Sample records for materials specific examples

  1. Construction and material specification

    DOT National Transportation Integrated Search

    2002-01-01

    These Construction and Material Specifications are written to the Bidder before award of the : Contract and to the Contractor after award of the Contract. The sentences that direct the Contractor to perform Work are written as commands. For example, ...

  2. Preparation of non-metals properties for data base

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The development of non-metallic material properties data bases is discussed. The data bases consist of the non-metallic material classes of adhesives, adhesive/sealants, plastics, and elastomers. A specifications data base was also developed to incorporate material specifications data as a supplement to the Elastomers Data Base. Examples of the forms used are provided to show the properties of the materials which appear in the data base.

  3. The e-MapScholar project—an example of interoperability in GIScience education

    NASA Astrophysics Data System (ADS)

    Purves, R. S.; Medyckyj-Scott, D. J.; Mackaness, W. A.

    2005-03-01

    The proliferation of the use of digital spatial data in learning and teaching provides a set of opportunities and challenges for the development of e-learning materials suitable for use by a broad spectrum of disciplines in Higher Education. Effective e-learning materials must both provide engaging materials with which the learner can interact and be relevant to the learners' disciplinary and background knowledge. Interoperability aims to allow sharing of data and materials through the use of common agreements and specifications. Shared learning materials can take advantage of interoperable components to provide customisable components, and must consider issues in sharing data across institutional borders. The e-MapScholar project delivers teaching materials related to spatial data, which are customisable with respect to both context and location. Issues in the provision of such interoperable materials are discussed, including suitable levels of granularity of materials, the provision of tools to facilitate customisation and mechanisms to deliver multiple data sets and the metadata issues related to such materials. The examples shown make extensive use of the OpenGIS consortium specifications in the delivery of spatial data.

  4. Material of Geographic Import in the National Anthropological Archives.

    ERIC Educational Resources Information Center

    Glenn, James R.

    Presenting specific examples of the manuscripts, cartographic materials, and pictorial materials found in the National Anthropological Archives, this paper describes Archive holdings (in such areas as archeology, linguistics, physical anthropology, and various branches of ethnology) which are dated from 1850 to the present and are representative…

  5. Seeking instructional specificity: An example from analogical instruction

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2015-12-01

    Broad instructional methods like "interactive engagement" have been shown to be effective, but such general characterization provides little guidance on the details of how to structure instructional materials. In this study, we seek instructional specificity by comparing two ways of using an analogy to learn a target physical principle: (i) applying the analogy to the target physical domain on a case-by-case basis and (ii) using the analogy to create a general rule in the target physical domain. In the discussion sections of a large, introductory physics course (N =2 3 1 ), students who sought a general rule were better able to discover and apply a correct physics principle than students who analyzed the examples case by case. The difference persisted at a reduced level after subsequent direct instruction. We argue that students who performed case-by-case analyses were more likely to focus on idiosyncratic problem-specific features rather than the deep structural features. This study provides an example of investigations into how the specific structure of instructional materials can be consequential for what is learned.

  6. Flaws in Commercial Reading Materials.

    ERIC Educational Resources Information Center

    Axelrod, Jerome

    Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…

  7. 34 CFR 660.34 - What priorities may the Secretary establish?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or Latin America, or the languages of those regions. (3) Topics of research and studies; for example, language acquisition processes, methodology of foreign language instruction, foreign language performance... described in § 660.10. (2) Specific languages or regions for study or materials development; for example...

  8. Airframe materials for HSR

    NASA Technical Reports Server (NTRS)

    Bales, Thomas T.

    1992-01-01

    Vugraphs are presented to show the use of refractory materials for the skin of the High speed Civil Transport (HSCT). Examples are given of skin temperature ranges, failure mode weight distribution, tensile properties as a function of temperature, and components to be constructed from composite materials. The responsibilities of various aircraft companies for specific aircraft components are defined.

  9. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  10. Precast-Prestressed Schools.

    ERIC Educational Resources Information Center

    Basalt Rock Co., Inc., Napa, CA.

    Diagrammatic explanations of various concepts, processes, details, and potential material usages are presented. Specific material and element topics include--(1) the fabrication process, (2) basic structural components, (3) element usage, and (4) building construction procedures. Examples of the use of related elements are shown for typical school…

  11. Organic Electronics for Point-of-Care Metabolite Monitoring.

    PubMed

    Pappa, Anna-Maria; Parlak, Onur; Scheiblin, Gaetan; Mailley, Pascal; Salleo, Alberto; Owens, Roisin M

    2018-01-01

    In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People

  13. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  14. Advanced Materials by Atom Transfer Radical Polymerization.

    PubMed

    Matyjaszewski, Krzysztof

    2018-06-01

    Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular biomimetics: GEPI-based biological routes to technology.

    PubMed

    Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet

    2010-01-01

    In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we describe lessons from biology with examples of protein-mediated functional biological materials, explain how novel peptides can be designed with specific affinity to inorganic solids using evolutionary engineering approaches, give examples of their potential utilizations in technology and medicine, and, finally, provide a summary of challenges and future prospects. (c) 2010 Wiley Periodicals, Inc.

  16. Chapter 10. Developing a habitat monitoring program: three examples from national forest planning

    Treesearch

    Michael I. Goldstein; Lowell H. Suring; Christina D. Vojta; Mary M. Rowland; Clinton. McCarthy

    2013-01-01

    This chapter reviews the process steps of wildlife habitat monitoring described in chapters 2 through 9 and provides three case examples that illustrate how the process steps apply to specific situations. It provides the reader an opportunity to synthesize the material while also revealing the potential knowledge gaps and pitfalls that may complicate completion of a...

  17. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  18. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    NASA Astrophysics Data System (ADS)

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4+/-4.1 to 277.5+/-30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  19. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    PubMed Central

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering. PMID:28462937

  20. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials.

    PubMed

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-02

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  1. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  2. A drive based on an element made of a thermomechanical memory material

    NASA Astrophysics Data System (ADS)

    Krakhin, O. I.; Dubovik, I. N.; Rozarenova, Iu. A.

    The advantages of using drives with active elements made of thermomechanical memory materials in aircraft structures are briefly reviewed. The choice of a particular type of active element based on a thermomechanical memory material is shown to depend on the specific operating conditions of the drive. The design of a rotary drive with an active element of TN-1 alloy is examined as an example.

  3. "So Now What?" Managing the Change Process.

    ERIC Educational Resources Information Center

    Cushman, Kathleen

    1993-01-01

    School reform efforts require teaching teamwork and goal setting to school personnel. Describes a number of strategies for managing organizational change with examples at specific schools. Lists Coalition of Essential Schools materials. (MLF)

  4. 29 CFR 1918.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material and a moving part of the machine, burned by hot surfaces or exposed to electric shock. Examples of... the employer to do a specific task in that area. Dockboards (car and bridge plates) mean devices for...

  5. Evaluation of Student Outcomes in Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  6. Stockpile Dismantlement Database Training Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    This document, the Stockpile Dismantlement Database (SDDB) training materials is designed to familiarize the user with the SDDB windowing system and the data entry steps for Component Characterization for Disposition. The foundation of information required for every part is depicted by using numbered graphic and text steps. The individual entering data is lead step by step through generic and specific examples. These training materials are intended to be supplements to individual on-the-job training.

  7. Nanocomposites for electromagnetic radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrunin, V. F., E-mail: VFPetrunin@mephi.ru

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  8. Color Counts, Too!

    ERIC Educational Resources Information Center

    Sewell, Julia H.

    1983-01-01

    Students with undetected color blindness can have problems with specific teaching methods and materials. The problem should be ruled out in children with suspected learning disabilities and taken into account in career counseling. Nine examples of simple classroom modifications are described. (CL)

  9. XML Based Markup Languages for Specific Domains

    NASA Astrophysics Data System (ADS)

    Varde, Aparna; Rundensteiner, Elke; Fahrenholz, Sally

    A challenging area in web based support systems is the study of human activities in connection with the web, especially with reference to certain domains. This includes capturing human reasoning in information retrieval, facilitating the exchange of domain-specific knowledge through a common platform and developing tools for the analysis of data on the web from a domain expert's angle. Among the techniques and standards related to such work, we have XML, the eXtensible Markup Language. This serves as a medium of communication for storing and publishing textual, numeric and other forms of data seamlessly. XML tag sets are such that they preserve semantics and simplify the understanding of stored information by users. Often domain-specific markup languages are designed using XML, with a user-centric perspective. Standardization bodies and research communities may extend these to include additional semantics of areas within and related to the domain. This chapter outlines the issues to be considered in developing domain-specific markup languages: the motivation for development, the semantic considerations, the syntactic constraints and other relevant aspects, especially taking into account human factors. Illustrating examples are provided from domains such as Medicine, Finance and Materials Science. Particular emphasis in these examples is on the Materials Markup Language MatML and the semantics of one of its areas, namely, the Heat Treating of Materials. The focus of this chapter, however, is not the design of one particular language but rather the generic issues concerning the development of domain-specific markup languages.

  10. Luminescent Silica Nanoparticles for cancer diagnosis

    PubMed Central

    Montalti, Marco; Petrizza, Luca; Rampazzo, Enrico; Zaccheroni, Nelsi; Marchiò, Serena

    2015-01-01

    Fluorescence imaging techniques are becoming essential in preclinical investigations, and the research of suitable tools for in vivo measurements is gaining more and more importance and attention. Nanotechnology entered the field to try to find solutions for many limitation at the state of the art, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs constitute also a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostic (simultaneous diagnosis and therapy). In this contribution we have focussed our attention only on dye doped silica or silica-based NPs conjugated with targeting moieties to enable specific cancer cells imaging and differentiation, even if also a few non targeted systems have been cited and discussed for completeness. We have summarized common synthetic approaches to these materials and then surveyed the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostic is so important and stimulating that, even if it is not the central topic of this paper, we have included some significant examples. We have then concluded with short hints on systems already in clinical trials and examples of specific applications in children tumours. This review tries to describe and discuss, through focussed examples, the great potentialities of these materials in the medical field, with the aim to encourage further research to implement applications that are still rare. PMID:23458621

  11. Selection and authentication of botanical materials for the development of analytical methods.

    PubMed

    Applequist, Wendy L; Miller, James S

    2013-05-01

    Herbal products, for example botanical dietary supplements, are widely used. Analytical methods are needed to ensure that botanical ingredients used in commercial products are correctly identified and that research materials are of adequate quality and are sufficiently characterized to enable research to be interpreted and replicated. Adulteration of botanical material in commerce is common for some species. The development of analytical methods for specific botanicals, and accurate reporting of research results, depend critically on correct identification of test materials. Conscious efforts must therefore be made to ensure that the botanical identity of test materials is rigorously confirmed and documented through preservation of vouchers, and that their geographic origin and handling are appropriate. Use of material with an associated herbarium voucher that can be botanically identified is always ideal. Indirect methods of authenticating bulk material in commerce, for example use of organoleptic, anatomical, chemical, or molecular characteristics, are not always acceptable for the chemist's purposes. Familiarity with botanical and pharmacognostic literature is necessary to determine what potential adulterants exist and how they may be distinguished.

  12. Verb Schema Use and Input Dependence in 5-Year-Old Children with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Riches, N. G.; Faragher, B.; Conti-Ramsden, G.

    2006-01-01

    It has been argued that children with Specific Language Impairment (SLI) use language in a conservative manner. For example, they are reluctant to produce word-plus-frame combinations that they have not heard in the input. In addition, there is evidence to suggest that their utterances replicate lexical and syntactic material from the immediate…

  13. [Study of genuineness based on changes of ancient herbal origin--taking Astragalus membranaceus and Salvia miltiorrhiza as examples].

    PubMed

    Zhan, Zhi-Lai; Deng, Ai-Ping; Peng, Hua-Sheng; Zhang, Xiao-Bo; Guo, Lan-Ping; Huang, Lu-Qi

    2016-09-01

    Basically, Dao-di hers are produced in specific area which has a long history, good quality, good medicine, curative effect. However genuine medicinal material area in history is not static, this makes the establishment of genuine medicinal material origin and the in-depth research be very difficult. This paper has profoundly analyzed the origin of different historical periods taking Astragalus membranaceus and Salvia miltiorrhiza as examples, and then summarized the reasons of herbal origin changes from the humanities, social and natural three aspects. This paper provides a basis for establishment and the further research of high-quality genuine producing area. Copyright© by the Chinese Pharmaceutical Association.

  14. Statistical methods for nuclear material management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less

  15. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  16. NASA Composite Materials Development: Lessons Learned and Future Challenges

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  17. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    NASA Astrophysics Data System (ADS)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  18. An approach to achieve progress in spacecraft shielding

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.

    2004-01-01

    Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.

  19. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  20. Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film

    NASA Technical Reports Server (NTRS)

    Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.

  1. Tutor Handbook. Reading Effectiveness Program.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Public Instruction, Indianapolis. Div. of Reading Effectiveness.

    The five sections of this handbook contain reading tutor training materials, with each section listing behavioral learning objectives specific to a particular instructional situation. The first section defines the role of the tutor, sets forth general principles for successful tutoring, presents examples of interest inventories for elementary and…

  2. Organisation Development through Management Development: The United Biscuits Example.

    ERIC Educational Resources Information Center

    Campbell, Andrew; Winterburn, Den

    1988-01-01

    The success of the strategic management program developed by United Biscuits (United Kingdom) for senior managers resulted from (1) tailoring the program to organizational and individual needs; (2) using company-specific material; (3) involving top management; and (4) using a follow-up program. (JOW)

  3. Controlled Release Applications of Organometals.

    ERIC Educational Resources Information Center

    Thayer, John S.

    1981-01-01

    Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)

  4. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  5. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials.

    PubMed

    Mirjafari, Arsalan

    2018-03-25

    Since the introduction of click chemistry by K. B. Sharpless in 2001, its exploration and exploitation has occurred in countless fields of materials sciences in both academic and industrial spheres. Click chemistry is defined as an efficient, robust, and orthogonal synthetic platform for the facile formation of new carbon-heteroatom bonds, using readily available starting materials. Premier examples of click reactions are copper(i)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC) and the thiol-X (X = ene and yne) coupling reactions to form C-N and C-S bonds, respectively. The emphasis of this review is centered on the rapidly expanding area of click chemistry-mediated synthesis of functional ionic liquids via CuAAC, thiol-X and oxime formation, and selected examples of nucleophilic ring-opening reactions, while offering some thoughts on emerging challenges, opportunities and ultimately the evolution of this field. Click chemistry offers tremendous opportunities, and introduces intriguing perspectives for efficient and robust generation of tailored task-specific ionic liquids - an important class of soft materials.

  6. Analysis of the optimal laminated target made up of discrete set of materials

    NASA Technical Reports Server (NTRS)

    Aptukov, Valery N.; Belousov, Valentin L.

    1991-01-01

    A new class of problems was analyzed to estimate an optimal structure of laminated targets fabricated from the specified set of homogeneous materials. An approximate description of the perforation process is based on the model of radial hole extension. The problem is solved by using the needle-type variation technique. The desired optimization conditions and quantitative/qualitative estimations of optimal targets were obtained and are discussed using specific examples.

  7. Sonar Transducer Reliability Improvement Program (STRIP) FY81.

    DTIC Science & Technology

    1981-10-01

    that must be considered when selecting a material for the design of a sonar transducer. In the past decade, plastics have decreased in cost and...required in a sonar transducer system. A recent example of this type of failure has been with a neoprene .tfer formulation which was designed to meet...subject of the first design specification for transducer elastomers. Previous work on this material under the aegis of the Sonar Transduction

  8. Specific surface area of overlapping spheres in the presence of obstructions

    NASA Astrophysics Data System (ADS)

    Jenkins, D. R.

    2013-02-01

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  9. Specific surface area of overlapping spheres in the presence of obstructions.

    PubMed

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  10. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.

  11. Pricing Policies in Academic Libraries.

    ERIC Educational Resources Information Center

    King, Donald W.

    1979-01-01

    Economic considerations of user charges are presented along with economic principles and implications of charging for specific library materials and services. Alternative pricing policies and their implications are described, and, to illustrate the complexity and subtle effects of charging, a numerical example for interlibrary loans is also given.…

  12. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  13. Determination of the element-specific complex permittivity using a soft x-ray phase modulator

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Hirata, Y.; Miyawaki, J.; Yamamoto, S.; Akai, H.; Hobara, R.; Yamamoto, Sh.; Yamamoto, K.; Someya, T.; Takubo, K.; Yokoyama, Y.; Araki, M.; Taguchi, M.; Harada, Y.; Wadati, H.; Tsunoda, M.; Kinjo, R.; Kagamihata, A.; Seike, T.; Takeuchi, M.; Tanaka, T.; Shin, S.; Matsuda, I.

    2017-12-01

    We report on directly determining the complex permittivity tensor using a method combining a developed light source from a segmented cross undulator of synchrotron radiation and the magneto-optical Kerr effect. The empirical permittivity, which carries the electronic and magnetic information of a material, has element specificity and has perfect confirmation using the quantum-mechanical calculation for itinerant electrons systems. These results help in understanding the interaction of light and matter, and they provide an interesting approach to seek the best materials as optical elements, for example, in extended-ultraviolet lithographic technologies or in state-of-the-art laser technologies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchfield, J.W.; Watts, R.L.; Gurwell, W.E.

    A materials assessment methodology for identifying specific critical material requirements that could hinder the implementation of solar energy has been developed and demonstrated. The methodology involves an initial screening process, followed by a more detailed materials assessment. The detailed assessment considers such materials concerns and constraints as: process and production constraints, reserve and resource limitations, lack of alternative supply sources, geopolitical problems, environmental and energy concerns, time constraints, and economic constraints. Data for 55 bulk and 53 raw materials are currently available on the data base. These materials are required in the example photovoltaic systems. One photovoltaic system and thirteenmore » photovoltaic cells, ten solar heating and cooling systems, and two agricultural and industrial process heat systems have been characterized to define their engineering and bulk material requirements.« less

  15. Indexing the Comics: A Librarian's Perspective on Comics Research.

    ERIC Educational Resources Information Center

    Scott, Randall W.

    The potential for computers in indexing popular fiction study materials is discussed, and specific examples of comic book indexing are provided through descriptions of projects and a bibliography. The 4-stage evolutionary development of popular fiction studies includes: (1) discovery and reading; (2) bibliography and collecting; (3) cataloging and…

  16. "Madame Bovary": Illusion and Reality. [Lesson Plan].

    ERIC Educational Resources Information Center

    Carangelo, Audrey

    Based on Gustave Flaubert's novel "Madame Bovary," this lesson plan presents activities designed to help students explore the theme of "illusion versus reality" in the novel; identify and list alternate themes in the novel; and cite specific examples of illusion versus reality from the novel. It includes objectives, materials, procedures,…

  17. How to Individualize Mathematics Successfully: With Materials for Implementation.

    ERIC Educational Resources Information Center

    Vinskey, Mildred L.

    Presented is a method for individualizing mathematics which utilizes the "Learning Activities Package" (LAP). LAP is a self-contained unit based on specific behavioral objectives which contains a pretest, a posttest, examples, explanations, and activities. The topics covered include but are not limited to: multiplication and division by powers of…

  18. From the Ground Up: Art in American Built Environment Education.

    ERIC Educational Resources Information Center

    Guilfoil, Joanne K.

    2000-01-01

    Provides a case for teaching children about local architecture. Describes a specific example called the Kentucky Project as a humanist approach to built environmental education that enabled middle and high school students to study their architectural heritage through a program of videos and related teaching materials. (CMK)

  19. Childhood Lead Poisoning: Resources for Prevention.

    ERIC Educational Resources Information Center

    Alliance to End Childhood Lead Poisoning, Washington, DC.

    The current approach to dealing with childhood lead poisoning has led to repeated diagnoses of poisoning because such children are treated and then returned to their hazardous environments. This handbook, the third in a three-volume set, provides examples of specific materials currently or recently used in ongoing state and local childhood lead…

  20. Tailored material properties using textile composites

    NASA Astrophysics Data System (ADS)

    Pastore, C. M.

    2017-10-01

    Lightweighting is essential for the reduction of energy consumption in transportation. The most common approach is through the application of high specific strength and stiffness materials, such as composites and high performance aluminum alloys. One of the challenges associated with the use of advanced materials is the high cost. This paper explores the opportunities of using hybrid composites (glass and carbon, for example) with selective fiber placement to optimize the weight subject to price constraints for given components. Considering the example of a hat-section for hood reinforcement, different material configurations were modeled and developed. The required thickness of the hat section to meet the same bending stiffness as an all carbon composite beam was calculated. It was shown that selective placement of fiber around the highest moments results in a weight savings of around 14% compared to a uniformly blended hybrid with the same total material configuration. From this it is possible to estimate the materials cost of the configurations as well as the weight of the component. To determine which is best it is necessary to find an exchange constant that converts weight into cost - the penalty of carrying the extra weight. The value of this exchange constant will depend on the particular application.

  1. Cloning and Characterization of the Mouse Hepatitis Virus Receptor

    DTIC Science & Technology

    1991-02-11

    materials. Viruses may also adhere to cell surfaces non-specifically through electrostatic interactions (Tardieu et al., 1982). Virus particles might be... viruses can utilize more than one type of receptor and that specific virus receptors may be present in low numbers on the cell surface or may be labile...known example of this type of interaction is the enhancement of virus infection by antibodies, which has been demonstrated for several viruses

  2. Organic Chemistry: From the Interstellar Medium to the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    This talk will review the various types of organic materials observed in different environments in the interstellar medium, discuss the processes by which these materials may have formed and been modified, and present the evidence supporting the contention that at least a fraction of this material survived incorporation, substantially unaltered, into our Solar System during its formation. The nature of this organic material is of direct interest to issues associated with the origin of life, both because this material represents a large fraction of the Solar System inventory of the biogenically-important elements, and because many of the compounds in this inventory have biogenic implications. Several specific examples of such molecules will be briefly discussed.

  3. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  4. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  5. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  6. Material engineering and fabrication experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havn, T.

    1995-10-01

    Material selection for hydrocarbon and sea water systems is shortly described and experiences are explained. The risk of external stress corrosion cracking is discussed. Same is the need for isolation pipe spools to avoid galvanic corrosion. Possible corrosion as result of hot work reduction on platform modification work is discussed. Benefit from positive material identification is explained and the solution of a weld problem due to mix-up of filler material is shown. Experiences with cold bending and subsea material engineering are discussed and recommendations are given. Fracture mechanic techniques with purpose of avoiding costly replacement and repair welding are shownmore » by two examples. At the end the new cost reduction trend of using performance based specifications is shortly discussed with respect to material requirements.« less

  7. [Packaging: the guarantee of medicinal quality].

    PubMed

    Chaumeil, J-C

    2003-01-01

    Primary packaging guarantees the pharmaceutical quality of the medicinal preparation received by the patient. Glass bottles containing parenteral solutions for example ensure that sterility, quality and optimal stability are preserved until administration. Recent innovations in materials research has lead to improvements in parenteral infusions. Multicompartmental bags, allowing extemporaneous mixtures without opening the container, constitute an extremely beneficial advance for the patient, allowing administration of mixtures with solutions and emulsions which would be unstable if stored. Metered dose pressurized inhalers are an excellent example of drug administration devices designed specifically to ensure quality and bioavailability. These examples illustrate the important role of primary packaging and demonstrate the usefulness of research and development in this area.

  8. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.

    PubMed

    Culver, Heidi R; Clegg, John R; Peppas, Nicholas A

    2017-02-21

    Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.

  9. SIC material and technology for space optics

    NASA Astrophysics Data System (ADS)

    Bougoin, Michel

    2017-11-01

    Taking benefit from its very high specific stiffness and its exclusive thermal stability, the SiCSPACE material is now used for the fabrication of scientific and commercial lightweight space telescopes. This paper gives a review of the characteristics of this sintered silicon carbide. The BOOSTEC facilities and the technology described here allow to manufacture large structural components or mirrors (up to several meters) at cost effective condition, from a single part to mass production. Several examples of SiC space optical components are presented.

  10. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  11. Basic Reference Tools for Nursing Research. A Workbook with Explanations and Examples.

    ERIC Educational Resources Information Center

    Smalley, Topsy N.

    This workbook is designed to introduce nursing students to basic concepts and skills needed for searching the literatures of medicine, nursing, and allied health areas for materials relevant to specific information needs. The workbook introduces the following research tools: (1) the National Library of Medicine's MEDLINE searches, including a…

  12. Resource Guide on Smoking and Health for Canadian Schools. Second Edition.

    ERIC Educational Resources Information Center

    Department of National Health and Welfare, Ottawa (Ontario).

    In addition to an overview of smoking and health, this resource guide provides (1) lesson guidelines focusing specifically on physical, social and economic, and psychological factors involved with smoking; (2) examples of simple experiments and demonstrations; (3) a guide to films, filmstrips, slides, and printed materials on smoking and health;…

  13. Fraudulent Practices: Academic Misrepresentations of Plagiarism in the Name of Good Pedagogy

    ERIC Educational Resources Information Center

    Anson, Chris M.

    2011-01-01

    This article describes analyses of three contexts (civic, business, and military) in which understandings of intellectual property differ from those taught in the schools. In each of these contexts, it is possible to document specific examples of unattributed material that would be considered to violate most academic plagiarism policies. Yet in…

  14. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, F. S.

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting andmore » solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.« less

  16. [Research model on commodity specification standard of radix Chinese materia medica].

    PubMed

    Kang, Chuan-Zhi; Zhou, Tao; Jiang, Wei-Ke; Huang, Lu-Qi; Guo, Lan-Ping

    2016-03-01

    As an important part of the market commodity circulation, the standard grade of Chinese traditional medicine commodity is very important to restrict the market order and guarantee the quality of the medicinal material. The State Council issuing the "protection and development of Chinese herbal medicine (2015-2020)" also make clear that the important task of improving the circulation of Chinese herbal medicine industry norms and the commodity specification standard of common traditional Chinese medicinal materials. However, as a large class of Chinese herbal medicines, the standard grade of the radix is more confused in the market circulation, and lack of a more reasonable study model in the development of the standard. Thus, this paper summarizes the research background, present situation and problems, and several key points of the commodity specification and grade standard in radix herbs. Then, the research model is introduced as an example of Pseudostellariae Radix, so as to provide technical support and reference for formulating commodity specifications and grades standard in other radix traditional Chinese medicinal materials. Copyright© by the Chinese Pharmaceutical Association.

  17. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  18. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk; European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund; Theil Kuhn, Luise

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experimentsmore » successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  20. Biomimicry in textiles: past, present and potential. An overview

    PubMed Central

    Eadie, Leslie; Ghosh, Tushar K.

    2011-01-01

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. PMID:21325320

  1. Biomimicry in textiles: past, present and potential. An overview.

    PubMed

    Eadie, Leslie; Ghosh, Tushar K

    2011-06-06

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. © 2011 The Royal Society

  2. More Metric Measurement Concepts. Fundamentals of Occupational Mathematics. Module 10.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    This module is the 10th in a series of 12 learning modules designed to teach occupational mathematics. Blocks of informative material and rules are followed by examples and practice problems. The solutions to the practice problems are found at the end of the module. Specific topics covered include the metric concepts of mass, weight, and volume…

  3. Quality of Living: Environmental Viewpoints. Make Up Your Own Mind, Book 3.

    ERIC Educational Resources Information Center

    Pollis, Adamantia, Ed.

    This book is the third in a series of discussion materials, this issue being part of an action project to increase environmental awareness. Over 60 readings are included that cover a wide variety of opinions and interpretations of specific environmental problems and related philosophic issues. Examples of topics discussed include population, land…

  4. Material Science of Carbon

    DTIC Science & Technology

    2004-09-01

    required for a specific application. The list of applications is very extensive and includes: aircraft brakes, electrodes, high temperature molds, rocket...and includes: aircraft brakes, electrodes, high temperature molds, rocket nozzles and exit cones, tires, ink, nuclear reactors and fuel particles...produced. For example carbons can be hard (chars) or soft (blacks), strong (PAN fibers) or weak ( aerogel ), stiff (pitch fibers) or flexible

  5. Powers and Roots. Fundamentals of Occupational Mathematics. Module 11.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    This module is the 11th in a series of 12 learning modules designed to teach occupational mathematics. Blocks of informative material and rules are followed by examples and practice problems. The solutions to the practice problems are found at the end of the module. Specific topics covered include multiplication, powers, calculator use, and roots.…

  6. With the Best of Intentions: A Critical Discourse Analysis of Physical Education Curriculum Materials

    ERIC Educational Resources Information Center

    Rossi, Tony; Tinning, Richard; McCuaig, Louise; Sirna, Karen; Hunter, Lisa

    2009-01-01

    Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one…

  7. Air Cargo Marketing Development

    NASA Technical Reports Server (NTRS)

    Kersey, J. W.

    1972-01-01

    The factors involved in developing a market for air cargo services are discussed. A comparison is made between the passenger traffic problems and those of cargo traffic. Emphasis is placed on distribution analyses which isolates total distribution cost, including logistical costs such as transportation, inventory, materials handling, packaging, and processing. Specific examples of methods for reducing air cargo costs are presented.

  8. Using Eye Movements to Model the Sequence of Text-Picture Processing for Multimedia Comprehension

    ERIC Educational Resources Information Center

    Mason, L.; Scheiter, K.; Tornatora, M. C.

    2017-01-01

    This study used eye movement modeling examples (EMME) to support students' integrative processing of verbal and graphical information during the reading of an illustrated text. EMME consists of a replay of eye movements of a model superimposed onto the materials that are processed for accomplishing the task. Specifically, the study investigated…

  9. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  10. Harnessing the metal-insulator transition for tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  11. Utilization of specific and non-specific peptide interactions with inorganic nanomaterials on the surface of bacteriophage M13: Methodologies towards phage supported bi-functional materials

    NASA Astrophysics Data System (ADS)

    Avery, Kendra Nicole

    Many types of organisms create a variety of nano and micro scale materials from precursors available in their surrounding environments by a process called biomineralization. As scientists begin to understand how these organisms utilize specific and non-specific interactions with a variety of biopolymers such as chitin, peptides, proteins and nucleic acids with these precursors to create inorganic/organic composite materials, they have begun to wonder about the synthesis of other types of non-biologically templated synthetic techniques that might be possible. Bioengineered organisms and biopolymers have begun to be used for these types of studies. A variety of selection techniques exist for discovering biopolymers with an affinity for a target material, however, one of the most notable is a technique called peptide phage display. This is a technique that utilizes a commercially available randomized peptide library attached at the tip of the filamentous bacteriophage M13. In this dissertation capabilities of bacteriophage M13 are explored in regard to the creation of bi-functional nano materials by exploiting both specific peptide interactions as well as non-specific peptide interactions on the surface of the organism. Chapter 2 focuses on utilizing the specific peptide interactions of the randomized library at pIII in order to discover peptides with high binding affinity for a variety of nanomaterials. Selection studies called biopanning are performed on a variety of nanomaterials such as CaMoO4, allotropes of Ni, Fe2O3 and Fe3O4, and Rh and Pt with the fcc type crystal structure. Similarities and differences between peptides discovered for these materials are discussed. Chapter 3 focuses on utilizing the non-specific peptide interactions on the long axis of M13 called pVIII. The pVIII region consists of 2700 copies of the same 50 amino acid protein which as a negatively charged domain which is exposed to solution. The pVIII region therefore provides the surface of the phage with a negative charge on which nanomaterials can be supported. Metal salt precursors reduced in the presence of WT M13 are studied in this chapter. Metal salt precursors of Fe, Co, Ru, Rh and Pd seem to be the most effective at coating the surface of the phage based on the positively charged metal-aquo complexes formed in water, which are attracted to the negative pVIII region. Other types of reactions are explored with WT phage as a scaffold such as conversion chemistry in a polyol solvent to access several intermetallic phases as well as co-precipitation reactions to access ternary oxides. Chapter 4 focuses on combining research from chapter 2 and chapter 3 to create a bi-functional material that utilizes both specific and non-specific peptide interactions with inorganic materials on the surface of M13 to attach two different types of nanomaterials. The example provided here is a magnetically recoverable hydrogenation catalyst made up of a pVIII region coated with rhodium nanoparticles held in place by non-specific peptide interactions and a pIII region attached to iron oxide nanoparticles via specific peptide interactions. This is the first example in the literature of a commercially available pIII bioengineered M13 bacteriophage forming a bi-functional material. This research provides a methodology to design and build single and multi-component materials on the surface of bacteriophage M13 without the necessity for additional bioengineering and library characterization. The simplicity of use will make the technique available to a wider variety of researchers in the materials science community.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  13. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  14. Gated Silica Mesoporous Materials in Sensing Applications.

    PubMed

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols.

  15. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  16. On the Modeling of Shells in Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.

    2000-01-01

    Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.

  17. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that aremore » in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.« less

  18. The Use of In Situ X-ray Imaging Methods in the Research and Development of Magnesium-Based Grain-Refined and Nanocomposite Materials

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.; Casari, D.; Mirihanage, W. U.; Terzi, S.; Mathiesen, R. H.; Salvo, L.; Daudin, R.; Lhuissier, P.; Guo, E.; Lee, P. D.

    2016-12-01

    Metallurgists have an ever-increasing suite of analytical techniques at their disposition. Among these techniques are the in situ methods, being those approaches that are designed to actually study events that occur in the material during for instance solidification, (thermo)-mechanical working or heat treatment. As such they are a powerful tool in unraveling the mechanisms behind these processes, supplementary to ex situ methods that instead analyze the materials before and after their processing. In this paper, case studies are presented of how in situ imaging methods—and more specifically micro-focus x-ray radiography and synchrotron x-ray tomography—are used in the research and development of magnesium-based grain-refined and nanocomposite materials. These results are drawn from the EC collaborative research project ExoMet (www.exomet-project.eu). The first example concerns the solidification of a Mg-Nd-Gd alloy with Zr addition to assess the role of zirconium content and cooling rate in crystal nucleation and growth. The second example concerns the solidification of a Mg-Zn-Al alloy and its SiC-containing nanocomposite material to reveal the influence of particle addition on microstructural development. The third example concerns the (partial) melting-solidification of Elektron21/AlN and Elektron21/Y2O3 nanocomposite materials to study such effects as particle pushing/engulfment and agglomeration during repeated processing. Such studies firstly visualize and by that confirm what is known or assumed. Secondly, they advance science by monitoring and quantifying phenomena as they evolve during processing and by that contribute toward a better understanding of the physics at play.

  19. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  20. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  1. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  2. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  3. Advances in Integrated Computational Materials Engineering "ICME"

    NASA Astrophysics Data System (ADS)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  4. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  5. Understanding mechanisms of solid-state phase transformations by probing nuclear materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar; Donthula, Harish

    2018-04-01

    In this review a few examples will be cited to illustrate that a study on a specific nuclear material sometimes lead to a better understanding of scientific phenomena of broader interests. Zirconium alloys offer some unique opportunities in addressing fundamental issues such as (i) distinctive features between displacive and diffusional transformations, (ii) characteristics of shuffle and shear dominated displacive transformations and (iii) nature of mixed-mode transformations. Whether a transformation is of first or higher order?" is often raised while classifying it. There are rare examples, such as Ni-Mo alloys, in which during early stages of ordering the system experiences tendencies for both first order and second order transitions. Studies on the order-disorder transitions under a radiation environment have established the pathway for the evolution of ordering. These studies have also identified the temperature range over which the chemically ordered state remains stable in steady state under radiation.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  7. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  8. Rheological Principles for Food Analysis

    NASA Astrophysics Data System (ADS)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  9. Development of the Spacecraft Materials Selector Expert System

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.

    2000-01-01

    A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.

  10. Principle, system, and applications of tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia

    2012-08-01

    Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.

  11. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  12. Building a Competitive Edge with Additive Manufacturing

    DTIC Science & Technology

    2013-02-14

    construct ceramic molds for complex metal parts using a 3D printing technique. They estimate the new 6 technique could eliminate all of the...processes. They include 3D printing and Additive Beam Techniques.15 Most Additive Manufacturing techniques are specific to certain classes of materials...9 Example Additive Manufacturing Techniques16 3D Printing Additive Beam Stereolithography (SLA) Direct Metal Laser Sintering (DMLS

  13. Virtualization and New Geographies of Knowledge in Higher Education: Possibilities for the Transformation of Knowledge, Pedagogic Relations and Learner Identities

    ERIC Educational Resources Information Center

    Taylor, Carol A.; Dunne, Mairead

    2011-01-01

    This article considers some of the ways in which the transformative power of Web 2.0 digital technology is reconfiguring learning, knowledge and academic identities in the contemporary university. Through a focus on five specific examples, we consider the impact of virtualization processes on spatiality, materiality and embodiment, and pedagogic…

  14. Plastics in automobiles. (Latest citations from Materials Business File). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning the use of plastic to replace metallic parts in automobiles. Citations discuss the advantages of easy assembly, part consolidation, weight savings, durability, aesthetics, and economics. Examples of specific applications, types of plastic and their formulation are included. (Contains a minimum of 187 citations and includes a subject term index and title list.)

  15. Plastics in automobiles. (Latest citations from Materials Business file). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the use of plastic to replace metallic parts in automobiles. Citations discuss the advantages of easy assembly, part consolidation, weight savings, durability, aesthetics, and economics. Examples of specific applications, types of plastic and their formulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    PubMed

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  17. Using protistan examples to dispel the myths of intelligent design.

    PubMed

    Farmer, Mark A; Habura, Andrea

    2010-01-01

    In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.

  18. Examples from Astronomy for High School Physics

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio

    2016-01-01

    A formal course in physics is increasingly becoming a standard requirement in the high school curriculum. With that dissemination comes the challenge of reaching and motivating a population that is more diverse in their academic abilities and intrinsic motivation. The abstract nature of pure physics is often made more accessible when motivated by examples from everyday life, and providing copious mathematical as well as conceptual examples has become standard practice in high school physics textbooks. Astronomy is a naturally captivating subject and astronomical examples are often successful in capturing the curiosity of high school students as well as the general population. This project seeks to diversify the range of pedagogical materials available to the high school physics instructor by compiling and publishing specific examples where an astronomical concept can be used to motivate the physics curriculum. This collection of examples will consist of both short problems suitable for daily homework assignments as well as longer project style activities. Collaborations are encouraged and inquiries should be directed to sdieterich at carnegiescience dot edu.This work is funded by the NSF Astronomy and Astrophysics Postdoctoral Fellowship Program through NSF grant AST-1400680.

  19. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Q. P.; Xu, X. N.; Liu, Y. T.; Xu, M.; Deng, S. H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; Xu, S.; Xiong, G.

    2017-04-01

    Practical, efficient synthesis of metal oxide nanocrystals with good crystallinity and high specific surface area by a modified polymer-network gel method is demonstrated, taking ZnO nanocrystals as an example. A novel stepwise heat treatment yields significant improvement in crystal quality. Such nanophase materials can effectively degrade common organic dyes under solar radiation and can perform very well in photo-assisted detection of NO2 gas. Other typical metal oxide nanocrystals with good crystallinity and high specific surface area were also synthesized successfully under similar conditions. This work provides a general strategy for the synthesis of metal oxide nanocrystals, balancing the crystallinity and specific surface area.

  20. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  1. Scintillator Design Via Codoping

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.; Koschan, M.; Zhuravleva, M.; Wu, Y.; Rothfuss, H.; Meng, F.; Tyagi, M.; Donnald, S.; Yang, K.; Hayward, J. P.; Eriksson, L.

    Scintillation materials that lack intrinsic luminescence centers must be doped with optically active ions in order to provide luminescent centers that radiatively de-excite as the final step of the scintillation process. Codoping, on the other hand, can be defined as the incorporation of additional specific impurity species usually for the purpose of modifying the scintillation properties, mechanical properties, or the crystal growth behavior. In recent years codoping has become an increasingly popular approach for engineering scintillators with optimal performance for targeted applications. This report reviews several successful examples and its effect on specific properties.

  2. e-Learning development in medical physics and engineering

    PubMed Central

    Tabakov, S

    2008-01-01

    Medical Physics and Engineering was among the first professions to develop and apply e-Learning (e-L). The profession provides excellent background for application of simulations and other e-L materials. The paper describes several layers for e-L development: Programming specific simulations; Building e-L modules; Development of e-L web-based programmes. The paper shows examples from these layers and outlines their specificities. At the end, the newest e-L development (project EMITEL) is briefly introduced and the necessity of a regularly updated list of e-L activities is emphasised. PMID:21614312

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching andmore » partitioning (Q&P) heat treatment, as an example.« less

  4. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  5. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  7. A computational method for selecting short peptide sequences for inorganic material binding.

    PubMed

    Nayebi, Niloofar; Cetinel, Sibel; Omar, Sara Ibrahim; Tuszynski, Jack A; Montemagno, Carlo

    2017-11-01

    Discovering or designing biofunctionalized materials with improved quality highly depends on the ability to manipulate and control the peptide-inorganic interaction. Various peptides can be used as assemblers, synthesizers, and linkers in the material syntheses. In another context, specific and selective material-binding peptides can be used as recognition blocks in mining applications. In this study, we propose a new in silico method to select short 4-mer peptides with high affinity and selectivity for a given target material. This method is illustrated with the calcite (104) surface as an example, which has been experimentally validated. A calcite binding peptide can play an important role in our understanding of biomineralization. A practical aspect of calcite is a need for it to be selectively depressed in mining sites. © 2017 Wiley Periodicals, Inc.

  8. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  9. Hybrid Integrated Label-Free Chemical and Biological Sensors

    PubMed Central

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  10. Hybrid integrated label-free chemical and biological sensors.

    PubMed

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  11. Near East/South Asia Report

    DTIC Science & Technology

    1985-04-05

    the air defense system Amon, a system which the. Contraves company developed by means of the Skyguard system on the basia of specifications engineers...of the Contraves Company and the Arab Industrialization Authority exhibits, displayed a group of armored vehicles, military transport vehicles...the most up-to-date kind, constituting a fair in itself. Take the Contraves Company, for example, which exhibited the latest aerial defense material

  12. Analysis Techniques, Materials, and Methods for Treatment of Thermal Bridges in Building Envelopes

    DTIC Science & Technology

    2013-08-01

    effects of the R-value for given increment of time ............................................. 89 64 Crystals on a post-conditioned Aspen Aerogel ... aerogel on specific sites compared to conventional polyurethane foam insulation. Figures 55 and 56 show two examples of preliminary parametric... Aerogel , and (4) Honeywell’s polyurethane. Table 14 lists the four tested insulation ma- terials, their experimental thermal properties (derived

  13. Translating Research Reports into Educational Materials or How To Take a Neat Piece of Research and Turn It into a Curriculum.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    The rationale and procedures involved with the instructional strategies of concept mapping and Gowin's Vee Mapping are provided in this paper. Specific directives are outlined for building concept maps and vee maps. Examples of both types of these maps are given and explanations are offered on their form and use. Concepts and activities…

  14. Chemical, Biological, and Radiological Contamination Survivability: Material Effects Testing

    DTIC Science & Technology

    2012-06-22

    form that can be compared to pretest and posttest functional performance data. If Soldiers are desired, ensure a Test Schedule and Review Committee...test execution. f. The material’s performance specification should also be reviewed before planning test execution. For example , the...test data, and conformance with specified test and operating procedures cannot be overemphasized. 3.1 Test Planning. 3.1.1 Pretest Preparation

  15. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  16. 76 FR 4847 - Hazardous Materials: Safety Requirements for External Product Piping on Cargo Tanks Transporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... limit of one liter or less in each pipe, but did not propose a specific method for achieving this... purged, we are proposing to allow a residue quantity of no more than one liter (0.26 gallon or 33 ounces... wetlines to the one liter residue level. For example, an operator may elect to design external loading...

  17. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  19. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  20. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. The possibility of a reversal of material flammability ranking from normal gravity to microgravity

    NASA Technical Reports Server (NTRS)

    T'Ien, James S.

    1990-01-01

    The purpose of the discussion is to show, by a theoretical model, that one of the material flammability indices, the flammability limit, can be reversed in proper circumstances. A stagnation-point diffusion flame adjacent to a spherical solid-fuel surface is considered. It is shown that a reversal of the limiting oxygen indices from normal gravity and microgravity is possible. Although the example is based on a particular theoretical model with a particular flame configuration and specifically for an oxygen limit, the flammability-limit reversal phenomenon is believed to be more general.

  2. Physlets and Web-based Physics Curricular Material

    NASA Astrophysics Data System (ADS)

    Cain, L. S.; Boye, D. M.; Christian, W.

    1998-11-01

    The WWW provides the most uniformly standardized and stable mode of networked information sharing available to date. Physlets, scriptable Java applets specific to physics pedagogy, provide the source around which interactive exercises can be created across the physics curriculum. We have developed WWW-based curricular materials appropriate for courses at the introductory and intermediate level. These include interactive demonstrations, homework assignments, pre-lab and post-lab exercises. A variety of examples, which have been used in courses in musical technology, general physics, physics for non-science majors, and modern physics, will be discussed.

  3. Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly

    PubMed Central

    Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.

    2016-01-01

    Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113

  4. Measurements of thermophysical properties of solids at the Institute VINČA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milošević, Nenad, E-mail: nenadm@vinca.rs; Stepanić, Nenad, E-mail: nenad.s@vinca.rs; Terzić, Marijana, E-mail: marijanab@vinca.rs

    2016-07-07

    This paper presents the Metrological Laboratory for Thermophysical Quantities (MLTV) and its actual measurement possibilities. The MLTV is located in the Department of Thermal Engineering and Energy of the Institute of Nuclear Sciences VINČA in Serbia. It was founded in 1963, accredited by the National Accreditation Body in 2007 and became the national designated laboratory for thermophysical quantities and received the status of a EURAMET Associate Member in 2015. Today, the laboratory develops, maintains and disseminates traceability of different national standards, such as those for thermal conductivity of insulations and poorly conductive solid materials from 250 K to 350 K,more » thermal diffusivity of a large variety of solid materials from 200 K to 1450 K and specific heat and specific electrical resistivity from 250 K to 2400 K of electroconductive solid materials. Total hemispherical and spectral normal emissivity from 1200 K to 2400 K of electroconductive solid materials are also measured in the MLTV. The methods and experimental setups for the realization and measurement of all of these standards and quantities are described with corresponding examples.« less

  5. A structural model for composite rotor blades and lifting surfaces

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  6. Structure and Properties of Polysaccharide Based BioPolymer Gels

    NASA Astrophysics Data System (ADS)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  7. Thermodynamic data for biomass conversion and waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less

  8. Composite materials comprising two jonal functions and methods for making the same

    DOEpatents

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  9. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  11. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  12. Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2017-07-11

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  13. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  14. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  15. Molecular biomimetics: utilizing nature's molecular ways in practical engineering.

    PubMed

    Tamerler, Candan; Sarikaya, Mehmet

    2007-05-01

    In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.

  16. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  17. A content review of online naloxone Continuing Education courses for pharmacists in states with standing orders.

    PubMed

    Carpenter, Delesha M; Roberts, Courtney A; Westrick, Salisa C; Ferreri, Stefanie P; Kennelty, Korey A; Look, Kevin A; Abraham, Olufunmilola; Wilson, Courtenay

    2017-11-21

    Many community pharmacists are uncomfortable educating patients about naloxone, an opioid reversal agent. To examine whether training materials prepare pharmacists to counsel patients and caregivers about naloxone, online naloxone education materials for pharmacists in the 13 states with standing orders were analyzed. Two coders reviewed 12 naloxone training programs and extracted data for 15 topics that were clustered in four categories: background/importance, naloxone products, business/operations, and communication. Programs that included communication content were coded for whether they: 1) suggested specific verbiage for naloxone counseling; 2) recommended evidence-based communication practices; and 3) included example naloxone conversations. Most programs covered the majority of topics, with the exception of extended treatment for individuals who overdose and naloxone storage/expiration information. Eleven programs addressed pharmacist-patient communication, although information on communication was often limited. Only one program included an example pharmacist-patient naloxone conversation, but the conversation was 10 min long and occurred in a private room, limiting its applicability to most community pharmacies. Online naloxone training materials for pharmacists include limited content on how to communicate with patients and caregivers. Training materials that include more in-depth content on communication may increase pharmacists' confidence to discuss the topics of overdose and naloxone. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Society, materiality, resilience and sustainability: inquiries from the fields of industrial waste management, urban climate science and eco-urbanism

    NASA Astrophysics Data System (ADS)

    MacKillop, Fionn

    2018-06-01

    This paper aims to investigate the links between materiality and society at a conceptual level, using examples from the author's decade of research in several fields relevant to the issue. With current talk of the need for `sustainability' and `resilience' reaching fever pitch in industry, politics and other arenas, there is a regrettable tendency to muddle the meaning of these words. Drawing on original research carried out in the UK, China, Germany, and Australia, and using the conceptual approaches of actor-network theory (ANT) and urban political ecology (UPE), the author invites us to re-engage with the materiality of society and how we, as businesses, consumers and thinkers, can advance sustainability and resilience through this re-engagement. We will ask what sustainability and resilience mean, for whom and in what context. We will also look at how we can shift thinking and reinvigorate these words, by contributing to the dialogue between the social sciences and business and industry. Specific examples will be taken from the UK and Chinese steel industries; climate-sensitive urban design in Manchester and Stuttgart; and housing construction and affordability in Scotland and Australia, thus covering a wide range of issues related to urban sustainability and resilience in relation to materiality.

  19. Design and mechanical properties of insect cuticle.

    PubMed

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  20. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  1. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  2. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.

    PubMed

    Chen, Shixuan; Li, Ruiquan; Li, Xiaoran; Xie, Jingwei

    2018-05-02

    Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    DOE PAGES

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less

  4. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  5. Applications of patient-specific 3D printing in medicine.

    PubMed

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  6. Dirac materials

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.

  7. Nanosilver conductive ink: A case study for evaluating the potential risk of nanotechnology under hypothetical use scenarios.

    PubMed

    Martin, David P; Melby, Nicolas L; Jordan, Shinita M; Bednar, Anthony J; Kennedy, Alan J; Negrete, Maria E; Chappell, Mark A; Poda, Aimee R

    2016-11-01

    Engineered nanomaterials (ENMs) are being incorporated into a variety of consumer products due to unique properties that offer a variety of advantages over bulk materials. Understanding of the nano-specific risk associated with nano-enabled technologies, however, continues to lag behind research and development, registration with regulators, and commercialization. One example of a nano-enabled technology is nanosilver ink, which can be used in commercial ink-jet printers for the development of low-cost printable electronics. This investigation utilizes a tiered EHS framework to evaluate the potential nano-specific release, exposure and hazard associated with typical use of both nanosilver ink and printed circuits. The framework guides determination of the potential for ENM release from both forms of the technology in simulated use scenarios, including spilling of the ink, aqueous release (washing) from the circuits and UV light exposure. The as-supplied ink merits nano-specific consideration based on the presence of nanoparticles and their persistence in environmentally-relevant media. The material released from the printed circuits upon aqueous exposure was characterized by a number of analysis techniques, including ultracentrifugation and single particle ICP-MS, and the results suggest that a vast majority of the material was ionic in nature and nano-specific regulatory scrutiny may be less relevant. Published by Elsevier Ltd.

  8. Spatial and temporal laser pulse design for material processing on ultrafast scales

    NASA Astrophysics Data System (ADS)

    Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.

    2014-01-01

    The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.

  9. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications.

    PubMed

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-25

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  10. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

    NASA Astrophysics Data System (ADS)

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-01

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  11. Salt disproportionation: A material science perspective.

    PubMed

    Thakral, Naveen K; Kelly, Ron C

    2017-03-30

    While screening the counter-ions for salt selection for an active pharmaceutical substance, there is often an uncertainty about disproportionation of the salt and hence physical stability of the final product formulation to provide adequate shelf life. Several examples of disproportionation reactions are reviewed to explain the concepts of pHmax, microenvironmental pH, and buffering capacity of excipients and APIs to gain mechanistic understanding of disproportionation reaction. Miscellaneous factors responsible for disproportionation are examined. In addition to the dissolution failure due to the formation of less soluble unionized form, various implications of the disproportionation are evaluated with specific examples. During lead optimization and early stages of development, when only a limited amount of material is available, use of predictive tools like mathematical models and model free kinetics to rank order the various counter-ions are discussed in detail. Finally, analytical methods and mitigation strategies are discussed to prevent the disproportionation by detecting it during early stages of drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  13. Colour preferences in nest-building zebra finches.

    PubMed

    Muth, Felicity; Steele, Matthew; Healy, Susan D

    2013-10-01

    Some bird species are selective in the materials they choose for nest building, preferring, for example, materials of one colour to others. However, in many cases the cause of these preferences is not clear. One of those species is the zebra finch, which exhibits strong preferences for particular colours of nest material. In an attempt to determine why these birds strongly prefer one colour of material over another, we compared the preferences of paired male zebra finches for nest material colour with their preferences for food of the same colours. We found that birds did indeed prefer particular colours of nest material (in most cases blue) but that they did not generally prefer food of one colour over the other colours. It appears, then, that a preference for one colour or another of nest material is specific to the nest-building context. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Design of 3-D Printed Concentric Tube Robots.

    PubMed

    Morimoto, Tania K; Okamura, Allison M

    2016-12-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm -1 , which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

  15. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example, materials that are characterized by expansive clay minerals; landslide deposits or landslide-prone deposits), natural resources (for example, sources of aggregate, peat, and clay; potential shallow sources of groundwater), and areas of environmental concern (for example, areas that are potentially suitable for specific ecosystem habitats; areas of potential soil and groundwater contamination). All of these aspects of the database relate directly to land use, management, and policy. The map, text, and accompanying illustrations provide a database of regional scope related to geologic history, climatic changes, the stratigraphic and chronologic frameworks of surface and subsurface deposits and materials of Quaternary age, and other problems and concerns.

  16. Open Access Internet Resources for Nano-Materials Physics Education

    NASA Astrophysics Data System (ADS)

    Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will

    2006-05-01

    Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

  17. Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Paiella, A.; Coppolecchia, A.; Castellano, M. G.; Colantoni, I.; de Bernardis, P.; Lamagna, L.; Masi, S.

    2018-05-01

    The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5 m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.

  18. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Mulrooney, M.; Schildknecht, T.

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an objects orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (> 0.9 m2/kg). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations -- a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent lightcurves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  19. A multilevel approach to modeling of porous bioceramics

    NASA Astrophysics Data System (ADS)

    Mikushina, Valentina A.; Sidorenko, Yury N.

    2015-10-01

    The paper is devoted to discussion of multiscale models of heterogeneous materials using principles. The specificity of approach considered is the using of geometrical model of composites representative volume, which must be generated with taking the materials reinforcement structure into account. In framework of such model may be considered different physical processes which have influence on the effective mechanical properties of composite, in particular, the process of damage accumulation. It is shown that such approach can be used to prediction the value of composite macroscopic ultimate strength. As an example discussed the particular problem of the study the mechanical properties of biocomposite representing porous ceramics matrix filled with cortical bones tissue.

  20. Glossary of terms and table of conversion factors used in design of chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Keller, R. B., Jr. (Compiler)

    1979-01-01

    The glossary presented is based entirely on terms used in the monographs on Chemical Propulsion. Significant terms relating to material properties and to material fabrication are presented. The terms are arranged in alphabetical order, with multiple word terms appearing in the normal sequence of usage; for example, ablative cooling appears as such, not as cooling, ablative, and lip seal appears as such, not as seal, lip. Conversion Factors for converting U.S. customary units to the International System of Units are presented in alphabetical order of the physical quantity (e.g., density, heat flux, specific impulse) involved.

  1. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  2. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  4. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Polymer arrays from the combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  12. Ensemble learning and model averaging for material identification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Basener, William F.

    2017-05-01

    In this paper we present a method for identifying the material contained in a pixel or region of pixels in a hyperspectral image. An identification process can be performed on a spectrum from an image from pixels that has been pre-determined to be of interest, generally comparing the spectrum from the image to spectra in an identification library. The metric for comparison used in this paper a Bayesian probability for each material. This probability can be computed either from Bayes' theorem applied to normal distributions for each library spectrum or using model averaging. Using probabilities has the advantage that the probabilities can be summed over spectra for any material class to obtain a class probability. For example, the probability that the spectrum of interest is a fabric is equal to the sum of all probabilities for fabric spectra in the library. We can do the same to determine the probability for a specific type of fabric, or any level of specificity contained in our library. Probabilities not only tell us which material is most likely, the tell us how confident we can be in the material presence; a probability close to 1 indicates near certainty of the presence of a material in the given class, and a probability close to 0.5 indicates that we cannot know if the material is present at the given level of specificity. This is much more informative than a detection score from a target detection algorithm or a label from a classification algorithm. In this paper we present results in the form of a hierarchical tree with probabilities for each node. We use Forest Radiance imagery with 159 bands.

  13. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.

  14. Combinatorial synthesis and screening of non-biological polymers

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2006-04-25

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  15. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1998-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  16. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, P.G.; Xiang, X.; Goldwasser, I.

    1998-07-07

    Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.

  17. Synthesis and screening combinatorial arrays of zeolites

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2003-11-18

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Recycling positive-electrode material of a lithium-ion battery

    DOEpatents

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  19. Recent advances in nondestructive evaluation made possible by novel uses of video systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1990-01-01

    Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.

  20. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; hide

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  1. Types of architectural structures and the use of smart materials

    NASA Astrophysics Data System (ADS)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.

  2. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  3. [Endodontics in motion: new concepts, materials and techniques 1. Hydraulic Calcium Silicate Cements].

    PubMed

    Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J

    2015-01-01

    Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.

  4. Influence of Building Material Solution of Structures to Effectiveness of Real Estate Development

    NASA Astrophysics Data System (ADS)

    Somorová, Viera

    2015-11-01

    Real estate development is in its essence the development process characterized by a considerable dynamics. The purpose of the development process is the creation of buildings which can be either rented by future unknown users or sold in the real estate market. A first part of the paper is dedicated to the analysis of the parameters of buildings solutions considering the future operating costs in a phase of designing. Material solution of external structures is a main factor not only in determining the future operating costs but also in achieving the subsequent economic effectiveness of the real estate development. To determine the relationship between economic efficiency criteria and determine the optimal material variant of building constructions for the specific example is the aim of the second part of paper.

  5. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  6. Recent innovations in edible and/or biodegradable packaging materials.

    PubMed

    Guilbert, S; Cuq, B; Gontard, N

    1997-01-01

    Certain newly discovered characteristics of natural biopolymers should make them a choice material to be used for different types of wrappings and films. Edible and/or biodegradable packagings produced from agricultural origin macromolecules provide a supplementary and sometimes essential means to control physiological, microbiological, and physicochemical changes in food products. This is accomplished (i) by controlling mass transfers between food product and ambient atmosphere or between components in heterogeneous food product, and (iii) by modifying and controlling food surface conditions (pH, level of specific functional agents, slow release of flavour compounds), it should be stressed that the material characteristics (polysaccharide, protein, or lipid, plasticized or not, chemically modified or not, used alone or in combination) and the fabrication procedures (casting of a film-forming solution, thermoforming) must be adapted to each specific food product and usage condition (relative humidity, temperature). Some potential uses of these materials (e.g. wrapping of various fabricated foods; protection of fruits and vegetables by control of maturation; protection of meat and fish; control of internal moisture transfer in pizzas), which are hinged on film properties (e.g. organoleptic, mechanical, gas and solute barrier) are described with examples.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E.; Maier, V.; Nagel, G.

    The break preclusion concept is based on {open_quotes}KTA rules{close_quotes}, {open_quotes}RSK guidelines{close_quotes} and {open_quotes}Rahmenspeziflkation Basissicherheit{close_quotes}. These fundamental rules containing for example requirements on material, design, calculation, manufacturing and testing procedures are explained and the technical realisation is shown by means of examples. The proof of the quality of these piping systems can be executed by means of fracture mechanics calculations by showing that in every case the leakage monitoring system already detect cracks which are clearly smaller than the critical crack. Thus the leak before break behavior and the break preclusion concept is implicitly affirmed. In order to further diminish conservativitiesmore » in the fracture mechanics procedures, specific research projects are executed which are explained in this contribution.« less

  8. Demanding stories: television coverage of sustainability, climate change and material demand

    PubMed Central

    2017-01-01

    This paper explores the past, present and future role of broadcasting, above all via the medium of television, in shaping how societies talk, think about and act on climate change and sustainability issues. The paper explores these broad themes via a focus on the important but relatively neglected issue of material demand and opportunities for its reduction. It takes the outputs and decision-making of one of the world's most influential broadcasters, the BBC, as its primary focus. The paper considers these themes in terms of stories, touching on some of the broader societal frames of understanding into which they can be grouped. Media decision-makers and producers from a range of genres frequently return to the centrality of ‘story’ in the development, commissioning and production of an idea. With reference to specific examples of programming, and drawing on interviews with media practitioners, the paper considers the challenges of generating broadcast stories that can inspire engagement in issues around climate change, and specifically material demand. The concluding section proposes actions and approaches that might help to establish material demand reduction as a prominent way of thinking about climate change and environmental issues more widely. This article is part of the themed issue ‘Material demand reduction’. PMID:28461439

  9. Protein-based materials, toward a new level of structural control.

    PubMed

    van Hest, J C; Tirrell, D A

    2001-10-07

    Through billions of years of evolution nature has created and refined structural proteins for a wide variety of specific purposes. Amino acid sequences and their associated folding patterns combine to create elastic, rigid or tough materials. In many respects, nature's intricately designed products provide challenging examples for materials scientists, but translation of natural structural concepts into bio-inspired materials requires a level of control of macromolecular architecture far higher than that afforded by conventional polymerization processes. An increasingly important approach to this problem has been to use biological systems for production of materials. Through protein engineering, artificial genes can be developed that encode protein-based materials with desired features. Structural elements found in nature, such as beta-sheets and alpha-helices, can be combined with great flexibility, and can be outfitted with functional elements such as cell binding sites or enzymatic domains. The possibility of incorporating non-natural amino acids increases the versatility of protein engineering still further. It is expected that such methods will have large impact in the field of materials science, and especially in biomedical materials science, in the future.

  10. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    PubMed

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  11. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  12. Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery

    PubMed Central

    Kim, Jean; Schlesinger, Erica B; Desai, Tejal A

    2015-01-01

    Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered. PMID:26652282

  13. A grain boundary damage model for delamination

    NASA Astrophysics Data System (ADS)

    Messner, M. C.; Beaudoin, A. J.; Dodds, R. H.

    2015-07-01

    Intergranular failure in metallic materials represents a multiscale damage mechanism: some feature of the material microstructure triggers the separation of grain boundaries on the microscale, but the intergranular fractures develop into long cracks on the macroscale. This work develops a multiscale model of grain boundary damage for modeling intergranular delamination—a failure of one particular family of grain boundaries sharing a common normal direction. The key feature of the model is a physically-consistent and mesh independent, multiscale scheme that homogenizes damage at many grain boundaries on the microscale into a single damage parameter on the macroscale to characterize material failure across a plane. The specific application of the damage framework developed here considers delamination failure in modern Al-Li alloys. However, the framework may be readily applied to other metals or composites and to other non-delamination interface geometries—for example, multiple populations of material interfaces with different geometric characteristics.

  14. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  15. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  16. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  17. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  18. Encapsulation methods and dielectric layers for organic electrical devices

    DOEpatents

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  19. Possibilities for specific utilization of material properties for an optimal part design

    NASA Astrophysics Data System (ADS)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  20. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    PubMed

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi-carbon nitride quantum dots (OQCNs) had profound effects in controlling ice shape and inhibiting ice growth. We also studied the ion-specific effect on ice recrystallization inhibition (IRI) with a large variety of anions and cations. All functionalities are achieved by tuning the properties of interfacial water on these materials, which reinforces the importance of the interfacial water in controlling ice formation. Finally, we review the development of novel application-oriented materials emerging from our enhanced understanding of ice formation, for example, ultralow ice adhesion coatings with aqueous lubricating layer, cryopreservation of cells by inhibiting ice recrystallization, and two-dimensional (2D) and three-dimensional (3D) porous materials with tunable pore sizes through recrystallized ice crystal templates. This Account sheds new light on the molecular mechanism of ice formation and will inspire the design of unprecedented functional materials based on controlled ice formation.

  1. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity.

    PubMed

    Pang, Zhenqian; Gu, Xiaokun; Wei, Yujie; Yang, Ronggui; Dresselhaus, Mildred S

    2017-01-11

    Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp 2 bonding in the wall and sp 3 bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm 3 . Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycombs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poisson's effect in C-honeycomb render it appealing for the use in various engineering practices.

  2. Bioengineered anterior cruciate ligament

    NASA Technical Reports Server (NTRS)

    Martin, Ivan (Inventor); Altman, Gregory (Inventor); Kaplan, David (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2001-01-01

    The present invention provides a method for producing an anterior cruciate ligament ex vivo. The method comprises seeding pluripotent stem cells in a three dimensional matrix, anchoring the seeded matrix by attachment to two anchors, and culturing the cells within the matrix under conditions appropriate for cell growth and regeneration, while subjecting the matrix to one or more mechanical forces via movement of one or both of the attached anchors. Bone marrow stromal cells are preferably used as the pluripotent cells in the method. Suitable matrix materials are materials to which cells can adhere, such as a gel made from collagen type I. Suitable anchor materials are materials to which the matrix can attach, such as Goinopra coral and also demineralized bone. Optimally, the mechanical forces to which the matrix is subjected mimic mechanical stimuli experienced by an anterior cruciate ligament in vivo. This is accomplished by delivering the appropriate combination of tension, compression, torsion, and shear, to the matrix. The bioengineered ligament which is produced by this method is characterized by a cellular orientation and/or matrix crimp pattern in the direction of the applied mechanical forces, and also by the production of collagen type I, collagen type III, and fibronectin proteins along the axis of mechanical load produced by the mechanical forces. Optimally, the ligament produced has fiber bundles which are arranged into a helical organization. The method for producing an anterior cruciate ligament can be adapted to produce a wide range of tissue types ex vivo by adapting the anchor size and attachment sites to reflect the size of the specific type of tissue to be produced, and also adapting the specific combination of forces applied, to mimic the mechanical stimuli experienced in vivo by the specific type of tissue to be produced. The methods of the present invention can be further modified to incorporate other stimuli experienced in vivo by the particular developing tissue, some examples of the stimuli being chemical stimuli, and electro-magnetic stimuli. Some examples of tissue which can be produced include other ligaments in the body (hand, wrist, elbow, knee), tendon, cartilage, bone, muscle, and blood vessels.

  3. Compaction Control of Earth-Rock Mixtures

    DTIC Science & Technology

    1991-08-01

    specifications have avoided dealing with the full-scale materials. For example, the specified range for water contenz and the value of minimum de - sired percent...Record Samples taken from that embankment or concerning the satisfactory result sof tets perfornt d on t lous. s c p s relative to de ~sgn r, q:.irements...precision of the compaction test provided that the lines of optimums of the families of curves are neatly de - fined. That is to say that the

  4. Composite Material from By-products and Its Properties

    NASA Astrophysics Data System (ADS)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  5. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.

  6. Mutant mice: experimental organisms as materialised models in biomedicine.

    PubMed

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Faded-example as a Tool to Acquire and Automate Mathematics Knowledge

    NASA Astrophysics Data System (ADS)

    Retnowati, E.

    2017-04-01

    Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.

  8. Theoretical studies of the electronic properties of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.

    1990-11-01

    The first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method for electronic structure studies has been applied to a variety of complex inorganic crystals. The theory and the practice of the OLCAO method in the local density approximation are discussed in detail. Recent progress in the study of electronic and optical properties of a large list of ceramic systems are summarized. Eight selected topics on different ceramic crystals focusing on specific points of interest are presented as examples. The materials discussed are AlN, Cu2O, beta-Si3N4, Y2O3, LiB3O5, ferroelectric crystals, Fe-B compounds, and the YBa2Cu3O7 superconductor.

  9. Research as a guide for developing curricula on wave behavior at boundaries

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, Mackenzie; Heron, Paula; McDermott, Lillian

    2007-03-01

    The Physics Education Group at the University of Washington has been developing research-based instructional materials on mechanical waves and physical optics.* As a part of this ongoing process, we continue to assess and refine existing tutorials. In particular, we are focusing on tutorials designed to help students apply boundary conditions to the propagation and refraction of periodic waves. Pretest and post-test results are being used to inform curriculum modifications and to assess the effectiveness of the revised materials. Specific examples of persistent student difficulties will be presented. * Tutorials in Introductory Physics, L.C. McDermott, P.S. Shaffer and the Physics Education Group at the University of Washington, Prentice Hall (2002)

  10. Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.

    2002-01-01

    The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.

  11. Open-Source, Distributed Computational Environment for Virtual Materials Exploration

    DTIC Science & Technology

    2015-01-01

    compromising structural integrity.  For  example, advanced designs could specify advanced materials processing techniques such as heat  treatments  in specific...orchestration of execution of multiple standalone codes at varying  length scales will need advanced  high ‐performance computing (HPC) integration in...possible hooks that could be used to  coordinate larger  workflows spanning tools developed by different groups.    The  high  level approach explored

  12. Smart material platforms for miniaturized devices: implications in disease models and diagnostics.

    PubMed

    Verma, Ritika; Adhikary, Rishi Rajat; Banerjee, Rinti

    2016-05-24

    Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.

  13. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  14. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  15. Harnessing the Big Data Paradigm for ICME: Shifting from Materials Selection to Materials Enabled Design

    NASA Astrophysics Data System (ADS)

    Broderick, Scott R.; Santhanam, Ganesh Ram; Rajan, Krishna

    2016-08-01

    As the size of databases has significantly increased, whether through high throughput computation or through informatics-based modeling, the challenge of selecting the optimal material for specific design requirements has also arisen. Given the multiple, and often conflicting, design requirements, this selection process is not as trivial as sorting the database for a given property value. We suggest that the materials selection process should minimize selector bias, as well as take data uncertainty into account. For this reason, we discuss and apply decision theory for identifying chemical additions to Ni-base alloys. We demonstrate and compare results for both a computational array of chemistries and standard commercial superalloys. We demonstrate how we can use decision theory to select the best chemical additions for enhancing both property and processing, which would not otherwise be easily identifiable. This work is one of the first examples of introducing the mathematical framework of set theory and decision analysis into the domain of the materials selection process.

  16. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light.

    PubMed

    Grindy, Scott C; Holten-Andersen, Niels

    2017-06-07

    Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.

  17. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications

    PubMed Central

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294

  18. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynov, Y.

    Functionally graded materials (FGM) are extensively used in modern industry. They are composite materials with continuously varying properties in one or more special dimensions, according to the specific purpose. In view of the wide range of applications of FGM, stress analysis is important for their structural integrity and reliable service life. In this study we will consider functionally graded magneto-electro-elastic materials with one or more cracks subjected to SH waves. We assume that the material properties vary in one and the same way, described by an inhomogeneity function. The boundary value problem is reduced to a system of integro-differential equationsmore » based on the existence of fundamental solutions. Different inhomogeneity classes are used to obtain a wave equation with constant coefficients. Radon transform is applied to derive the fundamental solution in a closed form. Program code in FORTRAN 77 is developed and validated using available examples from literature. Simulations show the dependence of stress field concentration near the crack tips on the frequency of the applied time-harmonic load for different types of material inhomogeneity.« less

  20. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Rodriquez-Cowardin, H.; Abercromby, K.; Barker, E.; Mulrooney, M.; Seitzer, P.; Schildknecht, T.

    2009-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA s Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an object's orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (greater than 0.9 square meters per kilogram). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent light curves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  1. Computational model for the analysis of cartilage and cartilage tissue constructs

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  2. Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science.

    PubMed

    Giessen, Tobias W

    2016-10-01

    Compartmentalization is one of the defining features of life. Cells use protein compartments to exert spatial control over their metabolism, store nutrients and create unique microenvironments needed for essential physiological processes. Encapsulins are a recently discovered class of protein nanocompartments found in bacteria and archaea that naturally encapsulate cargo proteins. A short C-terminal targeting sequence directs the highly specific encapsulation process in vivo. Here, I will initially discuss the properties, diversity and putative function of encapsulins. The unique characteristics and potential uses of the self-sorting cargo-packaging process found in encapsulin systems will then be highlighted. Examples for the application of encapsulins as cell-specific optical nanoprobes and targeted therapeutic delivery systems will be discussed with an emphasis on the ability to integrate multiple functionalities within a single nanodevice. By fusing targeting sequences to non-native proteins, encapsulins can also be used as specific nanocontainers and enzymatic nanoreactors in vivo. I will end by briefly discussing future avenues for encapsulin research related to both basic microbial metabolism and applications in biomedicine, catalysis and materials science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design of 3-D Printed Concentric Tube Robots

    PubMed Central

    Morimoto, Tania K.; Okamura, Allison M.

    2017-01-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient’s body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm−1, which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively. PMID:28713227

  4. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE PAGES

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  5. Application of micro- and nanotechnologies for the fabrication of optical devices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter

    1998-03-01

    The development of micro-opto-electro-mechanical systems (MOEMS) and devices no longer focuses on feasibility studies and expensive demonstrators. On the contrary, fabrication of micro-optical components is already feeding dynamic markets with a large variety of products that are more or less on the verge of inexpensive mass production. A major application area for MOEMS is, without any doubt, tele- and datacommunications, while miniature optical sensors (e.g. spectrometers and interferometers) have a growing part in many kinds of biotechnological, chemical and pharmaceutical applications. In this presentation numerous examples for optical microstructures are given that range from the field of low cost fiberoptic components to polymer waveguide elements, from fiber switches to mass-producible microlenses made of thermoplastics or glass, and from microstructured photonic bandgap materials to optical sensor tips for investigating nanostructures. It is emphasized that for realizing MOEMS very different materials have to be processed while the necessary hybrid integration demands for specific automated assembly methods. In particular, the examples given show now microtechnologies can be adapted and combined with each other to take into account the special requirements of the product.

  6. Total materials consumption; an estimation methodology and example using lead; a materials flow analysis

    USGS Publications Warehouse

    Biviano, Marilyn B.; Wagner, Lorie A.; Sullivan, Daniel E.

    1999-01-01

    Materials consumption estimates, such as apparent consumption of raw materials, can be important indicators of sustainability. Apparent consumption of raw materials does not account for material contained in manufactured products that are imported or exported and may thus under- or over-estimate total consumption of materials in the domestic economy. This report demonstrates a methodology to measure the amount of materials contained in net imports (imports minus exports), using lead as an example. The analysis presents illustrations of differences between apparent and total consumption of lead and distributes these differences into individual lead-consuming sectors.

  7. Evaluating Field Spectrometer Performance with Transmission Standards: Examples from the USGS Spectral Library and Research Databases

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.

    2015-12-01

    Collection of spectroscopic data has expanded with the development of field-portable spectrometers. The most commonly available spectrometers span one or several wavelength ranges: the visible (VIS) and near-infrared (NIR) region from approximately 400 to 1000 nm, and the shortwave infrared (SWIR) region from approximately 1000-2500 nm. Basic characteristics of spectrometer performance are the wavelength position and bandpass of each channel. Bandpass can vary across the wavelength coverage of an instrument, due to spectrometer design and detector materials. Spectrometer specifications can differ from one instrument to the next for a given model and between manufacturers. The USGS Spectroscopy Lab in Denver has developed a simple method to evaluate field spectrometer wavelength accuracy and bandpass values using transmission measurements of materials with intense, narrow absorption features, including Mylar* plastic, praseodymium-doped glass, and National Institute of Standards and Technology Standard Reference Material 2035. The evaluation procedure has been applied in laboratory and field settings for 19 years and used to detect deviations from cited manufacturer specifications. Tracking of USGS spectrometers with transmission standards has revealed several instances of wavelength shifts due to wear in spectrometer components. Since shifts in channel wavelengths and differences in bandpass between instruments can impact the use of field spectrometer data to calibrate and analyze imaging spectrometer data, field protocols to measure wavelength standards can limit data loss due to spectrometer degradation. In this paper, the evaluation procedure will be described and examples of observed wavelength shifts during a spectrometer field season will be presented. The impact of changing wavelength and bandpass characteristics on spectral measurements will be demonstrated and implications for spectral libraries will be discussed. *Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  8. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovensky, Michelle

    2014-03-01

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  9. Infrared thermography for examination of paper structure

    NASA Astrophysics Data System (ADS)

    Kiiskinen, Harri T.; Pakarinen, Pekka I.

    1998-03-01

    The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.

  10. New high-strength steels

    NASA Astrophysics Data System (ADS)

    Belyakov, L. N.; Petrakov, A. F.; Pokrovskaya, N. G.; Shal'kevich, A. B.

    1998-08-01

    Steels have found wide application in modern aircraft and are the profile materials in some structures. They are used when a high specific strength, rigidity, fatigue limit, and high-temperature strength are required, for example, in the production of wing bars, longerons, ribs, landing gear parts, and gear transmission mechanisms. Steels used in the aircraft industry should possess high parameters of fracture toughness, crack resistance under static and cyclic loads, and corrosion resistance (for the all-climatic variant) with preservation of a high adaptability to manufacturing (weldability, forgeability, processability).

  11. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment temperature is discussed in detail.

  12. Processing bulk natural wood into a high-performance structural material.

    PubMed

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H; Bruck, Hugh A; Zhu, J Y; Vellore, Azhar; Li, Heng; Minus, Marilyn L; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-07

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na 2 SO 3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  13. Processing bulk natural wood into a high-performance structural material

    NASA Astrophysics Data System (ADS)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  14. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  15. Special Features of Using Secondary Materials in the Interior Design of Public Dining Establishments

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Irina; Hapchuk, Olena; Lukinov, Vitaly

    2017-10-01

    This article analyses the latest publications studying the use and practical application of secondary resources as raw materials in design. This analysis is based on the list of secondary resources and their applications in interior decoration. In particular, the interiors of public catering enterprises were analysed. Restaurants with different functional purposes that were classified into several categories with specific peculiarities of interior design were identified. This article presents and describes different types of public catering enterprises based on those categories. The interior design of a public catering enterprise is regarded as a considerably complex system. Different types of secondary materials were reviewed to identify the most frequently used materials for interior space design. This article describes the main peculiarities of the use of secondary materials and presents examples of their practical application. The function of secondary materials in the interior design of public catering enterprises were detected and reviewed. On the basis of the analysis, several directions for the practical application of our results in the field of public catering enterprise design were suggested.

  16. Development of educational image databases and e-books for medical physics training.

    PubMed

    Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T

    2005-09-01

    Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.

  17. Processing bulk natural wood into a high-performance structural material

    Treesearch

    Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu

    2018-01-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1–8. Natural wood is a low-cost and abundant material and has been used...

  18. The Quest for Greater Chemical Energy Storage II: On the Relationship between Bond Length and Bond Energy

    NASA Astrophysics Data System (ADS)

    Lindsay, Michael; Buszek, Robert; Boatz, Jerry; Fajardo, Mario

    2017-06-01

    This is the second in a series of papers aimed at exploring the fundamental limitations to chemical energy storage. In the previous work, we summarized the lessons learned in various high energy density materials (HEDM) programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved.1 That discussion focused almost exclusively on the topic of molar energy density (J/mol) from the perspective of the energy of oxidation of the elements and Fritz Zwicky's ``free atom limit.''2 In this talk, we extend the analysis by considering a different, though equally important, aspect of the energy density calculation: the volumetric density of the energetic material. Specifically, we examine how the distances between individual atoms (i.e. intra- and inter-molecular bond lengths) are coupled to (in fact, approximately inversely proportional to) the energy stored in the bonds of the molecule. This relationship further limits the chemical energy that theoretically can be stored in a material below that predicted by the ``free atom limit.'' This talk will give specific examples of the trends with different bonding motifs and the implications to the fundamental limitations of chemical energy storage.

  19. Remote sensing as a source of data for outdoor recreation planning

    NASA Technical Reports Server (NTRS)

    Reed, W. E.; Goodell, H. G.; Emmitt, G. D.

    1972-01-01

    Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.

  20. Creating a blended learning module in an online master study programme in oncology.

    PubMed

    Mayer, Benjamin; Ring, Christina; Muche, Rainer; Rothenbacher, Dietrich; Schmidt-Strassburger, Uta

    2015-01-01

    The medical faculty of Ulm University has launched the postgraduate master online study programme Advanced Oncology (AO) in 2010. We describe the challenges in developing an e-learning module using the example of a medical biometry course, focusing the implementation of the course material and our single-loop learning experience after the first students have finished and evaluated the lecture. Programme participants are qualified medical doctors and researchers in biomedical areas related to the field of oncology. The study programme provides the majority of lectures online via didactic videos accompanied by one-week attendance seminars. Supplementary learning materials include review articles, supportive reading material, multiple choice questions, and exercises for each unit. Lecture evaluations based on specific questions concerning learning environment and information learned, each measured on a five-point Likert scale. Lecture videos were implemented following the classical triad of the didactic process, using oncological examples from practice to teach. The online tutorial support offered to students was hardly used, thus we enhanced faculty presence during the face-to-face seminars. Lecture evaluations improved after revising the learning material on the basis of the first AO student cohort's comments. Developing and implementing an online study programme is challenging with respect of maximizing the information students learn due to limited opportunities for personal contact between lecturers and students. A more direct interaction of lecturers and students in a blended learning setting outperforms a mere web-based contact in terms of learning advantage and students' satisfaction, especially for complex methodological content.

  1. Environmentally safe aviation fuels

    NASA Technical Reports Server (NTRS)

    Liberio, Patricia D.

    1995-01-01

    In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.

  2. Rapid Tooling for Functional Prototype of Metal Mold Processes Final Report CRADA No. TC-1032-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heestand, G.; Jaskolski, T.

    Production inserts for die-casting were generally fabricated from materials with sufficient strength and· good wear properties at casting temperatures for long life. Frequently tool steels were used and machining was done with a combination of. conventional and Electric Discharge Machining (EDM) with some handwork, an expensive and time consuming process, partilly for prototype work. We proposed electron beam physical vapor deposition (EBPVD) as a process for rapid fabrication of dies. Metals, ranging from low melting point to refractory metals (Ta, Mo, etc.), would be evaporated and deposited at high rates (-2mm/hr.). Alloys could be easily evaporated and deposited if theirmore » constituent vapor pressures were similar and with more difficulty if they were not. Of course, layering of different materials was possible if required for a specific application. For example, a hard surface layer followed by a tough steel and backed by a high thermal conductivity (possibly cooled) copper layer could be fabricated. Electron-beam deposits exhibited 100% density and lull strength when deposited at a substrate (mandrel) temperature that was a substantial fraction of the deposited material's melting point. There were several materials that could have the required high temperature properties and ease of fabrication required for such a mandrel. We had successfully used graphite, machined from free formed objects with a replicator, to produce aluminum-bronze test molds. There were several parting layer materials of interest, but the ideal material depended upon the specific application.« less

  3. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  4. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  5. The Distribution of the Informative Intensity of the Text in Terms of its Structure (On Materials of the English Texts in the Mining Sphere)

    NASA Astrophysics Data System (ADS)

    Znikina, Ludmila; Rozhneva, Elena

    2017-11-01

    The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.

  6. Self-regulated transport in photonic crystals with phase-changing defects

    NASA Astrophysics Data System (ADS)

    Thomas, Roney; Ellis, Fred M.; Vitebskiy, Ilya; Kottos, Tsampikos

    2018-01-01

    Phase-changing materials (PCMs) are widely used for optical data recording, sensing, all-optical switching, and optical limiting. Our focus here is on the case when the change in transmission characteristics of the optical material is caused by the input light itself. Specifically, the light-induced heating triggers the phase transition in the PCM. In this paper, using a numerical example, we demonstrate that the incorporation of the PCM in a photonic structure can lead to a dramatic modification of the effects of light-induced phase transition, as compared to a stand-alone sample of the same PCM. Our focus is on short pulses. We discuss some possible applications of such phase-changing photonic structures for optical sensing and limiting.

  7. Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores

    PubMed Central

    Adiga, Shashishekar P.; Brenner, Donald W.

    2012-01-01

    Responsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions. In this work, an overview of nanoporous materials functionalized with responsive polymers is given. Various examples of pH, temperature and solvent responsive polymers are discussed. A theoretical treatment that accounts for polymer conformational change in response to a stimulus and the associated flow-control effect is presented. PMID:24955529

  8. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  9. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  10. Apparatus for loading shape memory gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2001-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  11. Method for loading shape memory polymer gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2002-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SMP material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  12. Verification of Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  13. Patchy colloidosomes - an emerging class of structures

    NASA Astrophysics Data System (ADS)

    Rozynek, Z.; Józefczak, A.

    2016-07-01

    A colloidosome, i.e., a selectively permeable capsule composed of colloidal particles forming a stable homogenous shell, is a tiny container that can be used for storage, transportation, and release of cargo species. There are many routes to preparing colloidosomes; dozens of examples of future applications of such colloidal capsules have been demonstrated. Their functionality can be further extended if the capsules are designed to have heterogeneous shells, i.e., one or more regions (patches) of a shell are composed of material with specific properties that differ from the rest of the shell. Such patchy colloidosomes, supplemented by functionalities similar to that offered by well-studied patchy particles, will surely possess advantageous properties when compared with their homogenous counterparts. For example, owing to specific interactions between patches, they either can self-assemble into complex structures; specifically adhere to a surface; release their cargo species in specific direction; or guided-align,-orient or -propel. Fabrication of patchy colloidal microcapsules has long been theorized by scientists able to design different models, but actual large-scale production remains a challenge. Until now, only a few methods for fabricating patchy colloidosomes have been demonstrated, and these include production by means of microfluidics and mechanical pipetting. The field of science related to fabrication and application of patchy colloidosomes is clearly unexplored, and we envision it blooming in the coming years.

  14. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks

    PubMed Central

    McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2018-01-01

    Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634

  15. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  16. Chaos emerging in soil failure patterns observed during tillage: Normalized deterministic nonlinear prediction (NDNP) and its application.

    PubMed

    Sakai, Kenshi; Upadhyaya, Shrinivasa K; Andrade-Sanchez, Pedro; Sviridova, Nina V

    2017-03-01

    Real-world processes are often combinations of deterministic and stochastic processes. Soil failure observed during farm tillage is one example of this phenomenon. In this paper, we investigated the nonlinear features of soil failure patterns in a farm tillage process. We demonstrate emerging determinism in soil failure patterns from stochastic processes under specific soil conditions. We normalized the deterministic nonlinear prediction considering autocorrelation and propose it as a robust way of extracting a nonlinear dynamical system from noise contaminated motion. Soil is a typical granular material. The results obtained here are expected to be applicable to granular materials in general. From a global scale to nano scale, the granular material is featured in seismology, geotechnology, soil mechanics, and particle technology. The results and discussions presented here are applicable in these wide research areas. The proposed method and our findings are useful with respect to the application of nonlinear dynamics to investigate complex motions generated from granular materials.

  17. Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators

    NASA Astrophysics Data System (ADS)

    Foehr, André; Bilal, Osama R.; Huber, Sebastian D.; Daraio, Chiara

    2018-05-01

    Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

  18. Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type CuCrO2 Nanoparticles.

    PubMed

    Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain

    2016-08-01

    Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.

  19. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  20. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  1. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation.

    PubMed

    Strativnov, Eugene

    2017-12-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.In this study, the author gives recommendations concerning the design of the apparatus with fluidized bed and examples of calculation of specific devices. The whole given information can be used as guidelines for the design of energy effective aggregates. Calculation and design of the reactor were carried out using modern software complexes (ANSYS and SolidWorks).

  2. A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.

    2018-01-01

    We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.

  3. The use of elemental sulfur as an alternative feedstock for polymeric materials

    NASA Astrophysics Data System (ADS)

    Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae; Yoon, Hyunsik; Simmonds, Adam G.; Ji, Hyun Jun; Dirlam, Philip T.; Glass, Richard S.; Wie, Jeong Jae; Nguyen, Ngoc A.; Guralnick, Brett W.; Park, Jungjin; Somogyi, Árpád; Theato, Patrick; Mackay, Michael E.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey

    2013-06-01

    An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g-1 at 100 cycles) and enhanced capacity retention.

  4. Speciation Methods Used to Assess Potential Health Effects of Toxic Metals in Environmental Materials

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.

    2008-01-01

    Assessing potential exposures to toxic metals or metalloids such as arsenic and chromium in environmental materials is important in protecting public health. The chemical form of an element in, or released from, a material is also important, since some forms, such as Cr(VI), are more toxic than others, for example, Cr(III). We have used a variety of procedures to assess potential exposures to hexavalent chromium in ash and burned soils from October 2007 southern California wildfires. Synthetic lung-fluid and de-ionized water extractions simulate release in the lungs and potential environmental releases due to rainfall. Extracts were analyzed for specific chromium and arsenic species using HPLC-ICP-MS methodology. Results indicate that the highly oxidizing environment in wildfires promotes some chromium conversion to Cr(VI), and that the caustic alkalinity of ash enhances Cr(VI) release and stability in lung fluids and rainfall.

  5. Accident-tolerant oxide fuel and cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, Robert D.

    Systems and methods for accident tolerant oxide fuel. One or more disks can be placed between fuel pellets comprising UO.sub.2, wherein such disks possess a higher thermal conductivity material than that of the UO.sub.2 to provide enhanced heat rejection thereof. Additionally, a cladding coating comprising zircaloy coated with a material that provides stability and high melting capability can be provided. The pellets can be configured as annular pellets having an annulus filled with the higher thermal conductivity material. The material coating the zircaloy can be, for example, Zr.sub.5Si.sub.4 or another silicide such as, for example, a Zr-Silicide that limits corrosion.more » The aforementioned higher thermal conductivity material can be, for example, Si, Zr.sub.xSi.sub.y, Zr, or Al.sub.2O.sub.3.« less

  6. The graphene oxide contradictory effects against human pathogens

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Carmela Lauriola, Maria; Ciasca, Gabriele; Conti, Claudio; De Spirito, Marco; Papi, Massimiliano

    2017-04-01

    Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environment-friendly. This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol, time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.

  7. Zeolites: Can they be synthesized by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.E.

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high levelmore » of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''« less

  8. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  9. Logic-Gate Functions in Chemomechanical Materials.

    PubMed

    Schneider, Hans-Jörg

    2017-09-06

    Chemomechanical polymers that change their shape or volume on stimulation by multiple external chemical signals, particularly on the basis of selective molecular recognition, are discussed. Several examples illustrate how such materials, usually in the form of hydrogels, can be used for the design of chemically triggered valves or artificial muscles and applied, for example, in self-healing materials or drug delivery. The most attractive feature of such materials is that they can combine sensor and actuator within single units, from nano- to macrosize. Simultaneous action of a cofactor allows selective response in the sense of AND logic gates by, for example, amino acids and peptides, which without the presence of a second effector do not induce any changes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Glycopolymeric Materials for Advanced Applications

    PubMed Central

    Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2015-01-01

    In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  11. The Spacecraft Materials Selector: An Artificial Intelligence System for Preliminary Design Trade Studies, Materials Assessments, and Estimates of Environments Present

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Woll, S. L. B.

    2000-01-01

    Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely exposures. Prior to the NASA contract, a knowledge base, the Spacecraft Environments Assistant (SEA,) was initially developed by Boeing to estimate the environmental factors important for a specific spacecraft mission profile. The NASA SEE program has funded specific enhancements to the capability of this knowledge base. The SEA qualitatively identifies over 25 environmental factors that may influence the performance of a spacecraft during its operational lifetime. For cases where sufficiently detailed answers are provided to questions asked by the knowledge base, atomic oxygen fluence levels, proton and/or electron fluence and dose levels, and solar exposure hours are calculated. The SMS knowledge base incorporates the previously developed SEA knowledge base. A case history for previous flight experiment will be shown as an example, and capabilities and limitations of the system will be discussed.

  12. Compositions of doped, co-doped and tri-doped semiconductor materials

    DOEpatents

    Lynn, Kelvin [Pullman, WA; Jones, Kelly [Colfax, WA; Ciampi, Guido [Watertown, MA

    2011-12-06

    Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

  13. Inductive learning of thyroid functional states using the ID3 algorithm. The effect of poor examples on the learning result.

    PubMed

    Forsström, J

    1992-01-01

    The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.

  14. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The cellular structure provides strength through geometric regularity and functions as both honey storage vessels and incubators.

  15. Hybrid Graphene-Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells.

    PubMed

    Dubal, Deepak P; Rueda-Garcia, Daniel; Marchante, Carlos; Benages, Raul; Gomez-Romero, Pedro

    2018-02-22

    Solid Hybrid materials abound. But flowing versions of them are new actors in the materials science landscape and in particular for energy applications. This paper presents a new way to deliver nanostructured hybrid materials for energy storage, namely, in the form of nanofluids. We present here the first example of a hybrid electroactive nanofluid (HENFs) combining capacitive and faradaic energy storage mechanisms in a single fluid material. This liquid electrode is composed of reduced graphene oxide and polyoxometalates (rGO-POMs) forming a stable nanocomposite for electrochemical energy storage in novel Nanofluid Flow Cells. Two graphene based hybrid materials (rGO-phosphomolybdate, rGO-PMo 12 and rGO-phosphotungstate, rGO-PW 12 ) were synthesized and dispersed with the aid of a surfactant in 1 M H 2 SO 4 aqueous electrolyte to yield highly stable hybrid electroactive nanofluids (HENFs) of low viscosity which were tested in a home-made flow cell under static and continuous flowing conditions. Remarkably, even low concentration rGO-POMs HENFs (0.025 wt%) exhibited high specific capacitances of 273 F/g(rGO-PW 12 ) and 305 F/g(rGO-PMo 12 ) with high specific energy and specific power. Moreover, rGO-POM HENFs show excellent cycling stability (∼95 %) as well as Coulombic efficiency (∼77-79 %) after 2000 cycles. Thus, rGO-POM HENFs effectively behave as real liquid electrodes with excellent properties, demonstrating the possible future application of HENFs for dual energy storage in a new generation of Nanofluid Flow Cells. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  17. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  18. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  19. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  20. Concepts and strategies for lunar base radiation protection - Prefabricated versus in-situ materials

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.

    1992-01-01

    The most recently accepted environment data are used as inputs for the Langley nucleon and heavy-ion transport codes, BRYNTRN and HZETRN, to examine the shield effectiveness of lunar regolith in comparison with commercially-used shield materials in nuclear facilities. Several of the fabricated materials categorized as neutron absorbers exhibit favorable characteristics for space radiation protection. In particular, polyethylene with additive boron is analyzed with regard to response to the predicted lunar galactic cosmic ray and solar proton flare environment during the course of a complete solar cycle. Although this effort is not intended to be a definitive trade study for specific shielding recommendations, attention is given to several factors that warrant consideration in such trade studies. For example, the transporting of bulk shield material to the lunar site as opposed to regolith-moving and processing equipment is assessed on the basis of recent scenario studies. The transporting of shield material from Earth may also be a viable alternative to the use of regolith from standpoints of cost-effectiveness, EVA time required, and risk factor.

  1. Advanced concepts in joining by conventional processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, G.R.; Fasching-James, A.A.; Onsoien, M.I.

    1994-12-31

    Innovations which can be made to conventional arc welding processes so that advanced materials can be more efficiently joined are considered. Three examples are discussed: (1) GTA welding of iron aluminides, (2) GMA welding of advanced steels, and (3) SMA welding of structural steels. Advanced materials present new challenges for the materials joining specialist. The three examples discussed in this paper demonstrate, however, that modest but creative alterations of conventional GTAW, GMAW, or SMAW processes can provide new and better controls for solving advanced materials joining problems.

  2. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas moves along opening bedding planes as well as through faults and other larger scale geologic structures within basins. Understanding how shale acts as a material at all depths from that of fracking to that of the forest will enhance our ability to power our societal needs, dispose of our wastes, and sustain our water and soil resources.

  3. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  4. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a more indepth discussion of the contributions.

  5. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  6. [Amanitine determination as an example of peptide analysis in the biological samples with HPLC-MS technique].

    PubMed

    Janus, Tomasz; Jasionowicz, Ewa; Potocka-Banaś, Barbara; Borowiak, Krzysztof

    Routine toxicological analysis is mostly focused on the identification of non-organic and organic, chemically different compounds, but generally with low mass, usually not greater than 500–600 Da. Peptide compounds with atomic mass higher than 900 Da are a specific analytical group. Several dozen of them are highly-toxic substances well known in toxicological practice, for example mushroom toxin and animal venoms. In the paper the authors present an example of alpha-amanitin to explain the analytical problems and different original solutions in identifying peptides in urine samples with the use of the universal LC MS/MS procedure. The analyzed material was urine samples collected from patients with potential mushroom intoxication, routinely diagnosed for amanitin determination. Ultra filtration with centrifuge filter tubes (limited mass cutoff 3 kDa) was used. Filtrate fluid was directly injected on the chromatographic column and analyzed with a mass detector (MS/MS). The separation of peptides as organic, amphoteric compounds from biological material with the use of the SPE technique is well known but requires dedicated, specific columns. The presented paper proved that with the fast and simple ultra filtration technique amanitin can be effectively isolated from urine, and the procedure offers satisfactory sensitivity of detection and eliminates the influence of the biological matrix on analytical results. Another problem which had to be solved was the non-characteristic fragmentation of peptides in the MS/MS procedure providing non-selective chromatograms. It is possible to use higher collision energies in the analytical procedure, which results in more characteristic mass spectres, although it offers lower sensitivity. The ultra filtration technique as a procedure of sample preparation is effective for the isolation of amanitin from the biological matrix. The monitoring of selected mass corresponding to transition with the loss of water molecule offers satisfactory sensitivity of determination.

  7. Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre

    2010-06-01

    The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization of a common rail, the cogging of a bar and a wire drawing problem.

  8. Materiomics: biological protein materials, from nano to macro.

    PubMed

    Cranford, Steven; Buehler, Markus J

    2010-11-12

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics - discovering Nature's complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature's materials have been hindered by our lack of fundamental understanding of these materials' intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure-property-process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering.

  9. Programmable DNA switches and their applications.

    PubMed

    Harroun, Scott G; Prévost-Tremblay, Carl; Lauzon, Dominic; Desrosiers, Arnaud; Wang, Xiaomeng; Pedro, Liliana; Vallée-Bélisle, Alexis

    2018-03-08

    DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.

  10. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    PubMed

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  11. An improved NSGA - II algorithm for mixed model assembly line balancing

    NASA Astrophysics Data System (ADS)

    Wu, Yongming; Xu, Yanxia; Luo, Lifei; Zhang, Han; Zhao, Xudong

    2018-05-01

    Aiming at the problems of assembly line balancing and path optimization for material vehicles in mixed model manufacturing system, a multi-objective mixed model assembly line (MMAL), which is based on optimization objectives, influencing factors and constraints, is established. According to the specific situation, an improved NSGA-II algorithm based on ecological evolution strategy is designed. An environment self-detecting operator, which is used to detect whether the environment changes, is adopted in the algorithm. Finally, the effectiveness of proposed model and algorithm is verified by examples in a concrete mixing system.

  12. Thermodynamic potentials in anisotropic and nonlinear dielectrics

    NASA Astrophysics Data System (ADS)

    Parravicini, Jacopo

    2018-07-01

    The variation of total energy, entropy, Helmoltz free energy due to the application of a static electric field is calculated and discussed, under suitable conditions, in the case of a dielectric with either anisotropic or nonlinear response. The proposed approach starts from Fröhlich's theory of dielectric thermodynamics and, by analyzing its assumptions, provides a method to generalize it. The obtained relationships can be employed for describing the thermodynamics of different classes of dielectric materials, also in experimental investigations. Specifically, the anisotropy and nonlinearity conditions are considered and relative examples are indicated and discussed.

  13. (PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers

    DTIC Science & Technology

    2015-07-08

    iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell

  14. Inventory of research methods for librarianship and informatics.

    PubMed

    Eldredge, Jonathan D

    2004-01-01

    This article defines and describes the rich variety of research designs found in librarianship and informatics practice. Familiarity with the range of methods and the ability to make distinctions between those specific methods can enable authors to label their research reports correctly. The author has compiled an inventory of methods from a variety of disciplines, but with attention to the relevant applications of a methodology to the field of librarianship. Each entry in the inventory includes a definition and description for the particular research method. Some entries include references to resource material and examples.

  15. Carbon p Electron Ferromagnetism in Silicon Carbide

    PubMed Central

    Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2015-01-01

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin. PMID:25758040

  16. Carbon p electron ferromagnetism in silicon carbide

    DOE PAGES

    Wang, Yutian; Liu, Yu; Wang, Gang; ...

    2015-03-11

    Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the V SiV C divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.

  17. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  18. Communal visual histories to detect environmental change in northern areas: Examples of emerging North American and Eurasian practices.

    PubMed

    Mustonen, Tero

    2015-12-01

    This article explores the pioneering potential of communal visual-optic histories which are recorded, painted, documented, or otherwise expressed. These materials provide collective meanings of an image or visual material within a specific cultural group. They potentially provide a new method for monitoring and documenting changes to ecosystem health and species distribution, which can effectively inform society and decision makers of Arctic change. These visual histories can be positioned in a continuum that extends from rock art to digital photography. They find their expressions in forms ranging from images to the oral recording of knowledge and operate on a given cultural context. For monitoring efforts in the changing boreal zone and Arctic, a respectful engagement with visual histories can reveal emerging aspects of change. The examples from North America and case studies from Eurasia in this article include Inuit sea ice observations, Yu'pik visual traditions of masks, fish die-offs in a sub-boreal catchment area, permafrost melt in the Siberian tundra and early, first detection of a scarabaeid beetle outbreak, a Southern species in the Skolt Sámi area. The pros and cons of using these histories and their reliability are reviewed.

  19. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  20. Soft X-ray Spectromicroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Ade, Harald

    1997-03-01

    The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.

  1. Materiomics: biological protein materials, from nano to macro

    PubMed Central

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure–property–process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering. PMID:24198478

  2. New Hydrophobic IOL Materials and Understanding the Science of Glistenings.

    PubMed

    Tetz, Manfred; Jorgensen, Matthew R

    2015-01-01

    An introduction to the history of intraocular lenses (IOLs) is given, leading up to modern hydrophobic examples. The roles of hydrophobicity, hygroscopy, materials chemistry, and edge design are discussed in the context of IOLs. The four major types of IOL materials are compared in terms of their chemistry and biocompatibility. An example of a modern "hydrophobic" acrylic polymer with higher water content is discussed in detail.

  3. The structural basis for function in diamond-like carbon binding peptides.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B

    2014-07-29

    The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors.

  4. De-boned beef - an example of a commodity for which specific standards could be developed to ensure an appropriate level of protection for international trade.

    PubMed

    Thomson, G R; Leyland, T J; Donaldson, A I

    2009-03-01

    De-boned beef from which lymph nodes and risk material associated with bovine spongiform encephalopathy have been removed, is a product which can be produced for safe international trade irrespective of whether the locality of production is recognized as free from so-called transboundary diseases or not. Further processing of such beef provides an additional safety factor. However, this approach requires specific control measures being in place, supported by appropriate auditing and certification procedures. This document presents the arguments supporting this concept and details how safety in respect of both animal diseases and human food safety can be achieved using an integrated hazard analysis and critical control points approach.

  5. Immobilised enzymes in biorenewables production.

    PubMed

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  6. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  7. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  8. Resource Use in Small Island States: Material Flows in Iceland and Trinidad and Tobago, 1961-2008.

    PubMed

    Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina

    2014-04-01

    Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption.

  9. Experimental analysis and modeling of melt growth processes

    NASA Astrophysics Data System (ADS)

    Müller, Georg

    2002-04-01

    Melt growth processes provide the basic crystalline materials for many applications. The research and development of crystal growth processes is therefore driven by the demands which arise from these specific applications; however, common goals include an increased uniformity of the relevant crystal properties at the micro- and macro-scale, a decrease of deleterious crystal defects, and an increase of crystal dimensions. As melt growth equipment and experimentation becomes more and more expensive, little room remains for improvements by trial and error procedures. A more successful strategy is to optimize the crystal growth process by a combined use of experimental process analysis and computer modeling. This will be demonstrated in this paper by several examples from the bulk growth of silicon, gallium arsenide, indium phosphide, and calcium fluoride. These examples also involve the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods). The power and success of the above optimization strategy, however, is not limited only to the given examples but can be generalized and applied to many types of bulk crystal growth.

  10. Nonlinear constitutive theory for turbine engine structural analysis

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    A number of viscoplastic constitutive theories and a conventional constitutive theory are evaluated and compared in their ability to predict nonlinear stress-strain behavior in gas turbine engine components at elevated temperatures. Specific application of these theories is directed towards the structural analysis of combustor liners undergoing transient, cyclic, thermomechanical load histories. The combustor liner material considered in this study is Hastelloy X. The material constants for each of the theories (as a function of temperature) are obtained from existing, published experimental data. The viscoplastic theories and a conventional theory are incorporated into a general purpose, nonlinear, finite element computer program. Several numerical examples of combustor liner structural analysis using these theories are given to demonstrate their capabilities. Based on the numerical stress-strain results, the theories are evaluated and compared.

  11. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  12. Revealing mesoscopic structural universality with diffusion.

    PubMed

    Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els

    2014-04-08

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.

  13. Dislocation nucleation facilitated by atomic segregation

    NASA Astrophysics Data System (ADS)

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen

    2018-01-01

    Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

  14. Translation in cardiovascular stents and occluders: From biostable to fully degradable

    PubMed Central

    Huang, Yingying; Wong, Yee Shan; Ng, Herr Cheun Anthony; Boey, Freddy Y. C.

    2017-01-01

    Abstract Cardiovascular disease is a major cause of morbidity and mortality, especially in developed countries. Most academic research efforts in cardiovascular disease management focus on pharmacological interventions, or are concerned with discovering new disease markers for diagnosis and monitoring. Nonpharmacological interventions with therapeutic devices, conversely, are driven largely by novel materials and device design. Examples of such devices include coronary stents, heart valves, ventricular assist devices, and occluders for septal defects. Until recently, development of such devices remained largely with medical device companies. We trace the materials evolution story in two of these devices (stents and occluders), while also highlighting academic contributions, including our own, to the evolution story. Specifically, it addresses not only our successes, but also the challenges facing the translatability of concepts generated via academic research. PMID:29313029

  15. Antimicrobial graphene family materials: Progress, advances, hopes and fears.

    PubMed

    Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw

    2016-10-01

    Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  17. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull.

    PubMed

    Wydra, A; Maev, R Gr

    2013-11-21

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  18. Materials and structures

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-08-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  19. SURVIAC Bulletin: Materials Flammability in Spacecraft, Volume 25 - Issue 1

    DTIC Science & Technology

    2009-01-01

    and debris exiting the barrel of handguns is shown in the following example. Th is demonstrates the speed of the image processing algorithms to...gravity. Additionally, materials do not burn the same way. For example, when a candle burns on Earth, the hot gases from the fl ame rise, creating...cal. Th e controlling mechanisms of the combustion process change so that fi re prevention and material fl ammability considerations also change

  20. Nondestructive evaluation/characterization of composite materials and structures using the acousto-ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Dos Reis, H. L. M.; Vary, A.

    1988-01-01

    This paper introduces the nature and the underlying rational of the acousto-ultrasonic stress wave factor technique and some of its applications to composite materials and structures. Furthermore, two examples of successful application of the acousto-ultrasonic technique are presented in detail. In the first example, the acousto-ultrasonic technique is used to evaluate the adhesive bond strength between rubber layers and steel plates, and in the seocnd example the tehcnique is used to monitor progressive damage in wire rope.

  1. The Use of Polymer Design in Resorbable Colloids

    NASA Astrophysics Data System (ADS)

    Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2006-08-01

    During the past decade, researchers in the field of polymer chemistry have developed a wide range of very powerful procedures for constructing ever-more-sophisticated polymers. These methods subsequently have been used in suitable systems to solve specific medical problems. This is complicated, and many key factors such as mechanical properties, biocompatibility, biodegradation, stability, and degradation profile must be considered. Colloid particle systems can be used to solve many biomedical- and pharmaceutical-related problems, and it is expected that nanotechnology can be used to develop these materials, devices, and systems even further. For example, an injectible scaffold system with a defined release and degradation profile has huge potential for the repair and regeneration of damaged tissues. This short, nonexhaustive review presents examples of polymer architecture in resorbable particles that have been compared and tested in biomedical applications. We also discuss the design of polymers for core-shell structures.

  2. The potential of nanofibers in tissue engineering and stem cell therapy.

    PubMed

    Gholizadeh-Ghaleh Aziz, Shiva; Gholizadeh-Ghaleh Aziz, Sara; Akbarzadeh, Abolfazl

    2016-08-01

    Electrospinning is a technique in which materials in solution are shaped into continuous nano- and micro-sized fibers. Combining stem cells with biomaterial scaffolds and nanofibers affords a favorable approach for bone tissue engineering, stem cell growth and transfer, ocular surface reconstruction, and treatment of congenital corneal diseases. This review seeks to describe the current examples of the use of scaffolds in stem cell therapy. Stem cells are classified as adult or embryonic stem (ES) cells, and the advantages and drawbacks of each group are detailed. The nanofibers and scaffolds are further classified in Tables I and II , which describe specific examples from the literature. Finally, the current applications of biomaterial scaffolds containing stem cells for tissue engineering applications are presented. Overall, this review seeks to give an overview of the biomaterials available for use in combination with stem cells, and the application of nanofibers in stem cell therapy.

  3. Teaching Technical Competencies for Fluid Mechanics Research

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2014-11-01

    We are developing an ``on demand'' framework for students to learn techniques used in fluid mechanics research. The site for this work is a university-grade laboratory situated next to Gateway High School in Aurora, Colorado. Undergraduate university students work with K-12 students on research and technical innovation projects. Both groups need customized training as their projects proceed. A modular approach allows particular competencies such as pump selection, construction of flow piping and channels, flow visualization, and specific flow measurement methods to be acquired through focused lessons. These lessons can be learned in either a stand-alone fashion or assembled into units for formal courses. A research example was a student project on diffusion of infectious material in micro-gravity in the event of an intestinal puncture wound. A curriculum example is a 9-week quarter of high-school instruction on instrumentation that uses small-scale water treatment systems as a case study.

  4. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident.

  5. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, Pamela S

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have anmore » Australian connection, the materials ranging from organics to battery materials.« less

  6. Geoelectrical mapping and groundwater contamination

    NASA Astrophysics Data System (ADS)

    Blum, Rainer

    Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.

  7. Mathematics and online learning experiences: a gateway site for engineering students

    NASA Astrophysics Data System (ADS)

    Masouros, Spyridon D.; Alpay, Esat

    2010-03-01

    This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.

  8. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  9. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    PubMed Central

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  10. The birth of the blues: how physics underlies music

    NASA Astrophysics Data System (ADS)

    Gibson, J. M.

    2009-07-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  11. The birth of the blues : how physics underlies music.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'.more » Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.« less

  12. On the Materials Science of Nature's Arms Race.

    PubMed

    Liu, Zengqian; Zhang, Zhefeng; Ritchie, Robert O

    2018-06-05

    Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of risk-based nanomaterial groups for occupational exposure control

    NASA Astrophysics Data System (ADS)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-09-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  14. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment.

    PubMed

    Heinz, Hendrik

    2014-06-18

    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.

  15. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications

    NASA Astrophysics Data System (ADS)

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-01

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g-1 to ~345 m2g-1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 +/- 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  16. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications.

    PubMed

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-06

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  17. What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur

    PubMed Central

    Panagiotopoulou, O.; Wilshin, S. D.; Rayfield, E. J.; Shefelbine, S. J.; Hutchinson, J. R.

    2012-01-01

    Finite element modelling is well entrenched in comparative vertebrate biomechanics as a tool to assess the mechanical design of skeletal structures and to better comprehend the complex interaction of their form–function relationships. But what makes a reliable subject-specific finite element model? To approach this question, we here present a set of convergence and sensitivity analyses and a validation study as an example, for finite element analysis (FEA) in general, of ways to ensure a reliable model. We detail how choices of element size, type and material properties in FEA influence the results of simulations. We also present an empirical model for estimating heterogeneous material properties throughout an elephant femur (but of broad applicability to FEA). We then use an ex vivo experimental validation test of a cadaveric femur to check our FEA results and find that the heterogeneous model matches the experimental results extremely well, and far better than the homogeneous model. We emphasize how considering heterogeneous material properties in FEA may be critical, so this should become standard practice in comparative FEA studies along with convergence analyses, consideration of element size, type and experimental validation. These steps may be required to obtain accurate models and derive reliable conclusions from them. PMID:21752810

  18. SSME - Materials and Methods for Addressing High-Pressure Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Matejczk, Daniel; Russell, Dale; Frandsen, Jon; Swanson, Greg

    2010-01-01

    From the humid, corrosion-friendly atmosphere of KSC, to the extreme heat of ascent, to the cold vacuum of space, the Space Shuttle faced one hostile environment after another. One of those harsh environments the hydrogen environment existed within the shuttle itself. Liquid hydrogen was the fuel that powered the shuttle s complex, powerful, and reusable main engine. Hydrogen provided the high specific impulse the bang per pound of fuel needed to perform the shuttle s heavy lifting duties. Hydrogen, however, was also a potential threat to the very metal of the propulsion system that used it. The diffusion of hydrogen atoms into a metal can make it more brittle and prone to cracking a process called hydrogen embrittlement. This effect can reduce the toughness of carefully selected and prepared materials. A concern that exposure to hydrogen might encourage crack growth was present from the beginning of the Space Shuttle Program, but the rationale for using hydrogen was compelling. This paper outlines the material characterization, anomaly resolution, and path to understanding of hydrogen embrittlement on superalloys through the course of the SSME program. Specific examples of nickel alloy turbine housings and single crystal turbine blades are addressed. The evolution of fracture mechanics analytical methods is also addressed.

  19. Electron-beam Induced Processes and their Applicability to Mask Repair

    NASA Astrophysics Data System (ADS)

    Boegli, Volker A.; Koops, Hans W. P.; Budach, Michael; Edinger, Klaus; Hoinkis, Ottmar; Weyrauch, Bernd; Becker, Rainer; Schmidt, Rudolf; Kaya, Alexander; Reinhardt, Andreas; Braeuer, Stephan; Honold, Heinz; Bihr, Johannes; Greiser, Jens; Eisenmann, Michael

    2002-12-01

    The applicability of electron-beam induced chemical reactions to mask repair is investigated. To achieve deposition and chemical etching with a focused electron-beam system, it is required to disperse chemicals in a molecular beam to the area of interest with a well-defined amount of molecules and monolayers per second. For repair of opaque defects the precursor gas reacts with the absorber material of the mask and forms a volatile reaction product, which leaves the surface. In this way the surface atoms are removed layer by layer. For clear defect repair, additional material, which is light absorbing in the UV, is deposited onto the defect area. This material is rendered as a nanocrystalline deposit from metal containing precursors. An experimental electron-beam mask repair system is developed and used to perform exploratory work applicable to photo mask, EUV mask, EPL and LEEPL stencil mask repair. The tool is described and specific repair actions are demonstrated. Platinum deposited features with lateral dimensions down to 20 nm demonstrate the high resolution obtainable with electron beam induced processes, while AFM and AIMS measurements indicate, that specifications for mask repair at the 70 nm device node can be met. In addition, examples of etching quartz and TaN are given.

  20. Mathematical models of functioning and allocation indicators of road-transport complex resources in the fuel and raw materials region

    NASA Astrophysics Data System (ADS)

    Buyvis, V. A.; Novichikhin, A. V.; Temlyantsev, M. V.

    2017-09-01

    A number of features of coal industry functioning was determined for the conditions of Kemerovo region, and the specifics of planning and organization of coal transportation were revealed. The analysis of indicators of motor and railway types of transport in the process of coal transportation was executed. The necessity of improving the tools of coal products transportation in the modern conditions is substantiated. Specific features of functioning of a road-transport complex in the fuel and raw material region (on the example of Kemerovo region) are determined. The modern scientific and applied problems of functioning and allocation of the road-transport complex resources are identified. To justify the management decisions on the development and improvement of road-transport complex a set of indicators are proposed: infrastructural, transportation performance, operating, social and economic. Mathematical models of indicators are recommended for formulation and justification of decisions made during operational and strategic planning of development, evaluation and development of algorithms of functioning and allocation of road-transport sector in Kemerovo region in the future.

  1. Universal quinone electrodes for long cycle life aqueous rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Yanliang; Jing, Yan; Gheytani, Saman; Lee, Kuan-Yi; Liu, Ping; Facchetti, Antonio; Yao, Yan

    2017-08-01

    Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (>=20C), high anode specific capacity (up to 200-395 mAh g-1), and several examples of state-of-the-art specific energy/energy density (up to 76-92 Wh kg-1/ 161-208 Wh l-1) for several operational pH values (-1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (-35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

  2. Research to Support the Determination of Spacecraft Maximum Acceptable Concentrations of Potential Atmospheric Contaminants

    NASA Technical Reports Server (NTRS)

    Orr, John L.

    1997-01-01

    In many ways, the typical approach to the handling of bibliographic material for generating review articles and similar manuscripts has changed little since the use of xerographic reproduction has become widespread. The basic approach is to collect reprints of the relevant material and place it in folders or stacks based on its dominant content. As the amount of information available increases with the passage of time, the viability of this mechanical approach to bibliographic management decreases. The personal computer revolution has changed the way we deal with many familiar tasks. For example, word processing on personal computers has supplanted the typewriter for many applications. Similarly, spreadsheets have not only replaced many routine uses of calculators but have also made possible new applications because the cost of calculation is extremely low. Objective The objective of this research was to use personal computer bibliographic software technology to support the determination of spacecraft maximum acceptable concentration (SMAC) values. Specific Aims The specific aims were to produce draft SMAC documents for hydrogen sulfide and tetrachloroethylene taking maximum advantage of the bibliographic software.

  3. Nanocontainers in and onto Nanofibers.

    PubMed

    Jiang, Shuai; Lv, Li-Ping; Landfester, Katharina; Crespy, Daniel

    2016-05-17

    Hierarchical structure is a key feature explaining the superior properties of many materials in nature. Fibers usually serve in textiles, for structural reinforcement, or as support for other materials, whereas spherical micro- and nanoobjects can be either highly functional or also used as fillers to reinforce structure materials. Combining nanocontainers with fibers in one single object has been used to increase the functionality of fibers, for example, antibacterial and thermoregulation, when the advantageous properties given by the encapsulated materials inside the containers are transferred to the fibers. Herein we focus our discussion on how the hierarchical structure composed of nanocontainers in nanofibers yields materials displaying advantages of both types of materials and sometimes synergetical effects. Such materials can be produced by first carefully designing nanocontainers with defined morphology and chemistry and subsequently electrospinning them to fabricate nanofibers. This method, called colloid-electrospinning, allows for marrying the properties of nanocontainers and nanofibers. The obtained fibers could be successfully applied in different fields such as catalysis, optics, energy conversion and production, and biomedicine. The miniemulsion process is a convenient approach for the encapsulation of hydrophobic or hydrophilic payloads in nanocontainers. These nanocontainers can be embedded in fibers by the colloid-electrospinning technique. The combination of nanocontainers with nanofibers by colloid-electrospinning has several advantages. (1) The fiber matrix serves as support for the embedded nanocontainers. For example, through combining catalysts nanoparticles with fiber networks, the catalysts can be easily separated from the reaction media and handled visually. This combination is beneficial for the reuse of the catalyst and the purification of products. (2) Electrospun nanofibers containing nanocontainers offer the active agents inside the nanocontainers a double protection by both the fiber matrix and the nanocontainers. Since the polymer of the fibers and the polymer of the nanocontainers have usually opposite polarities, the encapsulated substance, for example, catalysts, dyes, or drugs, can be protected against a large variety of environmental influences. (3) Electrospun nanofibers exhibit unique advantages for tissue engineering and drug delivery that are a structural similarity to the extracellular matrix of biological tissues, large specific surface area, high and interconnected porosity which enhances cell adhesion, proliferation, drug loading, and mass transfer properties, as well as the flexibility in selecting the raw materials. Moreover, the nanocontainer-in-nanofiber structure allows multidrug loading and programmable release of each drug, which are very important to achieve synergistic effects in tissue engineering and disease therapy. The advantages offered by these materials encourage us to further understand the relationship between colloidal properties and fibers, to predict the morphology and properties of the fibers obtained by colloid-electrospinning, and to explore new possible combination of properties offered by nanoparticles and nanofibers.

  4. A Search for Signs of Life and Habitability on Europa

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); McKay, Christoper P.; Eicken, H.; Neuer, S.; Sogin, M.; Waite, H.; Warmflash, D.

    2003-01-01

    Europa is a key target in the search for life beyond the Earth because of consistent evidence that below the icy surface there is liquid water. Future missions to Europa could confirm the presence and nature of the ocean and determine the thickness of the ice layer. Confirming the presence of an ocean and determining the habitability of Europa are key astrobiology science objectives. Nevertheless, the highest priority objective for astrobiology will be a search for life. How could a search for life be accomplished on a near-term mission given the thick ice cover? One answer may lie in the surface materials. If Europa has an ocean, and if that ocean contains life, and if water from the ocean is carried up to the surface, then signs of life may be contained in organic material on the surface. Organics that derive from biological processes (dead organisms) are distinct from organics derived from non-biological processes in several aspects. First, biology is selective and specific in its use of molecules. For example, Earth life uses 20 left-handed amino acids. Second, biology can leave characteristic isotopic patterns. Third, biology often produces large complex molecules in high concentrations, for example lipids. Organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Evidence of life in the ocean may be found on the surface of Europa if regions of the surface contained relatively recent material carried up from the ocean through cracks in the icy lithosphere. But organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Thus, the detailed analysis required may not be possible via remote sensing but direct sampling of the material below the radiation processed upper meter is probably required.

  5. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  6. Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform.

    PubMed

    Kannan, R; Ievlev, A V; Laanait, N; Ziatdinov, M A; Vasudevan, R K; Jesse, S; Kalinin, S V

    2018-01-01

    Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.

  7. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  8. A Primer on Wound Healing in Colorectal Surgery in the Age of Bioprosthetic Materials

    PubMed Central

    Lundy, Jonathan B.

    2014-01-01

    Wound healing is a complex, dynamic process that is vital for closure of cutaneous injuries, restoration of abdominal wall integrity after laparotomy closure, and to prevent anastomotic dehiscence after bowel surgery. Derangements in healing have been described in multiple processes including diabetes mellitus, corticosteroid use, irradiation for malignancy, and inflammatory bowel disease. A thorough understanding of the process of healing is necessary for clinical decision making and knowledge of the current state of the science may lead future researchers in developing methods to enable our ability to modulate healing, ultimately improving outcomes. An exciting example of this ability is the use of bioprosthetic materials used for abdominal wall surgery (hernia repair/reconstruction). These bioprosthetic meshes are able to regenerate and remodel from an allograft or xenograft collagen matrix into site-specific tissue; ultimately being degraded and minimizing the risk of long-term complications seen with synthetic materials. The purpose of this article is to review healing as it relates to cutaneous and intestinal trauma and surgery, factors that impact wound healing, and wound healing as it pertains to bioprosthetic materials. PMID:25435821

  9. Child-Specific Exposure Scenarios Examples (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Child-Specific Exposure Scenarios Examples. This report is intended to be a companion document to the Exposure Factors Handbook (U.S. EPA 2011). The example scenarios were compiled from questions and inquiries r...

  10. The problem of polysemy in the first thousand words of the General Service List: A corpus study of secondary chemistry texts

    NASA Astrophysics Data System (ADS)

    Clemmons, Karina

    Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.

  11. ATK Launch Systems Engineering NASA Programs Engineering Examples

    NASA Technical Reports Server (NTRS)

    Richardson, David

    2007-01-01

    This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

  12. Thermal and Chemical Characterization of Composite Materials. MSFC Center Director's Discretionary Fund Final Report, Project No. ED36-18

    NASA Technical Reports Server (NTRS)

    Stanley, D. C.; Huff, T. L.

    2003-01-01

    The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

  13. Application of Laser Scanning Confocal Microscopy to Heat and Mass Transport Modeling in Porous Microstructures

    NASA Technical Reports Server (NTRS)

    Marshall, Jochen; Milos, Frank; Fredrich, Joanne; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Laser Scanning Confocal Microscopy (LSCM) has been used to obtain digital images of the complicated 3-D (three-dimensional) microstructures of rigid, fibrous thermal protection system (TPS) materials. These orthotropic materials are comprised of refractory ceramic fibers with diameters in the range of 1 to 10 microns and have open porosities of 0.8 or more. Algorithms are being constructed to extract quantitative microstructural information from the digital data so that it may be applied to specific heat and mass transport modeling efforts; such information includes, for example, the solid and pore volume fractions, the internal surface area per volume, fiber diameter distributions, and fiber orientation distributions. This type of information is difficult to obtain in general, yet it is directly relevant to many computational efforts which seek to model macroscopic thermophysical phenomena in terms of microscopic mechanisms or interactions. Two such computational efforts for fibrous TPS materials are: i) the calculation of radiative transport properties; ii) the modeling of gas permeabilities.

  14. Surface science and model catalysis with ionic liquid-modified materials.

    PubMed

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extending X-Ray Crystallography to Allow the Imaging of Noncrystalline Materials, Cells, and Single Protein Complexes

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Ishikawa, Tetsuya; Shen, Qun; Earnest, Thomas

    2008-05-01

    In 1999, researchers extended X-ray crystallography to allow the imaging of noncrystalline specimens by measuring the X-ray diffraction pattern of a noncrystalline specimen and then directly phasing it using the oversampling method with iterative algorithms. Since then, the field has evolved moving in three important directions. The first is the 3D structural determination of noncrystalline materials, which includes the localization of the defects and strain field inside nanocrystals, and quantitative 3D imaging of disordered materials such as nanoparticles and biomaterials. The second is the 3D imaging of frozen-hydrated whole cells at a resolution of 10 nm or better. A main thrust is to localize specific multiprotein complexes inside cells. The third is the potential of imaging single large protein complexes using extremely intense and ultrashort X-ray pulses. In this article, we review the principles of this methodology, summarize recent developments in each of the three directions, and illustrate a few examples.

  16. Recent advances in degradable lactide-based shape-memory polymers.

    PubMed

    Balk, Maria; Behl, Marc; Wischke, Christian; Zotzmann, Jörg; Lendlein, Andreas

    2016-12-15

    Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Deconvolution of the role of metal and pH in metal coordinating polymers

    NASA Astrophysics Data System (ADS)

    Cazzell, Seth; Holten-Andersen, Niels

    Nature uses metal binding amino acids to engineer both mechanical properties and structural functionality. Some examples of this metal binding behavior can be found in both mussel foot protein and DNA binding protein. The mussel byssal thread contains reversible intermolecular protein-metal bonds, allowing it to withstand harsh intertidal environments. Zinc fingers form intramolecular protein-metal bonds to stabilize the tertiary structure of DNA binding proteins, allowing specific structural functionality. Inspired by both these metal-binding materials, we present mechanical and spectroscopic characterization of a model polymer system, designed to mimic this bonding. Through these studies, we are able to answer fundamental polymer physics questions, such as the role of pH and metal to ligand ratio, illuminating both the macroscopic and microscopic material behavior. These understandings further bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  18. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  19. Initial Assessment of X-Ray Computer Tomography image analysis for material defect microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua James; Windes, William Enoch

    2016-06-01

    The original development work leading to this report was focused on the non destructive three-dimensional (3-D) characterization of nuclear graphite as a means to better understand the nature of the inherent pore structure. The pore structure of graphite and its evolution under various environmental factors such as irradiation, mechanical stress, and oxidation plays an important role in their observed properties and characteristics. If we are to transition from an empirical understanding of graphite behavior to a truly predictive mechanistic understanding the pore structure must be well characterized and understood. As the pore structure within nuclear graphite is highly interconnected andmore » truly 3-D in nature, 3-D characterization techniques are critical. While 3-D characterization has been an excellent tool for graphite pore characterization, it is applicable to a broad number of materials systems over many length scales. Given the wide range of applications and the highly quantitative nature of the tool, it is quite surprising to discover how few materials researchers understand and how valuable of a tool 3-D image processing and analysis can be. Ultimately, this report is intended to encourage broader use of 3 D image processing and analysis in materials science and engineering applications, more specifically nuclear-related materials applications, by providing interested readers with enough familiarity to explore its vast potential in identifying microstructure changes. To encourage this broader use, the report is divided into two main sections. Section 2 provides an overview of some of the key principals and concepts needed to extract a wide variety of quantitative metrics from a 3-D representation of a material microstructure. The discussion includes a brief overview of segmentation methods, connective components, morphological operations, distance transforms, and skeletonization. Section 3 focuses on the application of concepts from Section 2 to relevant materials at Idaho National Laboratory. In this section, image analysis examples featuring nuclear graphite will be discussed in detail. Additionally, example analyses from Transient Reactor Test Facility low-enriched uranium conversion, Advanced Gas Reactor like compacts, and tristructural isotopic particles are shown to give a broader perspective of the applicability to relevant materials of interest.« less

  20. Trace material detection of surfaces via single-beam femtosecond MCARS

    NASA Astrophysics Data System (ADS)

    Bowman Pilkington, Sherrie S.; Roberson, Stephen D.; Pellegrino, Paul M.

    2016-05-01

    There is a significant need for the development of optical diagnostics for rapid and accurate detection of chemical species in convoluted systems. In particular, chemical warfare agents and explosive materials are of interest, however, identification of these species is difficult for a wide variety of reasons. Low vapor pressures, for example, cause traditional Raman scattering to be ineffective due to the incredibly long signal collection times that are required. Multiplex Coherent Anti-Stokes Raman Scattering (MCARS) spectroscopy generates a complete Raman spectrum from the material of interest using a combination of a broadband pulse which drives multiple molecular vibrations simultaneously and a narrow band probe pulse. For most species, the complete Raman spectrum can be detected in milliseconds; this makes MCARS an excellent technique for trace material detection in complex systems. In this paper, we present experimental MCARS results on solid state chemical species in complex systems. The 40fs Ti:Sapphire laser used in this study has sufficient output power to produce both the broadband continuum pulse and narrow band probe pulse simultaneously. A series of explosive materials of interest have been identified and compared with spontaneous Raman spectra, showing the specificity and stability of this system.

  1. Graphene-based two-dimensional Janus materials

    NASA Astrophysics Data System (ADS)

    Ng, Sze-Wing; Noor, Nuruzzaman; Zheng, Zijian

    2018-04-01

    Two-dimensional (2D) Janus materials with opposing components and properties on two sides have recently attracted fevered attention from various research fields for use as, for example, oil/water separating membranes, interfacial layers for mass transfer, 2D sensors and actuators. The Janus structure allows for a unidirectional transportation system and programmed response to certain stimuli to be achieved. Graphene, the 2D honeycomb network formed from one atomic layer of carbon atoms, has also received substantial research interest because of its intriguing structure and fascinating properties. The high mechanical strength, flexibility and optical transparency make graphene a unique candidate as a building block of 2D Janus materials through asymmetric modification with different functional groups on the graphene surfaces. This article reviews graphene-based 2D Janus materials, starting with a theoretical understanding of the behavior of Janus graphene. Then, different strategies for fabricating Janus graphene and its derivatives are reviewed in detail according to the chemical strategies of the modification methods. The applications of graphene-based Janus materials are discussed with a specific focus on the Janus structures that lead to bandgap engineering, as well as the construction of a responsive system on graphene.

  2. Progress and Strategies for Testing of Materials for Solar Panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progressmore » toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.« less

  3. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  4. QA4, a language for artificial intelligence.

    NASA Technical Reports Server (NTRS)

    Derksen, J. A. C.

    1973-01-01

    Introduction of a language for problem solving and specifically robot planning, program verification, and synthesis and theorem proving. This language, called question-answerer 4 (QA4), embodies many features that have been found useful for constructing problem solvers but have to be programmed explicitly by the user of a conventional language. The most important features of QA4 are described, and examples are provided for most of the material introduced. Language features include backtracking, parallel processing, pattern matching, set manipulation, and pattern-triggered function activation. The language is most convenient for use in an interactive way and has extensive trace and edit facilities.

  5. Inventory of research methods for librarianship and informatics

    PubMed Central

    Eldredge, Jonathan D.

    2004-01-01

    This article defines and describes the rich variety of research designs found in librarianship and informatics practice. Familiarity with the range of methods and the ability to make distinctions between those specific methods can enable authors to label their research reports correctly. The author has compiled an inventory of methods from a variety of disciplines, but with attention to the relevant applications of a methodology to the field of librarianship. Each entry in the inventory includes a definition and description for the particular research method. Some entries include references to resource material and examples. PMID:14762467

  6. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  7. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  8. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  9. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  10. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  11. Revealing mesoscopic structural universality with diffusion

    PubMed Central

    Novikov, Dmitry S.; Jensen, Jens H.; Helpern, Joseph A.; Fieremans, Els

    2014-01-01

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke. PMID:24706873

  12. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  13. Recent analytical developments for powder characterization

    NASA Astrophysics Data System (ADS)

    Brackx, E.; Pages, S.; Dugne, O.; Podor, R.

    2015-07-01

    Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.

  14. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  15. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor); Littman, Howard (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  16. Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibodeaux, J.; Hensley, J.

    2013-01-01

    The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way ofmore » two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.« less

  17. Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance.

    PubMed

    Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng

    2017-09-20

    A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.

  18. Soil inoculation with microbial communities - can this become a useful tool in soil remediation?

    NASA Astrophysics Data System (ADS)

    Krug, Angelika; Wang, Fang; Dörfler, Ulrike; Munch, Jean Charles; Schroll, Reiner

    2010-05-01

    We artificially loaded different type of agricultural soils with model 14C-labelled chemicals, and we inoculated such soils with different microbial communities as well as isolated strains to enhance the mineralization of such chemicals. Inocula were introduced by different approaches: (i) soil inocula, (ii) application of isolated strain as well as microbial community via media, (iii) isolated strain as well as microbial community attached to a carrier material. Most of the inoculation experiments were conducted in laboratory but we also tested one of these approaches under real environmental conditions in lysimeters and we could show that the approach was successful. We already could show that inoculating soils with microbial communities attached on a specific carrier material shows the highest mineralization effectiveness and also the highest sustainability. Microbes attached on clay particles preserved their function over a long time period even if the specific microbial substrate was already degraded or at least not detectable any more. Additionally we already could show that in specific cases some soil parameters might reduce the effectiveness of such an approach. Results on isoproturon as a model for phenylurea-herbicides and 1,2,4-trichlorobenzene as an example for an industrially used chemical as well as the corresponding chemicals` degrading microbial communities and isolated strain will be presented.

  19. Encapsulation in the food industry: a review.

    PubMed

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  20. Drivers of U.S. mineral demand

    USGS Publications Warehouse

    Sznopek, John L.

    2006-01-01

    Introduction: The word 'demand' has different meanings for different people. To some, it means their 'wants and needs,' to others it is what they consume. Yet, when considering economics, demand refers to the specific amounts of goods or services that individuals will purchase at various prices. Demand is measured over a given time period. It is determined by a number of factors including income, tastes, and the price of complementary and substitute goods. In this paper, the term consumption is used fairly synonymously with the term demand. Most mineral commodities, like iron ore, copper, zinc, and gravel, are intermediate goods, which means that they are used in the production of other goods, called final goods. Demand for intermediate goods is called derived demand because such demand is derived from the demand for final goods. When demand increases for a commodity, generally the price rises. With everything else held constant, this increases the profits for those who provide this commodity. Normally, this would increase profits of existing producers and attract new producers to the market. When demand for a commodity decreases, generally the price falls. Normally, this would cause profits to fall and, as a consequence, the least efficient firms may be forced from the industry. Demand changes for specific materials as final goods or production techniques are reengineered while maintaining or improving product performance, for example, the use of aluminum in the place of copper in long distance electrical transmission lines or plastic replacing steel in automobile bumpers. Substitution contributes to efficient material usage by utilizing cheaper or technically superior materials. In this way, it may also alleviate materials scarcity. If a material becomes relatively scarce (and thus more expensive), a more abundant (and less expensive) material generally replaces it (Wagner and others, 2003, p. 91).

  1. Reconfigurable Wires

    DTIC Science & Technology

    2004-12-31

    the macroscopic expression of common physical or material properties are examples of programmable material concepts. Toffoli [42] identifies a...could establish a means to effect material properties at many point locations, achieving in effect a programmable material surface. Figure 4

  2. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C.; ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamondmore » anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.« less

  3. Combined soft and hard X-ray ambient pressure photoelectron spectroscopy studies of semiconductor/electrolyte interfaces

    DOE PAGES

    Starr, David E.; Favaro, Marco; Abdi, Fatwa F.; ...

    2017-05-18

    The development of solar fuel generating materials would greatly benefit from a molecular level understanding of the semiconductor/electrolyte interface and changes in the interface induced by an applied potential and illumination by solar light. Ambient pressure photoelectron spectroscopy techniques with both soft and hard X-rays, AP-XPS and AP-HAXPES respectively, have the potential to markedly contribute to this understanding. In this paper we initially provide two examples of current challenges in solar fuels material development that AP-XPS and AP-HAXPES can directly a ddress. This will be followed by a brief description of the distinguishing and complementary characteristics of soft and hardmore » X-ray AP-XPS and AP-HAXPES and best approaches to achieving monolayer sensitivity in solid/aqueous electrolyte studies. In particular we focus on the detection of surface adsorbed hydroxyl groups in the presence of aqueous hydroxide anions in the electrolyte, a common situation when investigating photoanodes for solar fuel generating applications. Finally, the article concludes by providing an example of a combined AP-XPS and AP-HAXPES study of a semiconductor/aqueous electrolyte interface currently used in water splitting devices specifically the BiVO 4/aqueous potassium phosphate electrolyte interface.« less

  4. High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Henne, R. H.; Franco, T.; Ruckdäschel, R.

    2006-12-01

    High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  6. 77 FR 31894 - Portable Gauge Licenses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... include safety culture, security of radioactive materials, protection of sensitive information, a revised... draft NUREG and is especially interested in receiving comments on the examples and pictures used in... following questions regarding the examples and pictures in Appendix G: 1. Do the examples for two...

  7. Identifying the material of original and restored parts of a 14^{th} century alabaster annunciation group through stable isotopes

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Leroux, Lise; Le Pogam, Pierre-Yves; Bromblet, Philippe

    2017-04-01

    The origin of raw materials for sculpture is often obscure before the 17th century due to the scarcity of written sources. Identifying this origin provides hints to economic exchanges but also, potentially, allows for attributing sculptures to a specific context of creation (regional workshops, artists). Another challenge for art historians is the identification of restorations and their potential chronology. We present an example of a 14th century group of two statues, made of gypsum alabaster, representing an annunciation group, with the Virgin Mary and the angel Gabriel. Their original position was a near Troyes in the eastern Paris Basin, they are now separated being conserved at the Louvre Museum (Virgin Mary) and the Cleveland Museum of Art (Gabriel). Our multi-isotope study revealed the common origin of the material used for both sculptures, their isotope fingerprints being identical within the analytical error. These fingerprints are highly specific and point to an origin in a historical gypsum and alabaster quarry in the northern part of Provence, France, first mentioned at the end of the 13th century. We were also able to identify an unknown restoration of lower part of the Virgin Mary statue with an optically undistinguishable material, using Tuscan alabaster, most likely in the 19th century. This underlines the potential and usefulness of independent geochemical evidence to underpin stylistic hypotheses on grouping of individual artworks, historical economic relationships between regions and on past restoration activities.

  8. Resource Use in Small Island States

    PubMed Central

    Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina

    2014-01-01

    Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption. PMID:25505367

  9. New Design Concept for a Lifting Platform Made of Composite Material

    NASA Astrophysics Data System (ADS)

    Solazzi, L.; Scalmana, R.

    2013-08-01

    Elevating work platforms are hoists equipment that are increasingly used in many applications, like in the construction industry and in the maintenance field. The maintenance of the hub of the wind turbines, for example, can be done through the use of a working platform; these structures have to reach great heights and obviously they have to satisfy the constraints induced by the highway standards, like the maximum axle load and the maximum overall dimensions. To satisfy these requests the material of the structures changed from the classic structural steel (S235 JR, S275 JR or S355JR) to high strength steel (S700 to S1100 or more), characterized by a significantly higher specific resistance. The idea of this paper is to use a composite material for the construction of the arms of an elevating platform in order to reduce the global weight of the machine. The analyses on the new kind of platform show the technical possibility to change the material of the arms with composite materials and this produces a significant reduction of the weight of the machine components, about 50 %. Being a feasibility study, still remain open some problems such as the mechanical behavior of the used composite materials (fatigue, environment effects, etc.).

  10. Hydrazone linkages in pH responsive drug delivery systems.

    PubMed

    Sonawane, Sandeep J; Kalhapure, Rahul S; Govender, Thirumala

    2017-03-01

    Stimuli-responsive polymeric drug delivery systems using various triggers to release the drug at the sites have become a major focus area. Among various stimuli-responsive materials, pH-responsiveness has been studied extensively. The materials used for fabricating pH-responsive drug delivery systems include a specific chemical functionality in their structure that can respond to changes in the pH of the surrounding environment. Various chemical functionalities, for example, acetal, amine, ortho ester, amine and hydrazone, have been used to design materials that are capable of releasing their payload at the acidic pH conditions of the tumor or infection sites. Hydrazone linkages are significant synthons for numerous transformations and have gained importance in pharmaceutical sciences due to their various biological and clinical applications. These linkages have been employed in various drug delivery vehicles, such as linear polymers, star shaped polymers, dendrimers, micelles, liposomes and inorganic nanoparticles, for pH-responsive drug delivery. This review paper focuses on the synthesis and characterization methods of hydrazone bond containing materials and their applications in pH-responsive drug delivery systems. It provides detailed suggestions as guidelines to materials and formulation scientists for designing biocompatible pH-responsive materials with hydrazone linkages and identifying future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  12. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  13. Characterizing the Intrinsic Fluorescence Properties of Historical Painting Materials: The Case Study of a Sixteenth-Century Mesoamerican Manuscript.

    PubMed

    Pottier, Fabien; Michelin, Anne; Andraud, Christine; Goubard, Fabrice; Lavédrine, Bertrand

    2018-04-01

    Ultraviolet visible (UV-Vis) fluorescence spectroscopy is widely used to study polychrome objects and can help to identify the nature of certain materials when they present specific fluorescent properties. However, given the complexity of the stratified and heterogeneous materials under study, the characterization of an intrinsic fluorescence related to a given constituent (a pigment or a binder composing a paint layer for example) is not straightforward, and the recorded raw data need to be corrected for a number of effects that can influence the detected spectral distribution. The application of standard correction procedures to experimental fluorescence data gathered on the polychromatic surface of the Codex Borbonicus, a 16th-century Aztec manuscript, is described. The results are confronted to an alternate new methodology that is based on the hypothesis of transparent non-scattering paint layers. This second approach allows to establish more clearly the material origin of the detected emission and to discriminate apparent fluorescence (emitted by the substrate and transmitted through the paint layers) from actual intrinsic emission generated by the coloring materials under study. The results show that most of the various emission profiles detected in the paint layers of the manuscript actually originate from a unique fluorophore (composing the substrate) and should not be used to characterize the coloring materials.

  14. Materials discovery guided by data-driven insights

    NASA Astrophysics Data System (ADS)

    Klintenberg, Mattias

    As the computational power continues to grow systematic computational exploration has become an important tool for materials discovery. In this presentation the Electronic Structure Project (ESP/ELSA) will be discussed and a number of examples presented that show some of the capabilities of a data-driven methodology for guiding materials discovery. These examples include topological insulators, detector materials and 2D materials. ESP/ELSA is an initiative that dates back to 2001 and today contain many tens of thousands of materials that have been investigated using a robust and high accuracy electronic structure method (all-electron FP-LMTO) thus providing basic materials first-principles data for most inorganic compounds that have been structurally characterized. The web-site containing the ESP/ELSA data has as of today been accessed from more than 4,000 unique computers from all around the world.

  15. A Selection of Composites Simulation Practices at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2007-01-01

    One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.

  16. Applications of smart materials in structural engineering.

    DOT National Transportation Integrated Search

    2003-10-01

    With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...

  17. EMISSION OF ORGANIC SUBSTANCES FROM INDOOR SURFACE MATERIALS

    EPA Science Inventory

    A wide variety of surface materials in buildings can release organic compounds. Examples include building materials, furnishings, maintenance materials, clothing, and paper products. These sources contribute substantially to the hundreds of organic compounds that have been measur...

  18. Materials derived from biomass/biodegradable materials.

    PubMed Central

    Luzier, W D

    1992-01-01

    Interest in biodegradable plastics made from renewable resources has increased significantly in recent years. PHBV (polyhydroxybutyrate-polyhydroxyvalerate) copolymers are good examples of this type of materials. This paper provides an overview of the manufacturing process, properties, biodegradability, and application/commercial issues associated with PHBV copolymers. They are naturally produced by bacteria from agricultural raw materials, and they can be processed to make a variety of useful products, where their biodegradability and naturalness are quite beneficial. PHBV copolymers are still in the first stage of commercialization. But they are presented in this paper as an example of how new technology can help meet society's needs for plastics and a clean environment. Images PMID:1736301

  19. Selection of peptides binding to metallic borides by screening M13 phage display libraries.

    PubMed

    Ploss, Martin; Facey, Sandra J; Bruhn, Carina; Zemel, Limor; Hofmann, Kathrin; Stark, Robert W; Albert, Barbara; Hauer, Bernhard

    2014-02-10

    Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.

  20. Melt infiltration: an emerging technique for the preparation of novel functional nanostructured materials.

    PubMed

    de Jongh, Petra E; Eggenhuisen, Tamara M

    2013-12-10

    The rapidly expanding toolbox for design and preparation is a major driving force for the advances in nanomaterials science and technology. Melt infiltration originates from the field of ceramic nanomaterials and is based on the infiltration of porous matrices with the melt of an active phase or precursor. In recent years, it has become a technique for the preparation of advanced materials: nanocomposites, pore-confined nanoparticles, ordered mesoporous and nanostructured materials. Although certain restrictions apply, mostly related to the melting behavior of the infiltrate and its interaction with the matrix, this review illustrates that it is applicable to a wide range of materials, including metals, polymers, ceramics, and metal hydrides and oxides. Melt infiltration provides an alternative to classical gas-phase and solution-based preparation methods, facilitating in several cases extended control over the nanostructure of the materials. This review starts with a concise discussion on the physical and chemical principles for melt infiltration, and the practical aspects. In the second part of this contribution, specific examples are discussed of nanostructured functional materials with applications in energy storage and conversion, catalysis, and as optical and structural materials and emerging materials with interesting new physical and chemical properties. Melt infiltration is a useful preparation route for material scientists from different fields, and we hope this review may inspire the search and discovery of novel nanostructured materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  2. Method for detection of extremely low concentration

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    2002-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and CO.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  3. Ultratrace detector for hand-held gas chromatography

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    1999-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  4. Presentation of 3D Scenes Through Video Example.

    PubMed

    Baldacci, Andrea; Ganovelli, Fabio; Corsini, Massimiliano; Scopigno, Roberto

    2017-09-01

    Using synthetic videos to present a 3D scene is a common requirement for architects, designers, engineers or Cultural Heritage professionals however it is usually time consuming and, in order to obtain high quality results, the support of a film maker/computer animation expert is necessary. We introduce an alternative approach that takes the 3D scene of interest and an example video as input, and automatically produces a video of the input scene that resembles the given video example. In other words, our algorithm allows the user to "replicate" an existing video, on a different 3D scene. We build on the intuition that a video sequence of a static environment is strongly characterized by its optical flow, or, in other words, that two videos are similar if their optical flows are similar. We therefore recast the problem as producing a video of the input scene whose optical flow is similar to the optical flow of the input video. Our intuition is supported by a user-study specifically designed to verify this statement. We have successfully tested our approach on several scenes and input videos, some of which are reported in the accompanying material of this paper.

  5. Fission Signatures for Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-06-01

    Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The trade off of signatures, their means of stimulation, and methods of detection, will be reviewed.

  6. Hydrogenation of passivated contacts

    DOEpatents

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  7. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    PubMed

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  8. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  9. What Would Buffy Do? The Use of Popular Culture Examples in Undergraduate Library Instruction.

    ERIC Educational Resources Information Center

    Marshall, Jerilyn

    This paper presents results of a survey that gathered information on the use of popular culture examples in college library instruction sessions, including the types of popular culture materials currently being used as examples, the types of courses in which they are used, the librarians' purposes in using the examples, and the librarians'…

  10. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOEpatents

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  11. The toxicological geochemistry of Earth materials: An overview of processes and the interdisciplinary methods used to understand them

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morman, Suzette A.; Ziegler, Thomas L.

    2006-01-01

    A broad spectrum of earth materials have been linked to, blamed for, and/or debated as sources for disease. In some cases, the links are clear. For example, excessive exposures to mineral dusts have long been recognized for their role in diseases such as: asbestosis, mesothelioma, and lung cancers (asbestos); silicosis and lung cancer (silica dusts); and coal-workers pneumoconiosis (coal dust). Lead poisoning, particularly in toddlers and young children, has been conclusively linked to involuntary ingestion of soils or other materials contaminated with lead-rich paint particles, leaded gasoline combustion byproducts, and some types of lead-rich mine wastes or smelter particulates. Waters with naturally elevated arsenic contents are common in many regions of the globe, and consumption of these waters has been documented as the source of arsenic-related diseases affecting thousands of people in south Asia and other regions. Exposure to dusts or soils containing pathogens has been documented as the cause of regionally common diseases such as valley fever (coccidioidomycosis) and much rarer diseases such as anthrax. Links between many other earth materials and specific diseases, although suspected, are less clear or are debated. For example, it has been suggested that geographic clusters of diseases such as leukemia are related to exposures to waters or atmospheric particulates containing organic or metal contaminants; however, for many clusters the exact causal relationships between disease and environmental exposure are difficult to prove conclusively. Even for many diseases in which the causal relationship is clear, such as in asbestosis and mesothelioma triggered by asbestos exposure, the minimum exposures needed to trigger disease, the influence of genetic factors, and the exact mechanisms of toxicity are still incompletely understood and are the focus of considerable debate within the public health community. Hence, understanding the health effects resulting from occupational and environmental exposures to a wide variety of earth materials remains a very active and fruitful area of research.

  12. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  13. Type, Content, and Source of Social Support Perceived by Women during Pregnancy: Evidence from Matlab, Bangladesh

    PubMed Central

    Paul, Moni; Sibley, Lynn M.

    2011-01-01

    Specific and contextualized data on social support during distinct health events are needed to improve social support interventions. This study identified the type, content, and source of social support perceived by women during pregnancy. In-depth interviews with 25 women, aged 18-49 years, living in Matlab, Bangladesh, were conducted. The findings demonstrated that women perceived, the receipt of eight distinct types of support. The four most frequently-mentioned types included: practical help with routine activities, information/advice, emotional support and assurance, as well as the provision of resources and material goods. Sources varied by type of support and most frequently included-—mothers, mothers-in-law, sisters-in-law, and husbands. Examples depicting the content of each type of support revealed culturally-specific issues that can inform community-based social support interventions. PMID:21608426

  14. Method and apparatus for monitoring characteristics of a flow path having solid components flowing therethrough

    DOEpatents

    Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID

    2008-05-06

    A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.

  15. Method and apparatus for selectively harvesting multiple components of a plant material

    DOEpatents

    Hoskinson, Reed L.; Hess, Richard J.; Kenney, Kevin L.; Svoboda, John M.; Foust, Thomas D.

    2004-05-04

    A method and apparatus for selectively harvesting multiple components of a plant material. A grain component is separated from the plant material such as by processing the plant material through a primary threshing and separating mechanism. At least one additional component of the plant material is selectively harvested such as by subjecting the plant material to a secondary threshing and separating mechanism. For example, the stems of a plant material may be broken at a location adjacent one or more nodes thereof with the nodes and the internodal stem portions being subsequently separated for harvesting. The at least one additional component (e.g., the internodal stems) may then be consolidated and packaged for subsequent use or processing. The harvesting of the grain and of the at least one additional component may occur within a single harvesting machine, for example, during a single pass over a crop field.

  16. Europa Lander Material Selection Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Alexander S.; Heller, Mellisa

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less

  17. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    PubMed

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  18. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  19. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.

    2011-04-01

    Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.

  20. Dislocation nucleation facilitated by atomic segregation

    DOE PAGES

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; ...

    2017-11-27

    Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface di˙usion and trapping process. The resulting chemically ordered surface regions acts as an e˙ective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associatedmore » with their nucleation, glide, climb, and annihilation at elevated temperatures. As a result, these observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.« less

  1. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Adiabatic photo-steering theory in topological insulators.

    PubMed

    Inoue, Jun-Ichi

    2014-12-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.

  3. Adiabatic photo-steering theory in topological insulators

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-ichi

    2014-12-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.

  4. A High Temperature Cyclic Oxidation Data Base for Selected Materials Tested at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    2003-01-01

    The cyclic oxidation test results for some 1000 high temperature commercial and experimental alloys have been collected in an EXCEL database. This database represents over thirty years of research at NASA Glenn Research Center in Cleveland, Ohio. The data is in the form of a series of runs of specific weight change versus time values for a set of samples tested at a given temperature, cycle time, and exposure time. Included on each run is a set of embedded plots of the critical data. The nature of the data is discussed along with analysis of the cyclic oxidation process. In addition examples are given as to how a set of results can be analyzed. The data is assembled on a read-only compact disk which is available on request from Materials Durability Branch, NASA Glenn Research Center, Cleveland, Ohio.

  5. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

    PubMed Central

    2016-01-01

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845

  6. Finite element analysis and optimization of composite structures

    NASA Technical Reports Server (NTRS)

    Thomsen, Jan

    1990-01-01

    Linearly elastic fiber reinforced composite discs and laminates in plane stress with variable local orientation and concentration of one or two fiber fields embedded in the matrix material, are considered. The thicknesses and the domain of the discs or laminates are assumed to be given, together with prescribed boundary conditions and in-plane loading along the edge. The problem under study consists in determining throughout the structural domain the optimum orientations and concentrations of the fiber fields in such a way as to maximize the integral stiffness of the composite disc or laminate under the seven loading. Minimization of the integral stiffness can also be performed. The optimization is performed subject to a prescribed bound on the total cost or weight of the composite that for given unit cost factors or specific weights determines the amounts of fiber and matrix materials in the structure. Examples are presented.

  7. 16 CFR 255.5 - Disclosure of material connections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... expected by the audience), such connection must be fully disclosed. For example, when an endorser who... examples below. Example 1: A drug company commissions research on its product by an outside organization. The drug company determines the overall subject of the research (e.g., to test the efficacy of a newly...

  8. 16 CFR 255.5 - Disclosure of material connections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... expected by the audience), such connection must be fully disclosed. For example, when an endorser who... examples below. Example 1: A drug company commissions research on its product by an outside organization. The drug company determines the overall subject of the research (e.g., to test the efficacy of a newly...

  9. 16 CFR 255.5 - Disclosure of material connections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... expected by the audience), such connection must be fully disclosed. For example, when an endorser who... examples below. Example 1: A drug company commissions research on its product by an outside organization. The drug company determines the overall subject of the research (e.g., to test the efficacy of a newly...

  10. 16 CFR 255.5 - Disclosure of material connections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... expected by the audience), such connection must be fully disclosed. For example, when an endorser who... examples below. Example 1: A drug company commissions research on its product by an outside organization. The drug company determines the overall subject of the research (e.g., to test the efficacy of a newly...

  11. Using Worked Examples Assignments in Classroom Instruction

    ERIC Educational Resources Information Center

    Paré-Blagoev, Juliana; Booth, Julie; Elliot, Andrew; Koedinger, Ken

    2013-01-01

    As highlighted by the National Math Panel Report (2008), consistent results from laboratory studies have demonstrated that interleaving worked examples with problems to solve improves learning for novices. The purpose of this work is to create materials and tests that can be used flexibly in classrooms and which employ worked examples interleaved…

  12. Dynamic Programming: An Introduction by Example

    ERIC Educational Resources Information Center

    Zietz, Joachim

    2007-01-01

    The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…

  13. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less

  14. Introduction to bifactor polytomous item response theory analysis.

    PubMed

    Toland, Michael D; Sulis, Isabella; Giambona, Francesca; Porcu, Mariano; Campbell, Jonathan M

    2017-02-01

    A bifactor item response theory model can be used to aid in the interpretation of the dimensionality of a multifaceted questionnaire that assumes continuous latent variables underlying the propensity to respond to items. This model can be used to describe the locations of people on a general continuous latent variable as well as on continuous orthogonal specific traits that characterize responses to groups of items. The bifactor graded response (bifac-GR) model is presented in contrast to a correlated traits (or multidimensional GR model) and unidimensional GR model. Bifac-GR model specification, assumptions, estimation, and interpretation are demonstrated with a reanalysis of data (Campbell, 2008) on the Shared Activities Questionnaire. We also show the importance of marginalizing the slopes for interpretation purposes and we extend the concept to the interpretation of the information function. To go along with the illustrative example analyses, we have made available supplementary files that include command file (syntax) examples and outputs from flexMIRT, IRTPRO, R, Mplus, and STATA. Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jsp.2016.11.001. Data needed to reproduce analyses in this article are available as supplemental materials (online only) in the Appendix of this article. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. 19 CFR 10.2024 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.2024 Section 10.2024... Agreement Rules of Origin § 10.2024 Indirect materials. An indirect material, as defined in § 10.2013(i), will be considered to be an originating material without regard to where it is produced. Example...

  16. Evaluation of Consideration and Incorporation of Green and Sustainable Remediation (GSR) Practices in Army Environmental Remediation. Volume 1

    DTIC Science & Technology

    2012-08-27

    materials Examples: - Cheese whey , molasses, compost, or off-spec food products for inducing anaerobic conditions - Crushed concrete for use as...place of refined chemicals or materials Examples: - Cheese whey , molasses, compost, or off-spec food products for inducing anaerobic conditions... whey , molasses, compost, or off-spec food products for inducing anaerobic conditions - Crushed concrete for use as fill - Concrete from coal

  17. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA

    2009-09-22

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  18. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.

    2013-04-23

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  19. Molecules, muscles, and machines: Universal performance characteristics of motors

    PubMed Central

    Marden, James H.; Allen, Lee R.

    2002-01-01

    Animal- and human-made motors vary widely in size and shape, are constructed of vastly different materials, use different mechanisms, and produce an enormous range of mass-specific power. Despite these differences, there is remarkable consistency in the maximum net force produced by broad classes of animal- and human-made motors. Motors that use force production to accomplish steady translational motion of a load (myosin, kinesin, dynein, and RNA polymerase molecules, muscle cells, whole muscles, winches, linear actuators, and rockets) have maximal force outputs that scale as the two-thirds power of mass, i.e., with cross-sectional area. Motors that use cyclical motion to generate force and are more subject to multiaxial stress and vibration have maximal force outputs that scale as a single isometric function of motor mass with mass-specific net force output averaging 57 N⋅kg−1 (SD = 14). Examples of this class of motors includes flying birds, bats, and insects, swimming fish, various taxa of running animals, piston engines, electric motors, and all types of jets. Dependence of force production and stress resistance on cross-sectional area is well known, but the isometric scaling and common upper limit of mass-specific force production by cyclical motion motors has not been recognized previously and is not explained by an existing body of theory. Remarkably, this finding indicates that most of the motors used by humans and animals for transportation have a common upper limit of mass-specific net force output that is independent of materials and mechanisms. PMID:11917097

  20. Molecules, muscles, and machines: universal performance characteristics of motors.

    PubMed

    Marden, James H; Allen, Lee R

    2002-04-02

    Animal- and human-made motors vary widely in size and shape, are constructed of vastly different materials, use different mechanisms, and produce an enormous range of mass-specific power. Despite these differences, there is remarkable consistency in the maximum net force produced by broad classes of animal- and human-made motors. Motors that use force production to accomplish steady translational motion of a load (myosin, kinesin, dynein, and RNA polymerase molecules, muscle cells, whole muscles, winches, linear actuators, and rockets) have maximal force outputs that scale as the two-thirds power of mass, i.e., with cross-sectional area. Motors that use cyclical motion to generate force and are more subject to multiaxial stress and vibration have maximal force outputs that scale as a single isometric function of motor mass with mass-specific net force output averaging 57 N x kg(-1) (SD = 14). Examples of this class of motors includes flying birds, bats, and insects, swimming fish, various taxa of running animals, piston engines, electric motors, and all types of jets. Dependence of force production and stress resistance on cross-sectional area is well known, but the isometric scaling and common upper limit of mass-specific force production by cyclical motion motors has not been recognized previously and is not explained by an existing body of theory. Remarkably, this finding indicates that most of the motors used by humans and animals for transportation have a common upper limit of mass-specific net force output that is independent of materials and mechanisms.

  1. Survival Learning Materials.

    ERIC Educational Resources Information Center

    Wilson, Robert M.; Barnes, Marcia M.

    This booklet is designed to provide some starter ideas for teachers to use in developing their own packet of learning materials. The procedures suggested and the examples included are literally starters. "Introduction to Survival Learning Materials" presents some procedures to help teachers get started in developing materials. "Following…

  2. Selective pathology fellowships: diverse, innovative, and valuable subspecialty training.

    PubMed

    Iezzoni, Julia C; Ewton, April; Chévez-Barrios, Patricia; Moore, Stephen; Thorsen, Linda M; Naritoku, Wesley Y

    2014-04-01

    Although selective pathology fellowships have a long-standing history of developing trainees with advanced expertise in specific areas of pathology other than those of the American Board of Pathology-certified subspecialties, the widespread interest in this training continues to grow. To describe the historical background and current status of selective pathology fellowships, and to provide examples of 3 programs. In addition, Accreditation Council for Graduate Medical Education (ACGME)-accredited programs and nonaccredited programs in Selective Pathology are compared. ACGME data banks and publicly available online materials were used. Program directors of the fellowships examples in this paper provided program-specific information. Additionally, an online survey of the program directors and program coordinators of ACGME-accredited programs and nonaccredited programs in selective pathology was performed. There are currently 76 ACGME-accredited selective pathology programs. The programs are distributed between 3 major categories: surgical pathology, focused anatomic pathology, and focused clinical pathology. Although the vast majority of programs are concerned that their funding source may be cut in the next 3 years, most programs will not change the number of fellowship positions in their programs. Program requirements devoted specifically and solely to selective pathology have been developed and are in effect. The value of this training is recognized not only by pathologists, but by clinicians as well, in both academia and private practice. Importantly, the diversity and innovation inherent in selective pathology allow these programs to adeptly address new subspecialty areas and technologic advances in the current and evolving practice of pathology.

  3. Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks.

    PubMed

    Micheli, Laura; Mazzuca, Claudia; Palleschi, Antonio; Palleschi, Giuseppe

    2012-06-01

    Paper-based artworks are among the most valuable assets for transmission of knowledge. Historical paper is composed of different polysaccharides (e.g. cellulose), binders, and glues. During aging all of these components undergo several degradation processes, as a result of external and intrinsic causes, and these can compromise the state of conservation of the document. In this work, application of a new biotechnological strategy for paper artefact preservation is reported. By making use of innovative and non-invasive materials, for example appropriate hydrogels, in combination with selective electrochemical biosensors, it is possible to simultaneously verify the degradation condition of the paper artwork and then to efficiently clean it, while monitoring the process of removal of both pollution and degradation products. In this paper, we focus on specific examples in which such techniques have been applied to paper artworks and that illustrate the advantages and potential of this biotechnology compared with the traditional paper-cleaning methods currently in use.

  4. Application of polarization in high speed, high contrast inspection

    NASA Astrophysics Data System (ADS)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  5. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    PubMed

    Prosa, Ty J; Larson, David J

    2017-04-01

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  6. High-throughput spectrometer designs in a compact form-factor: principles and applications

    NASA Astrophysics Data System (ADS)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  7. Development of silicon carbide mirrors: the example of the Sofia secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal

    2017-11-01

    The 352 mm tip-tilt SOFIA Secondary Mirror has been developed by the ASTRIUM / BOOSTEC joint venture SiCSPACE, taking full benefit of the intrinsic properties of the BOOSTEC S-SiC sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM SAS. Achieved performances include a low mass of 1.7 kg, a very high stiffness with a first resonant frequency higher than 2000 Hz and an optical surface accuracy corresponding to a maximum WFE of 50 nm rms. This mirror is part of the joint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory For Infrared Astronomy (SOFIA).

  8. High-Throughput Continuous Hydrothermal Synthesis of Transparent Conducting Aluminum and Gallium Co-doped Zinc Oxides.

    PubMed

    Howard, Dougal P; Marchand, Peter; McCafferty, Liam; Carmalt, Claire J; Parkin, Ivan P; Darr, Jawwad A

    2017-04-10

    High-throughput continuous hydrothermal flow synthesis was used to generate a library of aluminum and gallium-codoped zinc oxide nanoparticles of specific atomic ratios. Resistivities of the materials were determined by Hall Effect measurements on heat-treated pressed discs and the results collated into a conductivity-composition map. Optimal resistivities of ∼9 × 10 -3 Ω cm were reproducibly achieved for several samples, for example, codoped ZnO with 2 at% Ga and 1 at% Al. The optimum sample on balance of performance and cost was deemed to be ZnO codoped with 3 at% Al and 1 at% Ga.

  9. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process

    NASA Astrophysics Data System (ADS)

    Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo

    2017-12-01

    A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.

  10. Circulating transportation orbits between earth and Mars

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Niehoff, J. C.; Byrnes, D. V.; Longuski, J. M.

    1986-01-01

    This paper describes the basic characteristics of circulating (cyclical) orbit design as applied to round-trip transportation of crew and materials between earth and Mars in support of a sustained manned Mars Surface Base. The two main types of nonstopover circulating trajectories are the socalled VISIT orbits and the Up/Down Escalator orbits. Access to the large transportation facilities placed in these orbits is by way of taxi vehicles using hyperbolic rendezvous techniques during the successive encounters with earth and Mars. Specific examples of real trajectory data are presented in explanation of flight times, encounter frequency, hyperbolic velocities, closest approach distances, and Delta V maneuver requirements in both interplanetary and planetocentric space.

  11. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  12. CryoTEM as an Advanced Analytical Tool for Materials Chemists.

    PubMed

    Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner

    2017-07-18

    Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.

  13. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  14. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less

  15. Research on the Decision Method of Maintenance Materials Direct Supply

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Shi, Xiaopei; Liu, Shenyang; Luo, Guangxu; Zhu, Chen

    2018-05-01

    With the further development of civil military integration, more and more maintenance materials will be supplied by the factory directly. Aiming at the mode condition of maintenance materials factory direct supply, maintenance materials needs equipment support in the process of facing a number of direct supply manufacturers how to decision problems, using AHP, considering many factors optimization of direct supply manufacturers involved, and gives the weights of the evaluation indexes of the direct supply manufacturers to evaluate optimal. Finally, with 4 straights for the manufacturer as an example, considering the various evaluation indexes to carry out evaluation and drawing the correct evaluation of direct supply manufacturers, the best manufacturers direct supply is selected. An example shows that, AHP can provide scientific and theoretical basis to materials factory direct supply security.

  16. Biosmart Materials: Breaking New Ground in Dentistry

    PubMed Central

    Badami, Vijetha; Ahuja, Bharat

    2014-01-01

    By definition and general agreement, smart materials are materials that have properties which may be altered in a controlled fashion by stimuli, such as stress, temperature, moisture, pH, and electric or magnetic fields. There are numerous types of smart materials, some of which are already common. Examples include piezoelectric materials, which produce a voltage when stress is applied or vice versa, shape memory alloys or shape memory polymers which are thermoresponsive, and pH sensitive polymers which swell or shrink as a response to change in pH. Thus, smart materials respond to stimuli by altering one or more of their properties. Smart behaviour occurs when a material can sense some stimulus from its environment and react to it in a useful, reliable, reproducible, and usually reversible manner. These properties have a beneficial application in various fields including dentistry. Shape memory alloys, zirconia, and smartseal are examples of materials exhibiting a smart behavior in dentistry. There is a strong trend in material science to develop and apply these intelligent materials. These materials would potentially allow new and groundbreaking dental therapies with a significantly enhanced clinical outcome of treatments. PMID:24672407

  17. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  18. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  20. Metal-Organic Framework with Aromatic Rings Tentacles: High Sulfur Storage in Li-S Batteries and Efficient Benzene Homologues Distinction.

    PubMed

    Li, Meng-Ting; Sun, Yu; Zhao, Kai-Sen; Wang, Zhao; Wang, Xin-Long; Su, Zhong-Min; Xie, Hai-Ming

    2016-12-07

    We designed and fabricated a fluorophore-containing tetradentate carboxylate ligand-based metal-organic framework (MOF) material with open and semiopen channels, which acted as the host for sulfur trapped in Li-S batteries and sensor of benzene homologues. These channels efficiently provide a π-π* conjugated matrix for the charge transfer and guest molecule trapping. The open channel ensured a much higher loading quantitative of sulfur (S content-active material, 72 wt %; electrode, 50.4 wt %) than most of the MOF/sulfur composites, while the semiopen channel possessing aromatic rings tentacles guaranteed an outstanding specific discharge capacity (1092 mA h g -1 at 0.1 C) accompanied by good cycling stability. To our surprise, benefiting from special π-π* conjugated conditions, compound 1 could be a chemical sensor for benzene homologues, especially for 1,2,4-trimethylbenzene (1,2,4-TMB). This is the first example of MOFs materials serving as a sensor of 1,2,4-TMB among benzene homologues. Our works may be worthy of use for references in other porous materials systems to manufacture more long-acting Li-S batteries and sensitive chemical sensors.

  1. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  2. Suppressors made from intermetallic materials

    DOEpatents

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  3. Manipulating topological-insulator properties using quantum confinement

    NASA Astrophysics Data System (ADS)

    Kotulla, M.; Zülicke, U.

    2017-07-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.

  4. Linking suckling biomechanics to the development of the palate

    NASA Astrophysics Data System (ADS)

    Li, Jingtao; Johnson, Chelsey A.; Smith, Andrew A.; Hunter, Daniel J.; Singh, Gurpreet; Brunski, John B.; Helms, Jill A.

    2016-02-01

    Skulls are amongst the most informative documents of evolutionary history but a complex geometry, coupled with composite material properties and complicated biomechanics, have made it particularly challenging to identify mechanical principles guiding the skull’s morphogenesis. Despite this challenge, multiple lines of evidence, for example the relationship between masticatory function and the evolution of jaw shape, nonetheless suggest that mechanobiology plays a major role in skull morphogenesis. To begin to tackle this persistent challenge, cellular, molecular and tissue-level analyses of the developing mouse palate were coupled with finite element modeling to demonstrate that patterns of strain created by mammalian-specific oral behaviors produce complementary patterns of chondrogenic gene expression in an initially homogeneous population of cranial neural crest cells. Neural crest cells change from an osteogenic to a chondrogenic fate, leading to the materialization of cartilaginous growth plate-like structures in the palatal midline. These growth plates contribute to lateral expansion of the head but are transient structures; when the strain patterns associated with suckling dissipate at weaning, the growth plates disappear and the palate ossifies. Thus, mechanical cues such as strain appear to co-regulate cell fate specification and ultimately, help drive large-scale morphogenetic changes in head shape.

  5. Composition and structure of the pericellular environment. Physiological function and chemical composition of pericellular proteoglycan (an evolutionary view).

    PubMed

    Scott, J E

    1975-07-17

    Connective tissue cells exist in a meshwork of insoluble fibres, the interstices of which are filled with soluble, high molecular mass, anionic material of a predominantly carbohydrate nature. The interactions of fibres with the interfibrillar material are central to the discussion of connective tissue physiology. As with all soluble polymers, the interfibrillar polyanion tends to "swell' and the tangled mass of chains offers considerable resistance to penetration by the large insoluble fibres. The consequent pressure to "inflate' the fibrous network is important in giving elasticity to cartilage, transparency to cornea, etc. Branched structures (of proteoglycans) and straight-chain forms (of hyaluronate) are compared for their ability to fulfil these functions. Apart from their physical ("non-specific') roles proteoglycans and glycosaminoglycans are able to interact physicochemically with, for example, collagen in ways which show considerable specificity, and which presumably are important in the laying down of the fibrous network as well as in maintaining its mechanical integrity. It is proposed that the role played by radiation, particularly as mediated via the hydrated electron (eaq) was dominant in the pre- and post-biotic evolution of pericellular environments.

  6. Development and analysis of insulation constructions for aerospace wiring applications

    NASA Astrophysics Data System (ADS)

    Slenski, George A.; Woodford, Lynn M.

    1993-03-01

    The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.

  7. Developing Effective Communications about Extreme Weather Risks.

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.

    2014-12-01

    Members of the general public often face complex decisions about the risks that they face, including those associated with extreme weather and climate change adaptation. Scientific experts may be asked to develop communications with the goal of improving people's understanding of weather and climate risks, and informing people's decisions about how to protect against these risks. Unfortunately, scientific experts' communication efforts may fail if they lack information about what people need or want to know to make more informed decisions or what wording people prefer use to describe relevant concepts. This presentation provides general principles for developing effective risk communication materials that aim for widespread dissemination, such as brochures and websites. After a brief review of the social science evidence on how to design effective risk communication materials, examples will focus on communications about extreme weather events and climate change. Specifically, data will be presented from ongoing projects on flood risk perception, public preparedness for heat waves, and public perceptions of climate change. The presentation will end with specific recommendations about how to improve recipients' understanding about risks and inform decisions. These recommendations should be useful to scientific experts who aim to communicate about extreme weather, climate change, or other risks.

  8. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  9. Challenges and the state of the technology for printed sensor arrays for structural monitoring

    NASA Astrophysics Data System (ADS)

    Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory

    2017-04-01

    Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.

  10. Medical Device Guidebook: A browser information resource for medical device users.

    PubMed

    Clarkson, Douglas M

    2017-03-01

    A web based information resource - the 'Medical Device Guidebook' - for the enabling of safe use of medical devices is described. Medical devices are described within a 'catalogue' of specific models and information on a specific model is provided within a consistent set of information 'keys'. These include 'user manuals', 'points of caution', 'clinical use framework', 'training/assessment material', 'frequently asked questions', 'authorised user comments' and 'consumables'. The system allows identification of known risk/hazards associated with specific devices, triggered, for example, by national alerts or locally raised safety observations. This provides a mechanism for more effective briefing of equipment users on the associated hazards of equipment. A feature of the system is the inclusion of a specific 'Operational Procedure' for each device, where the lack of this focus is shown in the literature to often be a key factor in equipment misuse and associated patient injury. The 'Guidebook' provides a mechanism for the development of an information resource developed within local clinical networks and encourages a consistent approach to medical device use. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core

    PubMed Central

    Hucka, Michael; Bergmann, Frank T.; Hoops, Stefan; Keating, Sarah M.; Sahle, Sven; Schaff, James C.; Smith, Lucian P.; Wilkinson, Darren J.

    2017-01-01

    Summary Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 1 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org/. PMID:26528564

  12. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core.

    PubMed

    Hucka, Michael; Bergmann, Frank T; Hoops, Stefan; Keating, Sarah M; Sahle, Sven; Schaff, James C; Smith, Lucian P; Wilkinson, Darren J

    2015-09-04

    Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 1 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org/.

  13. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core.

    PubMed

    Hucka, Michael; Bergmann, Frank T; Hoops, Stefan; Keating, Sarah M; Sahle, Sven; Schaff, James C; Smith, Lucian P; Wilkinson, Darren J

    2015-06-01

    Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 1 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org/.

  14. Concrete and cement composites used for radioactive waste deposition.

    PubMed

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Architecture of Allosteric Materials and Edge Modes

    NASA Astrophysics Data System (ADS)

    Yan, Le; Ravasio, Riccardo; Brito, Carolina; Wyart, Matthieu

    Allostery, a long-range elasticity-mediated interaction, remains the biggest mystery decades after its discovery in proteins. We introduce a numerical scheme to evolve functional materials that can accomplish a specified mechanical task. In this scheme, the number of solutions, their spatial architectures and the correlations among them can be computed. As an example, we consider an ``allosteric'' task, which requires the material to respond specifically to a stimulus at a distant active site. We find that functioning materials evolve a less-constrained trumpet-shaped region connecting the stimulus and active sites and that the amplitude of the elastic response varies non-monotonically along the trumpet. As previously shown for some proteins, we find that correlations appearing during evolution alone are sufficient to identify key aspects of this design. Finally, we show that the success of this architecture stems from the emergence of soft edge modes recently found to appear near the surface of marginally connected materials. Overall, our in silico evolution experiment offers a new window to study the relationship between structure, function, and correlations emerging during evolution. L.Y. was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. M.W. thanks the Swiss National Science Foundation for support under Grant No. 200021-165509 and the Simons Foundation Grant (#454953 Matthieu Wyart).

  16. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  17. Improved Spacecraft Materials for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 mSv limit for the exposure of the blood forming organs (this limit is strictly for LEO but can be used as a guideline for the Mars mission analysis). The current estimates require aluminum shield thicknesses above 50 g/sq cm., which is impractical. In such a heavily shielded vehicle, the neutrons produced throughout the vehicle also contribute significantly to the exposure and this demands greater care in describing the angular dependence of secondary particle production processes. As such the continued testing of databases and transport procedures in laboratory and spaceflight experiments has continued. This has been the focus of much of the last year's activity and has resulted in improved neutron prediction capability. These new methods have also improved our understanding of the surface environment of Mars. The Mars 2003 NRA HEDS related surface science requirements were driven by the need to validate predictions on the upward flux of neutrons produced in the Martian regolith and bedrock made by the codes developed under this project. The codes used in the surface environment definition are also being used to look at in situ resources for the development of construction material for Martian surface facilities. For example, synthesis of polyimides and polyethylene as binders of regolith for developing basic structural elements has been studied and targets built for accelerator beam testing of radiation shielding properties. Preliminary mechanical tests have also been promising. Improved spacecraft materials have been identified (using the criteria reported by this project at the last conference) as potentially important for future shielding materials. These are liquid hydrogen, hydrogenated nanofibers, liquid methane, LiH, Polyethylene, Polysulfone, and Polyetherimide (in order of decreasing shield performance). Some of the materials are multifunctional and are required for other onboard systems. We are currently preparing software for trade studies with these materials relative to the Mars Reference Mission as required in the project's final year.

  18. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.

    PubMed

    Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J

    2016-09-20

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in situ and ex situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. Full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.

  19. Biotemplated materials for sustainable energy and environment: current status and challenges.

    PubMed

    Zhou, Han; Fan, Tongxiang; Zhang, Di

    2011-10-17

    Materials science will play a key role in the further development of emerging solutions for the increasing problems of energy and environment. Materials found in nature have many inspiring structures, such as hierarchical organizations, periodic architectures, or nanostructures, that endow them with amazing functions, such as energy harvesting and conversion, antireflection, structural coloration, superhydrophobicity, and biological self-assembly. Biotemplating is an effective strategy to obtain morphology-controllable materials with structural specificity, complexity, and related unique functions. Herein, we highlight the synthesis and application of biotemplated materials for six key areas of energy and environment technologies, namely, photocatalytic hydrogen evolution, CO(2) reduction, solar cells, lithium-ion batteries, photocatalytic degradation, and gas/vapor sensing. Although the applications differ from each other, a common fundamental challenge is to realize optimum structures for improved performances. We highlight the role of four typical structures derived from biological systems exploited to optimize properties: hierarchical (porous) structures, periodic (porous) structures, hollow structures, and nanostructures. We also provide examples of using biogenic elements (e.g., C, Si, N, I, P, S) for the creation of active materials. Finally, we disscuss the challenges of achieving the desired performance for large-scale commercial applications and provide some useful prototypes from nature for the biomimetic design of new materials or systems. The emphasis is mainly focused on the structural effects and compositional utilization of biotemplated materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications Abound for Nano Field - MIT Spectrum

    Science.gov Websites

    - is applicable to so many disciplines. Van Vliet's work has already, for example, led to important to] can affect the mechanical adhesion of the cell to that material, for example," says Van stiffer, can change the biochemistry - how quickly, for example, enzymes can affect the speed of certain

Top