Sample records for materials selection operations

  1. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  2. International Space Station Materials: Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2007-01-01

    The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.

  3. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    DOEpatents

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  4. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  5. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  6. The Selection and Placement Method of Materialized Views on Big Data Platform of Equipment Condition Assessment

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Yao, Jinxia; Gu, Chao; Chen, Yufeng; Yang, Yi; Zou, Lida

    2017-05-01

    With the formation of electric big data environment, more and more big data analyses emerge. In the complicated data analysis on equipment condition assessment, there exist many join operations, which are time-consuming. In order to save time, the approach of materialized view is usually used. It places part of common and critical join results on external storage and avoids the frequent join operation. In the paper we propose the methods of selecting and placing materialized views to reduce the query time of electric transmission and transformation equipment, and make the profits of service providers maximal. In selection method we design a computation way for the value of non-leaf node based on MVPP structure chart. In placement method we use relevance weights to place the selected materialized views, which help reduce the network transmission time. Our experiments show that the proposed selection and placement methods have a high throughput and good optimization ability of query time for electric transmission and transformation equipment.

  7. Factors concerned with sanitary landfill site selection: General discussion

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Stone, L. J.

    1972-01-01

    A general view of factors affecting site selection for sanitary landfill sites is presented. Examinations were made of operational methods, possible environment pollution, types of waste to be disposed, base and cover materials, and the economics involved in the operation.

  8. TESTING OF TMR SAND MANTIS FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D; William Daugherty, W

    2007-06-12

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conductedmore » to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.« less

  9. Materials Selection for Superheater Tubes in Municipal Solid Waste Incineration Plants

    NASA Astrophysics Data System (ADS)

    Morales, M.; Chimenos, J. M.; Fernández, A. I.; Segarra, M.

    2014-09-01

    Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400 °C, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 €/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for long-term selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 €/kg) compared to Ni-alloys.

  10. THE PLANTER--SELECTION, ADJUSTMENT, MAINTENANCE, AND USE.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Coll. of Agriculture.

    RESOURCE MATERIAL ON CORN PLANTERS FOR USE IN HIGH SCHOOL VOCATIONAL AGRICULTURE AND ADULT FARMER CLASSES WAS DESIGNED BY SUBJECT MATTER SPECIALISTS, TEACHER EDUCATORS, SUPERVISORS, AND TEACHERS TO PROVIDE TEXTUAL MATERIAL FOR STUDENTS ON THE SELECTION, OPERATION, ADJUSTMENT, USE, MAINTENANCE, AND PRACTICAL APPLICATION OF CORN PLANTERS. THE…

  11. Induction heating apparatus and methods of operation thereof

    DOEpatents

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  12. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  13. Superfund record of decision (EPA Region 5): Feed Materials Production Center, (USDOE), Operable Unit 4, Fernald, Hamilton County, OH, December 7, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the selected remedial action for Operable Unit 4 of the Fernald Site in Fernald, Ohio. The materials within Operable Unit 4 exhibit a wide range of properties. Most notable would be the elevated direct radiation associated with the K-65 residues versus the much lower direct radiation associated with cold metal oxides in Silo 3. Even more significant would be the much lower levels of contamination associated with the soils and building materials, like concrete, within the Operable Unit 4 Study Area. On the basis of the evaluation of final alternatives, the selected remedy addressing Operable Unitmore » 4 at the FEMP is a combination of Alternatives 3A.1/Vit - Removal, Vitrification, and Off-site Disposal - Nevada Test Site (NTS); 3B.1/Vit - Removal, Vitrification, and Off-site Disposal - NTS; and 2C - Demolition, Removal and On-Property Disposal.« less

  14. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  15. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  16. Low-mass materials and vertex detector systems

    DOE PAGES

    Cooper, William E.

    2014-01-01

    Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less

  17. Identification of High Performance, Low Environmental Impact Materials and Processes Using Systematic Substitution (SyS)

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Nimitz, J. S.

    2001-01-01

    Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.

  18. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  19. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  20. Materials selection guidelines for geothermal energy utilization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less

  1. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  2. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  3. Wear of seal materials used in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Ludwig, L. P.

    1978-01-01

    The various types of seal locations in a gas turbine engine are described, and the significance of wear to each type is reviewed. Starting with positive contact shaft seals, existing material selection guidelines are reviewed, and the existing PV (contact pressure X sliding velocity) criteria for selecting seal materials are discussed, along with the theoretical background for these criteria. Examples of wear mechanisms observed to operate in positive contact seals are shown. Design features that can extend the operating capabilities of positive contact seals, including pressure balancing and incorporation of hydrodynamic lift are briefly discussed. It is concluded that, despite the benefits arising from these design features, improved positive contact seal materials from the standpoint of wear, erosion and oxidation resistance will be necessary for further improvements in seal performance and durability, and to meet stringent future challenges.

  4. New experiments selected for 1980 operational shuttle flight

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Experiments selected for NASA's Long Duration Exposure Facility mission are described. Technical areas represented by the experiments include materials, thermal control coatings, detectors, power, micrometeoroids, electronics, lubrication, optics, and space debris detection.

  5. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  6. An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments

    NASA Technical Reports Server (NTRS)

    Davis, Samuel Eddie

    2012-01-01

    The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.

  7. Optimizing winter/snow removal operations in MoDOT St. Louis district : includes outcome based evaluation of operations.

    DOT National Transportation Integrated Search

    2011-10-01

    The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...

  8. Method for Predicting and Optimizing System Parameters for Electrospinning System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  9. Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Shepard, Clinton L.; Walasek, James B.

    This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…

  10. 34 CFR 412.21 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials; (4) Demonstrates an understanding of the operation of the Vocational Education Curriculum... Network Directors Council described in § 412.4. (b) Plan of operation. (25 points) The Secretary reviews each application to determine the quality of the plan of operation for the project, including— (1) The...

  11. 34 CFR 412.21 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials; (4) Demonstrates an understanding of the operation of the Vocational Education Curriculum... Network Directors Council described in § 412.4. (b) Plan of operation. (25 points) The Secretary reviews each application to determine the quality of the plan of operation for the project, including— (1) The...

  12. 34 CFR 412.21 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials; (4) Demonstrates an understanding of the operation of the Vocational Education Curriculum... Network Directors Council described in § 412.4. (b) Plan of operation. (25 points) The Secretary reviews each application to determine the quality of the plan of operation for the project, including— (1) The...

  13. 34 CFR 412.21 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials; (4) Demonstrates an understanding of the operation of the Vocational Education Curriculum... Network Directors Council described in § 412.4. (b) Plan of operation. (25 points) The Secretary reviews each application to determine the quality of the plan of operation for the project, including— (1) The...

  14. Modelling structural and plasma facing materials for fusion power plants: Recent advances and outstanding issues in the EURATOM fusion materials programme

    NASA Astrophysics Data System (ADS)

    Boutard, Jean-Louis; Dudarev, Sergei; Rieth, Michael

    2011-10-01

    EFDA Fusion Materials Topical Group was established at the end of 2007 to coordinate the EU effort on the development of structural and protection materials able to withstand the very demanding operating conditions of a future DEMO power plant. Focusing on a selection of well identified materials issues, including the behaviour of Reduced Activation Ferritic-Martensitic steels, and W-alloys under the foreseen operation conditions in a future DEMO, this paper describes recent advances in physical modelling and experimental validation, contributing to the definition of chemical composition and microstructure of materials with improved in-service stability at high temperature, high neutron flux and intense ion bombardment.

  15. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  16. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Dooling, D.; Finckenor, M. M.

    1999-01-01

    This report provides guidelines in selecting materials for satellites and space platforms, designed to operate within the Low-Earth orbit environment, which limit the effects of atomic oxygen interactions with spacecraft surfaces. This document should be treated as an introduction rather than a comprehensive guide since analytical and flight technologies continue to evolve, flight experiments are conducted as primary or piggyback opportunities arise, and our understanding of materials interactions and protection methods grows. The reader is urged to consult recent literature and current web sites containing information about research and flight results.

  17. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors < 0.3m in diameter to >4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  18. Internal Uses of the RLG Conspectus.

    ERIC Educational Resources Information Center

    Ferguson, Anthony W.; And Others

    1987-01-01

    Considers 10 areas of internal operations in which the Research Libraries Group/North American Collection Inventory Project (RLF/NCIP) Conspectus can be used as a management aid: collection priorities, collection management, space utilization, preservation programs, staffing allocations, material fund requests, accreditation, materials selection,…

  19. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2010-0034] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  20. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0004] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  1. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.

    PubMed

    Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker

    2018-05-01

    Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Automating the training development process for mission flight operations

    NASA Technical Reports Server (NTRS)

    Scott, Carol J.

    1994-01-01

    Traditional methods of developing training do not effectively support the changing needs of operational users in a multimission environment. The Automated Training Development System (ATDS) provides advantages over conventional methods in quality, quantity, turnaround, database maintenance, and focus on individualized instruction. The Operations System Training Group at the JPL performed a six-month study to assess the potential of ATDS to automate curriculum development and to generate and maintain course materials. To begin the study, the group acquired readily available hardware and participated in a two-week training session to introduce the process. ATDS is a building activity that combines training's traditional information-gathering with a hierarchical method for interleaving the elements. The program can be described fairly simply. A comprehensive list of candidate tasks determines the content of the database; from that database, selected critical tasks dictate which competencies of skill and knowledge to include in course material for the target audience. The training developer adds pertinent planning information about each task to the database, then ATDS generates a tailored set of instructional material, based on the specific set of selection criteria. Course material consistently leads students to a prescribed level of competency.

  3. Decision method for optimal selection of warehouse material handling strategies by production companies

    NASA Astrophysics Data System (ADS)

    Dobos, P.; Tamás, P.; Illés, B.

    2016-11-01

    Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.

  4. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    PubMed

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  5. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  6. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  7. Regenerable non-venting cooler for protective suit

    NASA Technical Reports Server (NTRS)

    Roebelen, Jr., George J. (Inventor); Bayes, Stephen A. (Inventor)

    1992-01-01

    A life support back pack 14 for use during extravehicular activity in space incorporates a cooling apparatus 20 comprised of five panels 22 each of which include in layered fashion a LCG coolant heat exchange coil 32, a heat distribution plate 42, and a heat dissipation module 50A or 50B having an outer radiator surface 52. Each module 50A houses a first phase change material 55A, for example hexadecane paraffin, and each module 50B houses a second phase change material 55B, for example tetradecane paraffin, which has a phase change temperature which is less than the phase change temperature of the first phase change material 55A. The cooling apparatus 20 is equipped with a coolant heat exchange circuit provided with mode selection valves 84 and 86 which are operated by a controller 88 to selectively direct the LCG coolant to be cooled through the cooling apparatus in one of three operating modes.

  8. Warehouse Sanitation Workshop Handbook.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHHS/PHS), Washington, DC.

    This workshop handbook contains information and reference materials on proper food warehouse sanitation. The materials have been used at Food and Drug Administration (FDA) food warehouse sanitation workshops, and are selected by the FDA for use by food warehouse operators and for training warehouse sanitation employees. The handbook is divided…

  9. The Spacecraft Materials Selector: An Artificial Intelligence System for Preliminary Design Trade Studies, Materials Assessments, and Estimates of Environments Present

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Woll, S. L. B.

    2000-01-01

    Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely exposures. Prior to the NASA contract, a knowledge base, the Spacecraft Environments Assistant (SEA,) was initially developed by Boeing to estimate the environmental factors important for a specific spacecraft mission profile. The NASA SEE program has funded specific enhancements to the capability of this knowledge base. The SEA qualitatively identifies over 25 environmental factors that may influence the performance of a spacecraft during its operational lifetime. For cases where sufficiently detailed answers are provided to questions asked by the knowledge base, atomic oxygen fluence levels, proton and/or electron fluence and dose levels, and solar exposure hours are calculated. The SMS knowledge base incorporates the previously developed SEA knowledge base. A case history for previous flight experiment will be shown as an example, and capabilities and limitations of the system will be discussed.

  10. Selecting and Equipping a Home Workshop. Capsules 1-5. Teacher's Guide [and] Student Material.

    ERIC Educational Resources Information Center

    Sack, Richard

    This unit of study provides teaching guidelines and student material intended for use in high school advanced industrial arts programs. The objective is to help students plan and purchase equipment for a home workshop. A necessary prerequisite is a knowledge of the operations and uses of the equipment involved. The material is divided into five…

  11. Development of improved pyroelectric detectors; Literature survey of pyroelectric materials and their characteristics

    NASA Technical Reports Server (NTRS)

    Weiner, S.; Beerman, H. P.

    1971-01-01

    The object of this program is to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation are undertaken. The first is to improve responsivity through the use of new materials. The second is directed toward reduction of noise and will be effected with improved field effect transistor characteristics, and improved electroding of the pyroelectric material. The search for new materials has begun with a review of the literature on pyroelectric materials in several languages. The compiled data includes an extensive list of references. From this, several materials have already been selected for investigation. FETs are being obtained from various manufacturers, evaluated, and selected units will be tested with pyroelectric elements as complete detectors.

  12. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  13. FTIR Study of Vapor Offgassing from Orbiter Tile Re-Waterproofing Materials

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.

    1999-01-01

    The work presented in this paper was performed to identify and quantify the offgassing behavior of alternative re-waterproofmg materials under investigation for application to Shuttle Orbiter Thermal Protection System (TPS) tile and blanket materials. The purpose was to determine whether the new materials would cause a problem with the operational analysis of residual vapors using the current portable vapor analyzer, a Miran 203. The materials investigated were limited to dimethylethoxysilane (DMES) and proposed solvent selected as suitable for use in re-waterproofing Orbiter TPS. The solvent was selected in another phase of the overall project. Obiter TPS tiles were injected with the re-waterproofing materials under constant conditions of temperature, relative humidity and air flow. The vapor concentrations of offgassing materials were monitored using Fourier Transform Infrared (FTIR) multi-component analysis, and with the Miran 203 instruments. The procedure was to record the time dependent concentrations of offgassing materials as analyzed by the FTIR, and the time response of the Miran 203 to the materials under consideration. The FTIR was calibrated for vapor phase DMES, tetramethyldisiloxane (TMDS), ethanol and the hydrocarbon solvents to be used to dilute the DMES for application to the TPS tile. The Miran 203 was calibrated for the operational measurement of DMES airborne vapors. The FTIR data, shows for the first time that the principal product which offgases from the tile after the first hour is not DMES, but TMDS and ethanol. The Miran 203 response to TMDS is the primary reading after the re-waterproofing operation is completed. The operational use of the Miran 203 to measure DMES vapors after re-waterproofmg operations has been responding to TMDS. The results of this study suggest that the historical complaints that have contributed to the low threshold limit value (TLV) for DMES concentrations, as read with the Miran 203, are actually based on instrumental responses to TMDS, for which no other toxicology information is available at this time. While there is some interference, the use of the tested hydrocarbon solvents does not adversely affect the response of the Miran 203.

  14. Usability Assessment of E-Café Operational Management Simulation Game

    ERIC Educational Resources Information Center

    Chang, Chiung-sui; Huang, Ya-Ping

    2013-01-01

    To ensure the quality of digital simulation game, we utilized the usability evaluation heuristic in the design and development processes of e-café operational management game-based learning material for students. The application of usability evaluations during this study is described. Additionally, participant selection, data collection and…

  15. Characteristics of W-26% Re Target Material(LCC-0103)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunwoo, A.

    2003-10-07

    The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less

  16. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  17. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  18. Criteria Considered in Selecting Feed Items for Americium-241 Oxide Production Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Louis D.

    The analysis in this document serves the purpose of defining a number of attributes in selection of feed items to be utilized in recovery/recycle of Pu and also production operations of 241AmO 2 material intended to meet specification requirements. This document was written in response to a specific request on the part of the 2014 annual program review which took place over the dates of October 28-29, 2014. A number of feed attributes are noted including: (1) Non-interference with existing Pu recovery operations; (2) Content of sufficient 241Am to allow process efficiency in recovery operations; (3) Absence of indications thatmore » 243Am might be mixed in with the Pu/ 241Am material; (4) Absence of indications that Cm might be mixed in with the Pu/ 241Am material; (5) Absence of indications of other chemical elements that would present difficulty in chemical separation from 241Am; (6) Feed material not expected to present difficulty in dissolution; (7) Dose issues; (8) Process efficiency; (9) Size; (10) Hazard associated with items and package configuration in the vault; (11) Within existing NEPA documentation. The analysis in this document provides a baseline of attributes considered for feed materials, but does not presume to replace the need for technical expertise and judgment on the part of individuals responsible for selecting the material feed to be processed. This document is not comprehensive as regards all attributes that could prove to be important. The value of placing a formal QA hold point on accepting feed items versus more informal management of feed items is discussed in the summation of this analysis. The existing planned QA hold points on 241AmO 2 products produced and packaged may be adequate as the entire project is based on QA of the product rather than QA of the process. The probability of introduction of items that would inherently cause the 241AmO 2 products produced to be outside of specification requirements appears to be rather small.« less

  19. Design of space-type electronic power transformers

    NASA Technical Reports Server (NTRS)

    Ahearn, J. F.; Lagadinos, J. C.

    1977-01-01

    Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.

  20. Effects of environmental exposure on cryogenic thermal insulation materials

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Smith, F. J.; Glassford, A. P.; Coleman, J.; Stevenson, D. R.

    1973-01-01

    Investigation was made to optimize selection of insulation materials for reusable space vehicles which will be repeatedly operated over periods of up to ten years. Results of study are summarized in two reports. Volume I describes tests and significant findings. In Volume II, extensive test data obtained are organized in handbook form.

  1. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  2. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    NASA Astrophysics Data System (ADS)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  3. Military Curricula for Vocational & Technical Education. Club Restaurant Operations, Part II, 9-10.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    These programmed instructional materials for part 2 of a secondary-postsecondary subcourse in club management operations are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in civilian settings. This part of the subcourse consists of three lessons and an…

  4. Military Curricula for Vocational & Technical Education. Club Restaurant Operations, Part I, 9-9.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    These reading materials, self-test reviews, and examination for part 1 of a secondary-postsecondary subcourse in club management operations are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in civilian settings. Five lessons focusing on two topics are included…

  5. Development of the Spacecraft Materials Selector Expert System

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.

    2000-01-01

    A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.

  6. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  7. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE PAGES

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  8. A Clonal Selection Algorithm for Minimizing Distance Travel and Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit

    2018-03-01

    The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.

  9. Ruggedized downhole tool for real-time measurements and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Ryan Falcone; Lindblom, Scott C.; Yelton, William G.

    The present invention relates to ruggedized downhole tools and sensors, as well as uses thereof. In particular, these tools can operate under extreme conditions and, therefore, allow for real-time measurements in geothermal reservoirs or other potentially harsh environments. One exemplary sensor includes a ruggedized ion selective electrode (ISE) for detecting tracer concentrations in real-time. In one embodiment, the ISE includes a solid, non-conductive potting material and an ion selective material, which are disposed in a temperature-resistant electrode body. Other electrode configurations, tools, and methods are also described.

  10. RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.

    PubMed

    Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O

    2018-06-06

    Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.

  11. Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.

    2018-04-01

    We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.

  12. Electrochemical cell with powdered electrically insulative material as a separator

    DOEpatents

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  13. System and Method for Monitoring Piezoelectric Material Performance

    NASA Technical Reports Server (NTRS)

    Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)

    2007-01-01

    A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.

  14. Vanderbilt free-electron-laser project in biomedical and materials research. Annual report, 1 February 1987-31 January 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haglund, R.F.; Tolk, N.H.

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the usemore » of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.« less

  15. Managing Asbestos in Place: A Building Owner's Guide to Operations and Maintenance Programs for Asbestos-Containing Materials.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Instructions for building owners on the selection and application of appropriate asbestos control and abatement actions are presented in this guidebook. Chapter 1 offers background information on the asbestos problem. Chapter 2 describes the purpose and scope of an operations and maintenance (O&M) program. The third chapter discusses planning…

  16. Microbiological sampling plan based on risk classification to verify supplier selection and production of served meals in food service operation.

    PubMed

    Lahou, Evy; Jacxsens, Liesbeth; Van Landeghem, Filip; Uyttendaele, Mieke

    2014-08-01

    Food service operations are confronted with a diverse range of raw materials and served meals. The implementation of a microbial sampling plan in the framework of verification of suppliers and their own production process (functionality of their prerequisite and HACCP program), demands selection of food products and sampling frequencies. However, these are often selected without a well described scientifically underpinned sampling plan. Therefore, an approach on how to set-up a focused sampling plan, enabled by a microbial risk categorization of food products, for both incoming raw materials and meals served to the consumers is presented. The sampling plan was implemented as a case study during a one-year period in an institutional food service operation to test the feasibility of the chosen approach. This resulted in 123 samples of raw materials and 87 samples of meal servings (focused on high risk categorized food products) which were analyzed for spoilage bacteria, hygiene indicators and food borne pathogens. Although sampling plans are intrinsically limited in assessing the quality and safety of sampled foods, it was shown to be useful to reveal major non-compliances and opportunities to improve the food safety management system in place. Points of attention deduced in the case study were control of Listeria monocytogenes in raw meat spread and raw fish as well as overall microbial quality of served sandwiches and salads. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  18. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  19. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  20. Fluorine lubricated bearing technology

    NASA Technical Reports Server (NTRS)

    Mallaire, F. R.

    1973-01-01

    An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.

  1. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  2. Green marine products.

    DOT National Transportation Integrated Search

    2010-10-01

    The purpose of this project was to comprehensively assess the sustainability of a selection of : common products and materials for marine applications. The primary goal was to provide marina : owners and patrons who wish to operate more sustainably w...

  3. Post Accident Procedures for Chemicals and Propellants.

    DTIC Science & Technology

    1982-09-01

    METHODS AND PROCEDURES ............ 4-1 4.1 Overview of Emergency Response Procedures " and Resources Available .......................... 4-1 L1 TABLE...7-1 7.1 Criteria forTwelve Critical Operations ........................ 7-1 7.1.1 On-Scene Methods for Identifying the Ingredients...Establishing A Protocol for Selecting the Hazards Mitigation and Cleanup Methods for Single Material Spills and Multiple Materials Mixing

  4. The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.

    2008-01-01

    In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.

  5. Significance of ITER IWS Material Selection and Qualification

    NASA Astrophysics Data System (ADS)

    Mehta, Bhoomi K.; Raval, Jigar; Maheshwari, Abha; Laad, Rahul; Singh, Gurlovleen; Pathak, Haresh

    2017-04-01

    In-Wall Shielding (IWS) is one of the important components of ITER Vacuum Vessel (VV) which fills the space between double walls of VV with cooling water. Procurement Arrangement (PA) for IWS has been signed with Indian Domestic Agency (INDA). Procurement of IWS materials, fabrication of IWS blocks and its delivery to respective Domestic Agency (DA) and ITER Organization (IO) are the main scope of this PA. Hence, INDIA is the only country which is contributing to VV IWS among all seven ITER partners. The main functions of the IWS are to provide Neutron Shielding with blanket, VV shells and water during plasma operations and to reduce ripple of the Toroidal Magnetic Field. To meet these functional requirements IWS blocks are made up of special materials (Borated Steels SS304 B4 & SS304 B7, Ferritic Steels SS 430, Austenitic Steel SS 316 L (N)-IG, XM-19 and Inconel-625) which are qualified, reliable and traceable for the design assessment. The choice of these materials has a significant influence on performance, maintainability, licensing, detailed design parameters and waste disposal. The main reasons for the materials selected for IWS are its high mechanical strength at operating temperatures, water chemistry properties, excellent fabrication characteristics and low cost relative to other similar materials. All the materials are qualified with respect to their respective codes (ASTM/EN standards with additional requirements as described in RCC-MR code 2007) and ITER requirements. Agreed Notified Body (ANB) has control conformity of materials certificates with approved material specification and traceability procedure for Safety Important Component (SIC). The procurement strategy for all the IWS materials has been developed in close collaboration with IO, ANB and Industries as per Product Procurement Specification (PPS). The R&D for sample, bulk material production, testing, inspection and handling as required are carried out by IN DA and IO. At present almost all IWS materials (∼2500 Tons) has been procured by IN DA with spares to manufacture ∼9000 IWS blocks. This paper summarizes IWS material selection, qualification and procurement processes in detail.

  6. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  7. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  8. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  9. A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2010-01-01

    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed

  10. Development of wear resistant ceramic coatings for diesel engine components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  11. Development of wear resistant ceramic coatings for diesel engine components. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  12. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.

    PubMed

    Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2016-12-08

    A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparative study based on physical characteristics of suitable packing materials in biofiltration.

    PubMed

    Dorado, A D; Lafuente, F J; Gabriel, D; Gamisans, X

    2010-02-01

    In the present work, 10 packing materials commonly used as support media in biofiltration are analysed and compared to evaluate their suitability according to physical characteristics. The nature of the packing material in biofilters is an important factor for the success in their construction and operation. Different packing materials have been used in biofiltration without a global agreement about which ones are the most adequate for biofiltration success. The materials studied were chosen according to previous works in the field of biofiltration including both organic and inorganic (or synthetic) materials. A set of nine different parameters were selected to cope with well-established factors, such as a material-specific surface area, pressure drop, nutrient supply, water retentivity, sorption capacity, and purchase cost. One ranking of packing materials was established for each parameter studied in order to define a relative suitability degree. Since biofiltration success generally depends on a combination of the ranked parameters, a procedure was defined to compare packing materials suitability under common situations in biofiltration. The selected scenarios, such as biofiltration of intermittent loads of pollutants and biofiltration of waste gases with low relative humidity, were investigated. The results indicate that, out of the packing materials studied, activated carbons were ranked top of several parameter rankings and were shown to be a significantly better packing material when parameters were combined to assess such selected scenarios.

  14. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  15. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C.

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  16. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  17. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  18. Investigation of lightweight designs and materials for LO2 and LH2 propellant tanks for space vehicles, phase 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Design, analysis, and fabrication studies were performed on nonintegral (suspended) tanks using a representative space tug design. The LH2 and LO2 tank concept selection was developed. Tank geometries and support relationships were investigated using tug design propellant inertias and ullage pressures, then compared based on total tug systems effects. The tank combinations which resulted in the maximum payload were selected. Tests were conducted on samples of membrane material which was processed in a manner simulating production tank fabrication operations to determine fabrication effects on the fracture toughness of the tank material. Fracture mechanics analyses were also performed to establish a preliminary set of allowables for initial defects.

  19. Design and analysis of the radiator structure for space power systems

    NASA Technical Reports Server (NTRS)

    Dauterman, W. H.; Montgomery, L. D.

    1973-01-01

    The design, analysis, fabrication, and development of the 5-kWe radiator structure are shown. Thermal performance, meteoroid protection, structural capability during launch, development testing and space operation, material evaluation, and the configuration selection are described. The fin-tube development program depends on the relative values of the thermal coefficients of expansion. The initial selection of aluminum fins and Type 316 stainless-steel tubes was based on previous experience; however, the large differential in their expansion rates showed that an alternate, more compatible, combination was needed. Copper, stainless-steel-clad copper, boron-impregnated aluminum, and an independent radiator with a titanium structure were all considered as alternate materials. The final selection was Lockalloy fins with Type 304 stainless-steel D tubes.

  20. THz Discrimination of Materials: Development of an Apparatus Based on Room Temperature Detection and Metasurfaces Selective Filters

    NASA Astrophysics Data System (ADS)

    Carelli, P.; Chiarello, F.; Torrioli, G.; Castellano, M. G.

    2017-03-01

    We present an apparatus for terahertz discrimination of materials designed to be fast, simple, compact, and economical in order to be suitable for preliminary on-field analysis. The system working principles, bio-inspired by the human vision of colors, are based on the use of an incoherent source, a room temperature detector, a series of microfabricated metamaterials selective filters, a very compact optics based on metallic ellipsoidal mirrors in air, and a treatment of the mirrors' surfaces that select the frequency band of interest. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods, and grease. We present the system and the obtained results and discuss issues and possible developments.

  1. Methods for Increasing the Material Resistance of the Mulching Tool Body Against its Deformation in Operation

    NASA Astrophysics Data System (ADS)

    Ľuptáčiková, Veronika; Ťavodová, Miroslava

    2017-12-01

    Instruments working in the cultivation of forest areas, for example under the guidance of high stress, are exposed to factors of heterogeneous environment which are soil, wood, various types of rocks, sometimes waste - metal, plastics or glass as well. The mulching tool body, the forging, deforms and worsens rapidly after loss of the WC toe-caps. Currently used tools have a non-heat-treated body material with a ferritic-pearlitic structure that has low abrasion resistance. One of the possibilities is to heat the tool body. Another possibility is to apply suitable welds to exposed areas. By correctly selecting the thermal mode of the tool material or by applying the welded material to the exposed body part of the tool, we can ensure that the tool's operating time is increased.

  2. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  3. Using aspen for artist stretcher frames: adding value through quality service, direct marketing, and careful material selection

    Treesearch

    Chris Polson

    2001-01-01

    Aspen wood, when carefully selected and kiln dried, makes excellent stock for artist stretcher frames. Direct marketing techniques including the Internet and word of mouth give access to national markets, providing a more diverse and stable customer base for operations from a rural area. High-quality service, as shown by product performance and rapid order fulfillment...

  4. Criteria for Selecting Types of Foreign-Language Laboratory Systems. ERIC Focus Reports on the Teaching of Foreign Languages, Number 20.

    ERIC Educational Resources Information Center

    Hutchinson, Joseph C.; Hutchinson, June O.

    Focusing on the current status of the language laboratory in instructional use, this report stresses the need to employ a systems approach in the selection and operation of laboratory equipment. The author points out the interrelatedness of the key factors in any system, including: (1) people, (2) method, (3) instructional materials, (4)…

  5. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  6. Performance study of galactic cosmic ray shield materials

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.

    1994-01-01

    The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.

  7. Application of Absorbable Hemostatic Materials Observed in Thyroid Operation

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan

    2016-05-01

    To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P< 0.05); The satisfaction of patients in the experimental group was significantly higher than that in the control group, the difference was statistically significant in the two groups (P < 0.05); There was no significant difference in the incidence of wound bleeding complications between the study group and the control group (P > 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.

  8. Transmission line design for the lunar environment

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.

    1990-01-01

    How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.

  9. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  10. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE PAGES

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  11. Oxygen fires, materials compatibility and system contaminants

    NASA Astrophysics Data System (ADS)

    Barter, Simon A.; Hillen, Lance W.

    An evaluation is made of aircraft fires initiated by oxygen systems, giving attention to such systems' mechanical design and materials-selection factors. While many oxygen compatibility tests are conducted on single components, operational systems become contaminated through frequent use and occasional abuse; it is therefore essential for the designer to have information about the oxygen compatibility of the entire spectrum of potential contaminants and their various combinations. Valve designs are noted to be especially sensitive to system contamination. Gaseous oxygen fire severity is fundamentally determined by the period of oxygen flow. There is a clear need for an automatic shut-off device which would operate when abnormal flow conditions occur.

  12. Radioactive materials released from nuclear power plants. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  14. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  15. Radioactive materials released from nuclear power plants: Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  16. Radioactive materials released from nuclear power plants: Annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  17. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  18. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, James B.; Honeycutt, Thomas K.; Hubbell, Joel M.

    1996-01-01

    An earthen material hydraulic conductivity determining apparatus includes, a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed.

  19. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, J.B.; Honeycutt, T.K.; Hubbell, J.M.

    1996-05-28

    An earthen material hydraulic conductivity determining apparatus includes: (a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; (b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; (c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and (d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed. 15 figs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, N. E.; Ketchen, E. E.; Porter, W. E.

    For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability,more » toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.« less

  1. Fire Resistant Materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Fire hazard is greater in atmospheres containing a high percentage of oxygen under pressure. NASA intensified its fire safety research after a 1967 Apollo fire. A chemically treated fabric called Durette developed by Monsanto Company, which will not burn or produce noxious fumes, was selected as a material for Apollo astronaut garments. Monsanto sold production rights for this material to Fire Safe Products (FSP). Durette is now used for a wide range of applications such as: sheets, attendants' uniforms in hyperbaric chambers; crew's clothing, furniture and interior walls of diving chambers operated by the U.S. Navy and other oceanographic companies and research organizations. Pyrotect Safety Equipment, Minneapolis, MN produces Durette suits for auto racers, refuelers and crew chiefs from material supplied by FSP. FSP also manufactures Durette bags for filtering gases and dust from boilers, electric generators and similar systems. Durette bags are an alternative to other felted fiber capable of operating at high temperature that cost twice as much.

  2. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  3. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  4. Calibration and evaluation of a dispersant application system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shum, J.S.

    1987-05-01

    The report presents recommended methods for calibrating and operating boat-mounted dispersant application systems. Calibration of one commercially-available system and several unusual problems encountered in calibration are described. Charts and procedures for selecting pump rates and other operating parameters in order to achieve a desired dosage are provided. The calibration was performed at the EPA's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) facility in Leonardo, New Jersey.

  5. Armour Materials for the ITER Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A. R.; ITER Home Teams,

    The selection of the armour materials for the Plasma Facing Components (PFCs) of the International Thermonuclear Experimental Reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-à-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R&D.

  6. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  7. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1991. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations.« less

  8. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  9. Advanced catalyst supports for PEM fuel cell cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Shao, Yuyan; Sun, Junming

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  10. SWEIS annual review - CY2002 : a comparison of CY2002 operations to projections included in the site-wide environmental impact statement for continued operation of Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Linda Sue; White, Brenda Bailey; Guerrero, Joseph Vincent

    2003-10-01

    The SNL/NM CY2002 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: {sm_bullet} An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. {sm_bullet} An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. {sm_bullet} Updated base year activities data, together with related inventories, material consumption, emissions, waste, and resource consumption. {sm_bullet} Appendices summarizing activitiesmore » and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.« less

  11. Development of Chemical Process Design and Control for ...

    EPA Pesticide Factsheets

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  12. Materials safety data sheets the basis for control of toxic chemicals. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, N. E.; Ketchen, E. E.; Porter, W. E.

    For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability,more » toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.« less

  13. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  14. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-04-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less

  15. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, S.C.; Dodge, W.G.; Pollard, R.E.

    1983-10-12

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  16. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, Samuel C.; Dodge, William G.; Pollard, Roy E.

    1984-01-01

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  17. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  18. Modeling and Advanced Control for Sustainable Process ...

    EPA Pesticide Factsheets

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.

  19. Durability of symmetric-structured metal-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.

    2017-11-01

    Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.

  20. Development of improved pyroelectric detectors. Measurements of pyroelectric material characteristics and FET characteristics

    NASA Technical Reports Server (NTRS)

    Weiner, S.; Beerman, H. P.; Schwarz, F. C.

    1990-01-01

    Research was undertaken to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation were undertaken: (1) to improve responsivity through the use of new materials; and (2) to reduce noise through improved field effect transistor characteristics, and improved electroding of the pyroelectric material. FET's are being obtained from various manufacturers, evaulated, and selected units tested for evaluation of characteristics critical to their use as preamplifiers with pyroelectric detectors.

  1. School Media Centers: A Handbook for Elementary Librarians.

    ERIC Educational Resources Information Center

    Baer, Eleanora A.

    Standard procedures for organizing and operating elementary school media centers are presented in simplified form in this handbook for librarians. Topics covered include media selection, supplies, acquisition procedure, accessioning, classification, cataloging (both books and non-book printed materials), printed catalog cards, filing rules,…

  2. 23 CFR 635.411 - Material or product selection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... is used for research or for a distinctive type of construction on relatively short sections of road... quality and equally acceptable on the basis of engineering analysis and the anticipated prices for the...

  3. 23 CFR 635.411 - Material or product selection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... is used for research or for a distinctive type of construction on relatively short sections of road... quality and equally acceptable on the basis of engineering analysis and the anticipated prices for the...

  4. Hard Facts.

    ERIC Educational Resources Information Center

    Shaw, Richard

    1998-01-01

    Discusses the selection of floor-care equipment so that the equipment's features and performance attributes can match their intended purposes. Offers tips such as buying only composite-material buckets and wringers, choosing cleaning machines with good maintenance track records, and buying automatic scrubbers that can operate in both large and…

  5. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  6. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  7. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  8. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  9. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  10. Radioactive materials released from nuclear power plants. Annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  11. Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  12. Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  14. Guidelines for Selecting Control and Treatment Options for Contaminated Dredged Material.

    DTIC Science & Technology

    1986-09-01

    application of the DMASS to selection of control/treatment alternatives. The Totem Ocean Trailer Express Terminal Project in the Blair Waterway was...resuspension to a minimum. Limitations may be placed on levels of suspended solids when even normal dredging operations occur around public areas or coral ... reefs or during certain periods in the life cycle of a specific marine species (Lunz, Clark, and Fredette 1984). However, the major problems from

  15. Electron Microscopy and Image Analysis for Selected Materials

    NASA Technical Reports Server (NTRS)

    Williams, George

    1999-01-01

    This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.

  16. Space radioisotope power source requirements update and technology status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decisionmore » will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime, compatibility and performance with the AMTEC beta prime Alumina, the TiN electrodes, the sodium and the molybdenum current collectors. AMTEC cell components and cells will be built with the baseline containment materials and brazes and tested to determine the performance as a function of temperature. These containment materials will be also be tested with all the other AMTEC components to determine acceleration factors needed to predict AMTEC performance degradation and failure as a function of operating time at temperature.« less

  17. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  18. The impact of materials technology and operational constraints on the economics of cruise speed selection

    NASA Technical Reports Server (NTRS)

    Clauss, J. S., Jr.; Bruckman, F. A.; Horning, D. L.; Johnston, R. H.; Werner, J. V.

    1981-01-01

    Six material concepts at Mach 2.0 and three material concepts at Mach 2.55 were proposed. The resulting evaluations, based on projected development, production, and operating costs, indicate that aircraft designs with advanced composites as the primary material ingredient have the lowest fare premiums at both Mach 2.0 and 2.55. Designs having advanced metallics as the primary material ingredient are not economical. Advanced titanium, employing advanced manufacturing methods such as SFF/DB, requires a fare premium of about 30 percent at both Mach 2.0 and 2.55. Advanced aluminum, usable only at the lower Mach number, requires a fare premium of 20 percent. Cruise speeds in the Mach 2.0-2.3 regime are preferred because of the better economics and because of the availability of two material concepts to reduce program risk - advanced composites and advanced aluminums. This cruise speed regime also avoids the increase in risk associated with the more complex inlets and airframe systems and higher temperature composite matrices required at the higher Mach numbers typified by Mach 2.55.

  19. Materials properties numerical database system established and operational at CINDAS/Purdue University

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.; Li, H. H.

    1989-01-01

    A computerized comprehensive numerical database system on the mechanical, thermophysical, electronic, electrical, magnetic, optical, and other properties of various types of technologically important materials such as metals, alloys, composites, dielectrics, polymers, and ceramics has been established and operational at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University. This is an on-line, interactive, menu-driven, user-friendly database system. Users can easily search, retrieve, and manipulate the data from the database system without learning special query language, special commands, standardized names of materials, properties, variables, etc. It enables both the direct mode of search/retrieval of data for specified materials, properties, independent variables, etc., and the inverted mode of search/retrieval of candidate materials that meet a set of specified requirements (which is the computer-aided materials selection). It enables also tabular and graphical displays and on-line data manipulations such as units conversion, variables transformation, statistical analysis, etc., of the retrieved data. The development, content, accessibility, etc., of the database system are presented and discussed.

  20. 47 CFR 76.1512 - Programming information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1512 Programming information. (a) An open video system operator shall not unreasonably discriminate in favor of itself or its affiliates... for the purpose of selecting programming on the open video system, or in the way such material or...

  1. 47 CFR 76.1512 - Programming information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1512 Programming information. (a) An open video system operator shall not unreasonably discriminate in favor of itself or its affiliates... for the purpose of selecting programming on the open video system, or in the way such material or...

  2. 47 CFR 76.1512 - Programming information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1512 Programming information. (a) An open video system operator shall not unreasonably discriminate in favor of itself or its affiliates... for the purpose of selecting programming on the open video system, or in the way such material or...

  3. 47 CFR 76.1512 - Programming information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1512 Programming information. (a) An open video system operator shall not unreasonably discriminate in favor of itself or its affiliates... for the purpose of selecting programming on the open video system, or in the way such material or...

  4. An Analysis of the Selected Materials Used in Step Measurements During Pre-Fits of Thermal Protection System Tiles and the Accuracy of Measurements Made Using These Selected Materials

    NASA Technical Reports Server (NTRS)

    Kranz, David William

    2010-01-01

    The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.

  5. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    NASA Astrophysics Data System (ADS)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  6. Measurement of physical characteristics of materials by ultrasonic methods

    DOEpatents

    Lu, Wei-yang; Min, Shermann

    1998-01-01

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc.

  7. Measurement of physical characteristics of materials by ultrasonic methods

    DOEpatents

    Lu, W.Y.; Min, S.

    1998-09-08

    A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc. 14 figs.

  8. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  9. Quartz Crystal Microbalance Operation and In Situ Calibration

    NASA Technical Reports Server (NTRS)

    Albyn, K. C.

    2004-01-01

    Quartz crystal microbalances (QCMs) are commonly used to measure the rate of deposition of molecular species on a surface. The measurement is often used to select materials with a low outgassing rate for applications where the material has a line of sight to a contamination-sensitive surface. A quantitative, in situ calibration of the balance, or balances, using a pure material for which the enthalpy of sublimation is known, is described in this Technical Memorandum. Supporting calculations for surface dwell times of deposited materials and the effusion cell Clausing factor are presented along with examples of multiple QCM measurements of outgassing from a common source.

  10. Landfill mining: Development of a cost simulation model.

    PubMed

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.

  11. Formation and characterization of mullite fibers produced by inviscid melt-spinning

    NASA Astrophysics Data System (ADS)

    Xiao, Zhijun

    IMS is a technique used to form fibers from low viscosity melts by means of stream stabilization in a reactant gas, in this case propane. Mullite (3Alsb2Osb3*2SiOsb2) was selected as the material to be fiberized. A stable mullite melt was obtained at 2000sp°C. Some short fibers and shot were formed in the fiber forming experiments. Crucible material selection is a prerequisite for proper application of the IMS technique. The effect of two crucible materials-graphite and boron nitride were studied. A carbothermal reaction occurred between the mullite melt and the graphite crucible. Boron nitride was selected as the crucible material because a relatively stable melt could be obtained. Operating environment is another factor that affects IMS mullite fiber formation. The effects of vacuum, nitrogen and argon on mullite melting behavior were studied. Argon gas was selected as the operating environment. A 2sp3 factorial design was developed to study the effect of such variables as temperature, holding time at the temperature, and heating rate on mullite melting behavior. The effects of the variables and interactions were calculated. Temperature has the biggest positive effect, holding time is the second, heating rate just has a very small negative effect. A detailed investigation of the mullite decomposition mechanism and kinetics was conducted in this work. A solid reaction mechanism was proposed. The kinetic results and IR analysis support the proposed mechanism. The carbon source inside the furnace led to the decomposition of mullite. A feasible experimental technique was developed to prevent the decomposition of mullite. The experiments with this design completely controlled the mullite decomposition. The short fibers, shot and some side products formed in the fiber forming experiments were characterized using XRD, XRF and SEM-EDS. The composition of the short fiber and shot was in the range of mullite composition. XRD showed that the diffraction pattern of shot is that of mullite.

  12. Pathfinder Teaching and Learning Units.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Sea Grant Program.

    This collection of teaching units were selected from materials developed during the Operation Pathfinder Institutes (OPI) which took place in the Pacific region between 1994 and 1999. The institutes were intended to provide upper elementary and middle school science teachers with an opportunity to develop a deeper understanding of the marine…

  13. Project Operation Index: An Approach to Content Analysis and Indexing of Videotapes.

    ERIC Educational Resources Information Center

    Ontario Educational Communications Authority, Toronto. Research and Planning Branch.

    Three projects, each covering certain selected aspects of a potential information storage and retrieval system, were part of a study by the Ontario Educational Communications Authority (OECA) to explore various means for extending the usefulness of audiovisual materials. Project Dataset began the collection, classification, and cataloging of…

  14. California Library Laws, 2008

    ERIC Educational Resources Information Center

    Smith, Paul G., Ed.

    2008-01-01

    "California Library Laws 2008" is a selective guide to state laws and related materials that most directly affect the everyday operations of public libraries and organizations that work with public libraries. It is intended as a convenient reference, not as a replacement for the annotated codes or for legal advice. The guide is organized…

  15. Coherent systems in the terahertz frequency range: Elements, operation, and examples

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    1992-01-01

    The topics are presented in viewgraph form and include the following: terahertz coherent systems applications; a brief overview of selected components; radiometry and spectroscopy--astronomy; radiometry--aircraft all weather landing system; radiometry--atmospheric remote sensing; plasma diagnostics; communications; radar systems; and materials measurement and manufacturing process control.

  16. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  17. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    NASA Astrophysics Data System (ADS)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  18. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less

  19. Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  20. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  1. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less

  2. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Abramczyk, G.; Bellamy, S.

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping packagemore » results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.« less

  3. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  4. Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode

    PubMed Central

    Khan, Asif Ali; Habiba, Umme; Khan, Anish

    2009-01-01

    Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082

  5. Premium quality 5A1-2.5 Sn ELI titanium production

    NASA Technical Reports Server (NTRS)

    Dessau, P. P.; Harris, C. L.

    1972-01-01

    Preliminary design and reliability analysis conducted on the turbopump for the NERVA 75,000 full flow cycle engine, indicated that the turbopump bearings were the most critical turbopump parts in meeting the 10 hour life at the required turbopump reliability of .99978. The analysis revealed that significant reductions (approximately a factor of 3.25) in bearing loads would be achieved by fabricating the rotating parts from titanium in lieu of A286 or 718. This is basically due to the difference in density of the materials and the resulting mass effect on the location of the first and second stick mode critical speeds. For the selected rotor configuration, the lighter material has a first critical speed at approximately 36,000 rpm, while that of the heavier material has a first critical at approximately 27,000 rpm. As the operating range of the turbopump is from 0 to 30,000 rpm, the heavier material would have a stick mode critical in the operating range.

  6. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  7. Annual radiological environmental operating report: Browns Ferry Nuclear Plant, 1992. Operations Services/Technical Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public.« less

  8. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  9. Garment selection for cleanrooms and controlled environments for spacecraft

    NASA Astrophysics Data System (ADS)

    Watts, Ethel J.

    Strict contamination control practices are exercised throughout the lifetime of a spacecraft in order to satisfy the performance requirements of the system. Spacecraft materials are carefully selected to have low outgassing values and particulate deposition. Parts are cleaned, and the vehicle is assembled in cleanrooms and work stations having controlled environments. Specifications are examined which govern the selection of special items of clothing designed to protect spacecraft from contaminants released by personnel and by garments. Special clothing includes coveralls, footwear, and head/face covers. Garments appropriate for both hazardous (meltproof as well as flame resistant), and nonhazardous operations are described.

  10. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Kyei-Sing; Bennett, James P.

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  11. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE PAGES

    Kwong, Kyei-Sing; Bennett, James P.

    2016-11-25

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  12. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexandr

    2013-10-01

    In the last several years, there has been an increased interest in the use of high-temperature molten salt fluorides in nuclear power systems. For all molten salt reactor designs, materials selection is a very important issue. This paper summarizes results, which led to selection of materials for molten salt reactors in Russia. Operating experience with corrosion thermal convection loops has demonstrated good capability of the “nickel-molybdenum alloys + fluoride salt fueled by UF4 and PuF3 + cover gas” system up to 750 °C. A brief description is given of the container material work in progress. Tellurium corrosion of Ni-based alloys in stressed and unloaded conditions studies was also tested in different molten salt mixtures at temperatures up to 700-750 °C, also with measurement of the redox potential. HN80MTY alloy with 1% added Al is the most resistant to tellurium intergranular cracking of Ni-base alloys under study.

  13. Remote activation of a microactuator using a photo-responsive nanoparticle-polymer composite

    NASA Astrophysics Data System (ADS)

    Zeberoff, Anthony

    Stimulus response materials are a class of novel materials that are currently being explored in various technologies, including biomedical devices and components, food packaging, fabrics, energy harvesting and conversion, and other elementary components such as sensors and actuators. Hybrid organic-inorganic materials such as nanoparticle-polymer composites are attractive candidates as their properties can be significantly tuned for particular applications where selectivity and localized responses are critical factors. In this work we developed and optimized a photo-responsive microactuator that can operate selectively to a specific wavelength of light. The photo-responsive microactuator is comprised of monodispersed microspheres that contain gold nanoparticles. Upon irradiation, these microspheres transduce optical energy to thermal energy, driving a localized phase change in the matrix in which they are embedded. Our remotely powered microactuator can be further realized in applications where decoupling the physical connection of the energy/control source from the actuating component is necessary.

  14. Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing

    NASA Technical Reports Server (NTRS)

    Fairbourn, Brad

    1999-01-01

    ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.

  15. Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates.

    PubMed

    Middey, S; Meyers, D; Kareev, M; Cao, Yanwei; Liu, X; Shafer, P; Freeland, J W; Kim, J-W; Ryan, P J; Chakhalian, J

    2018-04-13

    Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO_{3}. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.

  16. Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates

    NASA Astrophysics Data System (ADS)

    Middey, S.; Meyers, D.; Kareev, M.; Cao, Yanwei; Liu, X.; Shafer, P.; Freeland, J. W.; Kim, J.-W.; Ryan, P. J.; Chakhalian, J.

    2018-04-01

    Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO3 . Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.

  17. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  18. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  19. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Hilary Beatrix

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector.more » Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.« less

  20. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  1. Future materials requirements for the high-energy-intensity production of aluminum

    NASA Astrophysics Data System (ADS)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  2. Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  3. Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  4. Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  5. Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell

    DOEpatents

    Cooper, Tom O.; Miller, William E.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  6. Investigation of lightweight designs and materials for LO2 and LH2 propellant tanks for space vehicles, phase 2 and phase 3

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Full size Tug LO2 and LH2 tank configurations were defined, based on selected tank geometries. These configurations were then locally modeled for computer stress analysis. A large subscale test tank, representing the selected Tug LO2 tank, was designed and analyzed. This tank was fabricated using procedures which represented production operations. An evaluation test program was outlined and a test procedure defined. The necessary test hardware was also fabricated.

  7. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  8. The X-ray spectrographic telescope. [for solar corona observation

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Krieger, A. S.; Petrasso, R.; Silk, J. K.; Timothy, A. F.

    1974-01-01

    The S-054 X-ray telescope, which operated successfully throughout the eight-month Skylab mission, is a grazing incidence instrument with a spatial resolution of the order of 2 arc sec on axis. The total wavelength range observed by the instrument is 2 to 60 A. Crude spectral resolution within this range is achieved by means of a series of six X-ray filter materials. A spectrographic mode of operation, employing an objective grating, is used to obtain spectra of flare events and selected coronal features.

  9. Robustness. [in space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    1993-01-01

    The concept of rubustness includes design simplicity, component and path redundancy, desensitization to the parameter and environment variations, control of parameter variations, and punctual operations. These characteristics must be traded with functional concepts, materials, and fabrication approach against the criteria of performance, cost, and reliability. The paper describes the robustness design process, which includes the following seven major coherent steps: translation of vision into requirements, definition of the robustness characteristics desired, criteria formulation of required robustness, concept selection, detail design, manufacturing and verification, operations.

  10. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  11. Mechanical Harvesting of Aquatic Plants. Report 2. Evaluation of Selected Handling Functions of Mechanical Control.

    DTIC Science & Technology

    1980-06-01

    with the extracted plants. Pusher boats were used to feed the plants into the throat of the conveyor where they were then pulled onto the conveyor by...technique or variations of it that involve extracting from the river periodically on the Withlacoochee River or similar rivers, requires 48 that operations...way to readily estimate the land area required to stockpile the large volumes of material that must be extracted from the water in many operational

  12. Time-dependent constitutive modeling of drive belts—II. The effect of the shape of material retardation spectrum on the strain accumulation process

    NASA Astrophysics Data System (ADS)

    Zupančič, B.; Emri, I.

    2009-11-01

    This is the second paper in the series addressing the constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of such belts certain segments of the belt structure are loaded via tooth-like cyclical loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation (incrementation) process occurs. It was shown that the location of a critical rotation speed strongly depends on the distribution (shape) of the retardation spectrum, whereas the magnitude of the accumulated strain is governed by the strength of the corresponding spectrum lines. These interrelations are extremely non-linear. The strain accumulation process is most intensive at the beginning of the drive belt operation, and is less intensive for longer belts. The strain accumulation process is governed by the spectrum lines that are positioned within a certain region, which we call the Strain Accumulation Window (SAW). An SAW is always located to the right of the spectrum line, L i , at log ( ω λ i )=0, where ω is the operational angular velocity. The width of the SAW depends on the width of the material spectrum. Based on the following analysis a new designing criterion is proposed for use in engineering applications for selecting a proper material for general drive-belt operations.

  13. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part I: energy consumption and CO2 emissions.

    PubMed

    Coelho, André; de Brito, Jorge

    2013-05-01

    This work is a part of a wider study involving the economic and environmental implications of managing construction and demolition waste (CDW), focused on the operation of a large scale CDW recycling plant. This plant, to be operated in the Lisbon Metropolitan Area (including the Setúbal peninsula), is analysed for a 60 year period, using primary energy consumption and CO2eq emission impact factors as environmental impact performance indicators. Simplified estimation methods are used to calculate industrial equipment incorporated, and the operation and transport related impacts. Material recycling--sorted materials sent to other industries, to act as input--is taken into account by discounting the impacts related to industrial processes no longer needed. This first part focuses on calculating the selected impact factors for a base case scenario (with a 350 tonnes/h installed capacity), while a sensitivity analysis is provided in part two. Overall, a 60 year global primary energy consumption of 71.4 thousand toe (tonne of oil equivalent) and a total CO2eq emission of 135.4 thousand tonnes are expected. Under this operating regime, around 563 thousand toe and 1465 thousand tonnes CO2eq could be prevented by replacing raw materials in several construction materials industries (e.g.: ferrous and non-ferrous metals, plastics, paper and cardboard). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Electrically tunable materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-01

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  15. Fabrication of highly selective tungsten oxide ammonia sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llobet, E.; Molas, G.; Molinas, P.

    Tungsten oxide is shown to be a very promising material for the fabrication of highly selective ammonia sensors. Films of WO{sub 3} were deposited onto a silicon substrate by means of the drop-coating method. Then, the films were annealed in dry air at two different temperatures (300 and 400 C). X-ray photoelectron spectroscopy was used to investigate the composition of the films. Tungsten appeared both in WO{sub 2} and WO{sub 3} oxidation states, but the second state was clearly dominant. Scanning electron microscopy results showed that the oxide was amorphous or nanocrystalline. The WO{sub 3}-based devices were sensitive to ammoniamore » vapors when operated between 250 and 350 C. The optimal operating temperature for the highest sensitivity to ammonia was 300 C. Furthermore, when the devices were operated at 300 C, their sensitivity to other reducing species such as ethanol, methane, toluene, and water vapor was significantly lower, and this resulted in a high selectivity to ammonia. A model for the sensing mechanisms of the fabricated sensors is proposed.« less

  16. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less

  17. Development of new materials for turbopump bearings

    NASA Technical Reports Server (NTRS)

    Maurer, R. E.; Pallini, R. A.

    1985-01-01

    The life requirement for the angular contact ball bearings in the Space Shuttle Main Engine (SSME) high pressure oxygen turbopump (HPOTP) is 7.5 hours. In actual operation, significantly shorter service life was experienced. The objective is to identify bearing materials and/or materials processing techniques offering signficant potential for extending HPOTP bearing performance life. Interactive thermomechanical analysis of the HPOTP bearing-shaft system was performed with the SHABERTH computer program. Bearing fatigue life, ball-race contact stress, heat generation rate, bulk ring temperatures and circumferential stress in the inner rings were quantified as functions of radial load, thrust load and ball-race contact friction. Criteria established from the output of this analysis are being used for material candidate selection.

  18. Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1972-01-01

    Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.

  19. Anaerobic Digestion. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Townsend, Robert D., Comp.

    Focusing specifically on the wastewater treatment process of anaerobic digestion, this document identifies instructional and reference materials for use by professionals in the field in the development and implementation of new programs or in the updating of existing programs. It is designed to help trainers, plant operators, educators, engineers,…

  20. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stress for the material shall not exceed that corresponding to the saturated steam temperature at drum... normal rated operating condition. In both cases, the value of allowable stress shall be selected using a... hot water for heating systems may not exceed 375 °F. (i) Where positive shutoff valves are fitted in...

  1. Outsourcing Cataloging, Authority Work, and Physical Processing: A Checklist of Considerations.

    ERIC Educational Resources Information Center

    Kascus, Marie A., Ed.; Hale, Dawn, Ed.

    Due to automation technology, financial restrictions, and resultant downsizing, library managers have increasingly relied on the services of contractors, rather than in-house staff, to accomplish different technical services operations. Contracted services may range from a small project for a selected group of materials to a large project for…

  2. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  3. California Library Laws, 2009

    ERIC Educational Resources Information Center

    Smith, Paul G., Ed.

    2009-01-01

    California Library Laws 2009 is a selective guide to state laws and related materials that most directly affect the everyday operations of public libraries and organizations that work with public libraries. It is intended as a convenient reference, not as a replacement for the annotated codes or for legal advice. The guide is organized as follows.…

  4. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  5. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  6. Use of Thermoset Composite Materials in Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Diaz, V.; Cardone, T.; Ramusat, G.

    2014-06-01

    To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.

  7. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  8. Selective laser vaporization of polypropylene sutures and mesh

    NASA Astrophysics Data System (ADS)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  9. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  10. Design and development of pressure and repressurization purge system for reusable space shuttle multilayer insulation system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental determination of purge bag materials properties, development of purge bag manufacturing techniques, experimental evaluation of a subscale purge bag under simulated operating conditions and the experimental evaluation of the purge pin concept for MLI purging are discussed. The basic purge bag material, epoxy fiberglass bounded by skins of FEP Teflon, showed no significant permeability to helium flow under normal operating conditions. Purge bag small scale manufacturing tests were conducted to develop tooling and fabrication techniques for use in full scale bag manufacture. A purge bag material layup technique was developed whereby the two plys of epoxy fiberglass enclosed between skins of FEP Teflon are vacuum bag cured in an oven in a single operation. The material is cured on a tool with the shape of a purge bag half. Plastic tooling was selected for use in bag fabrication. A model purge bag 0.6 m in diameter was fabricated and subjected to a series of structural and environmental tests simulating various flight type environments. Pressure cycling tests at high (450 K) and low (200 K) temperature as well as acoustic loading tests were performed. The purge bag concept proved to be structurally sound and was used for the full scale bag detailed design model.

  11. Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony

    The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of whichmore » is lined by CrO 4 2- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO 4 2- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing. B.S. acknowledges the National Science Foundation (Award No. CHE-1152362), including support from the Major Research Instrumentation Program (Award No CHE-1531590), the computational resources that were made available by a XSEDE Grant (No. TG-DMR090028), and the use of the services provided by Research Computing at the University of South Florida. We (P.K.T) thank the US Department of Energy (DOE), Office of Nuclear Energy for adsorption and breakthrough measurements. We (P.K.T) particularly thank J. Bresee, Kimberly Gray, T. Todd (Idaho National Laboratory), John Vienna (PNNL), B. Jubin (Oak Ridge National Laboratory) and D.M. Strachan (Strachan LLC) for providing programmatic support and guidance. Pacific Northwest National Laboratory is a multi-program national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. M.J.Z. gratefully acknowledges Science Foundation Ireland (Award 13/RP/B2549) for support. This research used Beamline 17-BM of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.« less

  12. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  13. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors—An Issue of Design for Manufacturability

    PubMed Central

    Santo Zarnik, Marina; Belavic, Darko; Novak, Franc

    2015-01-01

    An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386

  14. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOEpatents

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  15. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  16. Surface Coatings for Gas Detection via Porous Silicon

    NASA Astrophysics Data System (ADS)

    Ozdemir, Serdar; Li, Ji-Guang; Gole, James

    2009-03-01

    Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. The fabricated porous silicon (PS) gas sensors display the advantages of operation at room temperature as well as at a single, readily accessible temperature with an insensitivity to temperature drift; operation in a heat-sunk configuration, ease of coating with gas-selective materials; low cost of fabrication and operation, and the ability to rapidly assess false positives by operating the sensor in a pulsed mode. The PS surface has been modified with unique coatings on the basis of a general theory in order to achieve maximum sensitivity and selectivity. Sensing of NH3, NOx and PH3 at or below the ppm level have been observed. A typical PS nanostructure coated microstructured hybrid configuration when coated with tin oxide (NOx, CO) and gold nanostructures (NH3) provides a greatly increased sensitivity to the indicated gases. Al2O3 coating of the porous silicon using atomic layer deposition and its effect on PH3 sensing has been investigated. 20-100 nm TiO2 nanoparticles have been produced using sol-gel methods to coat PS surfaces and the effects on the selectivity and the sensitivity have been studied.

  17. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  18. Electrically tunable materials for microwave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability aremore » important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.« less

  19. Parametric study of laminated composite material shaft of high speed rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Thimothy Harold; Kumar, G. C. Mohan; Ramesh, M. R.

    2018-04-01

    In this paper some of the important parameters that influence the effectiveness of composite material shaft of high speed rotor-bearing system on rotor dynamics are analyzed. The type of composite material composition, the number of layers along with their stacking sequences are evaluated as they play an important role in deciding the best configuration suitable for the high-speed application. In this work the lateral modal frequencies for five types of composite materials shaft of a high-speed power turbine rotor-bearing system and stresses due to operating torque are evaluated. The results are useful for the selection of right combination of material, number of layers and their stacking sequences. The numerical analysis is carried out using the ANSYS Rotor dynamic analysis features.

  20. Dense ceramic membranes for converting methane to syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, U.; Dusek, J.T.; Picciolo, J.J.

    1995-07-01

    Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less

  1. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  2. Read for Fun: Management Program.

    ERIC Educational Resources Information Center

    Miner, Donna

    Program materials and a brief description of a remedial reading program for grades 3-6 which uses contests to motivate reading at home are presented. The program uses bulletin board displays to keep track of student progress in the contests. The contests operate as follows: (1) students select a name for their figure on the bulletin board; (2)…

  3. General aviation components. [performance and capabilities of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is presented of selected aviation vehicles. The capabilities and performance of these vehicles are first presented, followed by a discussion of the aerodynamics, structures and materials, propulsion systems, noise, and configurations of fixed-wing aircraft. Finally the discussion focuses on the history, status, and future of attempts to provide vehicles capable of short-field operations.

  4. 16 CFR 1630.61 - Hide carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... normally used for that type of carpet or rug in service. (b) On February 10, 1972 (37 FR 3010) the Federal... 2″ in diameter and 9″ long composed of nonabsorbant material such as glass or plastic. (4) Select... remove all excess water and wrap around the operating applicator. (7) Immediately with light pressure...

  5. 16 CFR 1631.61 - Hide carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... normally used for that type of carpet or rug in service. (b) On February 10, 1972 (37 FR 3010) the Federal... 2″ in diameter and 9″ long composed of nonabsorbent material such as glass or plastic. (4) Select... remove all excess water and wrap around the operating applicator. (7) Immediately, with light pressure...

  6. Translations on Vietnam. Number 1892. Material on the Fourth Vietnam Workers Party Congress (Selected Speeches)

    DTIC Science & Technology

    1977-02-24

    the 17 political struggle against the enemy’s conscription of troops, fight the enemy in their strongholds in Saigon, Hue and Da Nang and...and feudaL cultures. The state-operated cultural and art units and the cinematography sector must be the main force units in the establishment and

  7. Tissue culture of conifer seedlings-20 years on: Viewed through the lens of seedling quality

    Treesearch

    Steven C. Grossnickle

    2011-01-01

    Operational vegetative propagation systems provide a means of bringing new genetic material into forestry programs through the capture of a greater proportion of the genetic gain inherent within a selected tree species. Vegetative propagation systems also provide a method for multiplying superior varieties and/or families identified in tree improvement programs. Twenty...

  8. Youth, AIDS, and HIV: Resources for Educators and Policymakers, 1995. Bulletin 95244. Revised.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This directory lists selected national, state, and local resources, and provides an annotated listing of various materials for AIDS education and HIV prevention. Telephone numbers and hours of operation are provided for national, state, and local resources--a brief statement of each agency's purview is also given. Annotated resources are divided…

  9. Prevention and suppression of metal packing fires.

    PubMed

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  10. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  11. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  12. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  13. Investigating the Evolution of Progressive Die Wear on Uncoated Dp1180 Steel in Production Environment

    NASA Astrophysics Data System (ADS)

    Wu, W.; Zhou, D. J.; Adamski, D. J.; Young, D.; Wang, Y. W.

    2017-09-01

    A study of die wear was performed using an uncoated dual phase, 1,180 MPa ultimate tensile strength steel (DP1180) in a progressive die. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for forming operations on uncoated DP1180 steel and update OEM’s die standards based on the experimental results in the real production environment. In total, 100,800 hits were performed in manufacturing production conditions, where 33 die inserts with the combination of 10 die materials and 9 coatings were investigated. The die inserts were evaluated for surface wear using scanning electron microscopy and characterized in terms of die material and/or coating defects, failure mode, failure initiation and propagation. Surface roughness of the formed parts was characterized using a WYKO NT110 machine. The analytical analysis of the die inserts and formed parts, combined with the failure mode and service life, provide a basis for die material and coating selection for forming AHSS components. The conclusions of this study will guide the selection of die material and coatings for high-volume production of AHSS components.

  14. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    NASA Astrophysics Data System (ADS)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  15. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The preliminary design of bearings for the control system of a high-temperature lithium-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.

    1973-01-01

    The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.

  17. Modeling the Supply Process Using the Application of Selected Methods of Operational Analysis

    NASA Astrophysics Data System (ADS)

    Chovancová, Mária; Klapita, Vladimír

    2017-03-01

    Supply process is one of the most important enterprise activities. All raw materials, intermediate products and products, which are moved within enterprise, are the subject of inventory management and by their effective management significant improvement of enterprise position on the market can be achieved. For that reason, the inventory needs to be managed, monitored, evaluated and affected. The paper deals with utilizing the methods of the operational analysis in the field of inventory management in terms of achieving the economic efficiency and ensuring the particular customer's service level as well.

  18. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa, showed that there is an interaction between the small amount of oxygen present in the Mars gas and the alloy when there is a scratch that removes the protective aluminum oxide film. Further studies are needed to consider many other important components of the Mars environment that can affect this interaction such as: the effect of oxidants, the effect of radiation on their oxidizing properties and the possible catalytic effects of the clays present in the Martian regolith. The results of this one-year project provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

  19. The Design and Construction Process of a Test Stand for Casting the Power Steering’S Housing with the Use of the Pdcpd Material

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2018-01-01

    The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.

  20. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-23

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented themore » relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.« less

  1. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO4 material phase transformations in direct methanol synthesis from methane

    NASA Astrophysics Data System (ADS)

    Dasireddy, Venkata D. B. C.; Khan, Faiza B.; Hanzel, Darko; Bharuth-Ram, Krish; Likozar, Blaž

    2017-11-01

    The effect of the FePO4 material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O2, H2O and N2O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO4 (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe2P2O7, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  2. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  3. Seeding materials: Health and safety considerations

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1985-01-01

    The choice of a proper seeding material for laser velocimeters must include health and safety considerations. Failure to do so can lead to catastrophic results. All materials are toxic, and laser velocimeter seeding materials are no exception. Toxicity may be considered an inherent property of a given material. The manifestation of that property or the physiological response to the material is dependent on dose and exposure conditions. An approximate physiological classification of toxicity is given in tablular form. Toxicity in some situations is not necessarily the most restrictive factor in selection of materials. It is also very important to consider how the material is used so that actual exposure to the material in a damaging form can result. For example, nickel and cadmium are both extremely toxic as systemic poisons and in the case of nickel as a carcinogen. Seeding materials are dispersed in air under conditions that favor personnel exposure. Dispersal equipment is frequently if not normally manned, and personnel are often required to make frequent adjustments to assure proper operations.

  4. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    PubMed

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  5. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].

    PubMed

    Lu, Qi; Yu, Binsheng

    2016-09-08

    To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.

  6. Mimicking electrodeposition in the gas phase: a programmable concept for selected-area fabrication of multimaterial nanostructures.

    PubMed

    Cole, Jesse J; Lin, En-Chiang; Barry, Chad R; Jacobs, Heiko O

    2010-05-21

    An in situ gas-phase process that produces charged streams of Au, Si, TiO(2), ZnO, and Ge nanoparticles/clusters is reported together with a programmable concept for selected-area assembly/printing of more than one material type. The gas-phase process mimics solution electrodeposition whereby ions in the liquid phase are replaced with charged clusters in the gas phase. The pressure range in which the analogy applies is discussed and it is demonstrated that particles can be plated into pores vertically (minimum resolution 60 nm) or laterally to form low-resistivity (48 microOmega cm) interconnects. The process is applied to the formation of multimaterial nanoparticle films and sensors. The system works at atmospheric pressure and deposits material at room temperature onto electrically biased substrate regions. The combination of pumpless operation and parallel nozzle-free deposition provides a scalable tool for printable flexible electronics and the capability to mix and match materials.

  7. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  8. Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates

    DOE PAGES

    Middey, S.; Meyers, D.; Kareev, M.; ...

    2018-04-09

    Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less

  9. Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, S.; Meyers, D.; Kareev, M.

    Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less

  10. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.

    PubMed

    Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto

    2008-03-01

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  11. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  12. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.

    PubMed

    Zeis, Roswitha

    2015-01-01

    The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.

  13. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    PubMed Central

    2015-01-01

    Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy. PMID:25671153

  14. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE PAGES

    Xing, Q.

    2016-07-11

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  15. Information or resolution: Which is required from an SEM to study bulk inorganic materials?

    PubMed

    Xing, Q

    2016-11-01

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. The electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energy-dispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. For an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly improve the usability of the SEM. SCANNING 38:864-879, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  16. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Q.

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  17. Chemical analyses of elutriates, native water, and bottom material from the Chetco, Rogue, and Columbia rivers in western Oregon

    USGS Publications Warehouse

    Fuhrer, Gregory J.

    1984-01-01

    Chemical analyses of elutriates, bottom sediment, and water samples for selected metals, nutrients and organic compounds including insecticides, herbicides, and acid/neutral extractables have been made to provide data to determine short-term water-quality conditions associated with dredging operations in rivers and estuaries. Between April and August 1982, data were collected from the Chetco and Rogue River estuaries in southwestern Oregon, and from the mouth of the Columbia River in the northwestern Oregon to Cathlamet Bay, 18.2 miles upstream. In an elutriation test, bottom materials from a potential dredge site are mixed with native water - collected from either a dredge or disposal site - and the liquid portion of the mixture is removed, filtered, and chemically analyzed. Presented in this report are chemical and physical analyses of elutriates, native water, and bottom material for selected metals, ammonia, organic carbon, pesticides, particle size, and gas chromatographic/mass spectrometric semi-quantitative organic scans. Elutriate and bottom-material samples were screened specifically for phenolic compounds, particularly the chlorinated phenols; phenol was the only compound identified. Elutriate-test results showed variability for selected trace-metal concentrations of dissolved chemicals as follows: in micrograms per liter, arsenic ranged from < 1 to 15, cadmium from 1 to 210, copper from < 1 to 13, chromium from < 1 to 5, and nickel from 2 to 18. Results of computations to determine the amount of a constituent associated with bottom material and interstitial water and subsequently released (dissolved) into the elutriate-test native-mixing water are presented for selected trace metals. The highest elutriate-test release was 35 percent for manganese; the second highest, 5 percent for cadmium. All other computed releases were less than or equal to 1 percent. (USGS)

  18. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  19. Suggestions for a Syllabus for Commercial German at an Intermediate and Advanced Level: Explanation of Methodologies and Techniques.

    ERIC Educational Resources Information Center

    Marfurt, Rose Marie A.

    Suggestions are made for the organization of a business German course. It is proposed that course material be divided into chapters, one per week, each containing five sections. The sections include: (1) a broad selection of typical German business letters exemplifying operations in all branches of export and import, followed by a special…

  20. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  1. Study of Strategies Used in Online Searching: 2. Positional Logic--an Example of the Importance of Selecting the Right Boolean Operator.

    ERIC Educational Resources Information Center

    Oldroyd, Betty K.; Schroder, J. J.

    1982-01-01

    Reviews the advantages and disadvantages of different types of term combination using the positional logic capability of online information retrieval systems and describes a study in which searches for material on "microwave integrated circuits" were conducted in order to find the most economical way of generating the most relevant…

  2. Independent Auditors Report on the Attestation of the Existence, Completeness, and Rights of Select Army-Held Operating Materials and SuppliesAmmunition

    DTIC Science & Technology

    2015-08-28

    secured as if it were live ammunition (for example, rocket and missile launcher tubes). 8 │ DODIG-2015-165 DODIG-2015-165 │ 9 Appendix Existence... Liaison congressional@dodig.mil; 703.604.8324 Media Contact public.affairs@dodig.mil; 703.604.8324 Monthly Update dodigconnect-request@listserve.com

  3. Carbon Dioxide Separation Using Thermally Optimized Membranes

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique approach to the optimization of long-term membrane performance under challenging operating conditions.

  4. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.

    PubMed

    Yoon, Jinsu; Han, Jungmin; Choi, Bongsik; Lee, Yongwoo; Kim, Yeamin; Park, Jinhee; Lim, Meehyun; Kang, Min-Ho; Kim, Dae Hwan; Kim, Dong Myong; Kim, Sungho; Choi, Sung-Jin

    2018-05-25

    Electronics that degrade after stable operation for a desired operating time, called transient electronics, are of great interest in many fields, including biomedical implants, secure memory devices, and environmental sensors. Thus, the development of transient materials is critical for the advancement of transient electronics and their applications. However, previous reports have mostly relied on achieving transience in aqueous solutions, where the transience time is largely predetermined based on the materials initially selected at the beginning of the fabrication. Therefore, accurate control of the transience time is difficult, thereby limiting their application. In this work, we demonstrate transient electronics based on a water-soluble poly(vinyl alcohol) (PVA) substrate on which carbon nanotube (CNT)-based field-effect transistors were fabricated. We regulated the structural parameters of the PVA substrate using a three-dimensional (3D) printer to accurately control and program the transience time of the PVA substrate in water. The 3D printing technology can produce complex objects directly, thus enabling the efficient fabrication of a transient substrate with a prescribed and controlled transience time. In addition, the 3D printer was used to develop a facile method for the selective and partial destruction of electronics.

  5. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-03-10

    Tobermolite was characterized as a bed material for methanotrophic biofiltration. A lab-scale biofilter packed with tobermolite was operated for different operation times under identical conditions. The three different runs showed similar acclimation patterns of methane oxidation, with methane removal efficiency increasing rapidly for the first few days and peaking within three weeks, after which the efficiency remained stable. The mean methane removal capacities ranged from 766gm(-3)d(-1) to 974gm(-3)d(-1) after acclimation. Pyrosequencing indicated that the methanotrophic proportion (methanotroph/bacteria) increased to 71-94% within three weeks. Type I methanotrophs Methylocaldum and Methylosarcina were dominant during the initial growth period, then Methylocaldum alone dominated the methanotrophic community. A community comparison showed that total bacterial and methanotrophic communities were temporally stable after the initial growth period. Quantitative PCR showed that methanotrophic density increased during the first 3-4 weeks, then remained stable over 120 days. Tobermolite can provide a special habitat for the selective growth of methanotrophs, resulting in rapid acclimation. Tobermolite also allows the microbial community and methanotrophic density to remain stable, resulting in stable methane biofiltration. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  7. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  8. Proton conducting ceramic membranes for hydrogen separation

    DOEpatents

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  9. Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints.

    PubMed

    Wang, Meng; Li, Ming; Yu, Aoyang; Wu, Jian; Mao, Chuanbin

    2015-12-30

    The most commonly found fingerprints at crime scenes are latent and, thus, an efficient method for detecting latent fingerprints is very important. However, traditional developing techniques have drawbacks such as low developing sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we have synthesized two kinds of rare earth fluorescent nanomaterials, including the fluoresce red-emitting YVO4:Eu nanocrystals and green-emitting LaPO4:Ce,Tb nanobelts, and then used them as fluorescent labels for the development of latent fingerprints with high sensitivity, high contrast, high selectivity, high efficiency, and low background interference, on various substrates including noninfiltrating materials, semi-infiltrating materials, and infiltrating materials.

  10. Some composite bearing and seal materials for gas turbine applications: A review

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1989-01-01

    A review is made of the selection and tribological testing of materials for high-temperature bearings and seals. The goal is to achieve good tribological properties over a wide range of temperatures because bearings and seals must be functional from low temperature start-up conditions on up to the maximum temperatures encountered during engine operation. Plasma sprayed composite coatings with favorable tribological properties from 25 to 900 C are discussed. The performance of these coatings in simple tribological bench tests is described. Examples are also given of their performance in high-speed sliding contact seals and as Stirling cylinder liner materials, and as back up lubricants for compliant foil gas bearings.

  11. Environmental Evaluation of Building Materials of 5 Slovak Buildings

    NASA Astrophysics Data System (ADS)

    Porhincak, Milan; Estokova, Adriana

    2013-11-01

    Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.

  12. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  13. Optical Properties of the DIRC Fused Silica Radiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Convery, Mark R

    2003-04-15

    The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This notemore » summarizes the optical R&D test results.« less

  14. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    PubMed

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.

  15. Integrating information technologies as tools for surgical research.

    PubMed

    Schell, Scott R

    2005-10-01

    Surgical research is dependent upon information technologies. Selection of the computer, operating system, and software tool that best support the surgical investigator's needs requires careful planning before research commences. This manuscript presents a brief tutorial on how surgical investigators can best select these information technologies, with comparisons and recommendations between existing systems, software, and solutions. Privacy concerns, based upon HIPAA and other regulations, now require careful proactive attention to avoid legal penalties, civil litigation, and financial loss. Security issues are included as part of the discussions related to selection and application of information technology. This material was derived from a segment of the Association for Academic Surgery's Fundamentals of Surgical Research course.

  16. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  17. High-throughput screening of chromatographic separations: IV. Ion-exchange.

    PubMed

    Kelley, Brian D; Switzer, Mary; Bastek, Patrick; Kramarczyk, Jack F; Molnar, Kathleen; Yu, Tianning; Coffman, Jon

    2008-08-01

    Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions. (c) 2008 Wiley Periodicals, Inc.

  18. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  19. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  20. Exploring the Solid Rocket Boosters and Properties of Matter

    NASA Technical Reports Server (NTRS)

    Moffett, Amy

    2007-01-01

    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  1. The Cam Shell: An Innovative Design With Materials and Manufacturing

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Larsen, Frank M.; Kornienko, Rob

    2003-01-01

    Most of the personal audio and video recording devices currently sold on the open market all require hands to operate. Little consideration was given to designing a hands-free unit. Such a system once designed and made available to the public could greatly benefit mobile police officers, bicyclists, adventurers, street and dirt motorcyclists, horseback riders and many others. With a few design changes water sports and skiing activities could be another large area of application. The cam shell is an innovative design in which an audio and video recording device (such as palm camcorder) is housed in a body-mounted protection system. This system is based on the concept of viewing and recording at the same time. A view cam is attached to a helmet wired to a recording unit encased in a transparent body-mounted protection system. The helmet can also be controlled by remote. The operator will have full control in recording everything. However, the recording unit will be operated completely hands-free. This project will address the design considerations and their effects on material selection and manufacturing. It will enhance the understanding of the structure of materials, and how the structure affects the behavior of the material, and the role that processing play in linking the relationship between structure and properties. A systematic approach to design feasibility study, cost analysis and problem solving will also be discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carla Miller; Mary Adamic; Stacey Barker

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that canmore » quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.« less

  3. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  4. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  5. Granular Media-Based Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara

    2013-01-01

    and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring isolation (Figure 1). This configuration is referred to as a single-axis vibration suppressor. This invention also includes further designs for the integration of the single-axis vibration suppressor into a six-degree-of-freedom hexapod "Stewart"mounting configuration (Figure 2). By integrating each singleaxis vibration suppressor into a hexapod formation, a payload will be protected in all six degrees of freedom from shock and/or vibration. Additionally, to further enable the application of this device to multiple operational scenarios, particularly in the case of high loads, the vibration suppressor devices can be used in parallel in any array configuration.

  6. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-10-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less

  7. Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; JET-EFDA contributors

    2015-08-01

    The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.

  8. Improvement of the material and transport component of the system of construction waste management

    NASA Astrophysics Data System (ADS)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  9. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  10. Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control.

    PubMed

    Kim, Minseok; Eleftheriades, George V

    2016-10-15

    We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.

  11. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  12. Wear of Selected Oxide Ceramics and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Sayir, A.; Farmer, S. C.

    2005-01-01

    The use of oxide ceramics and coatings for moving mechanical components operating in high-temperature, oxidizing environments creates a need to define the tribological performance and durability of these materials. Results of research focusing on the wear behavior and properties of Al2O3/ZrO2 (Y2O3) eutectics and coatings under dry sliding conditions are discussed. The importance of microstructure and composition on wear properties of directionally solidified oxide eutectics is illustrated. Wear data of selected oxide-, nitride-, and carbide-based ceramics and coatings are given for temperatures up to 973K in air.

  13. Multilocation Video Conference By Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gray, Donald J.

    1982-10-01

    An experimental system that permits interconnection of many offices in a single video conference is described. Video images transmitted to conference participants are selected by the conference chairman and switched by a microprocessor-controlled video switch. Speakers can, at their choice, transmit their own images or images of graphics they wish to display. Users are connected to the Switching Center by optical fiber subscriber loops that carry analog video, digitized telephone, data and signaling. The same system also provides user-selectable distribution of video program and video library material. Experience in the operation of the conference system is discussed.

  14. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  15. Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)

    1992-01-01

    The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.

  16. Summary of results of frictional sliding studies, at confining pressures up to 6.98 kb, in selected rock materials

    USGS Publications Warehouse

    Summers, R.; Byerlee, J.

    1977-01-01

    This report is a collection of stress-strain charts which were produced by deforming selected simuiated fault gouge materials. Several sets of samples consisted of intact cylinders, 1.000 inch in diameter and 2.500 inches long. The majority of the samples consisted of thin layers of the selected sample material, inserted within a diagonal sawcut in a 1.000-inch by 2.500-inch Westerly Granite cylinder. Two sorts of inserts were used. The first consisted of thin wafers cut from 1.000-inch-diameter cores of the rock being tested. The other consisted of thin layers of crushed material packed onto the sawcut surface. In several groups of tests using various thicknesses (0.010 inch to 0.160 inch) of a given type material there were variations in the stress level and/or stability of sliding as a function of the fault zone width. Because of this we elected to use a standard 0.025-inch width fault zone to compare the frictional properties of many of the different types of rock materials. This 0.025-inch thickness was chosen partially because this thickness of crushed granite behaves approximately the same as a fractured sample of initially intact granite, and also because this is near the lower limit at which we could cut intact wafers for those samples that were prepared from thin slices of rock. One series of tests was done with saw cut granite cylinders without fault gouge inserts. All of these tests were done in a hydraulically operated triaxial testing machine. The confining pressure (δ1, least principal stress) was applied by pumping petroleum ether into a pressure vessel. The differential stress (δ3-δ1) was applied by a hydraulically operated ram that could be advanced into the pressure vessel at any of several strain rates (10-4sec-1, 10-5sec-1, 10-6sec-1, 10-7sec-1, or 10-8sec-1). All samples were jacketed in polyurethane tubing to exclude the confining pressure medium from the samples. The majority of the samples, with the exception of some of the initially intact rocks, also had thin copper jackets. These served to hold the saw cut parts of the granite sample holders in alignment while the samples were handled and pushed into the polyurethane jackets.

  17. Manufacture and mechanical characterisation of high voltage insulation for superconducting busbars - (Part 1) Materials selection and development

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.

    2017-04-01

    It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.

  18. Hyperspectral imaging using novel LWIR OPO for hazardous material detection and identification

    NASA Astrophysics Data System (ADS)

    Ruxton, Keith; Robertson, Gordon; Miller, Bill; Malcolm, Graeme P. A.; Maker, Gareth T.

    2014-05-01

    Current stand-off hyperspectral imaging detection solutions that operate in the mid-wave infrared (MWIR), nominally 2.5 - 5 μm spectral region, are limited by the number of absorption bands that can be addressed. This issue is most apparent when evaluating a scene with multiple absorbers with overlapping spectral features making accurate material identification challenging. This limitation can be overcome by moving to the long wave IR (LWIR) region, which is rich in characteristic absorption features, which can provide ample molecular information in order to perform presumptive identification relative to a spectral library. This work utilises an instrument platform to perform negative contrast imaging using a novel LWIR optical parametric oscillator (OPO) as the source. The OPO offers continuous tuning in the region 5.5 - 9.5 μm, which includes a number of molecular vibrations associated with the target material compositions. Scanning the scene of interest whilst sweeping the wavelength of the OPO emission will highlight the presence of a suspect material and by analysing the resulting absorption spectrum, presumptive identification is possible. This work presents a selection of initial results using the LWIR hyperspectral imaging platform on a range of white powder materials to highlight the benefit operating in the LWIR region compared to the MWIR.

  19. Wireless sensors and sensor networks for homeland security applications.

    PubMed

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  20. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  1. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  2. Characterisation of soft magnetic materials by measurement: Evaluation of uncertainties up to 1.8 T and 9 kHz

    NASA Astrophysics Data System (ADS)

    Elfgen, S.; Franck, D.; Hameyer, K.

    2018-04-01

    Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.

  3. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  4. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  5. Integrated Data Collection Analysis (IDCA) Program - Mixing Procedures and Materials Compatibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, Becky D.; Sandstrom, Mary M.; Warner, Kirstin F.

    Three mixing procedures have been standardized for the IDCA proficiency test—solid-solid, solid-liquid, and liquid-liquid. Due to the variety of precursors used in formulating the materials for the test, these three mixing methods have been designed to address all combinations of materials. Hand mixing is recommended for quantities less than 10 grams and Jar Mill mixing is recommended for quantities over 10 grams. Consideration must also be given to the type of container used for the mixing due to the wide range of chemical reactivity of the precursors and mixtures. Eight web site sources from container and chemical manufacturers have beenmore » consulted. Compatible materials have been compiled as a resource for selecting containers made of materials stable to the mixtures. In addition, container materials used in practice by the participating laboratories are discussed. Consulting chemical compatibility tables is highly recommended for each operation by each individual engaged in testing the materials in this proficiency test.« less

  6. Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation

    NASA Astrophysics Data System (ADS)

    Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.

    2018-04-01

    Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.

  7. Natural Origin Materials for Osteochondral Tissue Engineering.

    PubMed

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  8. Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments

    NASA Astrophysics Data System (ADS)

    Muratore, C.; Voevodin, A. A.

    2009-08-01

    Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.

  9. Metal Matrix Composites for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    McDonald, Kathleen R.; Wooten, John R.

    2000-01-01

    This document is from a presentation about the applications of Metal Matrix Composites (MMC) in rocket engines. Both NASA and the Air Force have goals which would reduce the costs and the weight of launching spacecraft. Charts show the engine weight distribution for both reuseable and expendable engine components. The presentation reviews the operating requirements for several components of the rocket engines. The next slide reviews the potential benefits of MMCs in general and in use as materials for Advanced Pressure Casting. The next slide reviews the drawbacks of MMCs. The reusable turbopump housing is selected to review for potential MMC application. The presentation reviews solutions for reusable turbopump materials, pointing out some of the issues. It also reviews the development of some of the materials.

  10. Semiconductor materials for high frequency solid state sources

    NASA Astrophysics Data System (ADS)

    Grubin, H. L.

    1983-03-01

    The broad goal of the subject contract is to suggest candidate materials for high frequency device operation. During the initial phase of the study, attention has been focused on defining the general role of the band structure and associated scattering processes in determining the response of semiconductors to transient high-speed electrical signals. Moments of the Boltzmann transport equation form the basis of the study, and the scattering rates define the semiconductor under study. The selection of semiconductor materials proceeds from a set of simple, yet significant, set of scaling principles. During the first quarter scaling was associated with what can formally be identified as velocity invariants, but which in more practical terms identifies the relative speed advantages of e.g., InP over GaAs.

  11. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    PubMed

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  12. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. This paper describes an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Two specific test series have been identified and include: investigation of long term corrosion rates based on the guidelines contained in ASTM G-68-80 (using 7 heat pipes); and investigation of corrosion trends in a cross correlation sequence at various temperatures and mass fluences based on a central composite test design (using 9 heat pipes). The heat pipes selected for demonstration purposes are fabricated from a Mo-44.5%Re alloy with a length of 0.3 meters and a diameter of 1.59 cm(to conserve material) with a condenser to evaporator length ratio of approximately 3. The wick is a crescent annular design formed from 400-mesh Mo-Re alloy material hot isostatically pressed to produce a final wick core of 20 microns or less.

  13. Effect of flexure beam geometry and material on the displacement of piezo actuated diaphragm for micropump

    NASA Astrophysics Data System (ADS)

    Roopa, R.; Navin Karanth, P.; Kulkarni, S. M.

    2018-02-01

    In this paper, we present a COMSOL analysis of flexure diaphragm for piezo actuated valveless micropump. Diaphragms play an important role in micropumps, till now plane diaphragms are commonly used in micropumps. Use of compliant flexure hinges in diaphragm and other MEMS application is one of the new approach to achieving high deflection in diaphragm at low operating voltage. Flexures hinges in diaphragm acts as simply supported beam. Out-off plane compliance value and stiffness is considered for the selection of proper flexure for diaphragm. Diaphragm material also plays an important role in the diaphragm central deflection. Factor considered for diaphragm material selection is resilience; it is the ratio of yield stress to static modulus. Higher is the resilience will leads to higher deflection generated, it also imparts good compliance. Based on the resilience beryllium copper, stainless steel and brass materials are selected for diaphragm analysis. Simulations have been performed using COMSOL multiphysics. This study reports the effect of flexure hinge geometry and diaphragm material on the central deflection of diaphragms and compared with existing plane diaphragm. Simulation results illustrates that the deflection of three flexure diaphragm with 2mm width and 2mm length flexure is 6.75µm for stainless steel, 10.89 for beryllium copper and 12.10µm for brass, at 140V which is approximately twice that of plane diaphragm deflection. The maximum in both plane and three flexure diaphragm deflection is obtained for brass diaphragm compared to stainless steel and beryllium copper.

  14. Protective clothing for pesticide operators: part I--selection of a reference test chemical for penetration testing.

    PubMed

    Shaw, Anugrah; Schiffelbein, Paul

    2016-01-01

    A systematic approach was taken to develop a database for protective clothing for pesticide operators; results are reported as a two-part series. Part I describes the research studies that led to identification of a pesticide formulation that could serve as a reference test chemical for further testing. Measurement of pesticide penetration was conducted using different types of pesticide formulations. Six fabrics were tested using 10 formulations at different concentrations. Three formulations were subsequently selected for further testing. Analysis of the data indicated that, when compared with other formulations, mean percent penetration of 5% Prowl 3.3 EC [emulsifiable concentrate diluted to 5% active ingredient (pendimethalin)] is either similar to or higher than most test chemicals. Those results led to choosing 5% Prowl 3.3 EC as a reference test liquid. Part II of the study, published as a separate paper, includes data on a wide range of textile materials.

  15. Component Selection, Accelerated Testing, and Improved Modeling of AMTEC Systems for Space Power (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Suitor, J.; O'Connor, D.

    1993-01-01

    Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.

  16. Experimental demonstration of radiation effects on the performance of a stirling-alternator convertor and candidate materials evaluation

    NASA Astrophysics Data System (ADS)

    Mireles, Omar R.

    Free-piston Stirling power convertors are under consideration by NASA for service in the Advanced Stirling Radioisotope Generator (ASRG) and Fission Surface Power (FSP) systems to enable aggressive exploration missions by providing a reliable and constant power supply. The ASRG must withstand environmental radiation conditions, while the FSP system must tolerate a mixed neutron and gamma-ray environment resulting from self-irradiation. Stirling-alternators utilize rare earth magnets and a variety of organic materials whose radiation limits dominate service life estimates and shielding requirements. The project objective was to demonstrate the performance of the alternator, identify materials that exhibit excessive radiation sensitivity, identify radiation tolerant substitutes, establish empirical dose limits, and demonstrate the feasibility of cost effective nuclear and radiation tests by selection of the appropriate personnel and test facilities as a function of hardware maturity. The Stirling Alternator Radiation Test Article (SARTA) was constructed from linear alternator components of a Stirling convertor and underwent significant pre-exposure characterization. The SARTA was operated at the Sandia National Laboratories Gamma Irradiation Facility to a dose of over 40 Mrad. Operating performance was within nominal variation, although modestly decreasing trends occurred in later runs as well as the detection of an electrical fault after the final exposure. Post-irradiation disassembly and internal inspection revealed minimal degradation of the majority of the organic components. Radiation testing of organic material coupons was conducted since the majority of the literature was inconsistent. These inconsistencies can be attributed to testing at environmental conditions vastly different than those Stirling-alternator organics will experience during operation. Samples were irradiated at the Texas A&M TRIGA reactor to above expected FSP neutron fluence. A thorough materials evaluation followed and results indicate that the majority of material properties experienced minimal statistically significant change.

  17. Logic operations based on magnetic-vortex-state networks.

    PubMed

    Jung, Hyunsung; Choi, Youn-Seok; Lee, Ki-Suk; Han, Dong-Soo; Yu, Young-Sang; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2012-05-22

    Logic operations based on coupled magnetic vortices were experimentally demonstrated. We utilized a simple chain structure consisting of three physically separated but dipolar-coupled vortex-state Permalloy disks as well as two electrodes for application of the logical inputs. We directly monitored the vortex gyrations in the middle disk, as the logical output, by time-resolved full-field soft X-ray microscopy measurements. By manipulating the relative polarization configurations of both end disks, two different logic operations are programmable: the XOR operation for the parallel polarization and the OR operation for the antiparallel polarization. This work paves the way for new-type programmable logic gates based on the coupled vortex-gyration dynamics achievable in vortex-state networks. The advantages are as follows: a low-power input signal by means of resonant vortex excitation, low-energy dissipation during signal transportation by selection of low-damping materials, and a simple patterned-array structure.

  18. Enabler operator station. [lunar surface vehicle

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Keitzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). This LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an earth-bound model. Several recommendations are made in the appendix as to the changes needed in material selection for the lunar environment. The operator station is designed dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which includes life support). The proposed operator station will support and restrain an astronaut as well as provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of grid members, semi-rigid members and woven fabrics.

  19. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Tim; Beck, Griffin; Bennett, Jeffrey

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO 2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and testmore » new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long-term reliability problems in CO 2 service at these temperatures. However, long-term testing in a flowing environment is recommended in order to understand accurately the severity of the attack. Detailed economic modeling of the existing air cycle recuperator and CO 2 cycle recuperator options was also completed, including costs for material, fabrication, fuel, maintenance, and operation. The analysis results show that the increased capital cost for high-temperature materials may be offset by higher cycle efficiencies, decreasing the overall lifetime cost of the system. The economic analysis also examines costs associated with increased pressure drop and material changes for two redesign options. These results show that, even with slightly reduced performance and/or higher material costs, the lifetime cost per energy production may still be reduced by over 12%. The existing recuperator design information was provided by Solar Turbines, Inc. via several models, drawings, and design handoff meetings. Multiple fluid/thermal and structural models were created in order to analyze critical recuperator performance and mechanical strength in critical areas throughout the redesign process. These models were analyzed for a baseline condition (consistent with current Mercury 50 operation) for validation purposes. Results are presented for heat transfer coefficients and pressure drops, matching well with the existing operational data. Simulation of higher-temperature CO 2 conditions was also performed, showing a slight expected increase in both heat transfer and pressure drop. Mechanical analysis results for critical areas on the cross-flow and counter-flow sheets have also been obtained for air and CO 2 cases. These results show similar stresses in both cases but significantly reduced safety factors for the CO 2 case due to reduced yield and creep rupture strengths of alloy 625 at the higher temperatures. A concept brainstorm session and initial down-selection were completed in order to identify promising redesign options for further analysis. Detailed analysis of all promising redesign options was performed via finite element and computational fluid dynamic simulations in order to characterize mechanical and thermal-fluid performance of each option. These options included material change, various sheet thickness configurations, pitch and phasing of cross-flow and counter-flow sheets, and separator sheets. The analysis results have identified two viable redesign options that maintain existing safety margins optimally through a material change to Haynes 282 and (A) sheet thickness increases of 40% on the counter-flow sheet and 75% on the hot side cross-flow corrugation sheet or (B) addition of a separator sheet in the counter-flow section while maintaining the original counter-flow sheet thickness and increasing the cross-flow corrugation sheet thickness by 90% to account for the increase in cell height. While both options satisfy mechanical stress constraints, the separator sheet design has a higher part count, slightly reduced heat transfer, and slightly higher pressure drop than the first option and is not preferred. Finally, several test loop concepts have been developed for different full-scale and reduced-scale recuperator testing options. For each option, various loop components, such as heat exchangers, valves, heaters, and compressors, were evaluated in an effort to maximize utilization of existing resources. All concepts utilize an existing 3-MW CO 2 compressor, heater, and loop coolers, but the concepts vary by incorporating different amounts of new equipment for achieving various flow rates (all concepts operate at design pressure and temperature). The third concept achieves a 1 kg/s test without purchasing any costly equipment (coolers, heaters, blowers, etc.). Since the stacked cell design of the recuperator results in the same flow conditions at each core cell (even for a reduced-scale test). Thus, test loop Concept #3 was selected for the preliminary design. This loop design is detailed within the report, culminating in a budgetary estimate of $1,013,000.00 for the detailed design, construction, commissioning, and operation of a high-temperature recuperator test loop.« less

  20. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  1. ROBOCAL: An automated NDA (nondestructive analysis) calorimetry and gamma isotopic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Powell, W.D.; Ostenak, C.A.

    1989-11-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisitionmore » and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices.« less

  2. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, D.B.; Wiley, J.D.

    1989-09-12

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.

  3. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A.

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3}more » and H{sub 2}S detection.« less

  4. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, David B.; Wiley, John D.

    1989-01-01

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.

  5. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  6. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, D.; Cooper, P.; Biswas, C.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less

  7. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    DOE PAGES

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; ...

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less

  8. Heuristic Analysis Model of Nitrided Layers’ Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    PubMed Central

    Wójcicki, Tomasz; Nowicki, Michał

    2016-01-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389

  9. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  10. Engineering long term clinical success of advanced ceramic prostheses.

    PubMed

    Rekow, Dianne; Thompson, Van P

    2007-01-01

    Biocompatability and, in some applications, esthetics make all-ceramic prostheses compelling choices but despite significant improvements in materials properties and toughening mechanisms, these still have significant failure rates. Factors that contribute to the degradation in strength and survival include material selection and prosthesis design which set the upper limit for performance. However, fabrication operations introduce damage that can be exacerbated by environmental conditions and clinical function. Using all-ceramic dental crowns as an example, experimentally derived models provide insight into the relationships between materials properties and initial critical loads to failure. Analysis of fabrication operations suggests strategies to minimize damage. Environmental conditions can create viscoplastic flow of supporting components which can contribute additional stress within the prosthesis. Fatigue is a particularly challenging problem, not only providing the energy to propagate existing damage but, when combined with the wet environment, can create new damage modes. While much is known, the influence of these new damage modes has not been completely elucidated. The role of complex prosthesis geometry and its interaction with other factors on damage initiation and propagation has yet to be well characterized.

  11. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  12. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    PubMed

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development of material formula and structure property indicators for low cold-resistant characterization of Cables’ Material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Cai, Y. G.; Feng, Y. M.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.

    2018-01-01

    Alpine regions account for about 27.9% of total land area in China. Northeast China, Inner Mongolia, Northwest China and other regions are located in alpine regions, wherein the above regions are rich in energy. However, the low-temperature impact embrittlement temperature of traditional PVC cable materials is between -15°C and -20°C, which is far lower than actual operation requirements. Cable insulation and sheath are always damaged during cable laying in alpine regions. Therefore, it is urgent to develop low-temperature-resistant cables applicable to low-temperature environment in alpine regions, and safe and stable operation of power grids in the alpine regions can be guaranteed. In the paper, cold-resistant PVC formula systems were mainly trial-manufactured and studied. Appropriate production technologies and formulas were determined through selecting raw materials and modified materials. The low-temperature impact embrittlement temperature was adjusted below -50°C under the precondition that PVC cable materials met national standard property requirements. Cold-resistant PVC cable materials were prepared, which were characterized by excellent physical and mechanical properties, and sound extrusion process, and cold-resistant PVC cable materials can meet production requirements of low-temperature-resistant cables. Meanwhile, the prepared cold-resistant cable material was used for extruding finished product cables and trial-manufacturing sample cables. Type tests of low temperature elongation ratio, 15min withstand voltage, etc. were completed for 35kV and lower sample cables in Mohe Low-temperature Test Site. All properties were consistent with standard requirements.

  14. Design of experiments applications in bioprocessing: concepts and approach.

    PubMed

    Kumar, Vijesh; Bhalla, Akriti; Rathore, Anurag S

    2014-01-01

    Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration. © 2013 American Institute of Chemical Engineers.

  15. Mine Planning for Asteroid Orebodies

    NASA Astrophysics Data System (ADS)

    Gertsch, L. S.; Gertsch, R. E.

    2000-01-01

    Given that an asteroid (or comet) has been determined to contain sufficient material of value to be potentially economic to exploit, a mining method must be selected and implemented. This paper discusses the engineering necessary to bring a mine online, and the opportunities and challenges inherent in asteroid mineral prospects. The very important step of orebody characterization is discussed elsewhere. The mining methods discussed here are based on enclosing the asteroid within a bag in some fashion, whether completely or partially. In general, asteroid mining methods based on bags will consist of the following steps. Not all will be required in every case, nor necessarily in this particular sequence. Some steps will be performed simultaneously. Their purpose is to extract the valuable material from the body of the asteroid in the most efficient, cost-effective manner possible. In approximate order of initiation, if not of conclusion, the steps are: 1. Tether anchoring to the asteroid. 2. Asteroid motion control. 3. Body/fragment restraint system placement. 4. Operations platform construction. 5. Bag construction. 6. Auxiliary and support equipment placement. 7. Mining operations. 8. Processing operations. 9. Product transport to markets.

  16. Study on energy consumption evaluation of mountainous highway based on LCA

    NASA Astrophysics Data System (ADS)

    Fei, Lunlin; Zhang, Qi; Xie, Yongqing

    2017-06-01

    For the system to understand the road construction energy consumption process, this paper selects a typical mountainous highway in the south, using the theory and method of Life Cycle Assessment (LCA) to quantitatively study the energy consumption of the whole process of highway raw materials production, construction and operation. The results show that the energy consumption in the raw material production stage is the highest, followed by the highway operation and construction stage. The energy consumption per unit of tunnel engineering, bridge engineering, roadbed engineering and pavement engineering in the construction phase are 2279.00 tce, 1718.07 tce, 542.19 tce and 34.02 tce, and in operational phase, 85.44% of electricity consumption comes from tunnel ventilation and lighting. Therefore, in the bridge and tunnel construction process, we should promote energy-saving innovation of the construction technology and mechanical equipment, and further strengthen the research and development of tunnel ventilation, lighting energy-saving equipment and intelligent control technology, which will help significantly reduce the energy consumption and greenhouse gas emissions of the life cycle of highway.

  17. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  18. How Distinctive Processing Enhances Hits and Reduces False Alarms

    PubMed Central

    Hunt, R. Reed; Smith, Rebekah E.

    2015-01-01

    Distinctive processing is a concept designed to account for precision in memory, both correct responses and avoidance of errors. The principal question addressed in two experiments is how distinctive processing of studied material reduces false alarms to familiar distractors. Jacoby (Jacoby, Kelley, & McElree, 1999) has used the metaphors early selection and late correction to describe two different types of control processes. Early selection refers to limitations on access whereas late correction describes controlled monitoring of accessed information. The two types of processes are not mutually exclusive, and previous research has provided evidence for the operation of both. The data reported here extend previous work to a criterial recollection paradigm and to a recognition memory test. The results of both experiments show that variables that reduce false memory for highly familiar distracters continue to exert their effect under conditions of minimal post-access monitoring. Level of monitoring was reduced in the first experiment through test instructions and in the second experiment through speeded test responding. The results were consistent with the conclusion that both early selection and late correction operate to control accuracy in memory. PMID:26034343

  19. Acoustic emission analysis for the detection of appropriate cutting operations in honing processes

    NASA Astrophysics Data System (ADS)

    Buj-Corral, Irene; Álvarez-Flórez, Jesús; Domínguez-Fernández, Alejandro

    2018-01-01

    In the present paper, acoustic emission was studied in honing experiments obtained with different abrasive densities, 15, 30, 45 and 60. In addition, 2D and 3D roughness, material removal rate and tool wear were determined. In order to treat the sound signal emitted during the machining process, two methods of analysis were compared: Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). When density 15 is used, the number of cutting grains is insufficient to provide correct cutting, while clogging appears with densities 45 and 60. The results were confirmed by means of treatment of the sound signal. In addition, a new parameter S was defined as the relationship between energy in low and high frequencies contained within the emitted sound. The selected density of 30 corresponds to S values between 0.1 and 1. Correct cutting operations in honing processes are dependent on the density of the abrasive employed. The density value to be used can be selected by means of measurement and analysis of acoustic emissions during the honing operation. Thus, honing processes can be monitored without needing to stop the process.

  20. Electronics Manufacturing Seminar Proceedings. 17th Annual

    DTIC Science & Technology

    1992-12-01

    a CFC Solvent Cleaning Alternative Page 3 In operation dirty parts are immersed in the boil cham- ber where they contact the agitated mixture of...component. Some glycol ethers have an uncertain regulatory future due to a variety of health concerns. Semi-aqueous solvents can have a strong odor . Proper...thermoset 5 materials, elastomers, marking inks, sealants, and locking compounds after repeated exposure to the selected cleaners. Epoxy and polyimide PWBs

  1. Noise, A bibliography

    NASA Astrophysics Data System (ADS)

    Miller, L. L., Jr.

    1984-03-01

    Noise is the subject of this bibliography which has been developed from the military point-of-view. Operationally it may be defined as sound which lacks musical quality due to its discordant harmonic features. Selection of material coverage has been drawn from the unclassified book, document, and military periodicals holdings of the Morris Swet Technical Library, USAFAS. Inclusion of an item, or omission, neither implies USAFAS indorsement or sanction of the compiler's approach.

  2. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  3. 1.3 μm VCSELs: InGaAs/GaAs, GaInNAs/GaAs multiple quantum wells, and InAs/GaAs quantum dots — three candidates as active material

    NASA Astrophysics Data System (ADS)

    Gilet, Ph.; Pougeoise, E.; Grenouillet, L.; Grosse, Ph.; Olivier, N.; Poncet, S.; Chelnokov, A.; Gérard, J. M.; Stevens, R.; Hamelin, R.; Hammar, M.; Berggren, J.; Sundgren, P.

    2007-02-01

    In this article, we report our results on 1.3μm VCSELs for optical interconnection applications. Room temperature continuous-wave lasing operation is demonstrated for top emitting oxide-confined devices with three different active materials, highly strained InGaAs/GaAs(A) and GaInNAs/GaAs (B) multiple quantum wells (MQW) or InAs/GaAs (C) quantum dots (QD). Conventional epitaxial structures grown respectively by Metal Organic Vapour Phase Epitaxy (MOVPE), Molecular Beam Epitaxy (MBE) and MBE, contain fully doped GaAs/AlGaAs DBRs. All three epilayers are processed in the same way. Current and optical confinement are realized by selective wet oxidation. Circular apertures from 2 (micron)m to 16 (micron)m diameters are defined. At room temperature and in continuous wave operation, all three systems exhibit lasing operation at wavelengths above 1 275nm and reached 1 300nm for material (A). Typical threshold currents are in the range [1- 10]mA and are strongly dependent firstly on oxide diameter and secondly on temperature. Room temperature cw maximum output power corresponds respectively to 1.77mW, 0.5mW and 0.6mW. By increasing driving current, multimode operation occurs at different level depending on the oxide diameter. In case (A), non conventional modal behaviors will be presented and explained by the presence of specific oxide modes. Thermal behaviors of the different devices have been compared. In case (A) and (C) we obtain a negative T0. We will conclude on the different active materials in terms of performances with respect to 1300nm VCSEL applications.

  4. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    PubMed

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  5. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    PubMed Central

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  6. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    PubMed Central

    Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results. PMID:26881267

  7. Optical recording materials

    NASA Astrophysics Data System (ADS)

    Savant, Gajendra D.; Jannson, Joanna L.

    1991-07-01

    The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.

  8. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  9. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  10. Effects from past solid waste disposal practices.

    PubMed Central

    Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R

    1978-01-01

    This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769

  11. Environmental apsects of the transuranics: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, F. M.; Sanders, C. T.; Talmage, S. S.

    This fourth published bibliography of 528 references is from the computer information file built to provide support to the Nevada Applied Ecology Group (NAEG) of the AEC Nevada Operations Office. The general scope is environmental aspects of uranium and the transuranic elements, with a preponderance of material on plutonium. In addition, there are supporting materials involving basic ecology or general reviews on other nuclides that are entered at the request of the NAEG. References provide findings-oriented abstracts. Numerical data is referred to, in the comment field. Indexes are given for author, subject category, keywords, geographic location, permuted title, taxons, andmore » publication description.« less

  12. A two-stage optimization model for emergency material reserve layout planning under uncertainty in response to environmental accidents.

    PubMed

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng

    2016-06-05

    In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. Copyright © 2016. Published by Elsevier B.V.

  13. Real-Time Simulation of Aeroheating of the Hyper-X Airplane

    NASA Technical Reports Server (NTRS)

    Gong, Les

    2005-01-01

    A capability for real-time computational simulation of aeroheating has been developed in support of the Hyper-X program, which is directed toward demonstrating the feasibility of operating an air-breathing ramjet/scramjet engine at mach 5, mach 7, and mach 10. The simulation software will serve as a valuable design tool for initial trajectory studies in which aerodynamic heating is expected to exert a major influence in the design of the Hyper-X airplane; this tool will aid in the selection of materials, sizing of structural skin thicknesses, and selection of components of a thermal-protection system (TPS) for structures that must be insulated against aeroheating.

  14. Technical Competencies Applied in Experimental Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  15. Description of a 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  16. MCNP calculations for container inspection with tagged neutrons

    NASA Astrophysics Data System (ADS)

    Boghen, G.; Donzella, A.; Filippini, V.; Fontana, A.; Lunardon, M.; Moretto, S.; Pesente, S.; Zenoni, A.

    2005-12-01

    We are developing an innovative tagged neutrons inspection system (TNIS) for cargo containers: the system will allow us to assay the chemical composition of suspect objects, previously identified by a standard X-ray radiography. The operation of the system is extensively being simulated by using the MCNP Monte Carlo code to study different inspection geometries, cargo loads and hidden threat materials. Preliminary simulations evaluating the signal and the signal over background ratio expected as a function of the system parameters are presented. The results for a selection of cases are briefly discussed and demonstrate that the system can operate successfully in different filling conditions.

  17. Environmental Effects on ISS Materials Aging (1998 to 2008)

    NASA Technical Reports Server (NTRS)

    Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John

    2009-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field. As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles fleet. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma (7-11). Vehicle size (L) and velocity (V), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during flight through high latitudes (> +45deg) during each orbit. Finally, an induced ionizing radiation environment is produced by cosmic ray interaction with the relatively thick ISS structure and shielding materials. The intent of this review article is, therefore, to provide a summary of selected aspects and elements of the ISS vehicle with regard to LEO space environment effects, associated with the much larger and more complicated vehicle that ISS has become since 1998, but also with an eye towards performance life extension to the year 2016 and beyond.

  18. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less

  19. Radon emanation based material measurement and selection for the SuperNEMO double beta experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerna, Cédric, E-mail: cerna@cenbg.in2p3.fr; Soulé, Benjamin; Perrot, Frédéric

    The SuperNEMO Demonstrator experiment aims to study the neutrinoless double beta decay of 7 kg of {sup 82}Se in order to reach a limit on the light Majorana neutrino mass mechanism T{sub 1/2} (ββ0ν) > 6.5 10{sup 24} years (90%CL) equivalent to a mass sensitivity mβ{sub β} < 0.20 - 0.40 eV (90%CL) in two years of data taking. The detector construction started in 2014 and its installation in the Laboratoire Souterrain de Modane (LSM) is expected during the course of 2015. The remaining level of {sup 226}Ra ({sup 238}U chain) in the detector components can lead to the emanationmore » of {sup 222}Rn gas. This isotope should be controlled and reduced down to the level of a 150 µBq/m{sup 3} in the tracker chamber of the detector to achieve the physics goals. Besides the HPGe selection of the detector materials for their radiopurity, the most critical materials have been tested and selected in a dedicated setup facility able to measure their {sup 222}Rn emanation level. The operating principle relies on a large emanation tank (0.7m{sup 3}) that allows measuring large material surfaces or large number of construction pieces. The emanation tank is coupled to an electrostatic detector equipped with a silicon diode to perform the alpha spectroscopy of the gas it contains and extract the {sup 222}Rn daughters. The transfer efficiency and the detector efficiency have been carefully calibrated through different methods. The intrinsic background of the system allows one to measure 222Rn activities down to 3 mBq, leading to a typical emanation sensitivity of 20 µBq/m{sup 2}/day for a 30 m{sup 2} surface sample. Several construction materials have been measured and selected, such as nylon and aluminized Mylar films, photomultipliers and tracking of the SuperNEMO Demonstrator.« less

  20. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.

    2016-12-01

    Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.

  1. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  2. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  3. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  4. Sceening, down selection, and implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Astrophysics Data System (ADS)

    Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.

    1994-06-01

    MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.

  5. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other established technologies. Additionally, we explore the application of perovskite materials in optoelectronic applications. We show that perovskite materials can function efficiently both as a film in light-emitting diodes and also in the form of nanoparticles in light-emitting electrochemical cells. Perovskite materials have indeed a very bright future.

  6. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  7. REBOCOL (Robotic Calorimetry): An automated NDA (Nondestructive assay) calorimetry and gamma isotopic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric andmore » gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.« less

  8. Status of Understanding for Seal Materials

    NASA Technical Reports Server (NTRS)

    Brown, P. F.

    1984-01-01

    Material selection for mainshaft face and ring seals, labyrinth seals, accessory gearbox face seals, and lip seals are discussed in light of tribology requirements and a given seal application. Carbon graphite has been found to be one of the best sealing materials and it is widely used in current gas turbine mainshaft and accessory gearbox seals. Its popularity is due to its unique combination of properties which consists of dimensional stability, corrosion resistance, low friction, good self lubricating characteristics, high thermal conductivity and low thermal expansion, the latter two properties combining to provide good thermal shock resistance. A brief description of the seals and the requirements they must meet are discussed to provide insight into the limitations and advantages of the seals in containing the lubricant. A forecast is made of the operational requirements of main shaft and gearbox seals for advanced engines and candidate materials and coatings that may satisfy these advanced engine requirements.

  9. Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa; Tel, Eyyüp

    2003-06-01

    Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.

  10. Applications of piezoelectric materials in oilfield services.

    PubMed

    Goujon, Nicolas; Hori, Hiroshi; Liang, Kenneth K; Sinha, Bikash K

    2012-09-01

    Piezoelectric materials are used in many applications in the oilfield services industry. Four illustrative examples are given in this paper: marine seismic survey, precision pressure measurement, sonic logging-while-drilling, and ultrasonic bore-hole imaging. In marine seismics, piezoelectric hydrophones are deployed on a massive scale in a relatively benign environment. Hence, unit cost and device reliability are major considerations. The remaining three applications take place downhole in a characteristically harsh environment with high temperature and high pressure among other factors. The number of piezoelectric devices involved is generally small but otherwise highly valued. The selection of piezoelectric materials is limited, and the devices have to be engineered to withstand the operating conditions. With the global demand for energy increasing in the foreseeable future, the search for hydrocarbon resources is reaching into deeper and hotter wells. There is, therefore, a continuing and pressing need for high-temperature and high-coupling piezoelectric materials.

  11. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    NASA Astrophysics Data System (ADS)

    Dosmukhamedov, Nurlan; Kaplan, Valery

    2017-02-01

    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  12. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  13. The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining

    NASA Astrophysics Data System (ADS)

    Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.

    2007-02-01

    The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.

  14. Actual and estimated costs of disposable materials used during surgical procedures.

    PubMed

    Toyabe, Shin-Ichi; Cao, Pengyu; Kurashima, Sachiko; Nakayama, Yukiko; Ishii, Yuko; Hosoyama, Noriko; Akazawa, Kouhei

    2005-07-01

    It is difficult to estimate precisely the costs of disposable materials used during surgical operations. To evaluate the actual costs of disposable materials, we calculated the actual costs of disposable materials used in 59 operations by taking account of costs of all disposable materials used for each operation. The costs of the disposable materials varied significantly from operation to operation (US$ 38-4230 per operation), and the median [25-percentile and 75-percentile] of the sum total of disposable material costs of a single operation was found to be US$ 686 [205 and 993]. Multiple regression analysis with a stepwise regression method showed that costs of disposable materials significantly correlated only with operation time (p<0.001). Based on the results, we propose a simple method for estimating costs of disposable materials by measuring operation time, and we found that the method gives reliable results. Since costs of disposable materials used during surgical operations are considerable, precise estimation of the costs is essential for hospital cost accounting. Our method should be useful for planning hospital administration strategies.

  15. Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts

    NASA Astrophysics Data System (ADS)

    Gesing, Adam J.; Das, Subodh K.

    2017-02-01

    With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.

  16. Apparatus and method for selectively channeling a fluid

    DOEpatents

    Rightley, Michael Joseph [Albuquerque, NM

    2008-01-01

    An apparatus for selectively channeling a high temperature fluid without chemically reacting with the fluid. The apparatus includes an inlet and a membrane positioned adjacent to the inlet, each composed of a chemically inert material. The membrane is formed by compressive preloading techniques. The apparatus further includes a seat disposed on the inlet adjacent to the membrane. The seat is composed of a heat resistant and chemically inert material. Operation of the apparatus requires that the temperature of the fluid remains below the chemical characteristic melting point of the seat. The apparatus further includes an actuator coupled to the membrane for rendering the membrane in an open and a closed position with respect to the seat. Specifically, the actuator supplies a load in the normal direction to the membrane to selectively engage the membrane in a plurality of predetermined configurations. Operatively, the apparatus receives the fluid at the inlet. The fluid is received at a high temperature and is directed from the inlet to the membrane. In the closed position, the actuator engages the membrane to prevent the fluid from flowing from the inlet between the membrane and the seat. Alternatively, in the open position, the actuator engages the membrane to permit fluid flow from the inlet between the membrane and the seat to at least one outlet provided by the apparatus. In one exemplary embodiment, the fluid may be discharged from the at least one outlet to a sensor in fluid communication with the at least one outlet. Accordingly, the sensor may measure the fluid channeled through the heat resistant and chemically inert environment provided by the apparatus.

  17. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  18. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  19. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports - 1978

    DTIC Science & Technology

    1980-06-01

    selection of incentives for classroom use. Grade-related and non -grade-related incentives were described in this experiment in a manner designed to...information monitoring- feedback. The current piractice= materials and methods are an outgroiuth of experimental aJpproache-s to the design . dev...operated in a stand- alone mode, the R & M model can be utilized to analyze the impact of various avionics design configurations on system support

  20. Recovery Efficiency Test Project: Phase 1, Activity report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  1. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  2. Comparative Inhalation Toxicology of Selected Materials. Phase 2.

    DTIC Science & Technology

    1988-05-01

    animal care operations. Damon, E. G.; Ph.D. Data management in Path/Tox Data Base System. Eidson, A. F.; Ph.D. Coordinate activities associated with...exposures of male and female F344/N rats. The study goal was to provide exposure-response data and evaluate the effects of aerosol concentration (mg Cu...the growing inhalation toxicology data base for rats. This laboratory animal species was suitable for pulmonary function evaluations • - during and

  3. Manufacturing Steps for Commercial Production of Nano-Structure Capacitors Final Report CRADA No. TC02159.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, T. W.; Schena, D.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.

  4. Fixation of zygomatic and mandibular fractures with biodegradable plates

    PubMed Central

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic–complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Statistical Analysis Used: Descriptives, Frequencies, and Chi-square test were used. Results: In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Conclusions: Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome. PMID:23662255

  5. Zero Launch Mass Three Dimensional Print Head

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.

    2018-01-01

    NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.

  6. Developing a Signature Based Safeguards Approach for the Electrorefiner and Salt Cleanup Unit Operations in Pyroprocessing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Chantell Lynne-Marie

    Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS developmentmore » for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.« less

  7. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.

  8. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less

  9. Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK’s Initial Operational Response (IOR)

    PubMed Central

    Kassouf, Nick; Syed, Sara; Larner, Joanne; Amlôt, Richard

    2017-01-01

    The UK’s Initial Operational Response (IOR) is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method (“rinse-wipe-rinse”) for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants. PMID:28152053

  10. The contaminant analysis automation robot implementation for the automated laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-12-31

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less

  11. Selective Emitters for High Efficiency TPV Conversion: Materials Preparation and Characterisation

    NASA Astrophysics Data System (ADS)

    Diso, D.; Licciulli, A.; Bianco, A.; Leo, G.; Torsello, G.; Tundo, S.; De Risi, A.; Mazzer, M.

    2003-01-01

    Optimising the spectral emissivity of the IR radiation source in a TPV generator is one of the crucial steps towards high efficiency TPV conversion. In this paper we present different approaches to the preparation of selective emitters to be coupled to high efficiency photovoltaic cells. The emitters are designed to work at a temperature of about 1500K and they have been prepared to be used either as external coatings for the burner or as a structural material for the burner itself. Composite ceramics containing rare earth cations, prepared by slip-casting, with various concentration of rare earths were prepared by Slip Casting and Slurry Coating. Rare earth oxides have been incorporated into different oxide matrices, namely Silica, Alumina, Zirconia and their combination. The final aim was to find the material that exhibits the best performance in terms of both high selective power emission, good efficiency along with acceptable thermo-structural properties (high temperature thermal shock resistance, good strength, no creep). The power density emitted by samples as function of the temperature has been tested in the range 1000nm-5000nm. The high temperature emission measurements and the structural tests indicate that a good compromise between the functional and the thermo-structural properties may be reached. The results of the tests on the emitter coatings carried out in a TPV generator at the operating conditions are also presented in this paper.

  12. Energy-selective Neutron Imaging for Three-dimensional Non-destructive Probing of Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.

    Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.

  13. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  14. Materials for Spacecraft. Chapter 6

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.

    2016-01-01

    The general knowledge in this chapter is intended for a broad variety of spacecraft: manned or unmanned, low Earth to geosynchronous orbit, cis-lunar, lunar, planetary, or deep space exploration. Materials for launch vehicles are covered in chapter 7. Materials used in the fabrication of spacecraft hardware should be selected by considering the operational requirements for the particular application and the design engineering properties of the candidate materials. The information provided in this chapter is not intended to replace an in-depth materials study but rather to make the spacecraft designer aware of the challenges for various types of materials and some lessons learned from more than 50 years of spaceflight. This chapter discusses the damaging effects of the space environment on various materials and what has been successfully used in the past or what may be used for a more robust design. The material categories covered are structural, thermal control for on-orbit and re-entry, shielding against radiation and meteoroid/space debris impact, optics, solar arrays, lubricants, seals, and adhesives. Spacecraft components not directly exposed to space must still meet certain requirements, particularly for manned spacecraft where toxicity and flammability are concerns. Requirements such as fracture control and contamination control are examined, with additional suggestions for manufacturability. It is important to remember that the actual hardware must be tested to understand the real, "as-built" performance, as it could vary from the design intent. Early material trades can overestimate benefits and underestimate costs. An example of this was using graphite/epoxy composite in the International Space Station science racks to save weight. By the time the requirements for vibration isolation, Space Shuttle frequencies, and experiment operations were included, the weight savings had evaporated.

  15. Methodologies for processing plant material into acceptable food on a small scale

    NASA Technical Reports Server (NTRS)

    Parks, Thomas R.; Bindon, John N.; Bowles, Anthony J. G.; Golbitz, Peter; Lampi, Rauno A.; Marquardt, Robert F.

    1994-01-01

    Based on the Controlled Environment Life Support System (CELSS) production of only four crops, wheat, white potatoes, soybeans, and sweet potatoes; a crew size of twelve; a daily planting/harvesting regimen; and zero-gravity conditions, estimates were made on the quantity of food that would need to be grown to provide adequate nutrition; and the corresponding amount of biomass that would result. Projections were made of the various types of products that could be made from these crops, the unit operations that would be involved, and what menu capability these products could provide. Equipment requirements to perform these unit operations were screened to identify commercially available units capable of operating (or being modified to operate) under CELSS/zero-gravity conditions. Concept designs were developed for those equipment needs for which no suitable units were commercially available. Prototypes of selected concept designs were constructed and tested on a laboratory scale, as were selected commercially available units. This report discusses the practical considerations taken into account in the various design alternatives, some of the many product/process factors that relate to equipment development, and automation alternatives. Recommendations are made on both general and specific areas in which it was felt additional investigation would benefit CELSS missions.

  16. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  17. Performance and modeling of cesium ion exchange by ENGI neered form crystalline silicotitanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Gu, D.; Huckman, M.

    1996-10-01

    TAM-5, a hydrous crystalline silicotitanate (CST) powder developed by Sandia National Laboratories and Texas A&M University, and commercialized by UOP as IONSIV{reg_sign} Ion Exchanger Type IE-910, is a highly selective material for removing cesium and strontium from aqueous radioactive wastes such as those found at the Hanford site in Washington. An engineered form of the material suitable for column ion exchange type operations has been developed and tested. Data relevant to processing radioactive tank wastes including equilibrium distribution coefficients and column testing will be presented. The impact of exposure of the engineered form to chemically aggressive environments such as itmore » might experience during waste processing, and to the less aggressive environments it might experience during post processing storage has been assessed. The thermal stability of the material has also been evaluated. The experimental results have been integrated with an effort to model the material`s equilibrium and kinetic behavior.« less

  18. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    PubMed

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  19. Fabrication of diverse pH-sensitive functional mesoporous silica for selective removal or depletion of highly abundant proteins from biological samples.

    PubMed

    Wang, Jiaojiao; Lan, Jingfeng; Li, Huihui; Liu, Xiaoyan; Zhang, Haixia

    2017-01-01

    In proteomic studies, poor detection of low abundant proteins is a major problem due to the presence of highly abundant proteins. Therefore, the specific removal or depletion of highly abundant proteins prior to analysis is necessary. In response to this problem, a series of pH-sensitive functional mesoporous silica materials composed of 2-(diethylamino)ethyl methacrylate and methacrylic acid units were designed and synthesized via atom transfer radical polymerization. These functional mesoporous silica materials were characterized and their ability for adsorption and separation of proteins was evaluated. Possessing a pH-sensitive feature, the synthesized functional materials showed selective adsorption of some proteins in aqueous or buffer solutions at certain pH values. The specific removal of a particular protein from a mixed protein solution was subsequently studied. The analytical results confirmed that all the target proteins (bovine serum albumin, ovalbumin, and lysozyme) can be removed by the proposed materials from a five-protein mixture in a single operation. Finally, the practical application of this approach was also evaluated by the selective removal of certain proteins from real biological samples. The results revealed that the maximum removal efficiencies of ovalbumin and lysozyme from egg white sample were obtained as 99% and 92%, respectively, while the maximum removal efficiency of human serum albumin from human serum sample was about 80% by the proposed method. It suggested that this treatment process reduced the complexity of real biological samples and facilitated the identification of hidden proteins in chromatograms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Assessment strategies for municipal selective waste collection schemes.

    PubMed

    Ferreira, Fátima; Avelino, Catarina; Bentes, Isabel; Matos, Cristina; Teixeira, Carlos Afonso

    2017-01-01

    An important strategy to promote a strong sustainable growth relies on an efficient municipal waste management, and phasing out waste landfilling through waste prevention and recycling emerges as a major target. For this purpose, effective collection schemes are required, in particular those regarding selective waste collection, pursuing a more efficient and high quality recycling of reusable materials. This paper addresses the assessment and benchmarking of selective collection schemes, relevant to guide future operational improvements. In particular, the assessment is based on the monitoring and statistical analysis of a core-set of performance indicators that highlights collection trends, complemented with a performance index that gathers a weighted linear combination of these indicators. This combined analysis underlines a potential tool to support decision makers involved in the process of selecting the collection scheme with best overall performance. The presented approach was applied to a case study conducted in Oporto Municipality, with data gathered from two distinct selective collection schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    NASA Astrophysics Data System (ADS)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.

  2. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Vernon Cole; Abhra Roy; Ashok Damle

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.« less

  3. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.

  4. To build a mine: Prospect to product

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    The terrestrial definition of ore is a quantity of earth materials containing a mineral that can be extracted at a profit. While a space-based resource-gathering operation may well be driven by other motives, such an operation should have the most favorable cost-benefit ratio possible. To this end, principles and procedures already tested by the stringent requirements of the profit motive should guide the selection, design, construction, and operation of a space-based mine. Proceeding from project initiation to a fully operational mine requires several interacting and overlapping steps, which are designed to facilitate the decision process and insure economic viability. The steps to achieve a fully operational mine are outlined. Presuming that the approach to developing nonterrestrial resources will parallel that for developing mineral resources on Earth, we can speculate on some of the problems associated with developing lunar and asteroidal resources. The baseline for our study group was a small lunar mine and oxygen extraction facility. The development of this facility is described in accordance with the steps outlined.

  5. Structural Deterministic Safety Factors Selection Criteria and Verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  6. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    PubMed

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  8. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Mardoian, George H.; Ezzo, Maureen B.

    1994-01-01

    This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.

  9. Hot piston ring/cylinder liner materials: Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.

  10. Application of low temperature plasmas for restoration/conservation of archaeological objects

    NASA Astrophysics Data System (ADS)

    Krčma, F.; Blahová, L.; Fojtíková, P.; Graham, W. G.; Grossmannová, H.; Hlochová, L.; Horák, J.; Janová, D.; Kelsey, C. P.; Kozáková, Z.; Mazánková, V.; Procházka, M.; Přikryl, R.; Řádková, L.; Sázavská, V.; Vašíček, M.; Veverková, R.; Zmrzlý, M.

    2014-12-01

    The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.

  11. Applied Impact Physics Research

    NASA Astrophysics Data System (ADS)

    Wickert, Matthias

    2013-06-01

    Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.

  12. Development of high velocity gas gun with a new trigger system-numerical analysis

    NASA Astrophysics Data System (ADS)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  13. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  14. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  15. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  16. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  17. Interconnnect and bonding technologies for large flexible solar arrays

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.

  18. Lunar hand tools

    NASA Technical Reports Server (NTRS)

    Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.

    1987-01-01

    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.

  19. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  20. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  1. Ultra-efficient all-printed organic photodetectors

    NASA Astrophysics Data System (ADS)

    Kielar, Marcin; Dhez, Olivier; Hirsch, Lionel

    2016-09-01

    Organic photodetectors are able to transform plastic into intelligent surfaces making our daily life easier, smarter and more productive. The key element for a sensor is to reduce the dark current density in order to boost the limit of detection. The energetic requirements in order to select materials for ultra-high performance organic photodetectors are presented with the following experimental results: a detectivity of 3.36 × 1013 Jones has been achieved with an extremely low dark current density of 0.32 nA cm-2 and a responsivity as high as 0.34 A W-1. Flexible devices are all made at lowtemperature and with solution-processed materials. Their stability under operation is also presented.

  2. Computer-aided position planning of miniplates to treat facial bone defects

    PubMed Central

    Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter

    2017-01-01

    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon’s desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time. PMID:28817607

  3. Quantum description of light propagation in generalized media

    NASA Astrophysics Data System (ADS)

    Häyrynen, Teppo; Oksanen, Jani

    2016-02-01

    Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.

  4. Improved refractory performance through partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linck, F.E.; Peters, D.

    1995-12-31

    From the early designs and construction of Circulating Fluidized Bed (CFB) boilers, many improvements have been made based upon observations of performance. Included in these improvements have been the refractory linings. The early refractory linings were subjected to extreme fluctuations in temperatures as the units experienced up and down conditions. As the designs were improved refractory failures were mostly due to the operating conditions and other mechanical stresses rather than continual shutdowns and startups. More recent problems observed with refractory linings are localized areas of high erosion, corrosion and cracking which result in hot spots and eventual shutdowns for repair.more » Today the objective of refractory suppliers and installers is to strive towards planned shutdowns rather than emergency shutdowns. This can be accomplished through partnerships between operations, material suppliers and installers. In essence, the concept is a cooperative effort between these groups to solve the variety of refractory problems in order to achieve longer refractory lining performance and less chance for emergency shutdowns. The reliability of the refractory lining is dependent on the successful combination of the material selected, proper design and the installation of the refractory material. Where these three elements combine, the lining has the best chance of performing its intended purpose.« less

  5. Anelastic characterization of soft poroelastic materials by anelastography

    NASA Astrophysics Data System (ADS)

    Flores B, Carolina; Ammann, Jean Jacques; Rivera, Ricardo

    2008-11-01

    This paper presents the ID characterization of the local anelastic strain determined in soft poroelastic materials through acoustic scattering in a creep test configuration. Backscattering signals are obtained at successive times in a specimen submitted to a constant stress, applied coaxially to the acoustic beam of a 5 MHz ultrasonic transducer operated in pulse-echo mode. The local displacement is measured by determining the local shift between the RF traces by performing a running cross-correlation operation between equivalent segments extracted from two pairs of RF traces. The local strain the in the specimen is obtained as the displacement gradient. The method has been implemented on biphasic porous materials that present poroelastic behaviors such as synthetic latex sponges impregnated with viscous liquids. The strain/time curves have been interpreted through a continuous bimodal anelastic model (CBA), composed of an infinite set of Kelvin-Voigt cells connected in series with an elastic spring. The fit of an experimental strain/time curve selected at a specific depth through the CBA model allow characterizing the local anelastic behavior through a set of 7 characteristics parameters for the specimen at this location: three short-term and three long-term anelastic parameters and one elastic constant.

  6. Computer-aided position planning of miniplates to treat facial bone defects.

    PubMed

    Egger, Jan; Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter

    2017-01-01

    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.

  7. Reststrahlen Band Optics for the Advancement of Far-Infrared Optical Architecture

    NASA Astrophysics Data System (ADS)

    Streyer, William Henderson

    The dissertation aims to build a case for the benefits and means of investigating novel optical materials and devices operating in the underdeveloped far-infrared (20 - 60 microns) region of the electromagnetic spectrum. This dissertation and the proposed future investigations described here have the potential to further the advancement of new and enhanced capabilities in fields such as astronomy, medicine, and the petrochemical industry. The first several completed projects demonstrate techniques for developing far-infrared emission sources using selective thermal emitters, which could operate more efficiently than their simple blackbody counterparts commonly used as sources in this wavelength region. The later projects probe the possible means of linking bulk optical phonon populations through interaction with surface modes to free space photons. This is a breakthrough that would enable the development of a new class of light sources operating in the far-infrared. Chapter 1 introduces the far-infrared wavelength range along with many of its current and potential applications. The limited capabilities of the available optical architecture in this range are outlined along with a discussion of the state-of-the-art technology available in this range. Some of the basic physical concepts routinely applied in this dissertation are reviewed; namely, the Drude formalism, semiconductor Reststrahlen bands, and surface polaritons. Lastly, some of the physical challenges that impede the further advancement of far-infrared technology, despite remarkable recent success in adjacent regions of the electromagnetic spectrum, are discussed. Chapter 2 describes the experimental and computational methods employed in this dissertation. Spectroscopic techniques used to investigate both the mid-infrared and far-infrared wavelength ranges are reviewed, including a brief description of the primary instrument of infrared spectroscopy, the Fourier Transform Infrared (FTIR) spectrometer. Techniques for measuring infrared reflection and thermal emission at fixed and variable angles are described. Finally, the two computational methods most commonly employed in this dissertation are outlined; namely, the transfer matrix method (TMM) and rigourous coupled wave analysis (RCWA) techniques for calculating reflection and transmission spectra for layered materials. The later technique employs the first one in a Fourier space in order to efficiently calculate spectra from layered periodic structures. Chapter 3 is the first of five to present experimental work carried out in the current course of study and describes a tunable selective thermal emitter made from a thin-film metamaterial composed of germanium deposited upon a layer of highly doped silicon. The structure is essentially an interference filter with an anti-reflection coating (the germanium film) that is significantly thinner than the typical quarter wavelength thickness used in such filters - an effect enabled by the plasmonic properties of the highly doped silicon. The strong absorption band observed in reflection measurements was shown to be selective, tunable by choice of germanium thickness, and largely independent of polarization and angle of incidence. Subsequent heating of the devices demonstrated selective, tunable thermal emission. Chapter 4 describes a different approach to achieving selective, tunable thermal emission; moreover, one that operates in the far-infrared. These devices are made of gold 1D gratings patterned atop aluminum nitride films with molybdenum ground planes beneath. These devices exhibited strong selective absorption that could be tuned by choice of gold grating width. This single parameter was shown to provide absorption resonance tuning across a wide range of the far-infrared with marginal change in the strength and quality factor of the resonance. Subsequent heating of the devices with 2D gratings demonstrated polarization independent selective thermal emission. Computational models of the emission indicated the samples had significantly higher power efficiency than a blackbody at the same temperature in the same wavelength band. Chapter 5 presents selective thermal emission in the far-infrared from samples of patterned gallium phosphide. The selective absorption of the samples occurs in the material's Reststrahlen band and can be attributed to surface phonon polariton modes. The surfaces of the samples were grated via wet etching to provide the additional momentum necessary for free space photons to couple into and out of the surface phonon polariton modes. Upon heating the samples, selective thermal emission of the surface phonon polariton modes was observed. Chapter 6 investigates a potential means of linking lattice vibrations to free space photons. Lightly doped films of gallium arsenide were grown by molecular beam epitaxy and wet etched with 1D gratings. The light doping served to modify the material's intrinsic permittivity and extend the region of its Reststrahlen band. Though the extension of the region with negative real permittivity was small, it extended beyond the longitudinal optical phonon energy of the material, which stands as the high energy boundary of the unmodified material's Reststrahlen band. Hybrid surface polariton modes were observed at energies near the longitudinal optical phonon energy where they are not supported on the surface of the intrinsic material -- offering a potential bridge between bulk optical phonon populations and free space photons. Chapter 7 presents preliminary results exploring the prospect of exploiting an absorption resonance known as the Berreman mode as a mechanism to link optical phonons to free space photons. The Berreman mode is a strong absorption resonance that occurs near the longitudinal optical phonon energy at moderate angles of incidence in polar semiconductors. Preliminary results demonstrate selective thermal emission consistent with the expected spectral position of the Berreman mode in aluminum nitride (AlN), while Raman spectroscopy confirmed the spectral proximity of the longitudinal optical phonon. The final chapter summarizes the findings and outlines several suggestions for additional research directions that may further advance the pursuit of new technological capabilities in the far-infrared.

  8. Electrically-pumped 850-nm micromirror VECSELs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission ismore » employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.« less

  9. Electrically pumped 850-nm micromirror VECSELs

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan

    2005-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  10. Characterization and Selection of Polymer Materials for Binary Munitions Storage. Part 3. Branch Content Determination.

    DTIC Science & Technology

    1987-09-01

    accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the

  11. Understanding A Special Operations Role: Network Caretakers Of Knowledge-Based Communities Of Practice

    DTIC Science & Technology

    2017-12-01

    people eagerly anticipated failed to materialize. Instead, the country fractured into a collection of well- organized Islamic militias armed with...is continuously updated in near real time. When applied to certain models, ICEWS can be a powerful predictive tool to “forecast select events of...project would be incomplete without you. It is possible that through your work, and the work of dedicated people like you, Libya will see better days

  12. Advanced Simulation in Undergraduate Pilot Training: Visual Display Development

    DTIC Science & Technology

    1975-12-01

    properties of each member were calculated manually and were inserted by means of punched cards, thus it was relatively easy (but time consuming ) to...investigations leading to the decision to employ an all-glass approach which consisted of a two-part glass funnel produced by Corning Glass Wo ks... consuming . After complete sets of materials were selected they had to be cemented into a final assembly. This had to be done in two operations because of the

  13. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  14. [Tumors of the 4th ventricle and the craniospinal transitional zone. Review of patients of the Neurosurgical Clinic of the Department of Medicine of the Karl Marx University].

    PubMed

    Niebeling, H G; Fried, H; Goldhahn, W E; Skrzypczak, J; Brachmann, J; Eichler, I

    1983-01-01

    From a total of 1,028 infratentorial tumours operated on at the Neurosurgical Hospital of the Section Medicine of the Karl-Marx University Leipzig in the last 30 years, 167 tumours in the region of the 4th ventrical have been selected. Their statistical processing was carried out with respect to specific localisation, average age, kind of tumour, sex, clinical findings, duration of case history, application of instrumental diagnostic procedures and radicality of operation, success and failure. Some fundamental conclussions are drawn. A subdivision in detail will be contained in the following articles based on this material.

  15. Growth of ruby crystals by the heat exchanger method, phase 1: NSF small business innovation research

    NASA Astrophysics Data System (ADS)

    Schmid, F.; Khattak, C. P.

    1980-03-01

    Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.

  16. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.

    2001-11-01

    There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.

  17. Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics.

    PubMed

    Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin

    2017-01-01

    This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.

  18. Materials screening chamber for testing materials resistance to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Carruth, Ralph

    1989-01-01

    A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.

  19. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  20. Development of a database system for operational use in the selection of titanium alloys

    NASA Astrophysics Data System (ADS)

    Han, Yuan-Fei; Zeng, Wei-Dong; Sun, Yu; Zhao, Yong-Qing

    2011-08-01

    The selection of titanium alloys has become a complex decision-making task due to the growing number of creation and utilization for titanium alloys, with each having its own characteristics, advantages, and limitations. In choosing the most appropriate titanium alloys, it is very essential to offer a reasonable and intelligent service for technical engineers. One possible solution of this problem is to develop a database system (DS) to help retrieve rational proposals from different databases and information sources and analyze them to provide useful and explicit information. For this purpose, a design strategy of the fuzzy set theory is proposed, and a distributed database system is developed. Through ranking of the candidate titanium alloys, the most suitable material is determined. It is found that the selection results are in good agreement with the practical situation.

  1. Heterogeneous metasurface for high temperature selective emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolf, D., E-mail: dwoolf@psicorp.com; Hensley, J.; Cederberg, J. G.

    2014-08-25

    We demonstrate selective emission from a heterogeneous metasurface that can survive repeated temperature cycling at 1300 K. Simulations, fabrication, and characterization were performed for a cross-over-a-backplane metasurface consisting of platinum and alumina layers on a sapphire substrate. The structure was stabilized for high temperature operation by an encapsulating alumina layer. The geometry was optimized for integration into a thermophotovoltaic (TPV) system, and was designed to have its emissivity matched to the external quantum efficiency spectrum of 0.6 eV InGaAs TPV material. We present spectral measurements of the metasurface that result in a predicted 22% optical-to-electrical power conversion efficiency in a simplified modelmore » at 1300 K. Furthermore, this broadly adaptable selective emitter design can be easily integrated into full-scale TPV systems.« less

  2. Discrimination of tooth layers and dental restorative materials using cutting sounds.

    PubMed

    Zakeri, Vahid; Arzanpour, Siamak; Chehroudi, Babak

    2015-03-01

    Dental restoration begins with removing carries and affected tissues with air-turbine rotary cutting handpieces, and later restoring the lost tissues with appropriate restorative materials to retain the functionality. Most restoration materials eventually fail as they age and need to be replaced. One of the difficulties in replacing failing restorations is discerning the boundary of restorative materials, which causes inadvertent removal of healthy tooth layers. Developing an objective and sensor-based method is a promising approach to monitor dental restorative operations and to prevent excessive tooth losses. This paper has analyzed cutting sounds of an air-turbine handpiece to discriminate between tooth layers and two commonly used restorative materials, amalgam and composite. Support vector machines were employed for classification, and the averaged short-time Fourier transform coefficients were selected as the features. The classifier performance was evaluated from different aspects such as the number of features, feature scaling methods, classification schemes, and utilized kernels. The total classification accuracies were 89% and 92% for cases included composite and amalgam materials, respectively. The obtained results indicated the feasibility and effectiveness of the proposed method.

  3. Emerging materials for lowering atmospheric carbon

    DOE PAGES

    Barkakaty, Balaka; Sumpter, Bobby G.; Ivanov, Ilia N.; ...

    2016-12-08

    CO 2 emissions from anthropogenic sources and the rate at which they increase could have deep global ramifications such as irreversible climate change and increased natural disasters. Because greater than 50% of anthropogenic CO 2 emissions come from small, distributed sectors such as homes, offices, and transportation sources, most renewable energy systems and on-site carbon capture technologies for reducing future CO 2 emissions cannot be effectively utilized. This problem might be mediated by considering novel materials and technologies for directly capturing/removing CO 2 from air. But, compared to materials for capturing CO 2 at on-site emission sources, materials for capturingmore » CO 2 directly from air must be more selective to CO 2, and should operate and be stable at near ambient conditions. Here, we briefly summarize the recent developments in materials for capturing carbon dioxide directly from air. Furthermore, we discuss the challenges in this field and offer a perspective for developing the current state-of-art and also highlight the potential of a few recent discoveries in materials science that show potential for advanced application of air capture technology.« less

  4. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermalmore » neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.« less

  5. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  6. Low-Outgassing Photogrammetry Targets for Use in Outer Space

    NASA Technical Reports Server (NTRS)

    Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.

    2011-01-01

    A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..

  7. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.« less

  8. Remote operation: a selective review of research into visual depth perception.

    PubMed

    Reinhardt-Rutland, A H

    1996-07-01

    Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.

  9. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  10. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less

  11. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    PubMed

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  12. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  13. Characterization of stormwater at selected South Carolina Department of Transportation maintenance yards and section shed facilities in Ballentine, Conway, and North Charleston, South Carolina, 2010-12

    USGS Publications Warehouse

    Journey, Celeste A.; Conlon, Kevin J.

    2014-01-01

    Increased impervious surfaces (driveways, parking lots, and buildings) and human activities (residential, industrial, and commercial) have been linked to substantial changes in both the quality and quantity of stormwater on a watershed scale (Brabec and others, 2002; Pitt and Maestre, 2005). Small-scale storage and equipment repair facilities increase impervious surfaces that prevent infiltration of stormwater, and these facilities accommodate activities that can introduce trace metals, organic compounds, and other contaminants to the facility’s grounds. Thus, these small facilities may contribute pollutants to the environment during storm events (U.S. Environmental Protection Agency, 1992). The South Carolina Department of Transportation (SCDOT) operates section shed and maintenance yard facilities throughout the State. Prior to this investigation, the SCDOT had no data to define the quality of stormwater leaving these facilities. To provide these data, the U.S. Geological Survey (USGS), in cooperation with the SCDOT, conducted an investigation to identify and quantify constituents that are transported in stormwater from two maintenance yards and a section shed in three different areas of South Carolina. The two maintenance yards, in North Charleston and Conway, S.C., were selected because they represent facilities where equipment and road maintenance materials are stored and complete equipment repair operations are conducted. The section shed, in Ballentine, S.C., was selected because it is a facility that stores equipment and road maintenance material. Characterization of the constituents that were transported in stormwater from these representative SCDOT maintenance facilities may be used by the SCDOT in the development of stormwater management plans for similar section shed and maintenance yard facilities throughout the State to improve stormwater quality.

  14. Ozone delignification of pine and eucalyptus kraft pulps. 2: Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoes, R.M.S.; Castro, J.A.A.M.

    1999-12-01

    The selectivity of ozone in the delignification of unbleached pine and eucalyptus kraft pulps is studied at ultralow consistency in a stirred reactor under closely controlled experimental conditions. The effect of several operating variables is analyzed, but special attention is paid to the depolymerization rate of polysaccharides with the particular goal of evaluating the influence of the lignin contents on its kinetics. By using substantially different ozone concentrations in the pulp suspension and different reaction temperatures, it is possible to show that ozone selectivity can only be slightly improved by manipulating these operating variables. Furthermore, for the same type ofmore » material, it was observed that the initial rate of delignification plays the most important role on selectivity. In fact, for a given pulp, selectivity decreases with a decrease of the initial lignin contents, and such results can be well justified by the corresponding reduction of the initial rates of delignification. To further investigate the effect of lignin on pulp degradation, experiments were carried out at 4 C between ozone and holocellulose, which represent the polysaccharides of the unbleached pulps. The results suggest that molecular ozone can be responsible for an important part of the polysaccharides depolymerization during the delignification process. Moreover, the comparison of the kinetic behavior of holocellulose and of the corresponding unbleached pulp also reveals that the presence of lignin in the pulp enhances both the depolymerization and the degradation rates of polysaccharides.« less

  15. Robotic assisted laparoscopic partial nephrectomy using contrast‐enhanced ultrasound scan to map renal blood flow

    PubMed Central

    Motiwala, Aamir; Eves, Susannah; Gray, Rob; Thomas, Asha; Meiers, Isabelle; Sharif, Haytham; Motiwala, Hanif; Laniado, Marc; Karim, Omer

    2016-01-01

    Abstract Objective The paper describes novel real‐time ‘in situ mapping’ and ‘sequential occlusion angiography’ to facilitate selective ischaemia robotic partial nephrectomy (RPN) using intraoperative contrast enhanced ultrasound scan (CEUS). Materials and methods Data were collected and assessed for 60 patients (61 tumours) between 2009 and 2013. 31 (50.8%) tumours underwent ‘Global Ischaemia’, 27 (44.3%) underwent ‘Selective Ischaemia’ and 3 (4.9%) were removed ‘Off Clamp Zero Ischaemia’. Demographics, operative variables, complications, renal pathology and outcomes were assessed. Results Median PADUA score was 9 (range 7–10). The mean warm ischaemia time in selective ischaemia was less and statistically significant than in global ischaemia (17.1 and 21.4, respectively). Mean operative time was 163 min. Postoperative complications (n = 10) included three (5%) Clavien grade 3 or above. Malignancy was demonstrated in 47 (77%) with negative margin in 43 (91.5%) and positive margin in four (8.5%). Long‐term decrease in eGFR post selective ischaemia robotic partial nephrectomy was less compared with global ischaemia (four and eight, respectively) but not statistically significant. Conclusions This technique is safe, feasible and cost‐effective with comparable perioperative outcomes. The technical aspects elucidate the role of intraoperative CEUS to facilitate and ascertain selective ischaemia. Further work is required to demonstrate long‐term oncological outcomes. © 2016 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons, Ltd. PMID:26948671

  16. Methodology for Life Testing of Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    The focus of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identi3ed, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The refractory metal selected for demonstration purposes is a Molybdenum-44.5%Rhenium alloy formed by powder metallurgy. The heat pipe makes use of an annular crescent wick design formed by hot isostatic pressing of Molybdenum-Rhenium wire mesh. The heat pipes are filled using vacuum distillation and purity sampling is considered. Testing of these units is round-the-clock with 6-month destructive and non-destructive inspection intervals to identify the onset and level of corrosion. Non-contact techniques are employed for providing power to the evaporator (radio frequency induction heating at I to 5 kW per unit) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range would extend from 1123 to 1323 K. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  17. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  18. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    PubMed

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  19. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  20. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    NASA Astrophysics Data System (ADS)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  1. CEREC CAD/CAM Chairside System

    PubMed Central

    SANNINO, G.; GERMANO, F.; ARCURI, L.; BIGELLI, E.; ARCURI, C.; BARLATTANI, A.

    2014-01-01

    SUMMARY Purpose. The aim of this paper was to describe the CEREC 3 chairside system, providing the clinicians a detailed analysis of the whole digital workflow. Benefits and limitations of this technology compared with the conventional prosthetic work-flow were also highlighted and discussed. Materials and methods. Clinical procedures (tooth preparation, impression taking, adhesive luting), operational components and their capabilities as well as restorative materials used with CEREC 3 chairside system were reported. Results. The CEREC system has shown many positive aspects that make easier, faster and less expensive the prosthetic workflow. The operator-dependent errors are minimized compared to the conventional prosthetic protocol. Furthermore, a better acceptance level for the impression procedure has shown by the patients. The only drawback could be the subgingival placement of the margins compared with the supra/juxta gingival margins, since more time was required for the impression taking as well as the adhesive luting phase. The biocopy project seemed to be the best tool to obtain functionalized surfaces and keep unchanged gnathological data. Material selection was related to type of restoration. Conclusions. The evidence of our clinical practice suggests that CEREC 3 chairside system allows to produce highly aesthetic and reliable restorations in a single visit, while minimizing costs and patient discomfort during prosthetic treatment. However improvements in materials and technologies are needed in order to overcome the actual drawbacks. PMID:25992260

  2. Study, selection, and preparation of solid cationic conductors

    NASA Technical Reports Server (NTRS)

    Roth, W. L.; Mitoff, S. P.; King, R. N.

    1972-01-01

    Crystal chemical principles and transport theory were used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. More than twenty compounds were synthesized or obtained and screened by nuclear magnetic resonance and conductivity. Many were densified by sintering or hot pressing. Encouraging results were obtained for nine of these materials but none have yet been good ionic conductors at low temperature.

  3. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  4. The Mars Hand Lens Imager (MAHLI) for the 209 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Bell, J. F., III; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Minitti, M. E.; Olson, T. S.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.

    2005-01-01

    The MArs Hand Lens Imager (MAHLI) is a small, RGB-color camera designed to examine geologic material at 12.5-75 microns/pixel resolution at the Mars Science Laboratory (MSL) landing site. MAHLI is a PI-led investigation competitively selected by NASA in December 2004 as part of the science payload for the MSL rover launching in 2009. The instrument is being fabricated by, and will be operated by, Malin Space Science Systems of San Diego, California.

  5. The Pacific Community Concept. Proposals for Further Development and Co-Operation between Countries of the Pacific Basin and Reaction to Such Proposals by Pacific Basin Countries. A Select Bibliography. Development of Resource Sharing Networks. Networks Study No. 14.

    ERIC Educational Resources Information Center

    National Library of Australia, Canberra.

    As part of its statutory duty to foster international cooperation, the National Library of Australia has produced this annotated bibliography based on a review of material published since 1968 on the Pacific Community Concept or cooperation between countries in the Pacific Basin area of Asia and Oceania. The 159 items listed cover the following…

  6. Tribological Properties of Structural Ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Miyoshi, Kazuhisa

    1987-01-01

    Paper discusses tribological properties of structural ceramics. Function of tribological research is to bring about reduction in adhesion, friction, and wear of mechanical components; to prevent failures; and to provide long, reliable component life, through judicious selection of materials, operating parameters, and lubricants. Paper reviews adhesion, friction, wear, and lubrication of ceramics; anisotropic friction and wear behavior; and effects of surface films and interactions between ceramics and metals. Analogies with metals are made. Both oxide and nonoxide ceramics, including ceramics used as high temperature lubricants, are dicussed.

  7. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  8. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  9. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  10. High temperature range recuperator. Phase I: materials selection, design optimization, evaluation and thermal testing. Final report, April 1977-May 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, D V

    1978-06-01

    Initial efforts to develop, test, and evaluate counterflow recuperator designs are reported for the High Temperature Range Recuperator project. Potential materials to withstand glass furnace exhaust environments at temperatures up to 2800/sup 0/F were evaluated on the bases of material properties, fabrication capability, and relative performance in the flue environment of a day tank glass furnace. Polycrystalline alumina (Vistal), reaction sintered silicon carbide (KT and NC 430), chemically vapor deposited silicon carbide (CVD) and sintered alpha silicon carbide proved most satisfactory in the material temperature range of 2300/sup 0/F to 2800/sup 0/F. Relatively pure alumina (AD 998 and AD 94),more » mullite and cordierite were most satisfactory in the material temperature range of 1700/sup 0/F to 2300/sup 0/F. Recuperator designs were evaluated on the bases of cold air flow tests on laboratory models, fabricability, and calculated thermomechanical stress under expected operating conditions. Material strengths are shown to be greater than expected stresses by factors ranging from 2.6 for KT silicon carbide to 16 for cordierite. Recuperator test sections were fabricated from KT silicon carbide and subjected to thermal stress conditions in excess of twice the expected operating conditions with no deterioration or failure evident. A test section was subjected to the thermal shock of instant transfer between room temperature and a 2000/sup 0/F furnace without damage. Economic analysis based on calculated heat transfer indicates a recuperator system of this design and using currently available materials would have a payback period of 2.3 years.« less

  11. Up-conversion in rare-earth doped micro-particles applied to new emissive two-dimensional displays

    NASA Astrophysics Data System (ADS)

    Milliez, Anne Janet

    Up-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most appealing characteristics for displays are: a wide color gamut with very saturated colors, very high brightness operation without damage to the emitters, long lifetimes and efficiencies comparable to those of existing technologies. Other advantages include simplicity of fabrication, versatility of operating modes, and the potential for greatly reduced display weight and depth. Thanks to recent advances in material science and diode laser technology at the excitation wavelength, UC selected materials can be very efficient visible emitters. However, optimal UC efficiencies strongly depend on chosing proper operating conditions. In this thesis, we studied the conditions required for optimization. We demonstrated that high efficiency UC depends on high pump irradiance, low temperature and low scattering. With this understanding we can predict how to optimally use UC emitters in a wide range of applications. In particular, we showed how our very efficient UC emitters can be applied to make full color displays and very efficient white light sources.

  12. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  13. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  14. Nuclear power plant cable materials :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.« less

  15. Fractionation of memory in medial temporal lobe amnesia.

    PubMed

    Bird, Chris M; Shallice, Tim; Cipolotti, Lisa

    2007-03-25

    We report a comprehensive investigation of the anterograde memory functions of two patients with memory impairments (RH and JC). RH had neuroradiological evidence of apparently selective right-sided hippocampal damage and an intact cognitive profile apart from selective memory impairments. JC, had neuroradiological evidence of bilateral hippocampal damage following anoxia due to cardiac arrest. He had anomic and "executive" difficulties in addition to a global amnesia, suggesting atrophy extending beyond hippocampal regions. Their performance is compared with that of a previously reported hippocampal amnesic patient who showed preserved recollection and familiarity for faces in the context of severe verbal and topographical memory impairment [VC; Cipolotti, L., Bird, C., Good, T., Macmanus, D., Rudge, P., & Shallice, T. (2006). Recollection and familiarity in dense hippocampal amnesia: A case study. Neuropsychologia, 44, 489-506.] The patients were administered experimental tests using verbal (words) and two types of non-verbal materials (faces and buildings). Receiver operating characteristic analyses were used to estimate the contribution of recollection and familiarity to recognition performance on the experimental tests. RH had preserved verbal recognition memory. Interestingly, her face recognition memory was also spared, whilst topographical recognition memory was impaired. JC was impaired for all types of verbal and non-verbal materials. In both patients, deficits in recollection were invariably associated with deficits in familiarity. JC's data demonstrate the need for a comprehensive cognitive investigation in patients with apparently selective hippocampal damage following anoxia. The data from RH suggest that the right hippocampus is necessary for recollection and familiarity for topographical materials, whilst the left hippocampus is sufficient to underpin these processes for at least some types of verbal materials. Face recognition memory may be adequately subserved by areas outside of the hippocampus.

  16. A Selective Bibliography on School Materials: Selection and Censorship.

    ERIC Educational Resources Information Center

    Folke, Carolyn, Comp.

    Prepared as a guide for Wisconsin school administrators selecting school instructional materials, this bibliography provides annotations of 57 useful readings on the selection and censorship of school materials. Journal articles, monographs, and ERIC documents are included. (RAA)

  17. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  18. Design and Simulation Plant Layout Using Systematic Layout Planning

    NASA Astrophysics Data System (ADS)

    Suhardini, D.; Septiani, W.; Fauziah, S.

    2017-12-01

    This research aims to design the factory layout of PT. Gunaprima Budiwijaya in order to increase production capacity. The problem faced by this company is inappropriate layout causes cross traffic on the production floor. The re-layout procedure consist of these three steps: analysing the existing layout, designing plant layout based on SLP and evaluation and selection of alternative layout using Simulation Pro model version 6. Systematic layout planning is used to re-layout not based on the initial layout. This SLP produces four layout alternatives, and each alternative will be evaluated based on two criteria, namely cost of material handling using Material Handling Evaluation Sheet (MHES) and processing time by simulation. The results showed that production capacity is increasing as much as 37.5% with the addition of the machine and the operator, while material handling cost was reduced by improvement of the layout. The use of systematic layout planning method reduces material handling cost of 10,98% from initial layout or amounting to Rp1.229.813,34.

  19. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  20. Poly(ortho esters)--from concept to reality.

    PubMed

    Heller, Jorge; Barr, John

    2004-01-01

    The development of poly(ortho esters) dates back to the early 1970s, and during that time, four distinct families were developed. These polymers can be prepared by a transesterification reaction or by the addition of polyols to diketene acetals, and it is the latter method that has proven to be preferred one. The latest polymer, now under intense development, incorporates a latent acid segment in the polymer backbone that takes advantage of the acid-labile nature of the ortho ester linkages and allows control over erosion rates. By use of diols having selected chain flexibility, polymers that range from hard, brittle materials to materials that have a gel-like consistency at room temperature can be obtained. Drug release from solid materials will be illustrated with 5-fluorouacil and bovine serum albumin, and drug release from gel-like materials will be illustrated with mepivacaine, now in Phase II clinical trials as a delivery system to treat post-operative pain. A brief summary of preclinical toxicology studies is also presented.

Top