Audiovisual Programming. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on audiovisual programming for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... DEPARTMENT OF EDUCATION Applications for New Awards; Educational Technology, Media, and Materials for Individuals With Disabilities Program--Stepping-Up Technology Implementation AGENCY: Office of... Information Educational Technology, Media, and Materials for Individuals With Disabilities Program--Stepping...
Selected Technology Lab Activities Implementation Guide.
ERIC Educational Resources Information Center
Portland Public Schools, OR.
These materials supplement state guides for junior high or middle school technology education programs. The materials show instructors how to implement 81 hours of new technology-related activities into existing programs. Introductory materials include a rationale, philosophy, and goals for technology education. Areas of instruction are as…
ERIC Educational Resources Information Center
Beard, Karen L.; Lonsdale, Helen C.
The Satellite Technology Demonstration (STD) produced a series of 81 television programs called the "J-series" for junior high school students. This material was used to illustrate real life situations for a career development program. Because materials were expensive, the decision was made to produce "in-house" programs and…
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
The Cutting Edge of High-Temperature Composites
NASA Technical Reports Server (NTRS)
2006-01-01
NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.
DOE research and development report. Progress report, October 1980-September 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, Carleton D.
The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Metals and Ceramics Division progress report for period ending December 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Weir, J.R. Jr.
1993-04-01
This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)
1992-01-01
The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.
Teaching Machines and Programmed Instruction; an Introduction.
ERIC Educational Resources Information Center
Fry, Edward B.
Teaching machines and programed instruction represent new methods in education, but they are based on teaching principles established before the development of media technology. Today programed learning materials based on the new technology enjoy increasing popularity for several reasons: they apply sound psychological theories; the materials can…
Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.
ERIC Educational Resources Information Center
Hull, Daniel M.
The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…
NASA aeronautics R&T - A resource for aircraft design
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.
Preparing technicians for engineering materials technology
NASA Technical Reports Server (NTRS)
Jacobs, James A.; Metzloff, Carlton H.
1990-01-01
A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.
FY2010 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.
Dr. William Tumas - Associate Laboratory Director, Materials and Chemical
Chemical Science and Technology Dr. William Tumas - Associate Laboratory Director, Materials and Chemical , technical direction, and workforce development of the materials and chemical science and technology , program management, and program execution. He joined NREL in December 2009 as Director of the Chemical and
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Research and technology, 1984: Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Moorehead, T. W. (Editor)
1984-01-01
The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.
Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, RR
This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less
ERIC Educational Resources Information Center
Lonsdale, Helen C.
Because 16mm film programs for classroom use are expensive and distribution is unpredictable, the Satellite Technology Demonstration (STD) established a Materials Distribution Service (MDS) to transmit material via satellite to rural sites in the Rocky Mountains. The STD leased 300 programs from Encyclopedia Britannica Educational Corporation and…
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
A Source Book for Connections: Technology and Change.
ERIC Educational Resources Information Center
Elwood, Ann
Resource materials and suggestions are presented as part of the multimedia instructional program on relationships among science, technology, and society. The major objective of the program is to make college level course material available to the general public through cooperation of newspapers, public television, and 300 participating colleges…
NASA Astrophysics Data System (ADS)
Carlson, Paul T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less
Entrepreneurship. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on entrepreneurship for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on introduction to animation for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Section components are described next. The…
Health Occupations. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on health occupations for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Electronic Publishing. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on electronic publishing for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor and student sections are…
Career Search. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on career search for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Advanced technologies for NASA space programs
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1991-01-01
A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology.more » We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.« less
The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorrell, C.A.
1997-04-01
In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less
ERIC Educational Resources Information Center
Columbus State Community Coll., OH.
This document contains materials developed for and about the environmental technology tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an environmental science technology program in grades 11 and 12 that leads to entry-level employment or a 2-year environmental technology…
Automotive Diagnostic Technologies.
ERIC Educational Resources Information Center
Columbus State Community Coll., OH.
This document contains materials developed for and about the automotive diagnostic technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an automotive/diagnostic technologies program in grades 11 and 12 that leads to entry-level employment or a 2-year automotive…
This protocol was developed under the Environmental Protection Agency's Environmental Technology Verification (ETV) Program, and is intended to be used as a guide in preparing laboratory test plans for the purpose of verifying the performance of grouting materials used for infra...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Federal Acquisition Regulation Supplement; Balance of Payments Program Exemption for Commercial... Balance of Payments Program for construction material that is commercial information technology. DATES..., Balance of Payments Program--Construction Material, and 252.225- 7045, Balance of Payments Program...
Science and Emerging Technology of 2D Atomic Layered Materials and Devices
2017-09-09
AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...Emerging Technology of 2D Atomic Layered Materials and Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-0006 5c. PROGRAM ELEMENT NUMBER...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Astrophysics Data System (ADS)
Marsik, S. J.; Morea, S. F.
1985-03-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
Aerospace and Flight. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on aerospace and flight for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
48 CFR 23.404 - Agency affirmative procurement programs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES... meet the requirement that renewable agricultural materials or forestry materials in such product must...
48 CFR 23.404 - Agency affirmative procurement programs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES... meet the requirement that renewable agricultural materials or forestry materials in such product must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.
1997-01-01
Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
Proceedings of the sixth annual conference on fossil energy materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
The uncounted benefits: Federal efforts in domestic technology transfer
NASA Technical Reports Server (NTRS)
Chapman, R. L.; Hirst, K.
1986-01-01
Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
Long range view of materials research for civil transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Waters, M. H.
1974-01-01
The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.
Long range view of materials research for civil transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Waters, M. H.
1973-01-01
The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.
Aeronautics research and technology program and specific objectives
NASA Technical Reports Server (NTRS)
1981-01-01
Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
An Emerging Technology Curriculum. Education for Technology Employment Project. Final Report.
ERIC Educational Resources Information Center
Harms, Dan; And Others
Individualized, competency-based curriculum materials were developed for a course on Principles of Technology, Units 1-6. New and updated curriculum materials in Drafting and Electronics and the Principles of Technology units were pilot tested in area vocational center settings in Illinois. A computer maintenance program was also developed but not…
ERIC Educational Resources Information Center
Battelle Pacific Northwest Laboratories, Richland, WA.
A materials technology program was developed at Richland High School (Washington) and pilot tested at seven sites in Washington and Oregon. The program created partnerships between science and vocational education teachers at Richland High and Battelle Pacific Northwest Laboratories, and was then expanded to include other high schools, colleges,…
Aerospace Resources for Science and Technology Education.
ERIC Educational Resources Information Center
Maley, Donald, Ed.; Smith, Kenneth L., Ed.
This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…
Solar Energy: Non-Residential Applications and Future Technology: Student Material. First Edition.
ERIC Educational Resources Information Center
Takacs, Robert; Orsak, Charles G., Jr.
Student materials are presented for the course, Non-Residential Applications and Future Technology, one of seven core courses in Navarro College's two-year associate degree program for solar technicians. First, introductory material discusses the form and objectives of the course and ways of using the student materials. Next, readings, worksheets,…
TWO NEW GAS STANDARDS PROGRAMS AT THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
The EPA/NIST certified reference materials (CRM) program is being terminated and replaced with two new ones: the NIST Traceable Reference Materials (NTRM) and the Research Gas Mixture (RGM) programs. hese new programs are being implemented to provide NIST traceability to a wider ...
Next-generation avionics packaging and cooling 'test results from a prototype system'
NASA Astrophysics Data System (ADS)
Seals, J. D.
The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
Materials Research and Technology Initiatives
DOT National Transportation Integrated Search
1995-11-01
This report is the departments first report on current and planned research and technology efforts in advanced materials. The report was published in support of the Administration's initiative to establish an integrated program of research designed t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.
ERIC Educational Resources Information Center
Battelle Pacific Northwest Laboratories, Richland, WA.
A materials science and technology (MST) program was developed at Richland High School (Washington) and pilot tested at seven sites in Washington and Oregon. The program created partnerships between science and vocational education teachers at Richland High and Battelle Pacific Northwest Laboratories, and then was expanded to include other high…
Wireless Rover Meets 3D Design and Product Development
ERIC Educational Resources Information Center
Deal, Walter F., III; Hsiung, Steve C.
2016-01-01
Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…
An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
FY 1978 aeronautics and space technology program summary
NASA Technical Reports Server (NTRS)
1977-01-01
Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.
This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFS) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. he MITE Program is sponsored by the U.S. Environmental Protecti...
Current status and recent research achievements in SiC/SiC composites
NASA Astrophysics Data System (ADS)
Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.
2014-12-01
The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.
Develop Improved Materials to Support the Hydrogen Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael C. Martin
The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less
Advanced Industrial Materials Program
NASA Astrophysics Data System (ADS)
Stooksbury, F.
1994-06-01
The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.
Metals and Ceramics Division progress report for period ending December 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.
1994-07-01
This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloy, Stuart Andrew
In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.
1985-04-01
author and ProgramRationale, approach and results of Manager, and forward two copies of the reprinted - 10 to reduce spiraling weapon material to the...Technologies ADVAL STRUCTURAL 5 DESIGN/ MATERIALS P’rogram Nlam.4er 4 .’ . I...reading grade sciecnce and mathematics achieved on vanced technological societies, yet it is els It iwver tor somei rninorit\\’ groups,. national tests
CSTI high capacity power. [Civil Space Technology Initiative
NASA Technical Reports Server (NTRS)
Winter, Jerry M.
1989-01-01
In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group
NASA Technical Reports Server (NTRS)
Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)
2000-01-01
"Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Wiberley, S. E.
1978-01-01
The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.
Technology readiness levels for advanced nuclear fuels and materials development
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...
2016-12-23
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Technology readiness levels for advanced nuclear fuels and materials development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Dividends from Technology Applied.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…
Rural Energy Options Analysis Training Development and Implementation at NREL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.
2005-01-01
NREL has developed a rural energy options analysis training program for rural energy decision makers that provides knowledge, skills and tools for the evaluation of technologies, including renewables, for rural energy applications. Through the Department of Energy (DOE) Solar Energy Technologies Program (SETP), NREL has refined materials for the program and developed a module that offers hands-on training in the preparation of data for options analysis using HOMER, NREL's micropower optimization model. NREL has used the materials for training in Brazil, the Maldives, Mexico, and Sri Lanka.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1997-04-01
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less
FY2013 Lightweight Materials R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.
Status of Mirror Technology for the Next Generation Space Telescope
NASA Astrophysics Data System (ADS)
Jacobson, D. N.
2000-10-01
The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight experimentand) and NGST. This talk will focus on a status of the mirror technology developed over the past 4 years on the NGST program.
Component technology for stirling power converters
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
1991-01-01
NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.
ERIC Educational Resources Information Center
Massuda, Rachel
These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
NASA-UVa light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1991-01-01
The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1996-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.
JTEC/WTEC annual report and program summary: 1993/94
NASA Technical Reports Server (NTRS)
Holdridge, Geoffrey M. (Editor)
1994-01-01
The JTEC/WTEC (Japanese Technology Evaluation Center/World Technology Evaluation Center) Program at Loyola College is overviewed. A review of activities for 1993 and early 1994 is discussed along with plans for the following year. The bulk of the report consists of the summaries of completed projects in Information and Communication Technology; Materials; Manufacturing and Construction; Aeronautics, Space, and Ocean Technology; Energy; and Biotechnology.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Solar Concentrator Advanced Development Program, Task 1
NASA Technical Reports Server (NTRS)
1986-01-01
Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.
Proceedings of the 18th Annual Conference on Fossil Energy Materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, RR
2004-11-02
The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.« less
Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less
ERIC Educational Resources Information Center
Tomezsko, Edward S. J.
A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…
Hazardous Materials Technology: A Community College's Response to a Critical Employment Need.
ERIC Educational Resources Information Center
Friedel, Janice N.; And Others
Studies conducted by the Eastern Iowa Community College District in 1986 revealed a lack of credit programs and curricula for training individuals in the technical aspects of hazardous materials management and need for hazardous materials technicians by local industry. In response, an associate of applied science (AAS) degree program in Hazardous…
Innovative Materials for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.
1997-01-01
Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1977-01-01
A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Carpenter, Paul K.
2006-01-01
As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fastpace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The recommendation of the workshop of establishing standard simulant materials to be used in lunar technology development and testing will be discussed here with an emphasis on space resource utilization. The variety of techniques and the complexity of functional interfaces make these simulant choices critical in space resource utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, DR
2000-12-11
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less
1978-05-16
Di~t Scci ~_STATEMENT ON THE SCIENCI AND TECHNOLOGY PROGRAM AND THE ROLE OF DEPARTMENT OF ’DEFENSE LABORATORIES DR. RUTH M. /DAVIS DEPUTY UNDER...guidance and control 2 and electronics through materials , mathematics and physics, through oceanographic and environmental sciences to chemical and...warfare 23 19 21 Weaponry Landmines, Landmine Countermeasures 13 18 18 and Barriers Ocean Vehicles 114 118 138 Land Mobility 26 26 47 Materials and
Materials Development for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.
2006-01-01
The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.
Solar synthesis of advanced materials: A solar industrial program initiative
NASA Astrophysics Data System (ADS)
Lewandowski, A.
1992-06-01
This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
ERIC Educational Resources Information Center
Morehead State Univ., KY.
Three types of instruction were used in the Ohio Module Project: traditional classes, programmed learning centers, and home instruction. Four major objectives of the project are: (1) to determine the kind of training program necessary to prepare paraprofessionals to operate an instructional program utilizing programmed materials, (2) to compare…
Survey of the US materials processing and manufacturing in space program
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1981-01-01
To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.
Next Generation Launch Technology Program Lessons Learned
NASA Technical Reports Server (NTRS)
Cook, Stephen; Tyson, Richard
2005-01-01
In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.
Environmental Technological Education in a Developing Country--Libya.
ERIC Educational Resources Information Center
Walters, A. H.; And Others
1981-01-01
Presents an overview of environmental and developmental issues and concerns of Libya focusing on water resources, agriculture, and industrialization. Identifies the need for an environmental program coordinated by a council and for environmental technological education programs and materials specifically designed for Libyan students. (DC)
The Epoxytec, Inc. CPP™ epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the Uni...
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
NASA Technical Reports Server (NTRS)
Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.
1990-01-01
NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.
NASA Technical Reports Server (NTRS)
1993-01-01
NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.
32 CFR 2400.4 - Atomic Energy Material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Atomic Energy Material. 2400.4 Section 2400.4 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.4 - Atomic Energy Material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Atomic Energy Material. 2400.4 Section 2400.4 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.4 - Atomic Energy Material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Atomic Energy Material. 2400.4 Section 2400.4 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.4 - Atomic Energy Material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Atomic Energy Material. 2400.4 Section 2400.4 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.4 - Atomic Energy Material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Atomic Energy Material. 2400.4 Section 2400.4 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
Materials and Processes Technology.
ERIC Educational Resources Information Center
Ritz, John M.; And Others
This instructional resource guide is intended to assist the industrial arts (IA) teacher in implementing a comprehensive materials and Processes Technology program at the technical level in Virginia high schools. The course is designed to help students make informed educational and occupational choices and prepare them for advanced technical or…
Laser Science & Technology Program Annual Report - 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H-L
2001-03-20
The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
48 CFR 223.303 - Contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material...
Development and Evaluation of Science and Technology Education Program Using Interferometric SAR
NASA Astrophysics Data System (ADS)
Ito, Y.; Ikemitsu, H.; Nango, K.
2016-06-01
This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.
The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
Building Global Learning Communities through the Internet.
ERIC Educational Resources Information Center
Mende, Richard
From Spring 1995 to Spring 1996, Cambrian College, in Ontario (Canada), undertook a project to develop Canada's first full program using Internet technology. The major challenges accomplished included the selection of the program; adaptation of materials for digital delivery; selection of a delivery technology; faculty training; and program…
Report of the NASA Ad Hoc Committee on failure of high strength structural materials
NASA Technical Reports Server (NTRS)
Brown, W. F., Jr. (Editor)
1972-01-01
An analysis of structural failures that have occurred in NASA programs was conducted. Reports of 231 examples of structural failure were reviewed. Attempts were made to identify those factors which contributed to the failures, and recommendations were formulated for actions which would minimize their effects on future NASA programs. Two classes of factors were identified: (1) those associated with deficiencies in existing materials and structures technology and (2) those attributable to inadequate documentation or communication of that technology.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2008-01-01
AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.
Three innovative technologies for stabilization of mercury were demonstrated in a treatability study performed on two waste rock materials from the Sulfur Bank Mercury Mine, a Superfund site in northern California. The treatability study was jointly sponsored by two EPA programs:...
Wilberforce Power Technology in Education Program
NASA Technical Reports Server (NTRS)
Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.
1999-01-01
The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.
48 CFR 223.370-4 - Procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material...
48 CFR 223.370-2 - Definition.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material...
NASA Technical Reports Server (NTRS)
Schlagheck, R. A.; Sibille, L.; Carpenter, P.
2005-01-01
As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fast-pace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The conclusions from the workshop and considerations concerning the feasibility (both technical and programmatic) of producing such materials will be presented here.
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
FOOD PROCESSING TECHNOLOGY, A SUGGESTED 2-YEAR POST HIGH SCHOOL CURRICULUM.
ERIC Educational Resources Information Center
KNOEBEL, ROBERT M.; AND OTHERS
ADMINISTRATORS, ADVISORY COMMITTEES, SUPERVISORS, AND TEACHERS MAY USE THIS GUIDE IN PLANNING AND DEVELOPING NEW PROGRAMS OR EVALUATING EXISTING PROGRAMS IN POST-HIGH SCHOOL FOOD PROCESSING TECHNOLOGY. BASIC MATERIALS WERE PREPARED BY THE STATE UNIVERSITY OF NEW YORK AGRICULTURAL AND TECHNICAL COLLEGE AT MORRISVILLE AND FINAL PREPARATION WAS…
Composite Technology Personnel Development. Final Report.
ERIC Educational Resources Information Center
Massuda, Rachel; Fink, Edwin
A project was conducted at Delaware County Community College, Media, Pennsylvania, to train two instructional staff members in the area of composite materials technology. A 1-year training program was set up for the two technical instructional specialists at the Boeing Helicopter Training Center, Eddystone, Pennsylvania. The program consisted of…
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.323 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.105 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.105 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.323 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
Supporting research and technology for automotive Stirling engine development
NASA Technical Reports Server (NTRS)
Tomazic, W. A.
1980-01-01
The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1997-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.
Materials Division research and technology accomplishments for FY 87 and plans for FY 88
NASA Technical Reports Server (NTRS)
Brinkley, Kay L.
1988-01-01
The research program of the Materials Division is presented as FY 87 accomplishments and FY 88 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.
Materials Division research and technology accomplishments for FY 89 and plans for FY 90
NASA Technical Reports Server (NTRS)
Brinkley, Kay L.
1990-01-01
The research program of the Materials Division is presented as FY-89 accomplishments and FY-90 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.
ERIC Educational Resources Information Center
Mississippi-Alabama Sea Grant Consortium, Ocean Springs, MS.
This bibliography was published as a result of a cooperative education effort of the United States Sea Grant programs and the staff of the Living Seas pavilion presented by United Technologies at EPCOT Center in Orlando, Florida. It is a compilation of the textbooks, curricula materials, and other marine education resource materials developed by…
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 223.302...
48 CFR 223.370-5 - Contract clauses.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material...
Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results
NASA Technical Reports Server (NTRS)
1980-01-01
The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.
NASA Technical Reports Server (NTRS)
Pearson, Steven D.; Clifton, K. Stuart
1999-01-01
ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
NASA Astrophysics Data System (ADS)
Pearson, Steven D.; Clifton, K. Stuart
1999-10-01
The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanner, F.J.; Moffatt, W.C.
1995-07-01
In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.
ERIC Educational Resources Information Center
Venkatasamy, D.; And Others
A pilot project was undertaken in 1984 at the Mauritius Institute of Education for the purpose of developing and preparing teaching/learning materials for out-of-school Science and Technology Education programs. This volume is one in a series of UNESCO programs which encourage an international exchange of ideas and information on science and…
Modeling of materials supply, demand and prices
NASA Technical Reports Server (NTRS)
1982-01-01
The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
2004 research briefs :Materials and Process Sciences Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, Michael J.
2004-01-01
This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less
Microgravity Science and Applications Program tasks, 1986 revision
NASA Technical Reports Server (NTRS)
1987-01-01
The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percentmore » of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Birky, A.; Gohlke, David
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle expenditures in the same year ranges from $6 billion to $24 billion (2015$).« less
On 3-D inelastic analysis methods for hot section components (base program)
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1986-01-01
A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2011-01-01
The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.D.
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less
48 CFR 23.303 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 23.303 Contract clause...
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 223.370...
48 CFR 1223.303 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 1223.303 Contract clause...
48 CFR 23.303 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 23.303 Contract clause...
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 223.370...
ERIC Educational Resources Information Center
Department of the Navy, Washington, DC.
This lesson contains materials for the U.S. Navy Museum's "Ships to the Sea" program. The program is appropriate for students in grades 2-4 and was designed in accordance with local and national social studies standards. The materials introduce students to the world of ship technology and naval terminology. The lesson is presented in…
ERIC Educational Resources Information Center
Lonsdale, Helen C.; O'Neill, Donald W.
To implement a career education program for junior high school students in the rural, isolated areas of the Rocky Mountain States, Satellite Technology Demonstration (STD) tested the use of a satellite-assisted communications system for the delivery of social services. A magazine was designed to promote acceptance of the television programing and…
NASA Tech Briefs, June 1993. Volume 17, No. 6
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1993. Volume 17, No. 2
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
Motor Transportation Technology: Automechanics. Tune-Up. Block VIII. A-VIII.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Instructional materials on tune-ups are provided for an auto mechanics course in the motor transportation technology program. Instructor's plans are provided for three units. Each unit consists of instructional and manipulative lessons. The format of an instructional lesson is as follows: the subject, aim, a listing of teaching aids and materials,…
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...
Composite Development and Applications for RLV Tankage
NASA Technical Reports Server (NTRS)
Wright, Richard J.; Achary, David C.; McBain, Michael C.
2003-01-01
The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 28%-41% reduction in weight that composite materials can provide over current aluminum technology. The development of composite cryogenic tanks, feedlines, and unpressurized structures are key enabling technologies for performance and cost enhancements for Reusable Launch Vehicles (RLVs). The technology development of composite tanks has provided direct and applicable data for feedlines, unpressurized structures, material compatibility, and cryogenic fluid containment for highly loaded complex structures and interfaces. All three types of structure have similar material systems, processing parameters, scaling issues, analysis methodologies, NDE development, damage tolerance, and repair scenarios. Composite cryogenic tankage is the most complex of the 3 areas and provides the largest breakthrough in technology. A building block approach has been employed to bring this family of difficult technologies to maturity. This approach has built up composite materials, processes, design, analysis and test methods technology through a series of composite test programs beginning with the NASP program to meet aggressive performance goals for reusable launch vehicles. In this paper, the development and application of advanced composites for RLV use is described.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1992-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
48 CFR 1323.404 - Agency affirmative procurement programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials 1323.404 Agency affirmative procurement...
Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.
Ion beam applications research. A summary of Lewis Research Center Programs
NASA Technical Reports Server (NTRS)
Banks, B. A.
1981-01-01
A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.
48 CFR 23.300 - Scope of subpart.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 23.300 Scope of subpart...
48 CFR 23.300 - Scope of subpart.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 23.300 Scope of subpart...
LTA structures and materials technology
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1975-01-01
The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts.
Education Program for Ph.D. Course to Cultivate Literacy and Competency
NASA Astrophysics Data System (ADS)
Yokono, Yasuyuki; Mitsuishi, Mamoru
The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.
Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program
NASA Technical Reports Server (NTRS)
Brewer, Dave
2001-01-01
The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.
1981-01-01
The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
(abstract) Formal Inspection Technology Transfer Program
NASA Technical Reports Server (NTRS)
Welz, Linda A.; Kelly, John C.
1993-01-01
A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.
NASA Tech Briefs, January 1994. Volume 18, No. 1
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
High temperature thruster technology for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1991-01-01
A technology program intended to develop high-temperature oxidation-resistant thrusters for spacecraft applications is considered. The program will provide the requisite material characterizations and fabrication to incorporate iridium coated rhenium material into small rockets for spacecraft propulsion. This material increases the operating temperature of thrusters to 2200 C, a significant increase over the 1400 C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20-25 seconds higher than niobium chambers. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines.
48 CFR 23.404 - Agency affirmative procurement programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.404 Agency...
48 CFR 23.404 - Agency affirmative procurement programs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.404 Agency...
Industrial Arts Curriculum Guide for Power Technology.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.
This curriculum guide provides topic outlines and objectives for units in a three-level/-course Power Technology program. Introductory materials are objectives for industrial education and for power technology and list of general safety rules. Units contained in Level I, Power Technology, are History of Power, Basic Machines, Forms of Power, Power…
CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1998-01-01
The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.
Automated technologies needed to prevent radioactive materials from reentering the atmosphere
NASA Astrophysics Data System (ADS)
Buden, David; Angelo, Joseph A., Jr.
Project SIREN (Search, Intercept, Retrieve, Expulsion Nuclear) has been created to identify and evaluate the technologies and operational strategies needed to rendezvous with and capture aerospace radioactive materials (e.g., a distressed or spent space reactor core) before such materials can reenter the terrestrial atmosphere and then to safely move these captured materials to an acceptable space destination for proper disposal. A major component of the current Project SIREN effort is the development of an interactive technology model (including a computerized data base) that explores in building block fashion the interaction of the technologies and procedures needed to successfully accomplish a SIREN mission. This SIREN model will include appropriate national and international technology elements-both contemporary and projected into the next century. To permit maximum flexibility and use, the SIREN technology data base is being programmed for use on 386-class PC's.
A study on the utilization of advanced composites in commercial aircraft wing structure
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
48 CFR 1323.404-70 - DOC affirmative procurement program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials 1323.404-70 DOC affirmative procurement...
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.
This document contains materials for teachers to use in presenting the community health strand of the career and technology studies (CTS) program that has been approved for secondary schools in Alberta, Canada. The first three sections outline the philosophy/rationale, organization, and curriculum and assessment standards of the CTS program in…
ERIC Educational Resources Information Center
Klemovage, Shirley
A project was undertaken to develop new curriculum materials that could be incorporated into an existing health assistant program to cover recent advances in health care technology. Area physicians' offices were toured and meetings were held with administrators of local hospitals in order to discover what kinds of advances in health care…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
ERIC Educational Resources Information Center
Stoakes, K. C.; And Others
This instructor's guide, designed for use with the curriculum, Plant Operations for Wastewater Facilities, represents a two-year wastewater technology instructional program based on performance objectives designed to prepare undergraduate students to enter occupations in water and wastewater treatment plant operations and maintenance. This…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Transmittal of Applications: March 26, 2010. Full Text of Announcement I. Funding Opportunity Description... related to industrial health and safety: Mining and mineral engineering, industrial engineering... technology/technician, hazardous materials information systems technology/technician, mining technology...
New Concepts in Electromagnetic Materials and Antennas
2015-01-01
Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division
Self-Publishing Indigenous Language Materials.
ERIC Educational Resources Information Center
St. Clair, Robert N.; Busch, John; Webb, B. Joanne
Indigenous language programs that have a literacy component require reading materials. Recent advances in computer technology and certain legal changes in the publishing industry have made self-publishing such materials an easier task. This paper describes some of the steps necessary to self-publish indigenous language materials. Suggestions are…
Astrophysics space systems critical technology needs
NASA Technical Reports Server (NTRS)
Gartrell, C. F.
1982-01-01
This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-07-01
This is a comprehensive program to develop technologies for cost-beneficial uses of existing and future surplus radioactive materials. Major portion of the work was conducted in two sub-programs: the waste resources utilization program and the separation technology and source development program. Purpose of the waste resources utilization program is to develop a technology to utilize /sup 137/Cs as a ..gamma.. source to sterilize sewage sludge for safe application as a fertilizer or as an animal feed supplement. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied whilemore » bubbling O/sub 2/ through the sludge.« less
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
Lithium-Ion Battery Program Status
NASA Technical Reports Server (NTRS)
Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.
1996-01-01
The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
ERIC Educational Resources Information Center
Bolin, William Everet; Orsak, Charles G., Jr.
Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the…
Research and competition: Best partners
NASA Technical Reports Server (NTRS)
Shaw, J. M.
1986-01-01
NASA's Microgravity Science and Applications Program is directed toward research in the science and technology of processing materials under conditions of low gravity. The objective is to make a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead ultimately to the development of new materials and processes in Earth-based commercial applications, adding to this nation's technological base. An important resource that U.S. researchers have readily available to them is the new Microgravity Materials Science Laboratory (MMSL) at NASA Lewis Research Center in Cleveland. A typical scenario for a microgravity materials experiment at Lewis would begin by establishing 1-g baseline data in the MMSL and then proceeding, if it is indicated, to a drop tower or to simulated microgravity conditions in a research aircraft to qualify the project for space flight. A major component of Lewis microgravity materials research work involves the study of metal and alloy solidification fundamentals.
National Programs | Frederick National Laboratory for Cancer Research
The Frederick National Laboratoryis a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available
National Programs | FNLCR Staging
The Frederick National Lab (FNL) is a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available to bi
Materials technology programs in support of a mercury Rankine space power system
NASA Technical Reports Server (NTRS)
Stone, P. L.
1973-01-01
A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.
NASA Technical Reports Server (NTRS)
Vickers, John; Fikes, John
2015-01-01
The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
U.S. Department of Energy’s Industrial Technologies Program and Its Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Brown, Scott A.
The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.« less
Profit opportunities for the chemical process industries
NASA Technical Reports Server (NTRS)
1971-01-01
Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.
Research and Technology at the John F. Kennedy Space Center 1993
NASA Technical Reports Server (NTRS)
1993-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.
Hypersonic airframe structures: Technology needs and flight test requirements
NASA Technical Reports Server (NTRS)
Stone, J. E.; Koch, L. C.
1979-01-01
Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.
NASA Technical Reports Server (NTRS)
1985-01-01
Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1
NASA Astrophysics Data System (ADS)
1992-03-01
This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.
Research and technology 1995 annual report
NASA Technical Reports Server (NTRS)
1995-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.
FY2016 Propulsion Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1987-01-01
Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
United States Automotive Materials Partnership LLC (USAMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States Automotive Materials Partnership
2011-01-31
The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunitiesmore » for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.« less
10 CFR 431.263 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Society for Testing and Materials (ASTM) Standard F2324-03, “Standard Test Method for Prerinse Spray..., Forrestal Building, Room 1J-018 (Resource Room of the Building Technologies Program), 1000 Independence...
10 CFR 431.263 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Society for Testing and Materials (ASTM) Standard F2324-03, “Standard Test Method for Prerinse Spray..., Forrestal Building, Room 1J-018 (Resource Room of the Building Technologies Program), 1000 Independence...
Innovative potential of plasma technology
NASA Astrophysics Data System (ADS)
Budaev, V. P.
2017-11-01
The review summarizes recent experimental observations of materials exposed to extreme hot plasma loads in fusion devices and plasma facilities with high-temperature plasma. Plasma load on the material in such devices lead to the stochastic clustering and fractal growth of the surface on scales from tens of nanometers to hundreds of micrometers forming statistical self-similarity of the surface roughness with extremely high specific area. Statistical characteristics of hierarchical granularity and scale invariance of such materials surface qualitatively differ from the properties of the roughness of the ordinary Brownian surface which provides a potential of innovative plasma technologies for synthesis of new nanostructured materials with programmed roughness properties, for hypersonic technologies, for biotechnology and biomedical applications.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Vickers, John; Shah, Sandeep
2005-01-01
The new vision of space exploration encompasses a broad range of human and robotic missions to the Moon, Mars and beyond. Extended human space travel requires high reliability and high performance systems for propulsion, vehicle structures, thermal and radiation protection, crew habitats and health monitoring. Advanced materials and processing technologies are necessary to meet the exploration mission requirements. Materials and processing technologies must be sufficiently mature before they can be inserted into a development program leading to an exploration mission. Exploration will be more affordable by in-situ utilization of materials on the Moon and Mars.
NASA Technical Reports Server (NTRS)
Williams, Martha; Roberson, Luke; Caraccio, Anne
2010-01-01
This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.
Laboratory Resources Management in Manufacturing Systems Programs
ERIC Educational Resources Information Center
Obi, Samuel C.
2004-01-01
Most, if not all, industrial technology (IT) programs have laboratories or workshops. Often equipped with modern equipment, tools, materials, and measurement and test instruments, these facilities constitute a major investment for IT programs. Improper use or over use of program facilities may result in dirty lab equipment, lost or damaged tools,…
Semiconductor technology program. Progress briefs
NASA Technical Reports Server (NTRS)
Bullis, W. M.
1980-01-01
Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.
Electrical Energy Storage for Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, C. R.; Cho, K. J.; Ferraris, John
This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing thismore » work with other sources of funding from both industry and government.« less
The Model Industrial Technology Systems Project.
ERIC Educational Resources Information Center
Bowling Green State Univ., OH.
This document contains materials used in a model industrial technology program that introduced technology into the curricula of elementary, middle, and high schools in three sites in Ohio: the Central site (coordinated through Ohio State University); the Northeast site (coordinated through Kent State University); and the Northwest site…
Technology for Science: Overview of the Project.
ERIC Educational Resources Information Center
Crismond, David; And Others
Technology for Science is a National Science Foundation funded program that is developing and testing curriculum units for teacher materials built around a series of design-oriented science problems called "challenges," mainly for ninth-grade general and physical science classes. Technology for science challenges have a clear connection…
The First NASA Advanced Composites Technology Conference, part 1
NASA Technical Reports Server (NTRS)
Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)
1991-01-01
Papers are presented from the conference. The ACT program is a multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT program on new materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers presented on major applications programs approved by the Department of Defense are also included.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1992-01-01
The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
1995 Federal Research and Development Program in Materials Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1995-12-01
The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly amore » century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.« less
Summary of findings of the R&D committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenley, C.R.; Kokenge, B.R.
1996-05-01
In March 1995, the Department of Energy`s (DOE) Nuclear Materials Stabilization Task Group (NMST) chartered a committee to formulate a research and development (R&D) plan in response to Sub-recommendation (2) of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The NMSTG was established as an organizational unit operating under the auspices of the DOE Office of the Environmental Management. As a result of its efforts, the Research Committee concluded that, in general, the technology needs for stabilizing 94-1 nuclear materials are being adequately met by existing or planned DOE programs. At the same time, the committee, in the form ofmore » recommendations, noted specific R&D program areas that should be addressed by the NMSTG. These recommendations are documented in the R&D plan and formulated based on: (1) existing {open_quotes}gaps{close_quotes} in DOE`s R&D stabilization program, (2) the relative maturity of various technologies, and (3) other important R&D program issues that, in the judgement of the committee, should be addressed by the NMSTG. A systems engineering approach, derived form the aerospace industry, was applied to the various stabilization technologies to assess their relative maturity and availability for use in treating 94-1 nuclear materials.« less
The utilization of nonterrestrial materials. [resources for solar power satellite construction
NASA Technical Reports Server (NTRS)
1981-01-01
The development of research and technology programs on the user of nonterrestrial materials for space applications was considered with emphasis on the space power satellite system as a model of large space systems for which the use of nonterrestrial materials may be economically viable. Sample topics discussed include the mining of raw materials and the conversion of raw materials into useful products. These topics were considered against a background of the comparative costs of using terrestrial materials. Exploratory activities involved in the preparation of a nonterrestrial materials utilization program, and the human factors involved were also addressed. Several recommendations from the workshop are now incorporated in NASA activities.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.
National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.
NASA R and T aerospace plane vehicles: Progress and plans
NASA Technical Reports Server (NTRS)
Dixon, S. C.
1985-01-01
Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.
An example of successful international cooperation in rocket motor technology
NASA Astrophysics Data System (ADS)
Ellis, Russell A.; Berdoyes, Michel
2002-07-01
The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative effort for the new millennium, a scale-up of the supersonic splitline flexseal nozzle, was begun in 2001. Key details of the above numerous cooperative successes are presented.
NASA Technical Reports Server (NTRS)
Yoo, H. I.
1977-01-01
The objective of this program is to assess the present state-of-the-art sawing technology of large diameter silicon ingots (3 inch and 4 inch diameter) for solar sheet materials. During this period, work has progressed in three areas: (1) slicing of the ingots with the multiblade slurry saw and the I.D. saw, (2) characterization of the sliced wafers, and (3) analysis of direct labor, expendable material costs, and wafer productivity.
Military engine computational structures technology
NASA Technical Reports Server (NTRS)
Thomson, Daniel E.
1992-01-01
Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.
1992-09-01
SI by Ion-Assisted Molecular Beam Enltaxy Currently there is considerable interest in misfit accommodation in hetero- epitaxy for integration of device...of misfit accommodation. In the last quarter, we have demonstrated, using ion-assisted molecular beam epitaxy : * Reduction of dislocation density in... beam epitaxy (MOMBE) hardware, and demonstration of state-of-the-art MOMBE AlGaAs (1990). MOCVD Materials Growth Facilities and Eauipment Extension to
Our leadership in science and technology as provided by the national space program
NASA Technical Reports Server (NTRS)
Kock, W. E.
1972-01-01
The contributions of science and technology to the success of the United States as a world leader are discussed. Specific instances of the manner in which science advances and new technologies resulting from space research have contributed to a higher standard of living are presented. It is concluded that the benefits of the space program are not reflected only in the material advancements, but that intangible results have also been achieved in greater incentives to improve the present culture.
Synthesis and design of silicide intermetallic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, J.J.; Castro, R.G.; Butt, D.P.
1997-04-01
The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has amore » number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.« less
ERIC Educational Resources Information Center
Indiana State Commission for Higher Education, Indianapolis.
A program schedule and background information for Indiana Commission for Higher Education-sponsored discussion of the use of educational technology to increase educational effeciency are presented. The four major topics of discussion to illustrate the uses and advantages/disadvantages of audio, video, and computing technologies are as follows:…
Videodiscs in Special Education.
ERIC Educational Resources Information Center
Education Turnkey Systems, Inc., Falls Church, VA.
One of four reports designed to assess the current state of new technologies, the document reviews the current and future 5-year status of videodisc technology in special and regular education. Described first are the history, technological features, and prices of videodisc systems (which consist of a player, programing material stored on a disc,…
Language Learning Technology and Alternative for Public Education.
ERIC Educational Resources Information Center
Jarvis, Stan
1984-01-01
While supporting the use of interactive video technologies in public education, universities, and government, the need for standardization of the materials is stressed, which would allow for program exchange and a wider use of expertise and creativity. Concerning technology-based language learning, an emphasis on quality, yet affordable…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Appropriations.
This document presents witness testimony and supplemental materials from a Congressional hearing called to assess the effectiveness of federally funded educational technology programs, particularly Technology for Education, Star Schools, Ready to Learn Television, and Mathline. Other educational technologies were introduced at the hearing as well,…
Aeronautical and Maritime Satellite Technology Bibliography
DOT National Transportation Integrated Search
1976-03-01
Material used and generated over the past five years on the aeronautical and maritime satellite programs has been reviewed and organized in this report. Emphasis has been placed on advanced electronic technology and its application to the satellite s...
The role of science in treaty verification.
Gavron, Avigdor
2005-01-01
Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
1992-09-01
conducting polyaniline for military systems is extensive and ranges from lightning-strike protection to utilization in honeycomb structures in aircraft...Conducting polyanilines are representative of a new class of materials known as synthetic metals. This technology is still discovering new and varied...metals using polyaniline chemistry 2" High-definition liquid crystal displays 3 Polymeric piezoelectric materials 4 Drag-reducing polymers for ship
High temperature, harsh environment sensors for advanced power generation systems
NASA Astrophysics Data System (ADS)
Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.
2015-05-01
One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Current Status and Recent Research Achievements in SiC/SiC Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Snead, Lance L.; Henager, Charles H.
2014-12-01
The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
New Brunswick Laboratory: Progress report, October 1987--September 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NBL has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying and addressing the measurement and measurement-related needs of the nuclear material safeguards community. These responsibilities are being addressed by activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these programs areas are provided in this summary.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kranz, L.; VanKuiken, J.C.; Gillette, J.L.
1989-12-01
The STATS model, now modified to run on microcomputers, uses user- defined component uncertainties to calculate composite uncertainty distributions for systems or technologies. The program can be used to investigate uncertainties for a single technology on to compare two technologies. Although the term technology'' is used throughout the program screens, the program can accommodate very broad problem definitions. For example, electrical demand uncertainties, health risks associated with toxic material exposures, or traffic queuing delay times can be estimated. The terminology adopted in this version of STATS reflects the purpose of the earlier version, which was to aid in comparing advancedmore » electrical generating technologies. A comparison of two clean coal technologies in two power plants is given as a case study illustration. 7 refs., 35 figs., 7 tabs.« less
PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008
NASA Astrophysics Data System (ADS)
Kakeshita, Tomoyuki
2009-07-01
The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss related research topics. The organizing committee gratefully thanks participants for presenting their recent results and for discussions with our COE members and international attendees. November 2008 Professor Tomoyuki Kakeshita Chairman of the Conference Vice Dean, Graduate School of Engineering, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering Leader of Global COE Program, Osaka University, ''Center of Excellence for Advanced Structural and Functional Materials Design'' Organization Chairman: T Kakeshita (Osaka University) Advisory Board:H Mehrer (University Münster, Germany), E K H Salje (University of Cambridge, United Kingdom), H-E Schaefer (University of Stuttgart, Germany), P Veyssiere (CNRS-ONERA, France) Organizing Committee: T Kakeshita, H Araki, H Fujii, S Fujimoto, Y Fujiwara, A Hirose, S Kirihara, M Mochizuki, H Mori, T Nagase, H Nakajima, T Nakano, R Nakatani, K Nogi, Y Setsuhara, Y Shiratsuchi, T Tanaka, T Terai, H Tsuchiya, N Tsuji, H Utsunomiya, H Yasuda, H Yasuda (Osaka University) Executive Committee: T Kakeshita, S Fujimoto, Y Fujiwara, A Hirose, T Tanaka, H Yasuda (Osaka University) Conference Secretariat: Y Fujiwara (Osaka University) Proceedings Editors: T Kakeshita and Y Fujiwara (Osaka University) Conference photograph
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, C.D.
1987-07-01
Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and aremore » usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.« less
NASA Technical Reports Server (NTRS)
1972-01-01
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
1994-10-01
This report presents the details of the Lawrence Livermore National Laboratory safeguards and securities program. This program is focused on developing new technology, such as x- and gamma-ray spectrometry, for measurement of special nuclear materials. This program supports the Office of Safeguards and Securities in the following five areas; safeguards technology, safeguards and decision support, computer security, automated physical security, and automated visitor access control systems.
Materials processing in space program tasks-supplement
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1983-01-01
An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
U.S. Department of Energy’s Industrial Technology Program and Its Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.« less
U.S. Department of Energy’s Industrial Technology Program and Its Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.« less
U. S. Department of Energy (DOE) Industrial Programs and Their Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2003). From 1976-2002, the commercialized technologies from ITP's R&D programs and other activities have cumulatively saved 3.7 quadrillion Btu, with a net cost savings of $14.6 billion.« less
U.S. Department of Energy (DOE) Industrial Programs and Their Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Roop, Joseph M.
The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2005). From 1976-2004, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 4.72 quadrillion Btu, with a net cost savings of $23.1 billion.« less
Reviews of STS Instructional Units.
ERIC Educational Resources Information Center
S-STS Reporter, 1987
1987-01-01
Provides reviews of modular materials that contain a Science, Technology, Society (STS) theme. Specifies the criteria and distinguishing features of STS materials. Includes reviews of programs which address the topics of energy, genetics, human reproduction, and recombinant DNA research. (ML)
NASA's activities in the conservation of strategic aerospace materials
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1980-01-01
The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
NASA Technical Reports Server (NTRS)
Kerr, J. R.; Haskins, J. F.
1980-01-01
Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.
Revolutionary opportunities for materials and structures study
NASA Technical Reports Server (NTRS)
Schweiger, F. A.
1987-01-01
The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
NASA Technical Reports Server (NTRS)
Sepka, Steven; Gasch, Matthew; Beck, Robin A.; White, Susan
2012-01-01
The material testing results described in this paper were part of a material development program of vendor-supplied, proposed heat shield materials. The goal of this program was to develop low density, rigid material systems with an appreciable weight savings over phenolic-impregnated carbon ablator (PICA) while improving material response performance. New technologies, such as PICA-like materials in honeycomb or materials with variable density through-the-thickness were tested. The material testing took place at the Wright-Patterson Air Force Base Laser Hardened Materials Laboratory (LHMEL) using a 10.6 micron CO2 laser operating with the test articles immersed in a nitrogen-gas environment at 1 atmosphere pressure. Test measurements included thermocouple readings of in-depth temperatures, pyrometer readings of surface temperatures, weight scale readings of mass loss, and sectioned-sample readings of char depth. Two laser exposures were applied. The first exposure was at an irradiance of 450 W/cm2 for 50 or 60 seconds to simulate an aerocapture maneuver. The second laser exposure was at an irradiance of 115 W/cm2 for 100 seconds to simulate a planetary entry. Results from Rounds 1 and 2 of these screening tests are summarized.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Presented in this document are transcripts of hearings on the subject of national materials policy. The hearings focused on implementation of P.L. 96-479, the National Materials and Minerals Policy, Research and Development Act of 1980 (including the recent Presidential program plan and report made to Congress) and on H.R. 4281, the Critical…
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
Assessing Early Impacts of School-of-One: Evidence from the Three School-Wide Pilots
ERIC Educational Resources Information Center
Kemple, James J.; Segeritz, Micha D.; Cole, Rachel
2011-01-01
So1 is a new, individualized, technology-rich math program being implemented in three New York City middle schools. The program offers a high level of customization for each student, both in the content and material with which students engage, and in the teaching and learning modalities that are used to enhance students' mastery of the material.…
The Space Shuttle focused-technology program - Lessons learned
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Gabris, E. A.
1983-01-01
The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conger, Robin L.; Spanner, Gary E.
2011-11-02
The businesses that have utilized PNNL's Technology Assistance Program were sent a survey to solicit feedback about the program and to determine what, if any, outcomes resulted from the assistance provided. As part of its small business outreach, Pacific Northwest National Laboratory (PNNL) offers technology assistance to businesses with fewer than 500 employees throughout the nation and to businesses of any size in the 2 counties that contain the Hanford site. Upon request, up to 40 staff-hours of a researcher's time can be provided to address technology issues at no charge to the requesting firm. During FY 2011, PNNL completedmore » assistance for 54 firms. Topics of the technology assistance covered a broad range, including environment, energy, industrial processes, medical, materials, computers and software, and sensors. In FY 2011, PNNL's Technology Assistance Program (TAP) was funded by PNNL Overheads. Over the past 16 years, the Technology Assistance Program has received total funding of nearly $2.8 million from several federal and private sources.« less
Active coatings technologies for tailorable military coating systems
NASA Astrophysics Data System (ADS)
Zunino, J. L., III
2007-04-01
The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.
ERIC Educational Resources Information Center
Coursen, David
The term "media," as employed here, refers to printed and audiovisual forms of communication and their accompanying technology. A representative list of printed materials might include books, periodicals, catalogs, and printed programmed materials. Audiovisual materials include films and filmstrips, recordings, slides, graphic materials,…
FY2014 Propulsion Materials R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
FY2015 Propulsion Materials Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less
Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.
2005-01-01
To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
NASA Astrophysics Data System (ADS)
Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves
2018-01-01
Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Wright-Berryman, Jennifer L; Salyers, Michelle P; O'Halloran, James P; Kemp, Aaron S; Mueser, Kim T; Diazoni, Amanda J
2013-12-01
To explore mental health consumer and provider responses to a computerized version of the Illness Management and Recovery (IMR) program. Semistructured interviews were conducted to gather data from 6 providers and 12 consumers who participated in a computerized prototype of the IMR program. An inductive-consensus-based approach was used to analyze the interview responses. Qualitative analysis revealed consumers perceived various personal benefits and ease of use afforded by the new technology platform. Consumers also highly valued provider assistance and offered several suggestions to improve the program. The largest perceived barriers to future implementation were lack of computer skills and access to computers. Similarly, IMR providers commented on its ease and convenience, and the reduction of time intensive material preparation. Providers also expressed that the use of technology creates more options for the consumer to access treatment. The technology was acceptable, easy to use, and well-liked by consumers and providers. Clinician assistance with technology was viewed as helpful to get clients started with the program, as lack of computer skills and access to computers was a concern. Access to materials between sessions appears to be desired; however, given perceived barriers of computer skills and computer access, additional supports may be needed for consumers to achieve full benefits of a computerized version of IMR. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1989-01-01
Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.
Civil Technology Applications. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Schertz, Karen
Teacher and student editions of Civil Technology Applications are one in a series of competency-based instructional materials for drafting and civil technology programs. It includes the technical content and tasks necessary for a student to be employed as a drafter or civil technician in a civil engineering firm. Introductory pages in the teacher…
Large-scale Advanced Prop-fan (LAP) technology assessment report
NASA Technical Reports Server (NTRS)
Degeorge, C. L.
1988-01-01
The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
10 CFR 431.18 - Testing laboratories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining Efficiency... Technology/National Voluntary Laboratory Accreditation Program (NIST/NVLAP); or (2) A laboratory... of the National Institute of Standards and Technology (NIST) which is part of the U.S. Department of...
The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr.
1993-01-01
This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr. (Editor)
1995-01-01
This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
High Voltage Insulation Technology
NASA Astrophysics Data System (ADS)
Scherb, V.; Rogalla, K.; Gollor, M.
2008-09-01
In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.
NASA Technical Reports Server (NTRS)
1990-01-01
As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynatt, F.R.
1987-03-18
This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
Technology Transfer: Marketing Tomorrow's Technology
NASA Technical Reports Server (NTRS)
Tcheng, Erene
1995-01-01
The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.
Progress in MMIC technology for satellite communications
NASA Technical Reports Server (NTRS)
Haugland, Edward J.; Leonard, Regis F.
1987-01-01
NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.
First NASA Advanced Composites Technology Conference, Part 2
NASA Technical Reports Server (NTRS)
Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)
1991-01-01
Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.
Technology Investments in the NASA Entry Systems Modeling Project
NASA Technical Reports Server (NTRS)
Barnhardt, Michael; Wright, Michael; Hughes, Monica
2017-01-01
The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
Zimmermann, Richard; Seitz, Stefanie; Magness, Brent; Wieck, Blaine
2013-10-01
From diagnosis and treatment planning to the materials being used, technology is changing dentistry. New materials are providing dentists greater options for treatment, while technology is streamlining the workflow in the office and dental laboratory. Traditionally the creation of a long-span fixed partial denture was a labor intense project--from waxing up the prosthesis--to stacking of the porecelain. For larger frameworks, it was recommended for the dentist to bring in the patient in for a framework try-in. However, advances in both CAD/CAM technology and dental materials are revolutionizing the way dentistry is being done. The following describes the fabrication of a 10-unit full contour zirconia fixed partial denture completed in the pre-doctorate program at UTHSCSA Dental School.
48 CFR 23.602 - Contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...
48 CFR 23.602 - Contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...
48 CFR 23.602 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...
Adaptability Through Modular Materials
ERIC Educational Resources Information Center
Hull, Daniel M.; And Others
1974-01-01
Several short articles describe programs utilizing laser/electro-optics technology curriculum materials developed by Technical Education Research Centers (TERC): at undergraduate and graduate levels in universities; in a city college; in continuing education; and in industry. Modules, independent units based on booklets or films, include…
Recycled Materials in European Highway Environments : Uses, Technologies, and Policies
DOT National Transportation Integrated Search
2000-10-01
The objective of this scanning tour was to review and document innovative policies, programs, and techniques that promote the use of recycled materials in the highway environment. The U.S. delegation met with more than 100 representatives from transp...
DEMONSTRATION OF PACKAGING MATERIALS ALTERNATIVES TO EXPANDED POLYSTYRENE
This report represents the second demonstration of cleaner technologies to support the goals of the 33/50 Program under the EPA Cooperative Agreement No. CR-821848. The report presents assessment results of alternative packaging materials which could potentially replace expanded...
48 CFR 23.602 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1974-02-01
The materials investigations under the HSST program are divided into studies of unirradiated materials and studies of irradiation effects. The studies of unirradiated materials, which include inspection, characterization, metallurgy, variability determinations, transition temperature investigations, fracture mechanics studies, and fatigue-crack propagation tests, are discussed. The investigations of irradiated materials include studies of radiation effects on A-533-B steel. Results of studies on thick pressure vessels and pipes of ASTM A508 steel are also reported along with results of studies on Mode III crack extension in reactor piping. (JRD)
Improving Warehouse Inventory Management Through Rfid, Barcoding and Robotics Technologies
2014-12-01
as a spider merge. This was designed and installed to speed up the conveyors . In their original design , conveyors traveled throughout the warehouse...lifts LCL lower confidence level xiv MRO material release order NPV net present value PMT positive material transfer POM Program Objective...depots. Active Radio Frequency Identification (aRFID ) Migration A program designed to move the active RFID enterprise from a proprietarily air interface
ERIC Educational Resources Information Center
Wilson, E. C.
This catalog contains a listing of the audio-visual aids used in the Alabama State Module of the Appalachian Adult Basic Education Program. Aids listed include filmstrips utilized by the following organizations: Columbia, South Carolina State Department of Education; Raleigh, North Carolina State Department of Education; Alden Films of Brooklyn,…
Disseminating technological information on remote sensing to potential users
NASA Technical Reports Server (NTRS)
Russell, J. D.; Lindenlaub, J. C.
1977-01-01
The Laboratory for Applications of Remote Sensing developed materials and programs which range from short tutorial brochures to post-doctoral research programs which may span several years. To organize both the content and the instructional techniques, a matrix of instructional materials was conceptualized. Each row in the matrix represents a subject area in remote sensing and each column in the matrix represents a different type media or instructional strategy.
NASA Tech Briefs, April 1989. Volume 13, No. 4
NASA Technical Reports Server (NTRS)
1989-01-01
A special feature of this issue is an article about the evolution of high technology in Texas. Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Technical Reports Server (NTRS)
Bladwin, Richard S.
2009-01-01
As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.
NASA Technical Reports Server (NTRS)
Hurst, Janet
2011-01-01
A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.
Cyber Technology for Materials and Structures in Aeronautics and Aerospace
NASA Technical Reports Server (NTRS)
Pipes, R. Byron
1999-01-01
This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.
Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study
NASA Technical Reports Server (NTRS)
1974-01-01
An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
Creating the Future: Research and Technology
NASA Technical Reports Server (NTRS)
1998-01-01
With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.
Development of stitching reinforcement for transport wing panels
NASA Technical Reports Server (NTRS)
Palmer, Raymond J.; Dow, Marvin B.; Smith, Donald L.
1991-01-01
The NASA Advanced Composites Technology (ACT) program has the objective of providing the technology required to obtain the full benefit of weight savings and performance improvements offered by composite primary aircraft structures. Achieving the objective is dependent upon developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers are investigating stitching reinforcement combined with resin transfer molding to produce materials meeting the ACT program objective. Research is aimed at materials, processes, and structural concepts for application in both transport wings and fuselages, but the emphasis to date has been on wing panels. Empirical guidelines are being established for stitching reinforcement in structures designed for heavy loads. Results are presented from evaluation tests investigating stitching types, threads, and density (penetrations per square inch). Tension strength, compression strength, and compression after impact data are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
Service evaluation of aircraft composite structural components
NASA Technical Reports Server (NTRS)
Brooks, W. A., Jr.; Dow, M. B.
1973-01-01
The advantages of the use of composite materials in structural applications have been identified in numerous engineering studies. Technology development programs are underway to correct known deficiencies and to provide needed improvements. However, in the final analysis, flight service programs are necessary to develop broader acceptance of, and confidence in, any new class of materials such as composites. Such flight programs, initiated by NASA Langley Research Center, are reviewed. These programs which include the selectively reinforced metal and the all-composite concepts applied to both secondary and primary aircraft structural components, are described and current status is indicated.
Bibliography on the Design and Performance of Rail Track Structures
DOT National Transportation Integrated Search
1974-01-01
This bibliography was prepared as part of the Rail Supporting Technology Program being sponsored by the Rail Programs Branch of the Urban Mass Transportation Administration. It is based on the reference material that was used to evaluate the technica...
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Dreshfield, R. L.; Nathal, M. V.
1983-01-01
Because of the import status and essential nature of their use, cobalt, chromium, tantalum, and niobium were identified as strategic and critical in the aerospace industry. NASA's Conservation of Strategic Aerospace Materials (COSAM) program aims to reduce the need for strategic materials used in gas turbine engines. Technological thrusts in two major areas are under way to meet the primary objective of conserving the use of strategic materials in nickelbase superalloys. These thrusts consist of strategic element substitution and alternative material identification. The program emphasizes cooperative research teams involving NASA Lewis Research Center, universities, and industry. The adoption of refractory metals in nickel-base superalloys is summarized including their roles in mechanical strengthening and environmental resistance; current research activities under way in the COSAM Program are presented as well as research findings to date.
Implementation of a solvent management program to control paint shop volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floer, M.M.; Hicks, B.H.
1997-12-31
The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Wastemore » Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.« less
Technology development program for an advanced microsheet glass concentrator
NASA Technical Reports Server (NTRS)
Richter, Scott W.; Lacy, Dovie E.
1990-01-01
Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.
Balanced program plan. Analysis for biomedical and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
Major issues associated with the use of nuclear power are health hazards of exposure to radioactive materials; sources of radiation exposure; reactor accidents; sabotage of nuclear facilities; diversion of fissile material and its use for extortion; and the presence of plutonium in the environment. Fission fuel cycle technology is discussed with regard to milling, UF/sub 6/ production, uranium enrichment, plutonium fuel fabrication, power production, fuel processing, waste management, and fuel and waste transportation. The following problem areas of fuel cycle technology are briefly discussed: characterization, measurement, and monitoring; transport processes; health effects; ecological processes and effects; and integrated assessment. Estimatedmore » program unit costs are summarized by King-Muir Category. (HLW)« less
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
ERIC Educational Resources Information Center
Taviss, Irene, Ed.; Burbank, Judith, Ed.
A small number of selected books and articles which deal with the impact of technological advancement on the American political structure have been abstracted for this document. Materials were chosen for abstracting which presented a significant analysis of issues, a useful compilation of data, or which are representative of different outlooks and…
ERIC Educational Resources Information Center
Landers, Jack M.
This curriculum guide is an aid to administrators and instructors of industrial arts and vocational-technical school programs for the development of meaningful curriculum in plastics. The materials are intended for use at four levels: level I, exploring plastic technology; Level II, basic plastic technology; and levels III and IV, applied plastic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Steve
Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edger A., Jr.
1996-01-01
This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.
NASA Astrophysics Data System (ADS)
Bellini, Anna
Customer-driven product customization and continued demand for cost and time savings have generated a renewed interest in agile manufacturing based on improvements on Rapid Prototyping (RP) technologies. The advantages of RP technologies are: (1) ability to shorten the product design and development time, (2) suitability for automation and decrease in the level of human intervention, (3) ability to build many geometrically complex shapes. A shift from "prototyping" to "manufacturing" necessitates the following improvements: (1) Flexibility in choice of materials; (2) Part integrity and built-in characteristics to meet performance requirements; (3) Dimensional stability and tolerances; (4) Improved surface finish. A project funded by ONR has been undertaken to develop an agile manufacturing technology for fabrication of ceramic and multi-component parts to meet various needs of the Navy, such as transducers, etc. The project is based on adaptation of a layered manufacturing concept since the program required that the new technology be developed based on a commercially available RP technology. Among various RP technologies available today, Fused Deposition Modeling (FDM) has been identified as the focus of this research because of its potential versatility in the choice of materials and deposition configuration. This innovative approach allows for designing and implementing highly complex internal architectures into parts through deposition of different materials in a variety of configurations in such a way that the finished product exhibit characteristics to meet the performance requirements. This implies that, in principle, one can tailor-make the assemble of materials and structures as per specifications of an optimum design. The program objectives can be achieved only through accurate process modeling and modeling of material behavior. Oftentimes, process modeling is based on some type of computational approach where as modeling of material behavior is based on extensive experimental investigations. Studies are conducted in the following categories: (1) Flow modeling during extrusion and deposition; (2) Thermal modeling; (3) Flow control during deposition; (4) Product characterization and property determination for dimensional analysis; (5) Development of a novel technology based on a mini-extrusion system. Studies in each of these stages have involved experimental as well as analytical approaches to develop a comprehensive modeling.
Simulant Materials of Lunar Dust: Requirements and feasibility
NASA Technical Reports Server (NTRS)
Sibille, L.
2005-01-01
As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fast-pace schedule, reminiscent of the 1960 s Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that must be addressed today through the collaboration of scientists, engineers and program managers. While the larger size fraction of the lunar regolith has been reproduced in several simulants in the past, little attention has been paid to the fines fraction, commonly refered to as lunar dust. As reported by McKay, this fraction of the lunar regolith below 20 microns can represent upto 30% by mass of the total regolith mass. The issue of reproducing the properties of these fines for research and technology development purposes was addressed by the recently held Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. Preliminary conclusions from the workshop and con- side-rations concerning the feasibility of producing such materials will be presented here.
Space Storable Rocket Technology program (SSRT). Option 1 program
NASA Astrophysics Data System (ADS)
Chazen, Melvin L.; Mueller, Thomas; Rust, Thomas
1993-08-01
The Space Storable Rocket Technology (SSRT) Option 1 Program was initiated in October 1991 after completion of the Basic Program. The program was restructured in mid-July 1992 to incorporate a Rhenium Technology Task and reduce the scope of the LO2-N2H4 engine development. The program was also extended to late February 1993 to allow for the Rhenium Technology Task completion. The Option 1 Program was devoted to evaluation of two new injector elements, evaluation of two different methods of thermal protection of the injector, evaluation of high temperature material properties of rhenium and evaluation of methods of joining the rhenium thrust chamber to the columbium injector and nozzle extension. In addition, critical experiments were conducted (Funded by Option 2) to evaluate mechanisms to understand the effects of GO2 injection into the chamber, helium injection into the main LO2, effect of the splash plate and effect of decreasing the aspect ratio of the 120-slot (-13a) element. The performance and thermal models were used to further correlate the test results with analyses. The results of the work accomplished are summarized.
Space Storable Rocket Technology program (SSRT). Option 1 program
NASA Technical Reports Server (NTRS)
Chazen, Melvin L.; Mueller, Thomas; Rust, Thomas
1993-01-01
The Space Storable Rocket Technology (SSRT) Option 1 Program was initiated in October 1991 after completion of the Basic Program. The program was restructured in mid-July 1992 to incorporate a Rhenium Technology Task and reduce the scope of the LO2-N2H4 engine development. The program was also extended to late February 1993 to allow for the Rhenium Technology Task completion. The Option 1 Program was devoted to evaluation of two new injector elements, evaluation of two different methods of thermal protection of the injector, evaluation of high temperature material properties of rhenium and evaluation of methods of joining the rhenium thrust chamber to the columbium injector and nozzle extension. In addition, critical experiments were conducted (Funded by Option 2) to evaluate mechanisms to understand the effects of GO2 injection into the chamber, helium injection into the main LO2, effect of the splash plate and effect of decreasing the aspect ratio of the 120-slot (-13a) element. The performance and thermal models were used to further correlate the test results with analyses. The results of the work accomplished are summarized.
ERIC Educational Resources Information Center
Gearheart, Robert A.; And Others
This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and functions of the process units in a wastewater treatment plant. The modules are arranged in order appropriate for teaching students with no experience. The modules can also be rearranged and…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.
This document presents witness testimony and supplemental materials from a Congressional hearing focused on the role of technology in promoting distance learning in the United States. Distance learning programs make educational resources available to citizens, regardless of socioeconomic status or geographic location, and enable citizens to remain…
NASA Technical Reports Server (NTRS)
Graham, R. W.; Gutstein, M. U.
1972-01-01
The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Office of Science and Technology&International Year EndReport - 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2005-10-27
Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repositorymore » total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).« less
Development and Evaluation of Educational Programs in Electromechanical Technology. Final Report.
ERIC Educational Resources Information Center
Roney, M. W.
The encompassing objective of this project was to assist two-year colleges in establishing electromechanical technican (EMT) training programs by developing the necessary planning and instructional materials and by providing direct program planning assistance. The research effort of the project was to develop and test an integrated systems of…
MEDICAL LABORATORY ASSISTANT, A SUGGESTED GUIDE FOR A TRAINING PROGRAM.
ERIC Educational Resources Information Center
Office of Education (DHEW), Washington, DC.
INFORMATION IS GIVEN TO ASSIST IN ORGANIZING AND ADMINISTERING A TRAINING PROGRAM FOR MEDICAL LABORATORY ASSISTANTS IN A VARIETY OF SETTINGS AND TO PROVIDE GUIDANCE IN ESTABLISHING NEW PROGRAMS AND IN EVALUATING EXISTING ONES. THE MATERIAL WAS PREPARED UNDER THE DIRECTION OF THE NATIONAL COMMITTEE FOR CAREERS IN MEDICAL TECHNOLOGY. PATHOLOGISTS…
Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick
1997-01-01
Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.
Student pharmacists' use and perceived impact of educational technologies.
Stolte, Scott K; Richard, Craig; Rahman, Ateequr; Kidd, Robert S
2011-06-10
To assess the frequency of use by and perceived impact of various educational technologies on student pharmacists. Data were obtained using a validated, Web-based survey instrument designed to evaluate the frequency of use and impact on learning of various technologies used in educating first-, second-, and third-year student pharmacists. Basic demographic data also were collected and analyzed. The majority (89.4%) of the 179 respondents were comfortable with the technology used in the academic program. The most frequently used technologies for educational purposes were in class electronic presentations, course materials posted on the school Web site, and e-mail. The technologies cited as having the most beneficial impact on learning were course materials posted on the Web site and in-class electronic presentations, and those cited as most detrimental were video-teleconferencing and online testing. Compared to the course textbook, students reported more frequent use of technologies such as electronic course materials, presentations, digital lecture recordings, e-mail, and hand-held devices. Because students' opinions of educational technologies varied, colleges and schools should incorporate educational technologies that students frequently use and that positively impact learning.
ERIC Educational Resources Information Center
North Central Technical Inst., Wausau, WI.
This final report contains the program proposal with supporting data for developing curriculum materials for and implementing an associate-degree laser technology program at the North Central Technical Institute. The proposal outline provides this information: (1) objectives for the program designed to prepare a technician to safely operate,…
ERIC Educational Resources Information Center
Seidel, Robert J.; Hunter, Harold G.
In continuing research into the technology of training, a study was undertaken to devise guidelines for applying programed instruction to training courses that involve the learning of principles and rules for use in problem solving. As a research vehicle, a portion of the material in the Army's Programing Specialist Course was programed to explore…
Get Students Excited--3D Printing Brings Designs to Life
ERIC Educational Resources Information Center
Lacey, Gary
2010-01-01
Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…
Improving Mathematics Instruction Using Technology: A Vygotskian Perspective.
ERIC Educational Resources Information Center
Harvey, Francis A.; Charnitski, Christina Wotell
Strategies and programs for improving mathematics instruction should be derived from sound educational theory. The sociocultural learning theories of Vygotsky may offer guidance in developing technology-based mathematics curriculum materials consonant with the NCTM (National Council of Teachers of Mathematics) goals and objectives. Vygotsky's…
Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.
DOT National Transportation Integrated Search
2008-01-01
The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... applying existing technology to new products and processes in a general way. Advanced research is most... Category 6.3A) programs within Research, Development, Test and Evaluation (RDT&E). Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Applied Research...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., speaking, breathing, learning, and working; (iii) Has a record of such impairment means has a history of... program. (e) Auxiliary aids and/or other assistive technologies means any item, piece of equipment, or.../or other assistive technologies include, but are not limited to, brailled and taped material...
Materials R&D-student internships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, R.B.; Jiles, D.C.; Chumbley, L.S.
1995-05-01
This program has as an objective the conduct of programmatic research for the Advanced Industrial Concepts Materials Program while training minority graduate students in the process. Well-known demographics indicate that minorities will constitute an increasing fraction of our future work force. Consequently, efforts have been initiated to increase the fraction of minorities and women who choose technical career paths. Included are a wide ranging set of programs beginning with pre-school education, progressing through efforts to retain students in technical paths in grades K-12 and undergraduate education, and ending with encouraging graduate education. The Materials R & D - Student Internshipsmore » is a unique approach in the latter category. Here, we have focused on a particular area of applied materials research, the Advanced Industrial Concepts Materials Program. Our goal, then, is to educate minority graduate students in the context of this program. The Ames Laboratory was selected as a site for this pilot project since it is a DOE national laboratory, located on the campus of a major research university, which includes in its research interests programs with a strong technological flavor.« less
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing...
48 CFR 223.7303 - Prohibition.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing...
48 CFR 3023.303 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and...
Space Resource Roundtable Rationale
NASA Astrophysics Data System (ADS)
Duke, Michael
1999-01-01
Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That is why there is an emphasis in NASA programs on propellant production on Mars - NASA plans missions to Mars, so could make use of those propellants. For other types of applications, however, it will be up to market forces to define the materials and products needed and develop the technologies for extracting them from space resources. Some leading candidates among the potential products from space resources are propellants for other space activities, water from the Moon for use in space, silicon for photovoltaic energy collection in space, and, eventually, He-3 from the Moon for fusion energy production. As the capabilities for manufacturing materials in space are opened up by research aboard the International Space Station, new opportunities for utilization of space resources may emerge. Whereas current research emphasizes increasing knowledge, one program objective should be the development of industrial production techniques for space. These will be based on the development of value-added processing in space, where materials are brought to the space facility, processed there, and returned to Earth. If enough such space processing is developed that the materials transportation requirements are measured in the hundreds of tons a year level, opportunities for substituting lunar materials may develop. The fundamental message is that it is not possible to develop space resources in a vacuum. One must have three things: a recoverable resource, technology to recover it, and a customer. Of these, the customer probably is the most important. All three must be integrated in a space resource program. That is what the Space Resource Roundtable, initiated with this meeting, will bring together.
Additive manufacturing of biologically-inspired materials.
Studart, André R
2016-01-21
Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
A Training Manual for Nuclear Medicine Technologists.
ERIC Educational Resources Information Center
Simmons, Guy H.; Alexander, George W.
This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)
Development of test methods for textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Ifju, Peter G.; Fedro, Mark J.
1993-01-01
NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
technology areas that included: nanotechnology, nanomaterials, thin-film photovoltaics, thin-film processing , and program management. This includes extensive experience in nanotechnology, materials science
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials 223.405 Procedures...
48 CFR 223.7306 - Contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing...
NASA Tech Briefs, December 1991. Volume 15, No. 12
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences,
NASA Tech Briefs, December 2002
NASA Technical Reports Server (NTRS)
2002-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
NASA Astrophysics Data System (ADS)
Colladay, R. S.; Carlisle, R. F.
1984-10-01
Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.
Welding technology. [technology transfer of NASA developments to commercial organizations
NASA Technical Reports Server (NTRS)
1974-01-01
Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
NASA-HBCU Space Science and Engineering Research Forum Proceedings
NASA Technical Reports Server (NTRS)
Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)
1989-01-01
The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).
10 CFR 431.443 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...
10 CFR 431.443 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...
10 CFR 431.15 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth.... (1) IEC 60034-1 Edition 12.0 2010-02, (“IEC 60034-1”), Rotating Electrical Machines, Part 1: Rating...
10 CFR 431.443 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...
NASA Technical Reports Server (NTRS)
1991-01-01
Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.
Space and transatmospheric propulsion technology
NASA Technical Reports Server (NTRS)
Merkle, Charles; Stangeland, Maynard L.; Brown, James R.; Mccarty, John P.; Povinelli, Louis A.; Northam, G. Burton; Zukoski, Edward E.
1994-01-01
This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000.
Design and evaluation of the ONC health information technology curriculum
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
Objective As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. Methods We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. Results 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Discussion Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. Conclusions The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future. PMID:23831832
Design and evaluation of the ONC health information technology curriculum.
Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William
2014-01-01
As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future.
EDUCATIONAL TECHNOLOGY, PREPARATION AND USE IN ADULT BASIC EDUCATION PROGRAMS.
ERIC Educational Resources Information Center
IVERSON, MAURICE T.; AND OTHERS
AUDIOVISUAL MATERIALS, WHEN COMBINED WITH CONSIDERATION OF THE WAYS PEOPLE LEARN, CAN OFFER NEW WAYS OF EXPRESSING IDEAS, PRESENTING INFORMATION, AND MAKING INSTRUCTION CHALLENGING AND EFFICIENT. THIS PUBLICATION, DIRECTED AT TEACHERS OF ADULT BASIC EDUCATION AND THEIR ADMINISTRATORS, ILLUSTRATES APPLICATIONS OF INSTRUCTIONAL TECHNOLOGY TO ADULT…
NASA Technical Reports Server (NTRS)
1986-01-01
The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.
Semiconductor technology program: Progress briefs
NASA Technical Reports Server (NTRS)
Galloway, K. F.; Scace, R. I.; Walters, E. J.
1981-01-01
Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.
Impact of Technology on the Family. Teacher Edition.
ERIC Educational Resources Information Center
Mid-America Vocational Curriculum Consortium, Stillwater, OK.
These instructional materials create an awareness of new technological innovations and how they affect personal and family life. This teacher's guide is for instructing secondary students enrolled in a home economics program. The following introductory information is included: use of this publication, competency profile, instructional/task…
Material development for laminar flow control wing panels
NASA Technical Reports Server (NTRS)
Meade, L. E.
1977-01-01
The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.
Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Hu, Ting-Jing; Cui, Xiao-Yan; Wang, Jing-Shu; Zhang, Jun-Kai; Li, Xue-Fei; Yang, Jing-Hai; Gao, Chun-Xiao
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374131, 11674404, 11404137, and 61378085), Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. 201201079 and 20150204085GX), Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150221), and Open Project of State Key Laboratory of Superhard Materials (Jilin University), China (Grant No. 201710).
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
ERIC Educational Resources Information Center
Mason, George J.; And Others
This document is one in a series which outlines performance objectives and instructional modules for a course of study in the management of wastewater treatment plants. The modules are arranged in an order appropriate for teaching students with no experience. The modules can also be rearranged and adapted for courses to upgrade personnel moving…
ERIC Educational Resources Information Center
Gearheart, Robert A.; And Others
This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationships and functions of the process units in a wastewater treatment plant. The modules are arranged in an order appropriate for teaching students with no experience. The modules can also be rearranged and…
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Cumulative Index to NASA Tech Briefs
NASA Technical Reports Server (NTRS)
1969-01-01
Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. This Index to NASA Tech Briefs lists the technological innovations derived from the U.S. space program and published during the period January through December 1968. A new five year cycle of cumulative indexes begins with this index. The main section is arranged in six categories: Electrical (Electronic); Physical Sciences (Energy Sources); Materials (Chemistry); Life Sciences; Mechanical; and Computer Programs.
1987-06-15
GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1990-01-01
The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.
A study of spaceraft technology and design concepts, volume 1
NASA Technical Reports Server (NTRS)
Zylius, F. A.
1985-01-01
Concepts for advancing the state of the art in the design of unmanned spacecraft, the requirements that gave rise to its configuration, and the programs of technology that are suggested as leading to its eventual development are examined. Particular technology issues discussed include: structures and materials; thermal control; propulsion; electrical power; communications; data management; and guidance, navigation, and control.
Technology Evaluation for Environmental Risk Mitigation Compendium
NASA Technical Reports Server (NTRS)
Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.
2017-01-01
The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing Hexavalent Chromium 223...
NASA Tech Briefs, November 1991. Volume 15, No. 11
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences,
NASA Technical Reports Server (NTRS)
Hoffman, S.; Varholic, M. C.
1983-01-01
NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.
29 CFR Appendix A to Part 70 - Disclosure Officers
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Directorate of Information Technology, OSHA 9. Director, Directorate of Enforcement Programs, OSHA 10..., MSHA 17. Director of Program Evaluation and Information Resources, MSHA Office of Administrative Law... the Secretary of Labor PRODUCTION OR DISCLOSURE OF INFORMATION OR MATERIALS Pt. 70, App. A Appendix A...
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1997-05-01
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less
Contributive research in compound semiconductor material and related devices
NASA Astrophysics Data System (ADS)
Twist, James R.
1988-05-01
The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
High Tc superconducting materials and devices
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1990-01-01
The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.
Materials Genome Initiative Element
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.
ERIC Educational Resources Information Center
Manner, Barbar; Beddard-Hess, Sharon; Daskalakis, Argy
2005-01-01
Subjects like Earth science often rely on "ready made" hands-on materials such as kits and modules to support understanding and science inquiry. However, sometimes the materials need adaptations to make sure they suit students' and teachers needs. As part of the Allegheny Schools Science Education and Technology (ASSET) program, the authors…
ERIC Educational Resources Information Center
Archenhold, W. F.; And Others
1987-01-01
Describes a new high school physics option in Great Britain which uses the model of a technological approach to the study of materials. Discusses the components of the program, including the development of a student book for independent learning and six case studies. Provides a case study about turbine blades. (TW)
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
48 CFR 223.7305 - Authorization and approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials...
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Storage and Disposal of Toxic and Hazardous Materials 223.7100...
NASA Tech Briefs, August 1992. Volume 16, No. 8
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
48 CFR 223.7305 - Authorization and approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials...
48 CFR 223.7305 - Authorization and approval.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials...
NASA Tech Briefs, September 1992. Volume 16, No.9
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1993. Volume 17, No. 1
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, November 1992. Volume 16, No. 11
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, December 1992. Volume 16, No. 12
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
Recent progress in terrestrial photovoltaic collector technology
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1982-01-01
The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.
ERIC Educational Resources Information Center
Crosby, Greg, Comp.
This directory lists 24 organizations providing educational resource materials on rural science and technology, conservation, and the environment. Each entry contains the address and phone number of the organization, name of a contact person, and brief description of programs, activities, publications, and services available. Resource materials…
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder
NASA Technical Reports Server (NTRS)
1988-01-01
Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.
Integrating Augmented Reality Technology to Enhance Children's Learning in Marine Education
ERIC Educational Resources Information Center
Lu, Su-Ju; Liu, Ying-Chieh
2015-01-01
Marine education comprises rich and multifaceted issues. Raising general awareness of marine environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative marine learning program integrating augmented reality (AR) technology for lower grade primary…
Transportation Systems. TE8126. Technology Education.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational and Technical Education Services.
This curriculum guide has been developed as a resource for teachers (especially in North Carolina) to use in planning and implementing a competency-based instructional management technology program in their schools. The guide contains three main section. The first section contains introductory materials and a course blueprint that lists the…
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
New Brunswick Laboratory progress report, October 1989--September 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Brunswick Laboratory (NBL) has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying the measurement and measurement-related needs of the nuclear material safeguards community and addressing them by means of activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these program areas are provided in this summary.more » This progress report is written as a part of NBL's technology transfer responsibilities, primarily for the use and benefit of the scientific personnel that perform safeguards-related measurements. Consequently, the report is technical in nature. Many of the reports of multi-year projects are fragmentary in that only partial results are reported. Separate topical reports are to be issued at the completion of many of these projects. 30 refs.« less
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.
2004-01-01
NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.
Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.
Boulay, Rachel; van Raalte, Lisa
2014-01-01
Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.
NASA's Space Environments and Effects (SEE) Program
NASA Technical Reports Server (NTRS)
Minor, Jody
2001-01-01
The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.
Marketing Plan for the National Security Technology Incubator
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubatormore » program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glueckstern, P.; Wilson, J.V.; Reed, S.A.
1976-06-01
Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.