of the political boundary conditions require a new concept for an integrated research system. Examples taken from the semiconductor industry serve as an indicator of the enabling importance of materials science and condensed matter physics in the past. Basic research in materials science of functional ceramics generated new developments that are believed to have similar impact in the future. Already appearing and in the years ahead more emphasized nature of materials science as an multidisciplinary activity serves a model for the proposal of the vision of an integrated system of basic research and education. This is a prerequisite to master the challenges we are facind in the next century. A science based winning culture is the model for the future.

  2. Square Kilometre Array Science Data Processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Bojan; SDP Consortium, SKA

    2014-04-01

    The Square Kilometre Array (SKA) is planned to be, by a large factor, the largest and most sensitive radio telescope ever constructed. The first phase of the telescope (SKA1), now in the design phase, will in itself represent a major leap in capabilities compared to current facilities. These advances are to a large extent being made possible by advances in available computer processing power so that that larger numbers of smaller, simpler and cheaper receptors can be used. As a result of greater reliance and demands on computing, ICT is becoming an ever more integral part of the telescope. The Science Data Processor is the part of the SKA system responsible for imaging, calibration, pulsar timing, confirmation of pulsar candidates, derivation of some further derived data products, archiving and providing the data to the users. It will accept visibilities at data rates at several TB/s and require processing power for imaging in range 100 petaFLOPS -- ~1 ExaFLOPS, putting SKA1 into the regime of exascale radio astronomy. In my talk I will present the overall SKA system requirements and how they drive these high data throughput and processing requirements. Some of the key challenges for the design of SDP are: - Identifying sufficient parallelism to utilise very large numbers of separate compute cores that will be required to provide exascale computing throughput - Managing efficiently the high internal data flow rates - A conceptual architecture and software engineering approach that will allow adaptation of the algorithms as we learn about the telescope and the atmosphere during the commissioning and operational phases - System management that will deal gracefully with (inevitably frequent) failures of individual units of the processing system In my talk I will present possible initial architectures for the SDP system that attempt to address these and other challenges.

  3. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  4. Sol-gel processing of energetic materials

    SciTech Connect

    Tillotson, T.M.; Hrubesh, L.H.; Fox, G.L.; Simpson, R.L.; Lee, R.W.; Swansiger, R.W.; Simpson, L.R.

    1997-08-18

    As part of a new materials effort, we are exploring the use of sol- gel chemistry to manufacture energetic materials. Traditional manufacturing of energetic materials involves processing of granular solids. One application is the production of detonators where powders of energetic material and a binder are typically mixed and compacted at high pressure to make pellets. Performance properties are strongly dependent on particle size distribution, surface area of its constituents, homogeneity of the mix, and void volume. The goal is to produce detonators with fast energy release rate the are insensitive to unintended initiation. In this paper, we report results of our early work in this field of research, including the preparation of detonators from xerogel molding powders and aerogels, comparing the material properties with present state-of-the-art technology.

  5. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  6. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  7. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE’s Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM’s responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM’s mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  8. Subdivision processes in mathematics and science

    NASA Astrophysics Data System (ADS)

    Stavy, Ruth; Tirosh, Dina

    In the course of a research project now in progress, three successive division problems were presented to students in Grades 7-12. The first problem concerned a geometrical line segment, while the other two dealt with material substances (copper wire and water). All three problems involved the same process: successive division. Two of the problems (line segment and copper wire) were also figurally similar. Our data indicate that the similarity in the process had a profound effect on students' responses. The effect of the similarity in process suggests that the repeated process of division has a coercive effect, imposing itself on students' responses and encouraging then to view successive division processes as finite or infinite regardless of the content of the problem.It is possible to trace out, step by step, a more or less parallel process of development for the ideas of points and continuity and those dealing with atoms and physical objects in the child's conception of the ideal world. The only difference between these two processes is that to the child's way of thinking physical points or atoms still possess surface and volume, whereas mathematical points tend to lose all extension (though during the stages of development which concerns us here, this remains only a tendency.) (Piaget & Inhelder, 1948, pp. 126).Our first naive impression of nature and matter is that of continuity. Be it a piece of matter or a volume of liquid we invariably conceive it as divisible into infinity, and even so small a part of it appears to us to possess the same properties as the whole. (Hilbert, 1925, pp. 162).

  9. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  10. Simulation of materials processing: Fantasy or reality?

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Bright, Victor M.

    1994-01-01

    This experiment introduces students to the application of computer-aided design (CAD) and analysis of materials processing in the context of integrated circuit (IC) fabrication. The fabrication of modern IC's is a complex process which consists of several sequential steps. These steps involve the precise control of processing variables such as temperature, humidity, and ambient gas composition. In essence, the particular process employed during the fabrication becomes a 'recipe'. Due to economic and other considerations, CAD is becoming an indispensable part of the development of new recipes for IC fabrication. In particular, this experiment permits the students to explore the CAD of the thermal oxidation of silicon.

  11. Coprecal: materials accounting in the modified process

    SciTech Connect

    Dayem, H.A.; Kern, E.A.; Shipley, J.P.

    1980-05-01

    This report presents the design and evaluation of an advanced materials accounting system for a uranium-plutonium nitrate-to-oxide coconversion facility based on the General Electric Coprecal process as modified by Savannah River Laboratory and Plant and DuPont Engineering. The modifications include adding small aliquot tanks to feed the process and reconfiguring the calciner filter systems. Diversion detection sensitivities for the modified Coprecal process are somewhat better than the original Coprecal design, but they are still significantly worse than a same-sized conversion facility based on the oxalate (III) precipitation process.

  12. Robot development for nuclear material processing

    SciTech Connect

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  13. Deprivation, context, and processing of textual materials.

    PubMed

    Singh, T; Dwivedi, C B

    1993-03-01

    Levy's (1983) familiarization and proofreading paradigm was used to examine the context-processing relationship during reading of Hindi textual materials. Sixty high- and 60 low-deprived male students in Classes 11 and 12 were asked to proofread error-filled passages of easy and difficult text. Familiarity was manipulated by presenting error-free versions of the passages to some subjects but not to others for a single reading before their actual proofreading. Familiar passages were processed faster than unfamiliar passages irrespective of students' deprivation and passage difficulty. Slow processing was recorded for highly deprived subjects and for easy passages. Faster processing was associated with higher error detection and higher short-term retention scores, whereas the opposite was true for slower processing. Familiarity enhanced short-term retention, suggesting some involvement of conceptually driven process even after familiarization. Findings are discussed in light of interactive processing models of reading.

  14. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  15. Metallo-supramolecular modules as a paradigm for materials science

    PubMed Central

    Kurth, Dirk G.

    2008-01-01

    Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science. PMID:27877929

  16. Perspective: Codesign for materials science: An optimal learning approach

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.

    2016-05-01

    A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.

  17. Materials evaluation for a transuranic processing facility

    SciTech Connect

    Barker, S.A., Schwenk, E.B. ); Divine, J.R. )

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO{sub 3}, some of the process streams that are high in F{sup {minus}} and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60{degrees}C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs.

  18. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2016-07-12

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  19. MTI SCIENCE, DATA PRODUCT AND GROUND DATA PROCESSING OVERVIEW

    SciTech Connect

    J. SZYMANSKI; ET AL

    2001-01-01

    The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The MTI satellite also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data interpretation and analysis. Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. In addition, the MTI science team has produced detailed site, system and atmospheric models to aid in system design and data analysis. This paper provides an overview of the MTI research objectives, data products and ground data processing.

  20. Alternative starting materials for industrial processes.

    PubMed Central

    Mitchell, J W

    1992-01-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology. Images PMID:11607260

  1. Microwave processing of lunar materials: potential applications

    SciTech Connect

    Meek, T.T.; Cocks, F.H.; Vaniman, D.T.; Wright, R.A.

    1984-01-01

    The microwave processing of lunar materials holds promise for the production of either water, oxygen, primary metals, or ceramic materials. Extra high frequency microwave (EHF) at between 100 and 500 gigahertz have the potential for selective coupling to specific atomic species and a concomitant low energy requirement for the extraction of specific materials, such as oxygen, from lunar ores. The coupling of ultra high frequency (UHF) (e.g., 2.45 gigahertz) microwave frequencies to hydrogen-oxygen bonds might enable the preferential and low energy cost removal (as H/sub 2/O) of implanted protons from the sun or of adosrbed water which might be found in lunar dust in permanently shadowed polar areas. Microwave melting and selective phase melting of lunar materials could also be used either in the preparation of simplified ceramic geometries (e.g., bricks) with custom-tailored microstructures, or for the direct preparation of hermetic walls in underground structures. Speculatively, the preparation of photovoltaic devices based on lunar materials, especially ilmenite, may be a potential use of microwave processing on the moon. Preliminary experiments on UHF melting of terrestrial basalt, basalt/ilmenite and mixtures show that microwave processing is feasible.

  2. High School Science Teachers' Views on Science Process Skills

    ERIC Educational Resources Information Center

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  3. Plasma characterization studies for materials processing

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  4. Developing Inquiry-Based Science Materials: A Guide for Educators.

    ERIC Educational Resources Information Center

    Thier, Herbert D.

    This book provides guidance to beginning and experienced educational material developers. The targeted objectives are guiding developers on external funding, explaining the complex process of developing instructional materials, and pointing out the human interactions and issues involved in the development process. Chapters include: (1) "The…

  5. Fragmentation processes in two-phase materials

    NASA Astrophysics Data System (ADS)

    Carmona, H. A.; Guimarães, A. V.; Andrade, J. S.; Nikolakopoulos, I.; Wittel, F. K.; Herrmann, H. J.

    2015-01-01

    We investigate the fragmentation process of solid materials with crystalline and amorphous phases using the the discrete element method. Damage initiates inside spherical samples above the contact zone in a region where the circumferential stress field is tensile. Cracks initiated in this region grow to form meridional planes. If the collision energy exceeds a critical value which depends on the material's internal structure, cracks reach the sample surface resulting in fragmentation. We show that this primary fragmentation mechanism is very robust with respect to the internal structure of the material. For all configurations, a sharp transition from the damage to the fragmentation regime is observed, with smaller critical collision energies for crystalline samples. The mass distribution of the fragments follows a power law for small fragments with an exponent that is characteristic for the branching merging process of unstable cracks. Moreover this exponent depends only on the dimensionally of the system and not on the microstructure.

  6. ENVIRONMENTAL TOOLS FOR MATERIAL AND PROCESS SELECTION

    EPA Science Inventory

    A number of tools are being used within the Sustainable Technology Division of the U.S. Environmental Protection Agency to provide decision-makers with information on environmentally favorable materials and processes. These tools include LCA (Life Cycle Assessment), GREENSCOPE (...

  7. Food Processing Curriculum Material and Resource Guide.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    Intended for secondary vocational agriculture teachers, this curriculum guide contains a course outline and a resource manual for a seven-unit food processing course on meats. Within the course outline, units are divided into separate lessons. Materials provided for each lesson include preparation for instruction (student objectives, review of…

  8. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1980-01-01

    The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.

  9. 27 CFR 18.51 - Processing material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Processing material. 18.51 Section 18.51 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Operations § 18.51...

  10. Materials processing in space: Future technology trends

    NASA Technical Reports Server (NTRS)

    Barter, N. J.

    1980-01-01

    NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.

  11. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  12. Materials: Renewable and Nonrenewable Resources. No. 4 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 36 articles originally published in "Science" during 1973-75. The articles are divided into six sections entitled: (1) Policy Considerations; (2) Energy, Environment and Conservation; (3) Perspectives on Needs and Supplies of Resources; (4) Finding the Processing Minerals; (5) High Technology Materials; and (6) Wood and Plant…

  13. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  14. Simple, Script-Based Science Processing Archive

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Hegde, Mahabaleshwara; Barth, C. Wrandle

    2007-01-01

    The Simple, Scalable, Script-based Science Processing (S4P) Archive (S4PA) is a disk-based archival system for remote sensing data. It is based on the data-driven framework of S4P and is used for data transfer, data preprocessing, metadata generation, data archive, and data distribution. New data are automatically detected by the system. S4P provides services such as data access control, data subscription, metadata publication, data replication, and data recovery. It comprises scripts that control the data flow. The system detects the availability of data on an FTP (file transfer protocol) server, initiates data transfer, preprocesses data if necessary, and archives it on readily available disk drives with FTP and HTTP (Hypertext Transfer Protocol) access, allowing instantaneous data access. There are options for plug-ins for data preprocessing before storage. Publication of metadata to external applications such as the Earth Observing System Clearinghouse (ECHO) is also supported. S4PA includes a graphical user interface for monitoring the system operation and a tool for deploying the system. To ensure reliability, S4P continuously checks stored data for integrity, Further reliability is provided by tape backups of disks made once a disk partition is full and closed. The system is designed for low maintenance, requiring minimal operator oversight.

  15. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  16. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  17. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  18. Doing Science: The Process of Scientific Inquiry

    ERIC Educational Resources Information Center

    National Institutes of Health, 2005

    2005-01-01

    This curriculum supplement, from The NIH Curriculum Supplement Series, brings cutting-edge medical science and basic research discoveries from the National Institutes of Health (NIH) into classrooms. It was designed to complement existing life science curricula at both the state and local levels and to be consistent with the National Science…

  19. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  20. Chemically amplified photoresist: Materials and processes

    NASA Astrophysics Data System (ADS)

    Pawloski, Adam Richard

    2002-01-01

    Advances in microfabrication technology to construct smaller and faster integrated circuits depend on improving resolution capabilities of patterning thin films of photoresist materials by photolithographic imaging. Positive-tone, chemically amplified photoresists represent one of the most important classes of photoresist materials. These materials function by the generation of a photoacid catalyst from the decomposition of a photoacid generator with exposure that catalyzes chemical reactions that alter the development rate of the exposed resist. Chemical amplification is derived from the fact that a single molecule of photogenerated catalyst may participate in numerous reactions. Photoacid catalyzes the cleavage of acid-labile protecting groups from the backbone of the resin polymer, increasing the dissolution rate of the resist in aqueous base. A pattern is formed in the photoresist film from the difference between dissolution rates of the exposed and unexposed material. The continual improvement of the resolution of chemically amplified resists depends on understanding, controlling, and optimizing the chemical processes that govern pattern formation, namely photoacid generation, resin deprotection, and resist dissolution. To elucidate how the formulation of the resist affects these processes, a systematic methodology was designed, validated and implemented to analyze the materials and processing of chemically amplified photoresist systems. The efficiency of photoacid generation and the concentration of photoacid produced upon exposure were determined for a wide range of resist formulations, processing conditions, and exposure technologies. The chemical structure of photoacid generators and base quenchers were found to affect the processes of acid-base neutralization, resin deprotection, and resist development. The reaction-diffusion process of photoacid to deprotect the resin was identified to depend on the concentration of the photoacid generator. A much

  1. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  2. NRC materials licensing business process reengineering

    SciTech Connect

    Cool, D.A.

    1995-12-31

    The United States Nuclear Regulatory Commission (NRC) has issued 6550 active licenses that authorize possession and use of byproduct, source, and special nuclear material. In October 1994, the NRC staff began to examine the process used to issue these licenses to identify ways to improve the process. In addition to examining the current process, the staff was directed to develop a new process design that would accomplish the following goals: (1) Maintain or raise the level of public safety achieved by the current process, (2) Perform licensing reviews and associated tasks an order of magnitude faster than the current process, (3) Exploit modern information technology as a fundamental part of the new process, and (4) Reduce the resources needed to carry out the licensing program to meet the projected 1997-1999 staffing levels. The method used for this examination is called Business Process Reengineering (BPR). BPR is the process of fundamentally changing the way work is performed so as to achieve radical performance improvements in speed, cost, and quality. Features of the new licensing process, scheduled to begin in 1996, are outlined in this paper.

  3. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  4. Dielectric barrier discharge processing of aerospace materials

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  5. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  6. Ultrafast electron microscopy in materials science, biology, and chemistry

    SciTech Connect

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  7. Preservice Elementary and Secondary Science Methods Teachers: Comparison of Formal Reasoning, ACT Science, Process Skill, and Physical Science Misconceptions Scores.

    ERIC Educational Resources Information Center

    Bitner, Betty L.

    The purpose of this causal-comparative study was to compare reasoning level, American College Test (ACT) science, process skills, and physical science misconceptions of preservice elementary and secondary science teachers and to investigate gender differences. The stratified randomly drawn sample (n=68) consisted of preservice elementary and…

  8. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet... controls applicable to materials processing equipment and related technology. Agenda Open Session...

  9. "A Scientist Has Many Things to Do:" EPO Strategies that Focus on the Processes of Science

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Brickley, A. L.

    2011-09-01

    Scientists' effort in education and public outreach (EPO) is best invested in sharing their expertise on the nature and processes of science - the "understandings of science" that are emphasized in the National Science Education Standards, but that are difficult to teach and poorly supported by existing curricular materials. These understandings address the intellectual process of science - posing questions, gathering and interpreting evidence - and the social process of science as a human endeavor for building knowledge. We share several ways of incorporating concepts about the nature and processes of science into EP/O activities and making them focal points in their own right. Hands-on activities used at science festivals and in classrooms and professional development workshops illustrate key scientific thinking skills such as observing, classifying, making predictions, and drawing inferences. A more comprehensive approach is exemplified by Upward and Outward: Scientific Inquiry on the Tibetan Plateau, a 20-minute educational documentary film for school science classrooms and teacher professional development. The film portrays the intellectual and human processes of science through an inside view of a research project; classroom assessments offer evidence of its impact on students' ideas about these processes.

  10. Materials processing in space - A strategy for commercialization

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1978-01-01

    Major aerospace companies are talking about space factories manufacturing billions of dollars worth of high technology materials per year. On the other hand, a recent National Academy of Sciences study team saw little prospect for space manufacturing because, in their opinion, most of the disturbing effects of gravity in the processes they considered could be overcome on the ground for much less expenditure. This paper presents a current assessment of the problems and promises of the Materials Processing in Space Program and outlines a strategy for developing the first products of commercial value. These early products are expected to serve as paradigms of what can be accomplished by manufacturing in space and should stimulate industry to develop space manufacturing to whatever degree is economically justifiable.

  11. Development of experimental systems for material sciences under microgravity

    NASA Technical Reports Server (NTRS)

    Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio

    1988-01-01

    As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.

  12. Silicon carbide alloys: Research reports in materials science

    SciTech Connect

    Dobson, M.M.

    1986-01-01

    The book draws from work done on other silicon materials, silicon nitrides and sialons, to emphasize the importance of the SiC system. A comprehensive treatment of non-oxide silicon ceramics, this work is of special interest to researchers involved in ceramics, materials science, and high-temperature technology. This book covers the alloys of silicon carbide with aluminum nitride. Crystallography and experimental methods including sample preparation, furnace methods, X-ray and electron diffraction, optical and electron microscopy and chemical analysis are covered.

  13. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  14. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  15. Tubular filamentation for laser material processing

    PubMed Central

    Xie, Chen; Jukna, Vytautas; Milián, Carles; Giust, Remo; Ouadghiri-Idrissi, Ismail; Itina, Tatiana; Dudley, John M.; Couairon, Arnaud; Courvoisier, Francois

    2015-01-01

    An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 1013 W/cm2 has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere. PMID:25753215

  16. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  17. Commercialization of materials processing in space

    NASA Technical Reports Server (NTRS)

    Yost, Charles F.

    1986-01-01

    NASA research to date on materials processing in space (MPS) has revealed that microgravity conditions to a large degree eliminate normal convection, sedimentation, buoyancy, and deformations due to gravity, and permit the exploration of containerless processing. The goals of current NASA MPS work is to augment the fundamental database on MPS and to foster commercial participation in MPS. Techniques being applied by NASA to fulfill the latter goal are described, including technical exchange, industrial guest investigator and joint endeavor agreements, and tangible market incentives. Guidelines for each type of agreement are summarized.

  18. Processing and Properties of Airframe Materials.

    DTIC Science & Technology

    1984-02-01

    the first year of the three-year program to characterize the relationship between microstruc - ture and fatigue behavior of beta processed Ti-6A1-4V...determine how the microstructural variables affect the macroscopic deformation behavior . Experiments have been performed with 7475 Al having various grain...sizes. The flow stress vs strain rate behavior for the mixed grain size materials is best described using the iso-strain rate concept. Observations of

  19. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  20. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  1. On-Orbit Testing of Materials and Processes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Volz, M. P.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the intent of promoting our understanding of materials processing in a low-gravity environment. The numerous experiments were conducted by telescience with the results evaluated by real time video and subsequently returned tapes and samples. In addition to discussing the experimental results and analysis the presentation will include an account of the ISS facilities (Microgravity Science Glovebox and Maintenance Work Area) used as well as some lessons-learned comments.

  2. Mineral Surface Reactivity in teaching of Science Materials

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  3. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  4. Science--A Process Approach, Product Development Report No. 8.

    ERIC Educational Resources Information Center

    Sanderson, Barbara A.; Kratochvil, Daniel W.

    Science - A Process Approach, a science program for grades kindergarten through sixth, mainly focuses on scientific processes: observing, classifying, using numbers, measuring, space/time relationships, communicating, predicting, inferring, defining operationally, formulating hypotheses, interpreting data, controlling variables, and experimenting.…

  5. HypsIRI On-Board Science Data Processing

    NASA Technical Reports Server (NTRS)

    Flatley, Tom

    2010-01-01

    Topics include On-board science data processing, on-board image processing, software upset mitigation, on-board data reduction, on-board 'VSWIR" products, HyspIRI demonstration testbed, and processor comparison.

  6. Perspective: Materials Informatics and Big Data: Realization of the Fourth Paradigm of Science in Materials Science

    DTIC Science & Technology

    2016-08-17

    Kalidindi, and A. N. Choudhary, “Machine learning approaches for elastic local- ization linkages in high-contrast composite materials,” Integr . Mater...and accelerate cost-effective materials discovery, which is the goal of MGI. C 2016 Author(s). All article content , except where other- wise noted...2016/4(5)/053208/10 4, 053208-1 ©Author(s) 2016. Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights

  7. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  8. Overview of the NIST Materials Science and Engineering Laboratory

    DTIC Science & Technology

    2010-08-01

    mechanical routes to weakened products were identified in polybenzoxazole (Zylon) fibers . [This work included testing on materials which had failed...to characterize the processing, structure, mechanics and long-term reliability of high performance polymeric fibers used for ballistic protection...Apparatus, modified for fiber testing •Measurement techniques and instrumentation for characterizing next generation hybrid materials which

  9. Analyzing standards-based science instructional materials: An opportunity for professional development

    NASA Astrophysics Data System (ADS)

    Short, James Bennett

    This phenomenological study focused on a group of teachers who applied the Analyzing Instructional Materials (AIM) Process and Tools to select standards-based instructional materials for science curriculum reform. The purpose of this study was to identify, based on teachers' beliefs, perceptions, and experiences, the conditions for supporting professional development that involve standards-based reform and the use of instructional materials that were developed with funding from the National Science Foundation (NSF). The design of this qualitative study involved a series of three separate in-depth interviews with six participants. A first person narrative profile of each participant was constructed from the interviews and analyzed. Three themes were represented in the data: a focus on teaming, professional development and the change and reform process. Teachers in this study believed that instructional materials needed to explicitly support concept development and students doing science in order to learn about inquiry. Participants thought NSF-funded instructional materials supported inquiry-based learning and the teacher as a facilitator of learning. Based on this study, one finding about standards-based reform is that selecting instructional materials can be a structured professional development opportunity. A second finding is that teachers' beliefs about standards-based reform and the use of materials can be influenced during the selection of high quality instructional materials. Participants in this study believed that selecting NSF-funded instructional materials was critical to changing the learning and teaching of science in their district. A third finding is that professional development can push teachers to think critically about the materials they use to teach students science. Teachers in this study believed that their experiences associated with learning and using AIM provided them opportunities for reflection and dialogue about how instructional

  10. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  11. iBiology: communicating the process of science.

    PubMed

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection.

  12. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  13. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  14. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  15. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  16. Manned Spacecraft Requirements for Materials and Processes

    NASA Technical Reports Server (NTRS)

    Vaughn, Timothy P.

    2006-01-01

    A major cause of project failure can be attributed to an emphasized focus on end products and inadequate attention to resolving development risks during the initial phases of a project. The initial phases of a project, which we will call the "study period", are critical to determining project scope and costs, and can make or break most projects. If the requirements are not defined adequately, how can the scope be adequately determined, also how can the costs of the entire project be effectively estimated, and how can the risk of project success be accurately assessed? Using the proper material specifications and standards and incorporating these specifications and standards in the design process should be considered inherently crucial to the technical success of a project as just as importantly, crucial to the cost and schedule success. This paper will intertwine several important aspects or considerations for project success: 1) Characteristics of a "Good Material Requirement"; 2) Linking material requirements to the implementation of "Design for Manufacturing"; techniques and 3) The importance of decomposing materials requirements during the study phase/development phase to mitigate project risk for the maturation of technologies before the building of hardware.

  17. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  18. Teaching Science: A Picture Perfect Process.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Explains how teachers can use graphs and graphing concepts when teaching art, language arts, history, social studies, and science. Students can graph the lifespans of the Ninja Turtles' Renaissance namesakes (Donatello, Michelangelo, Raphael, and Leonardo da Vinci) or world population growth. (MDM)

  19. Information Processing and Formation of Sociology of Science

    NASA Astrophysics Data System (ADS)

    Abe, Koichiro

    Progress and development in technology of information processing has not only effected gradually the fundamental purpose, that is providing exact information for people who need it, but also has offered many numerical data that are optimum to form Sociology of Science. To have more knowledge to understand the construction of the world with Sociology of Science can supply more devices for making scientific policy and can do more good for technology of information processing. This paper reviews these process looking through the process of formation of Sociology of Science.

  20. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    ERIC Educational Resources Information Center

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  1. Cooperation between NASA and ESA for the first microgravity materials science glovebox

    NASA Technical Reports Server (NTRS)

    Chassay, Roger P.

    1992-01-01

    Two major space organizations have collaborated to develop the first microgravity materials science glovebox and 16 materials science experiments. The glovebox and its experiments will fly initially on USML-1, currently scheduled for launch in mid-1992.

  2. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  3. Pulsed Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Schechtel, Florian; Reg, Yvonne; Zimmermann, Maik; Stocker, Thomas; Knorr, Fabian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    At present the trends in paper and packaging industries are the personalization of products and the use of novel high-tech materials. Laser processes as non-contact and flexible techniques seem to be the obvious choice to address those developments. In this paper we present a basic understanding of the occurring mechanisms of laser based engraving of different paper and paperboard materials, using a picosecond laser source at 1064 nm. The influences on the beam-paper-interaction of grammage, the composition of the paper matrix, as well as the paper inherent cellulose fibers were investigated. Here the ablation threshold of commercially available paper was determined and a matrix ablation effect under the 1064 nm radiation observed. These results were characterized and qualified mainly by means of laser scanning microscope (LSM) micrographs in combination with color-space analytics.

  4. Cibachrome testing. [photographic processing and printing materials

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1974-01-01

    The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.

  5. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  6. Saving Material with Systematic Process Designs

    NASA Astrophysics Data System (ADS)

    Kerausch, M.

    2011-08-01

    Global competition is forcing the stamping industry to further increase quality, to shorten time-to-market and to reduce total cost. Continuous balancing between these classical time-cost-quality targets throughout the product development cycle is required to ensure future economical success. In today's industrial practice, die layout standards are typically assumed to implicitly ensure the balancing of company specific time-cost-quality targets. Although die layout standards are a very successful approach, there are two methodical disadvantages. First, the capabilities for tool design have to be continuously adapted to technological innovations; e.g. to take advantage of the full forming capability of new materials. Secondly, the great variety of die design aspects have to be reduced to a generic rule or guideline; e.g. binder shape, draw-in conditions or the use of drawbeads. Therefore, it is important to not overlook cost or quality opportunities when applying die design standards. This paper describes a systematic workflow with focus on minimizing material consumption. The starting point of the investigation is a full process plan for a typical structural part. All requirements are definedaccording to a predefined set of die design standards with industrial relevance are fulfilled. In a first step binder and addendum geometry is systematically checked for material saving potentials. In a second step, blank shape and draw-in are adjusted to meet thinning, wrinkling and springback targets for a minimum blank solution. Finally the identified die layout is validated with respect to production robustness versus splits, wrinkles and springback. For all three steps the applied methodology is based on finite element simulation combined with a stochastical variation of input variables. With the proposed workflow a well-balanced (time-cost-quality) production process assuring minimal material consumption can be achieved.

  7. Opportunities for commercial materials processing in space

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1985-01-01

    The availability status (as of November 1985) of NASA space and ground facilities for commercial materials-processing activities is surveyed. The organizational structure of the agencies managing these activities is outlined; ongoing joint-endeavor agreements are listed and described; the legal procedures involved are considered; the capabilities and limitations of the Shuttle middeck and cargo bay and the Hitchhiker module are characterized; experiments using the Drop Tower are examined; and the Industrial Guest Investigator program is reviewed. Extensive drawings, diagrams, and tables are provided.

  8. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  9. Solar Energy: Materials, Materials Handling, and Fabrication Processes: Student Material. First Edition.

    ERIC Educational Resources Information Center

    Bolin, William Everet; Orsak, Charles G., Jr.

    Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the…

  10. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  11. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  12. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  13. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was

  14. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  15. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  16. The Materials Science beamline upgrade at the Swiss Light Source

    PubMed Central

    Willmott, P. R.; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A.; Böge, M.; Calvi, M.; Cancellieri, C.; Casati, N.; Cervellino, A.; Chen, Q.; David, C.; Flechsig, U.; Gozzo, F.; Henrich, B.; Jäggi-Spielmann, S.; Jakob, B.; Kalichava, I.; Karvinen, P.; Krempasky, J.; Lüdeke, A.; Lüscher, R.; Maag, S.; Quitmann, C.; Reinle-Schmitt, M. L.; Schmidt, T.; Schmitt, B.; Streun, A.; Vartiainen, I.; Vitins, M.; Wang, X.; Wullschleger, R.

    2013-01-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  17. Field mappers for laser material processing

    NASA Astrophysics Data System (ADS)

    Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy

    2016-03-01

    The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.

  18. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  19. Students' perceptions of the nature of science and the process of science through a project-based science program

    NASA Astrophysics Data System (ADS)

    Lagnado, Jennifer Marie

    This study examined students' understanding of the epistemology of science and the nature of science (NOS) within a high school and middle school project-based science program. Science research programs have become increasingly popular, causing educational researchers to question what students are learning within such classes. Twenty three students enrolled in a high school science research program and twenty five students enrolled in a middle school science research program completed questionnaires pertaining to the NOS. Thirteen high school students and two middle school students of those surveyed were individually interviewed. Upon finding consistent answers among the high school Science Projects students, students enrolled in only traditional science classes (non-participants of the research program) also completed questionnaires. Teachers of traditional science classes were interviewed and questioned on each NOS topic examined in this study as well. It was found that both high school Science Projects students and non-participants all had a good understanding of the NOS. When data were examined more closely, students of the research program demonstrated an evidenced-based logical structure of thought as demonstrated by the many more examples from the history of science used to support their premises on the NOS. This suggests that science research students have developed a higher order cognitive method of thinking that is more logical and critical, based on evidence, due to their experiencing research science. Non-participants did not provide evidence to support their premises suggesting that they lack a meta-cognitive type of thinking that the participants have developed. Science Projects students also demonstrated substantial self-awareness when asked to reflect on their learning. Students reported that they acquired a special type of thought process, coupled with analytical skills that they used when conducting science research. Others spoke of a deeper

  20. Developing Worksheet Based on Science Process Skills: Factors Affecting Solubility

    ERIC Educational Resources Information Center

    Karsli, Fethiye; Sahin, Cigdem

    2009-01-01

    The purpose of this study is to develop a worksheet about the factors affecting solubility, which could be useful for the prospective science teachers (PST) to remind and regain their science process skills (SPS). The pilot study of the WS was carried out with 32 first grade PST during the 2007-2008 academic year in the education department at…

  1. Multiple-probe scanning probe microscopes for nanoarchitectonic materials science

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomonobu; Shingaya, Yoshitaka; Aono, Masakazu

    2016-11-01

    Nanoarchitectonic systems are of interest for utilizing a vast range of nanoscale materials for future applications requiring a huge number of elemental nanocomponents. To explore the science and technology of nanoarchitectonics, advanced characterization tools that can deal with both nanoscale objects and macroscopically extended nanosystems are demanded. Multiple-probe scanning probe microscopes (MP-SPMs) are powerful tools that meet this demand because they take the advantages of conventional scanning probe microscopes and realize atomically precise electrical measurements, which cannot be done with conventional microprobing systems widely used in characterizing materials and devices. Furthermore, an MP-SPM can be used to operate some nanoarchitectonic systems. In this review, we overview the indispensable features of MP-SPMs together with the past, present and future of MP-SPM technology.

  2. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  3. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  4. International Conference on Materials Science and Technology (ICMST 2012)

    NASA Astrophysics Data System (ADS)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has

  5. Coastal Ocean Processes: A Science Prospectus

    DTIC Science & Technology

    1992-04-01

    by filter-feeding animals and decomposition by bacteria. Particle size, concentration and composition thus can change dramatically during transit to...typically contain elevated concentrations of ammonium , phosphate, sulfide and trace metals, which can eventually reach overlying waters. Organisms...relationship with the exchange of water and material across the benthic interface. g. To investigate bioturbation and its effects on decomposition of organic

  6. Chemistry and Materials Science Directorate Annual Report 2003

    SciTech Connect

    Diaz de la Rubia, T; Shang, S P; Kitrinos, G A; Fluss, M; Westbrook, C; Rennie, G

    2004-04-21

    Evolving challenges and solid accomplishments define the year 2003 for us. Our scientific breakthroughs validate our strategic directions and reaffirm our critical role in fulfilling the Laboratory's missions. Our growth continues in new research projects and significant new programmatic support. Our mission is clear: to enable the Laboratory to accomplish its primary mission through excellence in the chemical and materials sciences. The directorate's common theme and determination has remained constant: Deliver on our commitments, while anticipating and capitalizing on opportunities through innovation in science and technology. In this, the 2003 Annual Report, we describe how our science is built around a strategic plan with four organizing themes, each with key scientific accomplishments by our staff and collaborators. Our strategic plan is synergistic with the Laboratory's Long-Range Science and Technology Plan, which identifies six areas of institutional research and development strategy. This 2003 CMS Annual Report is organized into two major sections: research themes and dynamic teams. The research-theme section addresses challenges, achievements, and new frontiers within each of the four research themes. The dynamic-teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that supports a team environment across disciplinary and institutional boundaries. The research presented gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with the institutional strategy. Our organizational structure offers an environment of collaborative problem-solving opportunities, an environment that attracts and retains the best and the brightest from across the Laboratory and around the world.

  7. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  8. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics

    NASA Astrophysics Data System (ADS)

    Hafner, Jürgen

    2010-09-01

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  9. Generation of High-Gravity Field and Application to Materials Science

    NASA Astrophysics Data System (ADS)

    Mashimo, T.

    2008-02-01

    Centrifugation of organic liquids and metals has been widely used in biochemistry field and metallurgy field, respectively. The high-gravity field was recently used for the preprocessing for sintering of composite materials. The sedimentation of atoms was recently realized in alloys and semiconductors under ultra-high gravitational field in 1 million G level. The possibility in use of high gravity has, day by day, increased. In this mini-symposium, the conventional and recent methods for materials processing for functionally graded materials, metastable composite materials, thin film, etc. using high-gravity in gas, liquids, solids and also in vacuum will be treated. In this paper, the history of ultracentrifuges is reviewed, and the applications to materials science is discussed.

  10. The Curriculum Development for Science Teachers' Training: The Action Lesson Focusing on Science Process Skills

    ERIC Educational Resources Information Center

    Khayotha, Jesda; Sitti, Somsong; Sonsupap, Kanyarat

    2015-01-01

    The objectives of this research were to develop innovation curriculum and study the effect of curriculum usage in science teachers' training in establishing the supplementary subject curriculum for action lesson. It focuses on science process skills with 10 teachers for 4 days, and 236 Grade 9 students from 10 schools during the first semester of…

  11. Comparing Science Process Skills of Prospective Science Teachers: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Farsakoglu, Omer Faruk; Sahin, Cigdem; Karsli, Fethiye

    2012-01-01

    This study was conducted with the purpose of examining how Prospective Science Teachers' (PST) Science Process Skills (SPS) develop according to different grades. In this study, a cross-sectional research approach in the form of a case study was used. The sample group consisted of a total number of 102 undergraduate students who were selected from…

  12. Integration mockup and process material management system

    NASA Astrophysics Data System (ADS)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  13. Integration mockup and process material management system

    NASA Technical Reports Server (NTRS)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  14. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  15. Chemistry and Materials Science. Progress report, first half, FY 1993

    SciTech Connect

    Not Available

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  16. Remote plasma processing of thin film materials

    NASA Astrophysics Data System (ADS)

    Kastenmeier, Bernd E. E.

    1999-09-01

    In this thesis, phenomena and mechanisms of remote plasma processes are investigated. The plasmas are spatially separated from the sample surface. Chemically reactive species are produced in the discharge region from rather inert feed gases. They exit the discharge region and travel in the afterglow towards the reaction chamber, where primarily neutral species arrive. The interaction with the sample surface is purely chemical. The absence of direct plasma surface interactions distinguishes remote plasma Chemical Dry Etching (CDE) from other etch processes like Reactive Ion Etching (RIE) or Inductively Coupled Plasma (ICP) etching. The etch reactions in CDE are isotropic, potentially offer great etch rate ratios and minimize substrate damage due to the absence of direct plasma-surface interactions. However, some materials like silicon dioxide (SiO2) or fluorocarbon deposits are difficult to remove because of the lack of activation energy otherwise provided by ion bombardment. In CDE, rates can be enhanced by the introduction of a new reaction pathway. Remote plasma CDE of silicon nitride (Si3N4) is an example for increasing the overall reaction rate by introducing a new reaction channel. Typically, the Si3N4 surface is exposed to the fluorine rich afterglow of a fluorocarbon, nitrogen trifluoride (NF 3) or sulfur hexafluoride (SF6) based discharge. We find that the Si3N4 etch rate is dramatically enhanced when Nitric Oxide (NO) is present in the afterglow as compared to the case in which only fluorine is present. Presented here are detailed analyses of the etching of Si3N 4 and SiO2 in different chemistries. Several experimental techniques are employed to investigate the composition of the plasma and the afterglow, the surface modifications and the etch rates for tetrafluoromethane (CF4) and NF3 based processes. These measurements establish the effect of NO on the Si3N4 etch rate. The dominant mechanism for the etch rate enhancement is shown by mass spectrometry

  17. Bipolar electrochemistry: from materials science to motion and beyond.

    PubMed

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the

  18. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  19. ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials

    PubMed Central

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-01-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of ‘beautiful’ technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches. PMID:27877374

  20. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    PubMed

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  1. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  2. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  3. Assessing the Effectiveness of Instructional Materials Designed for Elementary Science Methods Students.

    ERIC Educational Resources Information Center

    Barman, Charles R.

    A set of elementary science preservice materials was developed and field-tested. The main objectives of these materials were to: (1) assist undergraduate elementary science methods students in developing a working definition of science and the scientific enterprise; (2) help students learn about effective questioning techniques; (3) introduce…

  4. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  5. To Kit or Not to Kit? Evaluating and Implementing Science Materials and Resources

    ERIC Educational Resources Information Center

    Schiller, Ellen; Melin, Jacque; Bair, Mary

    2016-01-01

    With the release of the "Next Generation Science Standards," many schools are reexamining the science materials they are using. Textbook companies and kit developers are eager to meet the demand for "NGSS"-aligned teaching materials. Teacher may have been asked to serve on a science curriculum committee, or to evaluate current…

  6. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  7. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  8. RESEARCH ON RELAXATION PROCESSES IN MAGNETIC MATERIALS.

    DTIC Science & Technology

    MAGNETIC PROPERTIES, DIELECTRIC PROPERTIES, FERROMAGNETIC MATERIALS, FERRITES , EUROPIUM COMPOUNDS, GALLIUM COMPOUNDS, OXIDES, DYSPROSIUM, HOLMIUM...GARNET), (* MAGNETIC PROPERTIES, YTTRIUM, CRYSTALS, IRON COMPOUNDS, POROSITY, THEORY, MATHEMATICAL ANALYSIS, SINGLE CRYSTALS, MAGNETIC MATERIALS

  9. Material Science Image Analysis using Quant-CT in ImageJ

    SciTech Connect

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  10. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  11. Quantifying the Material Processing Conditions for an Optimized FSW Process

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edgs of the seam together. This environmentally friendly, solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path and velocity is required. In this study the metal flow fields are marked by the use of thin (0.001 in. tungsten) wires embedded in the weld seam at various locations. X-ray radiographs record the position and segmentation of the wire and are used to elucidate the flow field. Microstructures observed in a FSW cross-section in an aluminum alloy are related to their respective strain-strain rate-temperature histones along their respective flow trajectories. Two kinds of trajectories, each subjecting the weld metal to a distinct thermomechanical process and imparting a distinct microstructure, can be differentiated within the weld structure.

  12. Unraveling the Material Processing Conditions for Optimizing FSW Process

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This environmentally friendly, solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld. To determine optimal processing parameters for producing a defect free weld a better understanding of the resulting metal deformation flow path and velocity is required. In this study the metal flow fields are marked by the use of thin (0.001? tungsten) wires embedded in the weld seam at various locations. X-ray radiographs record the position and segmentation of the wire and are used to elucidate the flow field. Microstructures observed in a FSW cross-section in an aluminum alloy are related to their respective strain-strain rate-temperature histories along their respective flow trajectories. Two kinds of trajectories, each subjecting the weld metal to a distinct thermomechanical process and imparting a distinct microstructure, can be differentiated within the weld structure.

  13. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    SciTech Connect

    Warwick, T.; Padmore, H.; Ade, H.; Hitchcock, A.P.; Rightor, E.G.; Tonner, B.P.

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  14. The space technology demand on materials and processes

    NASA Technical Reports Server (NTRS)

    Dauphin, J.

    1983-01-01

    Space technology requires a rational and accurate policy of materials and processes selection. This paper examines some areas of space technology where materials and process problems have occurred in the past and how they can be solved in the future.

  15. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  16. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  17. Open architecture control for laser materials processing

    NASA Astrophysics Data System (ADS)

    Ortmann, Juergen; Kahmen, A.; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2001-12-01

    In laser materials processing, usually CNC controls come into operation that are fitted to conventional applications of machining, like milling. Because of the flexibility required and the large variety of applications in laser technology the use of an open architecture control is necessary. Open controls based on the OSACA (Open System Architecture for Controls within Automation systems) specification gain an increasing importance when innovative technology is integrated into controls. OSACA defines a uniform system platform that provides services for communication and configuration. The OSACA platform has been developed as a modular system for different operating systems with or without real-time capability and different hardware platforms. The functionality of the control is subdivided into single functional units, which communicate provided by the OSACA platform. Every unit can access the internal control data in a standardized way. The contribution reports about the implementation of an OSACA based control into a laser manufacturing plant. The problems and components concerning a linkage to the laser control and the implementation of some laser specific control units are discussed.

  18. The science planning process on the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Vallat, Claire; Altobelli, Nicolas; Geiger, Bernhard; Grieger, Bjoern; Kueppers, Michael; Muñoz Crego, Claudio; Moissl, Richard; Taylor, Matthew G. G. T.; Alexander, Claudia; Buratti, Bonnie; Choukroun, Mathieu

    2017-04-01

    The Rosetta mission arrived at comet 67 P/Churyumov-Gerasimenko in Summer 2014, after more than 10 years in space. All previous mission encounters with a comet have provided a snapshot of the cometary activity at a given heliocentric distance. In contrast, Rosetta has escorted the comet nucleus for an extended period (>2 years) at a large range of cometo-centric and heliocentric distances, which has provided exceptional and unprecedented observing conditions to study, analyse and monitor 67 P during its passage to, through and away from perihelion. One of the biggest challenges of this mission is the development of an observation plan that adequately addresses the mission's science objectives while coping with a largely unknown and continuously evolving environment that constantly modifies the planning constraints. The Rosetta Science Ground Segment (RSGS), in support of the Project Scientist and the Science Working Team, is in charge of translating the high level mission science objectives into a low level pointing and operations plan. We present here the high-level science planning process adopted during the comet escort phase. We describe the main science objectives addressed along the mission lifetime, the different groups involved in the science planning, and the approach followed to translate those requirements into a viable and scientifically valid operations plan. Finally, we describe how the science planning scheme has evolved since arrival at the comet to react to the unexpected environment, largely reducing the planning lead times.

  19. Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980

    SciTech Connect

    Truhan, J.J.; Gordon, K.M.

    1980-08-01

    Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

  20. The theoretical cognitive process of visualization for science education.

    PubMed

    Mnguni, Lindelani E

    2014-01-01

    The use of visual models such as pictures, diagrams and animations in science education is increasing. This is because of the complex nature associated with the concepts in the field. Students, especially entrant students, often report misconceptions and learning difficulties associated with various concepts especially those that exist at a microscopic level, such as DNA, the gene and meiosis as well as those that exist in relatively large time scales such as evolution. However the role of visual literacy in the construction of knowledge in science education has not been investigated much. This article explores the theoretical process of visualization answering the question "how can visual literacy be understood based on the theoretical cognitive process of visualization in order to inform the understanding, teaching and studying of visual literacy in science education?" Based on various theories on cognitive processes during learning for science and general education the author argues that the theoretical process of visualization consists of three stages, namely, Internalization of Visual Models, Conceptualization of Visual Models and Externalization of Visual Models. The application of this theoretical cognitive process of visualization and the stages of visualization in science education are discussed.

  1. Double Diffusive Convection in Materials Processing

    NASA Technical Reports Server (NTRS)

    Ramachandra, Narayanan; Leslie, Fred W.

    1999-01-01

    A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in

  2. The High Energy Materials Science Beamline (HEMS) at PETRA III

    NASA Astrophysics Data System (ADS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  3. Development of the Materials Science Research Facility (MSRF) and Experiment Apparatus for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for phased deployment into the United States Laboratory Module beginning on the third Utilization Flight (UF-3). The facility will house the materials processing apparatus and common subsystems required for operating each device, and will use the ISS Active Rack Isolation System (ARIS). Each MSRR is an autonomous rack and will be comprised of on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multi-user generic processing apparatus. The MSRF will be the primary apparatus for satisfying near-term and long-range materials science discipline goals and objectives with each MSRR supporting a wide range of materials science themes in the NASA research program.

  4. Intelligent Agents for Science Data Processing

    NASA Astrophysics Data System (ADS)

    Golden, K.; Nemani, R.; Pang, W.; Votava, P.

    2005-12-01

    Petabytes of remote sensing data are now available from Earth-observing satellites to help measure, understand and forecast changes in the Earth system, but using these data effectively can be surprisingly hard. The volume and variety of data files and formats are daunting. Simple data management activities, such as locating and transferring files, changing file formats, gridding point data, and scaling and reprojecting gridded data, can consume far more personnel time and resources than the actual data analysis. We address this problem by developing a planner-based agent for data production, called IMAGEbot, that takes data product requests as high-level goals and executes the commands needed to produce the requested data products. IMAGEbot is based on automated constraint-based planning and a flexible component-based architecture. Unlike more traditional approaches, where the instruction sequences for managing and processing data are hand-coded; in our agent-based approach, the instruction sequences are automatically generated based on user requests and available data sources. New data sources, models or data-processing programs can be added in a plug-and-play fashion, and the planner can adapt to errors or data dropouts by trying alternative ways of achieving the same goal, such as using other, possibly lesser quality, data sources. We have demonstrated this technology in the Terrestrial Observation and Prediction System (TOPS), an ecological forecasting system that assimilates data from Earth-orbiting satellites and ground weather stations to model and forecast conditions on the surface, such as soil moisture, vegetation growth and plant stress. The planner identifies the appropriate input files and sequences of operations needed to satisfy a data request, executes those operations on a remote TOPS server, and displays the results, quickly and reliably. Whereas TOPS is concerned with geospatial data measuring specific variables of the Earth system, such as

  5. Processing and Analysis of Mars Pathfinder Science Data at JPL's Science Data Processing Section

    NASA Technical Reports Server (NTRS)

    LaVoie, S.; Green, W.; Runkle, A.; Alexander, D.; Andres, P.; DeJong, E.; Duxbury, E.; Freda, D.; Gorjian, Z.; Hall, J.; Hartman, F.; Levoe, S.; Lorre, J.; McAuley, J.; Suzuki, S.; Woncik, P.; Wright, J.

    1998-01-01

    The Mars Pathfinder mission required new capabilities and adaptation of existing capabilities in order to support science analysis and flight operations requirements imposed by the in-situ nature of the mission.

  6. Viirs Land Science Investigator-Led Processing System

    NASA Astrophysics Data System (ADS)

    Devadiga, S.; Mauoka, E.; Roman, M. O.; Wolfe, R. E.; Kalb, V.; Davidson, C. C.; Ye, G.

    2015-12-01

    The objective of the NASA's Suomi National Polar Orbiting Partnership (S-NPP) Land Science Investigator-led Processing System (Land SIPS), housed at the NASA Goddard Space Flight Center (GSFC), is to produce high quality land products from the Visible Infrared Imaging Radiometer Suite (VIIRS) to extend the Earth System Data Records (ESDRs) developed from NASA's heritage Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the EOS Terra and Aqua satellites. In this paper we will present the functional description and capabilities of the S-NPP Land SIPS, including system development phases and production schedules, timeline for processing, and delivery of land science products based on coordination with the S-NPP Land science team members. The Land SIPS processing stream is expected to be operational by December 2016, generating land products either using the NASA science team delivered algorithms, or the "best-of" science algorithms currently in operation at NASA's Land Product Evaluation and Algorithm Testing Element (PEATE). In addition to generating the standard land science products through processing of the NASA's VIIRS Level 0 data record, the Land SIPS processing system is also used to produce a suite of near-real time products for NASA's application community. Land SIPS will also deliver the standard products, ancillary data sets, software and supporting documentation (ATBDs) to the assigned Distributed Active Archive Centers (DAACs) for archival and distribution. Quality assessment and validation will be an integral part of the Land SIPS processing system; the former being performed at Land Data Operational Product Evaluation (LDOPE) facility, while the latter under the auspices of the CEOS Working Group on Calibration & Validation (WGCV) Land Product Validation (LPV) Subgroup; adopting the best-practices and tools used to assess the quality of heritage EOS-MODIS products generated at the MODIS Adaptive Processing

  7. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  8. Educators Guide to Free Science Materials, 11th Annual Edition--1970.

    ERIC Educational Resources Information Center

    Saterstrom, Mary Horkheimer; Renner, John W.

    This eleventh edition of the Educators Guide to Free Science Materials is devoted exclusively to free science materials, based on the cross-media approach. It is designed to provide a continuing means of identifying existing materials that are currently available. It is a complete, up-to-date, annotated schedule of selected free or inexpensive…

  9. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  10. Materials Processing Technology Initiatives. Delivery Order 0019-08: Material Behavior Modeling for Optimization of Thermomechanical Processes

    DTIC Science & Technology

    2000-11-01

    AFRL-RX-WP-TM-2008-4056 MATERIALS PROCESSING TECHNOLOGY INITIATIVES Delivery Order 0019-08: Material Behavior Modeling for Optimization of...5835-0019 5b. GRANT NUMBER 4. TITLE AND SUBTITLE MATERIALS PROCESSING TECHNOLOGY INITIATIVES Delivery Order 0019-08: Material Behavior Modeling

  11. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  12. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings.

  13. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  14. The portrayal of the nature of science in early childhood instructional materials

    NASA Astrophysics Data System (ADS)

    Schrauth, Brandon Alan

    One issue plaguing science education and science teaching is the way in which the nature of science is portrayed in science classrooms. The purpose of this study was to examine the extent to which the nature of science is presented in early childhood instructional materials and the accuracy of those NOS portrayals. This study demonstrates that the current representation of NOS is accurate but implicit in most instances. The researcher describes several implications and suggestions for further research in this area.

  15. Hydrogenation process for solid carbonaceous materials

    DOEpatents

    Cox, John L.; Wilcox, Wayne A.

    1979-01-01

    Coal or other solid carbonaceous material is contacted with an organic solvent containing both hydrogen and a transition metal catalyst in solution to hydrogenate unsaturated bonds within the carbonaceous material. This benefaction step permits subsequent pyrolysis or hydrogenolysis of the carbonaceous fuel to form gaseous and liquid hydrocarbon products of increased yield and quality.

  16. Learning Science Process Through Data Exploration and Writing

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2007-12-01

    One of the most effective ways of teaching science process is to have students take part in the same activities that practicing scientists engage in. These activities include studying the current research in the field, discussing ideas with colleagues, formulating a research problem, making a proposal defining the problem and plan of attack, presenting and writing about the results of the study, and critically reviewing the work of others. An inquiry curriculum can use these activities to guide the scaffolding of assignments and learning experiences that help students learn science process. At UCSB, students in a large general education oceanography class use real Earth data to study plate tectonics, the Indian Monsoon, climate change, and the health of the world fisheries. The end product for each subject has been a science paper based on Earth data. Over a period of approximately 15 years, the scaffolding of activities to prepare each student for the written assignments has been modified and improved, in response to student feedback and their success with the assignments. I have found that the following resources and sequence of activities help the oceanography students write good science papers. 1. Lecture: motivation and the opportunity for feedback and questions. 2. Textbook: background information. It is also possible to get the information from the internet, but unless the scope of reading is strictly defined, students don't know when to stop reading and become unhappy. 3. Online assignments: automatically graded assignments that force the student to keep up with reading. 4. Questions of the day: in-class handouts, with diagrams that the students either complete, or answer questions about. They are handed in and tallied, but not graded. They also inform the instructor of misconceptions. 5. Thought questions: student answers are posted on a threaded discussion list, and are due prior to lecture. The answers provide instructor feedback and guide the lecture

  17. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  18. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  19. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    NASA Astrophysics Data System (ADS)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  20. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  1. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  2. Non-parallel processing: Gendered attrition in academic computer science

    NASA Astrophysics Data System (ADS)

    Cohoon, Joanne Louise Mcgrath

    2000-10-01

    This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an

  3. Study of materials for space processing

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.

  4. Cassini Titan Science Integration: Getting a 'Jumpstart' on the Process

    NASA Technical Reports Server (NTRS)

    Steadman, Kimberly B.; Pitesky, Jo E.; Ray, Trina L.; Burton, Marcia E.; Alonge, Nora K.

    2010-01-01

    The Cassini spacecraft has been in orbit for five years, returning a wealth of scientific data from Titan and the Saturn system. The mission is a cooperative undertaking between NASA, ESA and the Italian Space Agency and the project is currently planning for a second extension of the mission. The Cassini Solstice Mission (CSM) will extend the mission's lifetime until Saturn's northern summer solstice in 2017. The Titan Orbiter Science Team (TOST) has the task of integrating the science observations for all 126 targeted Titan flybys (44 in the Prime Mission, 26 in the first extension (Equinox Mission), and 56 in the second extension (Solstice Mission)) contained in the chosen trajectory. Cassini science instruments are body-fixed with limited ability to articulate; thus, the spacecraft pointing during the flybys must be allocated among the instruments to accomplish the mission's science goals. The science that can be accomplished on each Titan flyby also critically depends on the closest approach altitude, which is in turn determined by the attitude, but changing the altitude impacts the overall trajectory for the Solstice Mission. During the Prime and Extended missions, TOST has learned that the best way to achieve Cassini's Titan science goals is via a 'jumpstart' process prior to final delivery of the trajectory. The jumpstart is driven by the desire to balance Titan science across the entire set of flybys during the CSM, and to influence any changes (tweaks) to the flyby altitudes. By the end of the jumpstart, TOST produces Master Timelines for each flyby, identifying each flyby's prime science observations and allocating control of the spacecraft attitude to specific instrument teams. In addition, developing timelines early, while the science and operations teams are still fully funded, decreases the future workload in integration and implementation.

  5. The Best Science Books & A-V Materials for Children.

    ERIC Educational Resources Information Center

    O'Connell, Susan M., Ed.; And Others

    Some scientists and science educators believe that the most effective strategy for raising science literacy among future workers and voters is to focus on the youngest members of the public. The reviews in this publication were undertaken to increase public understanding and appreciation of the importance and promise of the methods of science in…

  6. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  7. SQUID-amplified photon detection: from cosmology to material science

    NASA Astrophysics Data System (ADS)

    Irwin, Kent

    2014-03-01

    Superconducting photon detectors amplified by SQUIDs are playing an increasingly important role in science ranging from cosmology to materials characterization. The most widely used superconducting photon detector uses a superconducting transition-edge sensor (TES), which is a superconducting film biased in the narrow transition region between the normal and superconducting state. The film is voltage biased, and the current flowing through it is measured with a SQUID. An incident photon increases the resistance of the TES, which reduces the current through the SQUID. Large arrays of SQUID-coupled TES detectors are read out by cryogenic multiplexing of the SQUIDs with a time-division, frequency-division, or code-division multiplexing scheme. SQUID-coupled TES detectors are now widely deployed in ground- and balloon-borne observatories to measure the cosmic microwave background (CMB) radiation. By measuring the power and the polarization of the CMB, new constraints have been placed on cosmological parameters, as well as the absolute masses and number of neutrino species. Experiments are now being conducted to search for the signature of gravitational waves in the polarization of the cosmic microwave background, which would provide strong evidence of inflation at GUT energy scales. Remarkably, very similar sensor arrays to those developed for CMB measurements can also be used for spectroscopic measurements at synchrotron and free-electron laser x-ray light sources. SQUID-coupled TES sensors provide spectroscopic resolution previously only achieved with dispersive detectors based on gratings and crystal diffraction, but with the high efficiency of semiconductor x-ray detectors. I will describe experiments using SQUID-coupled TES arrays for x-ray emission and x-ray absorption spectroscopy of materials, and plans to develop much larger arrays for next-generation light sources.

  8. The materials processing research base of the Materials Processing Center. Report for FY 1982

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.

    1983-01-01

    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.

  9. Matrix Characterization in Threat Material Detection Processes

    SciTech Connect

    Obhodas, J.; Sudac, D.; Valkovic, V.

    2009-03-10

    Matrix characterization in the threat material detection is of utmost importance, it generates the background against which the threat material signal has to be identified. Threat materials (explosive, chemical warfare, ...) are usually contained within small volume inside large volumes of variable matrices. We have studied the influence of matrix materials on the capability of neutron systems to identify hidden threat material. Three specific scenarios are considered in some details: case 1--contraband material in the sea containers, case 2 - explosives in soil (landmines), case 3 - explosives and chemical warfare on the sea bottom. Effects of container cargo material on tagged neutron system are seen in the increase of gamma background and the decrease of neutron beam intensity. Detection of landmines is more complex because of variable soil properties. We have studied in detail space and time variations of soil elemental compositions and in particular hydrogen content (humidity). Of special interest are ammunitions and chemical warfare on the sea bottom, damping sites and leftovers from previous conflicts (WW-I, WW-II and local). In this case sea sediment is background source and its role is similar to the role of the soil in the landmine detection. In addition to geochemical cycling of chemical elements in semi-enclosed sea, like the Adriatic Sea, one has to consider also anthropogenic influence, especially when studying small scale variations in concentration levels. Some preliminary experimental results obtained with tagged neutron sensor inside an underwater vehicle are presented as well as data on sediment characterization by X-Ray Fluorescence.

  10. Pulse thermal processing of functional materials using directed plasma arc

    DOEpatents

    Ott, Ronald D.; Blue, Craig A.; Dudney, Nancy J.; Harper, David C.

    2007-05-22

    A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

  11. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.

    PubMed

    Romashov, Leonid V; Ananikov, Valentine P

    2013-12-23

    Self-assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur-based self-assembled monolayers and newly developed selenium-based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.

  12. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions.

  13. CRC materials science and engineering handbook. Third edition

    SciTech Connect

    Shackelford, J.F.; Alexander, W.

    1999-01-01

    This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

  14. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  15. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-04-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  16. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  17. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  18. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    ERIC Educational Resources Information Center

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  19. Using Amphibians and Reptiles To Learn the Process of Science.

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2001-01-01

    Discusses using amphibians and reptiles as an excellent resource for students to observe and gain an understanding of the process of science. These animals are easy to maintain in the classroom and play important roles in ecosystems as the prey for many birds and mammals and as the predators of various organisms. (SAH)

  20. Examining Perceptions of the Science Fair Project: Content or Process?

    ERIC Educational Resources Information Center

    Watson, Jinx Stapleton

    2003-01-01

    Discusses student research, information literacy and research skills, and the role of inquiry in the research process. Presents a case study of a middle school science fair project that examined what students should accomplish in their research and what the role of stakeholders is, including teachers, parents, and school library media specialists.…