DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Materials technology for Stirling space power converters
NASA Technical Reports Server (NTRS)
Baggenstoss, William; Mittendorf, Donald
1992-01-01
This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.
Materials Research Capabilities
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1986-01-01
Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space.
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
Missouri Introduction to Materials and Processing Technology. Instructor Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to support a high school specialization course in materials and processing technology. The document contains three sections: (1) information on using the material; (2) a set of instructor guides for eight instructional units; (3) 15 technological activity modules and teacher and student instructions for their use; and (4)…
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
Materials technology programs in support of a mercury Rankine space power system
NASA Technical Reports Server (NTRS)
Stone, P. L.
1973-01-01
A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.
Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons
NASA Astrophysics Data System (ADS)
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-12-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.
Metals and Ceramics Division progress report for period ending December 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Weir, J.R. Jr.
1993-04-01
This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.
Materials Research and Technology Initiatives
DOT National Transportation Integrated Search
1995-11-01
This report is the departments first report on current and planned research and technology efforts in advanced materials. The report was published in support of the Administration's initiative to establish an integrated program of research designed t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.
Space Station technology testbed: 2010 deep space transport
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1993-01-01
A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).
Technology development life cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2013-05-01
This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
Supporting research and technology for automotive Stirling engine development
NASA Technical Reports Server (NTRS)
Tomazic, W. A.
1980-01-01
The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.
ERIC Educational Resources Information Center
Matuk, Camillia F.; Linn, Marcia C.; Eylon, Bat-Sheva
2015-01-01
Teachers' involvement in curriculum design is essential for sustaining the relevance of technology-enhanced learning materials. Customizing--making small adjustments to tailor given materials to particular situations and settings--is one design activity in which busy teachers can feasibly engage. Research indicates that customizations based…
ERIC Educational Resources Information Center
Jou, Min; Liu, Chi-Chia
2012-01-01
This article describes an implementation of interactive virtual environments that have been designed for supporting the education of technical skills in material processing technology. The developed web-based systems provide the capability to train students in the technical skills of material processing technology without the need to work on…
High performance dielectric materials development
NASA Technical Reports Server (NTRS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-01-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
FY2016 Lightweight Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.
High performance dielectric materials development
NASA Astrophysics Data System (ADS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-09-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.
Waste recycling issues in bioregenerative life support
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Wang, D.
1989-01-01
Research and technology development issues centering on the recycling of materials within a bioregenerative life support system are reviewed. The importance of recovering waste materials for subsequent use is emphasized. Such material reclamation will substantially decrease the energy penalty paid for bioregenerative life support systems, and can potentially decrease the size of the system and its power demands by a significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is discussed.
FY2010 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.
Convergent Technologies in Distance Learning Delivery.
ERIC Educational Resources Information Center
Wheeler, Steve
1999-01-01
Describes developments in British education in distance learning technologies. Highlights include networking the rural areas; communication, community, and paradigm shifts; digital compression techniques and telematics; Web-based material delivered over the Internet; system flexibility; social support; learning support; videoconferencing; and…
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
NASA Technical Reports Server (NTRS)
Fisher, A.; Staugaitis, C. L.
1974-01-01
The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed.
FY2011 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.
Graphic Design: A Sustainable Solution to Manage the Contents of Teaching Materials
ERIC Educational Resources Information Center
Victor, Garcia Izaguirre; Luisa, Pier Castello Maria; Eduardo, Arvizu Sanchez
2010-01-01
There is a concern that the teaching of subjects is applied not only with support from a set of technological devices, but largely in the proper use of teaching and new technologies. Taking this idea, the authors develop a research and sustainable design that result in educational materials in solid content and technological innovation, also to…
NASA Astrophysics Data System (ADS)
Colladay, R. S.; Carlisle, R. F.
1984-10-01
Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Education and Human Resources.
This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
An overview of Japanese CELSS research activities
NASA Technical Reports Server (NTRS)
Nitta, Keiji
1987-01-01
Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.
NASA Astrophysics Data System (ADS)
Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro
2018-01-01
Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.
3D printing PLA and silicone elastomer structures with sugar solution support material
NASA Astrophysics Data System (ADS)
Hamidi, Armita; Jain, Shrenik; Tadesse, Yonas
2017-04-01
3D printing technology has been used for rapid prototyping since 1980's and is still developing in a way that can be used for customized products with complex design and miniature features. Among all the available 3D printing techniques, Fused Deposition Modeling (FDM) is one of the most widely used technologies because of its capability to build different structures by employing various materials. However, complexity of parts made by FDM is greatly limited by restriction of using support materials. Support materials are often used in FDM for several complex geometries such as fully suspended shapes, overhanging surfaces and hollow features. This paper describes an approach to 3D print a structure using silicone elastomer and polylactide fiber (PLA) by employing a novel support material that is soluble in water. This support material is melted sugar which can easily be prepared at a low cost. Sugar is a carbohydrate, which is found naturally in plants such as sugarcane and sugar beets; therefore, it is completely organic and eco-friendly. As another advantage, the time for removing this material from the part is considerably less than other commercially available support materials and it can be removed easily by warm water without leaving any trace. Experiments were done using an inexpensive desktop 3D printer to fabricate complex structures for use in soft robots. The results envision that further development of this system would contribute to a method of fabrication of complex parts with lower cost yet high quality.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Power generation technology options for a Mars mission
NASA Technical Reports Server (NTRS)
Bozek, John M.; Cataldo, Robert L.
1994-01-01
The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less
Materials Science and Technology Teachers Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary
The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less
Technology transfer from NASA to targeted industries, volume 2
NASA Technical Reports Server (NTRS)
Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl
1993-01-01
This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.
Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.
Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.
ERIC Educational Resources Information Center
Sarac, Hakan; Tarhan, Devrim
2017-01-01
In the rapidly developing age of technology, the contribution of using multimedia-supported instructional materials in the field of teaching technologies to science education has been increasing steadily. The purpose of this research is to compare the multimedia learning instructional materials prepared according to the 7E learning model and the…
Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, RR
This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less
Technology Assessment of Laser-Assisted Materials Processing in Space
NASA Technical Reports Server (NTRS)
Nagarathnam, Karthik; Taminger, Karen M. B.
2001-01-01
Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
Fleming, Garry J P
2014-05-01
The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
Preparing technicians for engineering materials technology
NASA Technical Reports Server (NTRS)
Jacobs, James A.; Metzloff, Carlton H.
1990-01-01
A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.
Overview of Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.;
2018-01-01
The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.
1995 Federal Research and Development Program in Materials Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1995-12-01
The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly amore » century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.« less
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4
NASA Technical Reports Server (NTRS)
Rowe, W. M. (Editor)
1978-01-01
Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.
Assessment of the state of the art in life support environmental control for SEI
NASA Technical Reports Server (NTRS)
Simonds, Charles H.; Noyes, Gary P.
1992-01-01
This paper defines the types of technology that would be used in a lunar base for environmental control and life support system and how it might relate to in situ materials utilization (ISMU) for the Space Exploration Initiative (SEI). There are three types of interaction between ISMU and the Environmental Control and Life Support System (ECLSS): (1) ISMU can reduce cost of water, oxygen, and possibly diluent gasses provided to ECLSS--a corollary to this fact is that the availability of indigenous resources can dramatically alter life support technology trade studies; (2) ISMU can use ECLSS waste systems as a source of reductant carbon and hydrogen; and (3) ECLSS and ISMU, as two chemical processing technologies used in spacecraft, can share technology, thereby increasing the impact of technology investments in either area.
Habitats and Surface Construction Technology and Development Roadmap
NASA Technical Reports Server (NTRS)
Cohen, Marc; Kennedy, Kriss J.
1997-01-01
The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.
Space Life Support Technology Applications to Terrestrial Environmental Problems
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Sleeper, Howard L.
1993-01-01
Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.
Teaching Physics Using Appropriate Technology Projects
ERIC Educational Resources Information Center
Pearce, Joshua M.
2007-01-01
Appropriate technologies able to be easily and economically constructed from readily available materials by local craftspeople have a central role in the alleviation of poverty in the developing world. However, research and development of these technologies are generally apportioned relatively modest support by the developed world's institutions,…
Financial Support and Challenges for Educational Technology Companies: Then, Now, and Looking Ahead
ERIC Educational Resources Information Center
Billings, Karen J.; Blaschke, Charles L.
2016-01-01
The authors review past and current funding/support for U.S. K-12 educational technology companies. They review both who provided the funding for product development and the reasons why. They look back to the 1960s and 1970s, when federal government agencies helped produce computer-based materials, then how the schools' access to technology…
Astrium Technological Roadmaps for the Next Generation of Launchers Challenges
NASA Astrophysics Data System (ADS)
Larnac, Guy
2014-06-01
Main requirement on Ariane 6 are robustness, overall ownership cost and environmental impacts. To be able to meet these requirements it's mandatory to modify our usual way of working and to think the development and qualification of technologies differently. Airbus Defence and Space in the domain of materials, technologies and structures proposes a vision which address these points declined at different level:- Selection of key metallic and composite technologies to reduce drastically the cost of manufacturing,- Implementation of robust and economical way of assembly, promoting adhesive bonding and innovative technologies- Introducing virtual testing approach coupled with advanced methods and process simulation- Introduction of in-line monitoring to reduce cost of control- Implementation of the design for environment methodology with life cycle analysis to support the choice of technologies and materials- Development of EADS common materials to get benefice of aeronautic supply chain and communalitiesTo be efficient it seems evident and mandatory to develop all these approaches in an integrated and coordinated way. Advanced technologies and methodologies are supported by a strong network of collaboration enabling the integration of upstream ideas and concepts. This network is not only focused on low TRL level. Within EADS divisions intensive collaboration is deployed in order to get synergies. On the other side it's also mandatory for reliability and obsolescence issues to take care and master the supply chain.Additive layer manufacturing and thermoplastic based composite are directly concerned by this problematic. We present how, in the domain of materials and structures, aeronautic materials are considered first and how the mechanism of common qualification shared within EADS is now developed.This vision is being implemented within Airbus Defence and Space, described and reported through roadmaps. These roadmaps are the core of Airbus defence and Space strategies for the incoming years.
Exploring the role of curriculum materials to support teachers in science education reform
NASA Astrophysics Data System (ADS)
Schneider, Rebecca M.
2001-07-01
For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific educative supports for teachers. Overall, findings indicate curriculum materials that include detailed descriptions of lessons accompanied by educative features can help teachers with enactment. Therefore, design principles to improve materials to support teachers in reform are suggested. However, results also demonstrate materials alone are not sufficient to create intended enactments; reform efforts must include professional development in content and pedagogy and efforts to create systemic change in context and policy to support teacher learning and classroom enactment.
Advanced Manufacturing Technologies
NASA Technical Reports Server (NTRS)
Fikes, John
2016-01-01
Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.
Language Learning Technology and Alternative for Public Education.
ERIC Educational Resources Information Center
Jarvis, Stan
1984-01-01
While supporting the use of interactive video technologies in public education, universities, and government, the need for standardization of the materials is stressed, which would allow for program exchange and a wider use of expertise and creativity. Concerning technology-based language learning, an emphasis on quality, yet affordable…
The German R&D Program for CO2 Utilization-Innovations for a Green Economy.
Mennicken, Lothar; Janz, Alexander; Roth, Stefanie
2016-06-01
Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel
NASA Technical Reports Server (NTRS)
1975-01-01
Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.
How You Can Partner with NIH | NCI Technology Transfer Center | TTC
NCI Technology Transfer Center (TTC) provides an array of agreements to support the National Cancer Institute's partnering. Deciding which type of agreement to use can be a challenge: CRADA, MTA, collaboration, agreement, CTA, Materials-CRADA
Computer-Based Resource Accounting Model for Automobile Technology Impact Assessment
DOT National Transportation Integrated Search
1976-10-01
A computer-implemented resource accounting model has been developed for assessing resource impacts of future automobile technology options. The resources tracked are materials, energy, capital, and labor. The model has been used in support of the Int...
Chiu, Ching-Ju; Kuo, Su-E; Lin, Dai-Chan
2017-11-01
Mobile technology provides young adults important support for self-directed learning, but whether there is related support for older adults is not clear. This study aims to determine whether 1) nutrition education combined with mobile technology-supported teaching improves knowledge of and self-efficacy for a healthy diet; 2) if adults who reported reviewing the electronic course material or searching health information online, showed significantly greater progress in knowledge of and self-efficacy for a healthy diet than did those who did not adopt the electronic support. A total of 35 middle-aged and older adults were recruited from the community. Enrollees who were unable to read, who participated in the course fewer than five times, who did not take the post-test, or who did not return complete questionnaires at the pre-test were excluded. Overall, 21 participants were finally analyzed, and 14 participated in the qualitative investigation. The study interventions included three traditional nutrition lectures and three touch-screen tablet computer lessons to access the Internet and nutrition applications. Structured and semi-structured questionnaires were used to collect both quantitative and qualitative data and record participants' Internet use conditions at home. Participants' nutrition knowledge significantly improved (meanpost-pre = 1.19, p = 0.001) and their self-efficacy about a healthy diet showed marginal improvement (meanpost-pre = 0.22, p = 0.07). Nutrition knowledge was positively correlated with their intensity of surfing the Internet ( r = 0.46, p < 0.05), or reviewing the electronic course material ( r = 0.48, p < 0.05) but not correlated with reviewing paper course material ( r = 0.19, p = 0.09). Qualitative results showed that participants reported feeling freshness, joyfulness, and great achievement because of the combined course material. Technology-supported learning combined with traditional health education might provide great opportunities for positive behavioral change, even in older adults without any previous Internet experience.
A Selection of Composites Simulation Practices at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2007-01-01
One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.
Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul
2017-03-01
Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.
ERIC Educational Resources Information Center
Koppenhaver, David A.; Erickson, Karen A.
2003-01-01
Print materials, experiences, and writing technologies were introduced to three preschoolers (age 3) with autism and severe communication impairments. The goal was to increase natural literacy learning opportunities. Children found the materials and experiences interesting and their understanding and use of print materials and tools increased in…
Aeronautics Technology Possibilities for 2000: Report of a workshop
NASA Technical Reports Server (NTRS)
1984-01-01
The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.
Emerging Science And Technologies: Securing The Nation Through Dicovery and Innovation
2013-04-01
potential material for use in quantum computing and spintronics. R&D in the area of advanced carbon-based materials has the potential to revolutionize...seem to involve a dual-approach strategy. First, the vast majority of our sensory input information does not reach the level of consciousness ...WHITE PAPER | 17 Relevant technology areas that support Protection of the Intelligence Enterprise include: Quantum Computing and Associated
NASA Technical Reports Server (NTRS)
2004-01-01
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
MPA Materials Matter October 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
2015-10-20
In support of the U.S. Department of Energy’s (DOE) Technology-to-Market activities in the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technology Office, Los Alamos researchers hosted the hands-on short course on fuel cells. The DOE’s Technology-to-Market activities efforts place emphasis on national laboratories increasing their industrial contacts, engaging more companies, and developing technology skills.
A Fingerprint Pattern of Supports for Teachers' Designing of Technology-Enhanced Learning
ERIC Educational Resources Information Center
Svihla, Vanessa; Reeve, Richard; Sagy, Ornit; Kali, Yael
2015-01-01
Teachers often find themselves in a position in which they need to adapt technology-enhanced materials to meet the needs of their students. As new technologies--especially those not specifically designed for learning--find their way into schools, teachers need to be able to design learning experiences that use these new technologies in their local…
NASA CORE - A Worldwide Distribution Center for Educational Materials.
NASA Astrophysics Data System (ADS)
Kaiser-Holscott, K.
2005-05-01
The Lorain County Joint Vocational School District (JVS) administers NASA's Central Operation of Resources for Educators (CORE) for the purpose of: A. Operating a mail order service to supply educators around the world with NASA's educational materials; B. Servicing NASA Education Programs/Projects with NASA's educational materials; C. Supporting the NASA Educator Resource Center Network with technology resources for the next generation of ERC. D. Support NASA's mission to inspire the next generation of explorers...as only NASA can; E. Inspire and motivate students to pursue careers in geography, science, technology, engineering and mathematics. This is accomplished by the continued operation of a central site that educators can contact to obtain information about NASA educational programs and research; obtain NASA educational publications and media; and receive technical support for NASA multimedia materials. In addition CORE coordinates the efforts of the 67 NASA Educator Resource Centers to establish a more effective network to serve educators. CORE directly supports part of NASA's core mission, To Inspire the Next Generation of Explorers.as only NASA can. CORE inspires and motivates students to pursue careers in geography, science, technology, engineering and mathematics by providing educators with exciting and NASA-unique educational material to enhance the students' learning experience. CORE is located at the Lorain County Joint Vocational School (JVS) in Oberlin, Ohio. Students at the JVS assist with the daily operations of CORE. This assistance provides the students with valuable vocational training opportunities and helps the JVS reduce the amount of funding needed to operate CORE. CORE has vast experience in the dissemination of NASA educational materials as well as a network of NASA Education Resource Centers who distribute NASA materials to secondary and post-secondary schools and universities, informal educators, and other interested individuals and organizations. CORE would be a valuable resource for the distribution of Earth and Space Science products presented to the Joint Assembly.
Considerations for Realizing the Promise of Educational Gaming Technology
ERIC Educational Resources Information Center
Nelson, Nancy J.; Fien, Hank; Doabler, Christian T.; Clarke, Ben
2016-01-01
Hope Elementary School recently purchased tablets for all of its students to facilitate the use of technology in the classroom. The principal at Hope Elementary understands that technology can be an efficient and effective way for teachers to access materials and differentiate instruction to support the achievement of all learners. However, some…
Metals and Ceramics Division progress report for period ending December 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.
1994-07-01
This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less
Manufacturing Methods and Technology Project Summary Reports
1984-06-01
was selected as the composite material. This selection was based upon the following advantages in comparison to aluminum: 0 Stiffness to weight...closer to titanium than aluminum. Other composite candidate materials considered ( glass , Kevlar and metal matrix) did not offer all of these...of the bearing support ring, and the attachment of the bearing support ring to the composite gimbal base plate. A thermal test structure, which
Develop Improved Materials to Support the Hydrogen Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael C. Martin
The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less
Nuclear Proliferation Technology Trends Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.
2005-10-04
A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activitiesmore » (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.« less
30 CFR 254.26 - What information must I include in the “Worst case discharge scenario” appendix?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., materials, support vessels, and strategies listed are suitable, within the limits of current technology, for... equipment. Examples of acceptable terms include those defined in American Society for Testing of Materials...
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal, and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineers perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(sub x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic future strength envelope of the material; develop a statistically based reliability computer algorithm; verify the reliability model and computer algorithm-, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macro-analysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2008-01-01
From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.
Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification
NASA Technical Reports Server (NTRS)
Schneider, J. A.
1991-01-01
New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.
Life support systems analysis and technical trades for a lunar outpost
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.
1994-01-01
The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.
NASA Glenn Research Center Support of the ASRG Project
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Wong, Wayne A.
2014-01-01
A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.
DEMONSTRATION OF PACKAGING MATERIALS ALTERNATIVES TO EXPANDED POLYSTYRENE
This report represents the second demonstration of cleaner technologies to support the goals of the 33/50 Program under the EPA Cooperative Agreement No. CR-821848. The report presents assessment results of alternative packaging materials which could potentially replace expanded...
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
2004-04-15
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
Use of outer planet satellites and asteroids as sources of raw materials for life support systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molton, P.M.; Divine, T.E.
1977-01-01
Industrialization of space and other space activities depend entirely on supply of materials from the Earth. This is a high cost route for materials supply. Space industrialization will require life support systems for maintenance and operation staff and these will of necessity be of a sophisticated nature. Use of raw materials obtained by an unmanned space shuttle, initially, and by manned shuttles later could significantly reduce the cost of life support in space. These raw materials could be obtained from small asteroids and satellites, and would consist of primary nutrients. Future development of such sources is discussed, including food productionmore » in automated asteroid-based facilities. The level of technology required is available now, and should become economical within a century.« less
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
Development of a Web-Based System to Support Self-Directed Learning of Microfabrication Technologies
ERIC Educational Resources Information Center
Jou, Min; Wu, Yu-Shiang
2012-01-01
Having engineers in microfabrication technologies educated has become much more difficult than having engineers educated in the traditional technologies, and this may be because of the high cost for acquirement of equipment, materials, and infrastructural means (i.e., cleaning rooms), all in addition to the hands-on practices that are often times…
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck
2005-01-01
The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.
NASA Astrophysics Data System (ADS)
Bray, Mark E.; Shears, Robert A.
2013-10-01
The Materials and Components for Missiles Innovation and Technology Partnership (ITP) is a research programme supporting research for guided weapons at Technology Readiness Levels 1 to 4. The Anglo-French initiative is supported by the DGA and the MoD, with matched funding from industry. A major objective is to foster projects which partner UK and French universities, SMEs and larger companies. The first projects started in January 2008 and the first phase completed in spring 2013. Providing funding is secured, the next phase of the programme is due to start later in 2013. Selex ES leads Domain 3 of the MCM-ITP which develops Electro-Optic sensor technology. In collaboration with DGA, MoD and MBDA, the prime contractor, we identified 4 key objectives for the first ITP phase and focussed resources on achieving these. The objectives were to enable better imagery, address operationally stressing scenarios, provide low overall through life cost and improve active and semi-active sensors Nine normal projects and one ITP innovation fund project have been supported within the domain. The technology providers have included 3 SMEs and 8 research centres from both the United Kingdom and France. Highlights of the projects are included. An outline of the priorities for the domain for the new phase ise provided and we encourage organisations with suitable technology to contact us to get involved.
Updated Trends in Materials' Outgassing Technology
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn; Mlucciacciaro, Anthony
2010-01-01
This slide presentation reviews the trends in materials' outgassing. The work utilized a database of reports to identify common outgassing chemical species from flight hardware, spacecraft, and ground support equipment (GSE). This work updates an earlier work that reported on chemical analysis from 1970-1978.
Using Mobile Phone Technology in EFL Classes
ERIC Educational Resources Information Center
Sad, Süleyman Nihat
2008-01-01
Teachers of English as a foreign language (EFL) who want to develop successful lessons face numerous challenges, including large class sizes and inadequate instructional materials and technological support. Another problem is unmotivated students who refuse to participate in class activities. According to Harmer (2007), uncooperative and…
Tuneable porous carbonaceous materials from renewable resources.
White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J
2009-12-01
Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizner, Jack Harry; Passell, Howard David; Keller, Elizabeth James Kistin
Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutionsmore » to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.« less
Community Air Monitoring Training in July 2015. Topics included motivaton, goals, data quality and quantity, recruitment of other citizen scientists, technology requirements, supporting materials, and evaluations.
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Composite Overview and Composite Aerocover Overview
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad
2014-01-01
Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
ERIC Educational Resources Information Center
Manner, Barbar; Beddard-Hess, Sharon; Daskalakis, Argy
2005-01-01
Subjects like Earth science often rely on "ready made" hands-on materials such as kits and modules to support understanding and science inquiry. However, sometimes the materials need adaptations to make sure they suit students' and teachers needs. As part of the Allegheny Schools Science Education and Technology (ASSET) program, the authors…
Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-03-24
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.
Designing Technology for Content-Independent Collaborative Mobile Learning
ERIC Educational Resources Information Center
Boticki, I.; Wong, Lung Hsiang; Looi, Chee-Kit
2013-01-01
This paper describes the design of a technology platform for supporting content-independent collaborative mobile learning in the classroom. The technical architecture provides mechanisms for assigning different content or materials to students and then guiding them to form groups with other students in which the combination and integration of…
ERIC Educational Resources Information Center
Flanagin, Jimmie
2013-01-01
Students with print disabilities continue to face inaccessible information and information technologies in higher education institutions despite federal and state legislation and local policies. Although most individuals responsible for making their course materials accessible often express support for the egalitarian principles of such policies,…
Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder
NASA Technical Reports Server (NTRS)
1988-01-01
Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.
Models and Methodologies for Multimedia Courseware Production.
ERIC Educational Resources Information Center
Barker, Philip; Giller, Susan
Many new technologies are now available for delivering and/or providing access to computer-based learning (CBL) materials. These technologies vary in sophistication in many important ways, depending upon the bandwidth that they provide, the interactivity that they offer and the types of end-user connectivity that they support.Invariably,…
[Advanced Composites Technology Initiatives
NASA Technical Reports Server (NTRS)
Julian, Mark R.
2002-01-01
This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
Space station commonality analysis
NASA Technical Reports Server (NTRS)
1988-01-01
This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.
NASA Technical Reports Server (NTRS)
Vickers, John; Fikes, John
2015-01-01
The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.
Trends in Materials' Outgassing Technology
NASA Technical Reports Server (NTRS)
Colony, J. A.
1979-01-01
Test sample acquisition and chemical analysis techniques for outgassing products from spacecraft, experiment modules, and support equipment is described. The reduction of test data to a computer compatible format to implement materials selection policies is described. A list of the most troublesome outgassing species is given and several materials correlations are discussed. Outgassing from solar panels, thermal blankets, and wire insulation are examined individually.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
31 CFR 549.313 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 548.313 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 549.313 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 548.313 - Financial, material, or technological support.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 537.327 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 548.313 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 548.313 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 549.313 - Financial, material, or technological support.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 548.313 - Financial, material, or technological support.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
31 CFR 549.313 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. ...
ERIC Educational Resources Information Center
Bodzin, Alec; Peffer, Tamara; Kulo, Violet
2012-01-01
Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1997-04-01
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less
NASA Astrophysics Data System (ADS)
Svetský, Štefan; Moravčík, Oliver; Rusková, Dagmar; Balog, Karol; Sakál, Peter; Tanuška, Pavol
2011-01-01
The article describes a five-year period of Technology Enhanced Learning (TEL) implementation at the Faculty of Materials Science and Technology (MTF) in Trnava. It is a part of the challenges put forward by the 7th Framework Programme (ICT research in FP7) focused on "how information and communication technologies can be used to support learning and teaching". The empirical research during the years 2006-2008 was focused on technology-driven support of teaching, i. e. the development of VLE (Virtual Learning Environment) and the development of database applications such as instruments developed simultaneously with the information support of the project, and tested and applied directly in the teaching of bachelor students. During this period, the MTF also participated in the administration of the FP7 KEPLER project proposal in the international consortium of 20 participants. In the following period of 2009-2010, the concept of educational activities automation systematically began to develop. Within this concept, the idea originated to develop a universal multi-purpose system BIKE based on the batch processing knowledge paradigm. This allowed to focus more on educational approach, i.e. TEL educational-driven and to finish the programming of the Internet application - network for feedback (communication between teachers and students). Thanks to this specialization, the results of applications in the teaching at MTF could gradually be presented at the international conferences focused on computer-enhanced engineering education. TEL was implemented at a detached workplace and four institutes involving more than 600 students-bachelors and teachers of technical subjects. Four study programmes were supported, including technical English language. Altogether, the results have been presented via 16 articles in five countries, including the EU level (IGIP-SEFI).
Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,
2011-01-01
Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.
Advances in High Temperature Materials for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin
2017-08-01
In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
1994-10-01
This report presents the details of the Lawrence Livermore National Laboratory safeguards and securities program. This program is focused on developing new technology, such as x- and gamma-ray spectrometry, for measurement of special nuclear materials. This program supports the Office of Safeguards and Securities in the following five areas; safeguards technology, safeguards and decision support, computer security, automated physical security, and automated visitor access control systems.
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
31 CFR 594.317 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 542.304 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 588.312 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 594.317 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 594.317 - Financial, material, or technological support.
Code of Federal Regulations, 2011 CFR
2011-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 588.312 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 594.317 - Financial, material, or technological support.
Code of Federal Regulations, 2010 CFR
2010-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 594.317 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 588.312 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 588.312 - Financial, material, or technological support.
Code of Federal Regulations, 2011 CFR
2011-07-01
... other transmission of value; weapons or related materiel; chemical or biological agents; explosives..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
Technology to Support Motivational Interviewing.
Gance-Cleveland, Bonnie; Ford, Loretta C; Aldrich, Heather; Oetzel, Keri Bolton; Cook, Paul; Schmiege, Sarah; Wold, Mary
This paper reports the findings of motivational interviewing (MI) training with and without technology support on school-based health center (SBHC) providers' satisfaction with MI training, providers' self-report of behavioral counseling related to childhood overweight/obesity, and parents' perception of care after training. The effects of training and technology on MI is part of a larger comparative effectiveness, cluster randomized trial. Twenty-four SBHCs in six states received virtual training on MI. Half the sites received HeartSmartKids™, a bilingual (English/Spanish), decision-support technology. The technology generated tailored patient education materials. Standard growth charts were plotted and health risks were highlighted to support MI counseling. The results of the MI training included provider satisfaction with MI training and parent assessment of the components of MI in their child's care. Providers and parents were surveyed at baseline, after training, and six months after training. Providers were satisfied with training and reported improvements in counseling proficiency (p<0.0007) and psychological/emotional assessment (p=0.0004) after training. Parents in the technology group reported significant improvement in provider support for healthy eating (p=0.04). Virtual training has the potential of preparing providers to use MI to address childhood obesity. Technology improved parent support for healthy eating. Future research should evaluate the impact of technology to support MI on patient outcomes. Childhood obesity guidelines emphasize that MI should be used to promote healthy weight in children. Training providers on MI may help more providers incorporate obesity guidelines in their practice. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanner, F.J.; Moffatt, W.C.
1995-07-01
In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.
Final Report for DE-FG02-99ER45795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, John Warren
The research supported by this grant focuses on atomistic studies of defects, phase transitions, electronic and magnetic properties, and mechanical behaviors of materials. We have been studying novel properties of various emerging nanoscale materials on multiple levels of length and time scales, and have made accurate predictions on many technologically important properties. A significant part of our research has been devoted to exploring properties of novel nano-scale materials by pushing the limit of quantum mechanical simulations, and development of a rigorous scheme to design accurate classical inter-atomic potentials for larger scale atomistic simulations for many technologically important metals and metalmore » alloys.« less
Space applicable DOE photovoltaic technology: An update
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Stella, P.; Berman, P.
1981-01-01
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.
ERIC Educational Resources Information Center
Huang, Chung-Kai; Lin, Chun-Yu; Villarreal, Daniel Steve
2014-01-01
This study investigates the potential and use of social networking technology, specifically Facebook, to support a community of practice in an undergraduate-level classroom setting. Facebook is used as a tool with which to provide supplementary language learning materials to develop learners' English writing skills. We adopted the technology…
ERIC Educational Resources Information Center
Mirza, Mansha; Hammel, Joy
2009-01-01
Background: A consumer-directed service-delivery approach to assistive technology and environmental modification intervention was examined with people who were ageing with intellectual disabilities. Material and Methods: The intervention was based on a collaborative approach involving consumers, their social supports and service deliverers. Thirty…
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Distance Learning and Assistance Using Smart Glasses
ERIC Educational Resources Information Center
Spitzer, Michael; Nanic, Ibrahim; Ebner, Martin
2018-01-01
With the everyday growth of technology, new possibilities arise to support activities of everyday life. In education and training, more and more digital learning materials are emerging, but there is still room for improvement. This research study describes the implementation of a smart glasses app and infrastructure to support distance learning…
31 CFR 547.313 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or any other transmission of value; weapons or related materiel; chemical or biological agents..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 546.313 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; weapons or related materiel; chemical or biological agents; explosives; false documentation or..., tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR 6465, Feb...
31 CFR 543.313 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR...
31 CFR 546.313 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
...; weapons or related materiel; chemical or biological agents; explosives; false documentation or..., tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR 6465, Feb...
31 CFR 546.313 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; weapons or related materiel; chemical or biological agents; explosives; false documentation or..., tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR 6465, Feb...
31 CFR 547.313 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or any other transmission of value; weapons or related materiel; chemical or biological agents..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
31 CFR 595.317 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. [78 FR...
31 CFR 543.313 - Financial, material, or technological support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR...
31 CFR 595.317 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. [78 FR...
31 CFR 543.313 - Financial, material, or technological support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transmission of value; weapons or related materiel; chemical or biological agents; explosives; false..., formulae, tables, engineering designs and specifications, manuals, or other recorded instructions. [77 FR...
31 CFR 547.313 - Financial, material, or technological support.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or any other transmission of value; weapons or related materiel; chemical or biological agents..., diagrams, models, formulae, tables, engineering designs and specifications, manuals, or other recorded...
Iron-carbon composites for the remediation of chlorinated hydrocarbons
NASA Astrophysics Data System (ADS)
Sunkara, Bhanu Kiran
This research is focused on engineering submicron spherical carbon particles as effective carriers/supports for nanoscale zerovalent iron (NZVI) particles to address the in situ remediation of soil and groundwater chlorinated contaminants. Chlorinated hydrocarbons such as trichloroethylene (TCE) and tetrachloroethylene (PCE) form a class of dense non-aqueous phase liquid (DNAPL) toxic contaminants in soil and groundwater. The in situ injection of NZVI particles to reduce DNAPLs is a potentially simple, cost-effective, and environmentally benign technology that has become a preferred method in the remediation of these compounds. However, unsupported NZVI particles exhibit ferromagnetism leading to particle aggregation and loss in mobility through the subsurface. This work demonstrates two approaches to prepare carbon supported NZVI (iron-carbon composites) particles. The objective is to establish these iron-carbon composites as extremely useful materials for the environmental remediation of chlorinated hydrocarbons and suitable materials for the in situ injection technology. This research also demonstrates that it is possible to vary the placement of iron nanoparticles either on the external surface or within the interior of carbon microspheres using a one-step aerosol-based process. The simple process of modifying iron placement has significant potential applications in heterogeneous catalysis as both the iron and carbon are widely used catalysts and catalyst supports. Furthermore, the aerosol-based process is applied to prepare new class of supported catalytic materials such as carbon-supported palladium nanoparticles for ex situ remediation of contaminated water. The iron-carbon composites developed in this research have multiple functionalities (a) they are reactive and function effectively in reductive dehalogenation (b) they are highly adsorptive thereby bringing the chlorinated compound to the proximity of the reactive sites and also serving as adsorption materials for decontamination (c) they are of the optimal size for transport through sediments (d) they have amphiphilic chemical functionalities that help stabilize them when they reach the DNAPL target zones. Finally, the iron-carbon composite microspheres prepared through aerosol-based process can used for in situ injection technology as the process is conductive to scale-up and the materials are environmentally benign.
Green materials for sustainable development
NASA Astrophysics Data System (ADS)
Purwasasmita, B. S.
2017-03-01
Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2007-01-01
From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2007-01-01
From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.
R&D to Market Success: BTO-Supported Technologies Commercialized from 2010-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2017-04-01
Technology commercialization plays an essential role in almost every facet of the U.S. economy. It spurs private sector funding that supports innovative breakthroughs, drives growth through increased productivity and product development, increases American competitiveness, and creates domestic jobs. The BTO Technology Commercialization report is an annual publication offering the latest information on successfully commercialized technologies resulting in part from BTO’s research partnerships. This report defines a “commercialized technology” as a process, technique, design, machine, tool, material, or software that was developed with funds provided at least in part by BTO, and that has resulted in domestic sales or is inmore » use in the U.S. This definition also applies to open-source software products developed with support from BTO, all of which are currently distributed freely but are actively used for commercial purposes.« less
Application of CFCC technology to hot gas filtration applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richlen, S.
1995-06-01
Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
Tapping bioremediation's potential -- A matter of sweat and tiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merski, A.T.; Griffin, W.M.
Bioremediation's potential for treating environmental contamination is gaining greater recognition among regulators and the regulated community. For example, biological treatment is routinely applied to municipal wastewater, which typically contains readily biodegradable materials. Industrial wastewaters, by contrast, often contain higher concentrations of materials that present unique challenges to biological treatment. In both areas, biological treatment has succeeded by using contained, relatively controlled systems engineered to optimize performance of the biological component. Uncontrolled releases into such matrices as soil, and fresh and marine waters increase the complexity of the biological challenge, requiring development of novel products and procedures for efficient biological treatmentmore » and monitoring. One of the goals of the National Environmental Technology Applications Corporation (NETAC; Pittsburgh) is to support scientific development of bioremediation technology. NETAC is a non-profit corporation formed in 1988 through a cooperative agreement between EPA and the University of Pittsburgh Trust. Its overall mission is to accelerate development, application and commercialization of priority environmental technologies for national and international markets. NETAC provides technical and business expertise to assist in evaluating, commercializing and publicizing new environmental technologies. The organization assumes no financial interest in any technology but provides independent third-party support and analysis on a fee-for-service basis to technology users and developers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.D.
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less
NASA Astrophysics Data System (ADS)
László, Gömze A.
2013-12-01
Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.
ERIC Educational Resources Information Center
Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.
Water is one of the natural resources vital to any agricultural system. This material was developed in support of the Iowa Agricultural Science, Technology and Marketing (ASTM) program, focusing on groundwater educational concepts related to the 1987 Iowa Groundwater Protection Act. This material was designed to assist teachers in providing…
ERIC Educational Resources Information Center
Sanders, Mark
1999-01-01
Graphic Communication Electronic Publishing Project supports a Web site (http://TechEd.vt.edu/gcc/) for graphic communication teachers and students, providing links to Web materials, conversion of print materials to electronic formats, and electronic products and services including job listings, resume posting service, and a listserv. (SK)
NASA Astrophysics Data System (ADS)
Taranenko, L.; Janouch, F.; Owsiacki, L.
2001-06-01
This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Nano-technology and nano-toxicology.
Maynard, Robert L
2012-01-01
Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.
Nano-technology and nano-toxicology
Maynard, Robert L.
2012-01-01
Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021
Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.
2007-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.
Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Burks, K. H.; Perry M. R.; Cooper, R. W.; Fiske, M. R.
2006-01-01
For long duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them including habitats, laboratories, berms, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Habitat Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and planned efforts for FY06 will also be presented.
Technology initiatives with government/business overlap
NASA Astrophysics Data System (ADS)
Knapp, Robert H., Jr.
2015-03-01
Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.
Data from Dr. Douglas Matson's aerodynamic levitator being analy
2017-10-20
Sangho Jeon (Tufts University), Thomas Leitner (Graz University of Technology), and Trudy Allen analyze data from Dr. Douglas Matson's aerodynamic levitator in support of his MaterialsLab experiments.
The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorrell, C.A.
1997-04-01
In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
Material Recovery and Waste Form Development FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry Allen; Braase, Lori Ann
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less
study on trace contaminants control assembly for sealed environment chamber
NASA Astrophysics Data System (ADS)
Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.
The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C
Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2011-01-01
Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings, and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.
NASA Technical Reports Server (NTRS)
Meyer Sedej, M.
1985-01-01
A supercritical water oxidation system (SCWOS) offers several advantages for a lunar base environmental control/life support system (ECLSS) compared to an ECLSS based on Space Station technology. In supercritically heated water (630 K, 250 atm) organic materials mix freely with oxygen and undergo complete combustion. Inorganic salts lose solubility and precipitate out. Implementation of SCWOS can make an ECLSS more efficient and reliable by elimination of several subsystems and by reduction in potential losses of life support consumables. More complete closure of the total system reduces resupply requirements from the earth, a crucial cost item in maintaining a lunar base.
ERA-MIN: The European network (ERA-NET) on non-energy raw materials
NASA Astrophysics Data System (ADS)
vidal, o.; christmann, p.; Bol, d.; Goffé, b.; Groth, m.; Kohler, e.; Persson Nelson, k.; Schumacher, k.
2012-04-01
Non-energy raw materials are vital for the EU's economy, and for the development of environmentally friendly technologies. The EU is the world's largest consumers of non-energy minerals, but it remains dependent on the importation of many metals, as its domestic production is limited to about 3% of world production. We will present the project ERA-MIN, which is an ERA-NET on the Industrial Handling of Raw Materials for European industries, financially supported by the European Commission. The main objectives of ERA-MIN are: 1) Mapping and Networking: interconnecting the members of the currently fragmented European mineral resources research area, to the aim of fostering convergence of public research programs, industry, research institutes, academia and the European Commission, 2) Coordinating: establishing a permanent mechanism for planning and coordination of the European non-energy mineral raw materials research community (ENERC). 3) Roadmapping: defining the most important scientific and technological challenges that should be supported by the EU and its state members, 4) Programming: designing a Joint European Research Programme model and implementating it into a call for proposals open to academic and industrial research. The topics of interest in ERA-MIN are the primary continental and marine resources, the secondary resources and their related technologies, substitution and material efficiency, along with transversal topics such as environmental impact, public policy support, mineral intelligence, and public education and teaching. Public scientific research is very central in the scope of the ERA-MIN activity, whose consortium is indeed lead by a public organisation of fundamental research. Thus, universities and public research organisations are warmly invited to play an active role in defining the scientific questions and challenges that shall determine the European Raw Materials Roadmap and should be addressed by joint programming at the European scale. The various levels of possible involvement in ERA-MIN for the interested stakeholders will be presented.
Optical density and photonic efficiency of silica-supported TiO2 photocatalysts.
Marugán, J; Hufschmidt, D; Sagawe, G; Selzer, V; Bahnemann, D
2006-02-01
Over the last years, many research groups have developed supported TiO2-based materials in order to improve the engineering applications of photocatalytic technologies. However, not many attempts have been made to evaluate the optical behavior of these materials. This work focuses on the study of the photonic efficiencies of silica-supported TiO2 photocatalysts following the photodegradation of dichloroacetic acid (DCA) as model compound. Catalysts with different types of silica support and titania loadings were tested and their activity was found to be in correlation with the results of the clusters size distribution of the TiO2 nanocrystals. The photonic efficiency of the supported photocatalysts depends extremely on the optical density of the solid suspensions. Influence of the textural properties of the support and the titania loading on the optical density as well as on the photonic efficiency of the materials are discussed. The dependence of the absorption of radiation by the suspension on the catalyst concentration is also analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, DR
2000-12-11
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less
Creating energy citizenship through material participation
Ryghaug, Marianne; Skjølsvold, Tomas Moe
2018-01-01
Transitions towards low-carbon energy systems will be comprehensive and demanding, requiring substantial public support. One important contribution from STS is to highlight the roles of citizens and public engagement. Until recently, energy users have often been treated as customers and passive market actors, or as recipients of technology at the margins of centralized systems. With respect to the latter role, critical or hesitant public action has been explained in terms of NIMBYism and knowledge deficits. This article focuses on the production of energy citizenship when considering public participation in low-carbon energy transitions. We draw upon the theory of ‘material participation’ to highlight how introducing and using emergent energy technologies may create new energy practices. We analyze an ongoing introduction of new material objects, highlighting the way these technologies can be seen as material interventions co-constructing temporalities of new and sustainable practices. We argue that artefacts such as the electric car, the smart meter and photovoltaic panels may become objects of participation and engagement, and that the introduction of such technologies may foster material participation and energy citizenship. The paper concludes with a discussion about the role of policies for low-carbon energy transitions on the making of energy citizenship, as well as limits of introducing a materially based energy citizenship. PMID:29648504
Creating energy citizenship through material participation.
Ryghaug, Marianne; Skjølsvold, Tomas Moe; Heidenreich, Sara
2018-04-01
Transitions towards low-carbon energy systems will be comprehensive and demanding, requiring substantial public support. One important contribution from STS is to highlight the roles of citizens and public engagement. Until recently, energy users have often been treated as customers and passive market actors, or as recipients of technology at the margins of centralized systems. With respect to the latter role, critical or hesitant public action has been explained in terms of NIMBYism and knowledge deficits. This article focuses on the production of energy citizenship when considering public participation in low-carbon energy transitions. We draw upon the theory of 'material participation' to highlight how introducing and using emergent energy technologies may create new energy practices. We analyze an ongoing introduction of new material objects, highlighting the way these technologies can be seen as material interventions co-constructing temporalities of new and sustainable practices. We argue that artefacts such as the electric car, the smart meter and photovoltaic panels may become objects of participation and engagement, and that the introduction of such technologies may foster material participation and energy citizenship. The paper concludes with a discussion about the role of policies for low-carbon energy transitions on the making of energy citizenship, as well as limits of introducing a materially based energy citizenship.
DOT National Transportation Integrated Search
2002-07-25
The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...
Carbon nanocages: A new support material for Pt catalyst with remarkably high durability
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-01-01
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614
Facilitating Collaboration, Knowledge Construction and Communication with Web-Enabled Databases.
ERIC Educational Resources Information Center
McNeil, Sara G.; Robin, Bernard R.
This paper presents an overview of World Wide Web-enabled databases that dynamically generate Web materials and focuses on the use of this technology to support collaboration, knowledge construction, and communication. Database applications have been used in classrooms to support learning activities for over a decade, but, although business and…
An Overview of Integrated Logistic Support in Medical Material Programs.
1980-12-01
OF MEDICAL INTEGRATED LOGISTIC SUPPORT ----------------- 7 B. PROBLEM DEFINITION AND OBJECTIVE ------------ 9 C. GENERAL APPROACH AND METHODOLOGY...SYSTEM ---------------------- 61 C. GENERAL CONCLUSIONS ------------------------- 63 D. RECOMMENDATIONS ----------------------------- 73 E. CONCLUSION...21 Technological advancement has caused major changes in medicine and dentistry in the last several decades. Inten- sive care units, computerized axial
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
Oliveira, Ana Emília F; França, Rômulo M; Castro Júnior, Eurides F; Baesse, Deborah C L; Maia, Mariana F L; Ferreira, Elza B
2015-01-01
The world is experiencing the popularization of mobile devices. This was made possible by the increasing technological advances and the advent of the Internet as a communication and information tool. These facts demonstrate that the development of applications compatible with such devices is an effective way to provide content to diverse audiences. In the educational field, these devices can be seen as technological support artifacts for distance education, serving as strategy for continuous and permanent education for health professionals. The Open University of Brazilian National Health System (UNA-SUS) offers distance learning courses, including specializating on free access. In order to increase the public reach, UNA-SUS developed mobile applications as supporting material for students. These applications can be accessed in offline mode, increasing the accessibility and therefore, improving the efficiency of the material. The 28 applications developed with responsive online books format currently reached the milestone of over 6,000 downloads. This number shows the positive acceptance of the format used, accentuated by the ease of having material downloaded from the device, not requiring the user to be connected to access content.
NASA Technical Reports Server (NTRS)
Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.
2000-01-01
NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.
Materials Degradation and Detection (MD2): Deep Dive Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep
2013-02-01
An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas ismore » discussed in the paper.« less
Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Hodgson, Ed; Stephan, Ryan
2010-01-01
Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further significant mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by managing the location of the liquid and the solid in the heat sink to eliminate the melting and freezing pressure of wax and water, respectively, while also accommodating the high structural loads expected on future manned launch vehicles.
The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2011-01-01
One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.
Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste
NASA Astrophysics Data System (ADS)
Ishak, Aulia; Ali, Amir Yazid bin
2017-12-01
The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.
ERIC Educational Resources Information Center
Carr, Jo Ann, Ed.
Curriculum Materials Centers (CMCs), resource centers that support teacher education programs, are facing many challenges, including maintaining funding, meeting increased expectations, and coping with changes in technology. This volume covers a wide range of management issues from the perspective of 18 librarians, including practical advice on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-01
This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials,more » processes, and device structure and characterization techniques.« less
Review of Potential Wind Tunnel Balance Technologies
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.
2016-01-01
This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.
Report of the In Situ Resources Utilization Workshop
NASA Technical Reports Server (NTRS)
Fairchild, Kyle (Editor); Mendell, Wendell W. (Editor)
1988-01-01
The results of a workshop of 50 representatives from the public and private sector which investigated the potential joint development of the key technologies and mechanisms that will enable the permanent habitation of space are presented. The workshop is an initial step to develop a joint public/private assessment of new technology requirements of future space options, to share knowledge on required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. The majority of the material was produced in 5 working groups: (1) Construction, Assembly, Automation and Robotics; (2) Prospecting, Mining, and Surface Transportation; (3) Biosystems and Life Support; (4) Materials Processing; and (5) Innovative Ventures. In addition to the results of the working groups, preliminary technology development recommendations to assist in near-term development priority decisions are presented. Finally, steps are outlined for potential new future activities and relationships among the public, private, and academic sectors.
Advanced nanomaterials–sustainable preparation and their catalytic applications
Sustainable nanomaterials have attracted great attention as highly functionalized nanocatalysts in diverse forms including solid-supported nanocatalysts, graphene materials, and core-shell catalysts among other nanostructures. Technology advancements in last decades have allowed ...
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Power systems for production, construction, life support and operations in space
NASA Technical Reports Server (NTRS)
Sovie, Ronald J.
1988-01-01
As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.
Power systems for production, construction, life support, and operations in space
NASA Technical Reports Server (NTRS)
Sovie, Ronald J.
1988-01-01
As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed.
Hasegawa, Tomoyuki; Kojima, Haruna; Masu, Chisato; Fukushima, Yasuhiro; Kojima, Hironori; Konokawa, Kiminori; Isobe, Tomonori; Sato, Eisuke; Murayama, Hideo; Maruyama, Koichi; Umeda, Tokuo
2010-01-01
Physics-related subjects are important in the educational fields of radiological physics and technology. However, conventional teaching tools, for example texts, equations, and two-dimensional figures, are not very effective in attracting the interest of students. Therefore, we have created several multimedia educational materials covering radiological physics and technology. Each educational presentation includes several segments of high-quality computer-graphic animations designed to attract students' interest. We used personal computers (PCs) and commercial software to create and compile these. Undergraduate and graduate students and teachers and related professionals contributed to the design and creation of the educational materials as part of student research. The educational materials can be displayed on a PC monitor and manipulated with popular free software. Opinion surveys conducted in undergraduate courses at Kitasato University support the effectiveness of our educational tools in helping students gain a better understanding of the subjects offered and in raising their interest.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.
1981-01-01
Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.
ERIC Educational Resources Information Center
Mayisela, Tabisa
2013-01-01
Mobile technology is increasingly being used to support blended learning beyond computer centres. It has been considered as a potential solution to the problem of a shortage of computers for accessing online learning materials (courseware) in a blended learning course. The purpose of the study was to establish how the use of mobile technology…
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. U1304111), Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 14HASTIT039), and the Innovation Team of Henan University of Science and Technology, China (Grant No. 2015XTD001)
ERIC Educational Resources Information Center
Rienties, Bart; Giesbers, Bas; Lygo-Baker, Simon; Ma, Hoi Wah Serena; Rees, Roger
2016-01-01
After a decade of virtual learning environments (VLEs) in higher education, many teachers still use only a minimum of its affordances. This study looked at how academic staff interacted with a new and unknown VLE in order to understand how technology acceptance and support materials influence (perceived and actual) task performance. In an…
Idaho Science, Technology, Engineering and Mathematics Overview
None
2017-12-09
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
Technological Change and the Material Conditions of the Literate Practice of Medicine.
ERIC Educational Resources Information Center
Dutcher, Violet A.
A study, to support the need for exploratory research, was designed to elicit a description of the medical chart located in its setting--the chart was looked "through" as a tool (as a means to an end to effect particular medical goals) and looked "at" itself as technology. This could provide a way to understand the relationship…
Idaho Science, Technology, Engineering and Mathematics Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P
2011-02-11
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
NASA GRC Technology Development Project for a Stirling Radioisotope Power System
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2000-01-01
NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.
NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Wong, Wayne A.
2015-01-01
A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.
Managing critical materials with a technology-specific stocks and flows model.
Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy
2014-01-21
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.
Managing Critical Materials with a Technology-Specific Stocks and Flows Model
2013-01-01
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245
FY2017 Materials Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Felix; Gibbs, Jerry; Kleinbaum, Sarah
The Materials Technology subprogram supports the Vehicle Technology Office’s mission to help consumers and businesses reduce their transportation energy costs while meeting or exceeding vehicle performance expectations. The Propulsion Materials research portfolio seeks to develop higher performance materials that can withstand increasingly extreme environments and address the future properties needs of a variety of high efficiency powertrain types, sizes, fueling concepts, and combustion modes. Advanced Lightweight Materials research enables improvements in fuel economy by providing properties that are equal to or better than traditional materials at a lower weight. Because it takes less energy to accelerate a lighter object, replacingmore » cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg), aluminum (Al), and polymer composites can directly reduce a vehicle’s fuel consumption. Materials technology activities focus on the following cost and performance targets: (1) enable a 25 percent weight reduction for light-duty vehicles including body, chassis, and interior as compared to a 2012 baseline at no more than a $5/lb-saved increase in cost; and (2) validate a 25 percent improvement in high temperature (300°C) component strength relative to components made with 2010 baseline cast Al alloys (A319 or A356) for improved efficiency light-duty engines.« less
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Japan's technology and manufacturing infrastructure
NASA Astrophysics Data System (ADS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-02-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Japan's technology and manufacturing infrastructure
NASA Technical Reports Server (NTRS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-01-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Innovative Competencies of Mining engineers in Transition to the Sustainable Development
NASA Astrophysics Data System (ADS)
Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery
2017-11-01
The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.
Additive Construction with Mobile Emplacement (ACME)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.
Proceedings of the sixth annual conference on fossil energy materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W
2007-11-30
This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less
United States Automotive Materials Partnership LLC (USAMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States Automotive Materials Partnership
2011-01-31
The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunitiesmore » for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.« less
Technology-assisted psychoanalysis.
Scharff, Jill Savege
2013-06-01
Teleanalysis-remote psychoanalysis by telephone, voice over internet protocol (VoIP), or videoteleconference (VTC)-has been thought of as a distortion of the frame that cannot support authentic analytic process. Yet it can augment continuity, permit optimum frequency of analytic sessions for in-depth analytic work, and enable outreach to analysands in areas far from specialized psychoanalytic centers. Theoretical arguments against teleanalysis are presented and countered and its advantages and disadvantages discussed. Vignettes of analytic process from teleanalytic sessions are presented, and indications, contraindications, and ethical concerns are addressed. The aim is to provide material from which to judge the authenticity of analytic process supported by technology.
NASA Technical Reports Server (NTRS)
Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.
1983-01-01
The field of telepresence is defined and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA' plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included.
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.
1979-01-01
The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.
1993-04-16
and A. Ishitani AUTHOR INDEX 495 SUBJECT INDEX 499 *Invited Paper x Preface This symposium showcased the advancement in processing technology and...Layers of this thickness still are in advance of current fabrication technology , but do now appear to be within the bounds of possibility. Figure 6...Krusor of Xerox PARC for technical assistance. This work has been supported in part by the Department of Commerce Advanced Technology Program
NASA Astrophysics Data System (ADS)
Slenzka, Klaus; Duenne, Matthias
Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and technological verification before routine use under extreme conditions during solar system exploration.
Ballast degradation characterized through triaxial test : research results.
DOT National Transportation Integrated Search
2016-06-01
Transportation Technology Center, Inc. (TTCI) : has supported the development of a large-scale : triaxial test device (Figure 1) for testing ballast : size aggregate materials at the University of : Illinois at Urbana-Champaign (UIUC). This new : tes...
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.
2008-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember s health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, realtime EVA.
Results of the Trace Contaminant Control Trade Study for Space Suit Life Support Development
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.
2009-01-01
As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember's health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, real-time EVA.
Dish concentrators for solar thermal energy: Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
The governments of the United States, Japan, West Germany, France, and the United Kingdom each have large research and development efforts involving government agencies, universities and industry. This document provides a comparative overview of policies and programs which contribute to the development of technologies in the general area of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek
2015-07-01
The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Manned Orbital Transfer Vehicle (MOTV). Volume 6: Five year program plan
NASA Technical Reports Server (NTRS)
Boyland, R. E.; Sherman, S. W.; Morfin, H. W.
1979-01-01
The five year program plan for the manned orbit transfer vehicle (MOTV) is presented. The planning, schedules, cost estimates, and supporting data (objectives, constraints, assumptions, etc.) associated with the development of the MOTV are discussed. The plan, in addition to the above material, identifies the supporting research and technology required to resolve issues critical to MOTV development.
MATERIALS SUPPORTING THE NEW RECREATIONAL ...
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures. The methods are supported by a series of epidemiology studies evaluating the rate of GI illness resulting from swimming events. Implementation of BEACH Act amendments
Assessment of Student Learning in Virtual Spaces, Using Orders of Complexity in Levels of Thinking
ERIC Educational Resources Information Center
Capacho, Jose
2017-01-01
This paper aims at showing a new methodology to assess student learning in virtual spaces supported by Information and Communications Technology-ICT. The methodology is based on the Conceptual Pedagogy Theory, and is supported both on knowledge instruments (KI) and intelectual operations (IO). KI are made up of teaching materials embedded in the…
Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage
NASA Technical Reports Server (NTRS)
Sibille, L.; Carpenter, P.; Schlagheck, R.; French, R. A.
2006-01-01
Experience gained during the Apollo program demonstrated the need for extensive testing of surface systems in relevant environments, including regolith materials similar to those encountered on the lunar surface. As NASA embarks on a return to the Moon, it is clear that the current lunar sample inventory is not only insufficient to support lunar surface technology and system development, but its scientific value is too great to be consumed by destructive studies. Every effort must be made to utilize standard simulant materials, which will allow developers to reduce the cost, development, and operational risks to surface systems. The Lunar Regolith Simulant Materials Workshop held in Huntsville, AL, on January 24 26, 2005, identified the need for widely accepted standard reference lunar simulant materials to perform research and development of technologies required for lunar operations. The workshop also established a need for a common, traceable, and repeatable process regarding the standardization, characterization, and distribution of lunar simulants. This document presents recommendations for the standardization, production and usage of lunar regolith simulant materials.
Floating the Ball: Advances in the Technology of Electrostatic Levitation
NASA Technical Reports Server (NTRS)
Rogers, Jan R.
2006-01-01
Electrostatic Levitation (ESL) is an emerging technology. The MSFC ESL is a NASA facility that supports investigations of refractory solids and melts. The facility can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. Containerless processing via ESL provides a high-purity environment for the study of high temperature materials and access to metastable states. Scientific topics investigated in the facility include nucleation, undercooling, metastable state formation and metallic glass formation. Additionally, the MSFC ESL provides data for the determination of phase diagrams, time-temperature-transition diagrams, viscosity, surface tension, density, heat capacity and creep resistance. In order to support a diverse research community, the MSFC ESL facility has developed a number of technical capabilities, including a portable system for in situ studies of structural tran$hrmations during processing at the high-energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory. The capabilities of the MSFC ESL facilities will be discussed and selected results of materials processing and characterization studies will be presented.
High-frequency effects in antiferromagnetic Sr3Ir2O7
NASA Astrophysics Data System (ADS)
Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Ionita, Ciprian N; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R; Xiang, Jianping; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Meng, Hui; Rudin, Stephen
2014-03-13
Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.
NASA Astrophysics Data System (ADS)
Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen
2014-03-01
Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.
Physics teaching in developing countries
NASA Astrophysics Data System (ADS)
Talisayon, V. M.
1984-05-01
The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep
The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less
NASA Astrophysics Data System (ADS)
Chang, En-Chih
2018-02-01
This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.
ERIC Educational Resources Information Center
Practical Concepts, Inc., Washington, DC.
This volume contains the raw data and descriptive materials which form the basis of Volume I, "Analysis of the Demonstration." The information is divided into three categories: (1) description of the overall study plan, (2) compendium of user reaction to program, and (3) a chronology of critical events and their documentary basis. A…
NASA Technical Reports Server (NTRS)
1982-01-01
Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.
NASA Astrophysics Data System (ADS)
Yoshida, Toyonobu
2013-02-01
As the successor to Professor Teruo Kishi, the former Editor-in-Chief of Science and Technology of Advanced Materials (STAM), I would like to share some of STAM's journal history with our readers. STAM was launched in 2000 with the financial support of the Japanese Ministry of Education, Culture, Sports, Science and Technology in recognition of a strong need for an international journal that would be distributed and read across the globe. Five years later, the publication of STAM was transferred to the National Institute for Materials Science (NIMS) under the initiative of Professor Kishi. As a result of his work, STAM is now positioned as a high-impact journal, 3.512 as listed by the ISI 2011 Science Citation Index Journal Citation Report, with a much higher and faster growth than when I was participating as a co-founder in the past. STAM is well known as a successful open-access journal since shifting from the initial subscription model in 2008. As an editor, I would like to emphasize that STAM will continue to publish with a sense of social mission as an academic journal, allowing space for researchers to contribute to the sustainable development of society and health. However, some contribution from authors would assist us in creating a sustainable journal publishing model, and further enhance services to authors and readers of STAM. With this in mind, I would like to state that STAM's editorial board is planning to introduce an article processing charge from July 2013, in addition to NIMS' continuing financial support. One of our new editorial policies is to aim for reader-oriented publishing. I believe that academic journal publishing can take the role of navigator in advancing the development of materials. Among the many other scientific journals, STAM will lead the rapid growth in materials science, inspiring research into new materials for the future and leading the next generation of materials science and technology. It is my honor to work with members of the editorial board and regional board for the continuing success of STAM. I would like to take this opportunity to thank all my colleagues for their support as authors, reviewers and readers, and for their enthusiasm, cooperation and editorial excellence.
Supply Support of Air Force 463L Equipment: An Analysis of the 463L equipment Spare Parts Pipeline
1989-09-01
service; and 4) the order processing system created inherent delays in the pipeline because of outdated and indirect information systems and technology. Keywords: Materials handling equipment, Theses. (AW)
Efficient Visible Photoluminescence from Self-Assembled Ge QDs Embedded in Silica Matrix
NASA Astrophysics Data System (ADS)
Samavati, Alireza; Samavati, Zahra; Ismail, A. F.; Othman, M. H. D.; Rahman, M. A.; Zulhairun, A. K.
2017-06-01
Not Available Supported by the Advanced Membrane Technology Research Center of the Universities Teknologi Malaysia under Grant No R.J130000.7609.4C112, the Postdoctoral Grant, and the Frontier Materials Research Alliance.
Flexible Electronics Development Supported by NASA
NASA Technical Reports Server (NTRS)
Baumann, Eric
2014-01-01
The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.
Mining and beneficiation: A review of possible lunar applications
NASA Technical Reports Server (NTRS)
Chamberlain, Peter G.
1991-01-01
Successful exploration of Mars and outer space may require base stations strategically located on the Moon. Such bases must develop a certain self-sufficiency, particularly in the critical life support materials, fuel components, and construction materials. Technology is reviewed for the first steps in lunar resource recovery-mining and beneficiation. The topic is covered in three main categories: site selection; mining; and beneficiation. It will also include (in less detail) in-situ processes. The text described mining technology ranging from simple diggings and hauling vehicles (the strawman) to more specialized technology including underground excavation methods. The section of beneficiation emphasizes dry separation techniques and methods of sorting the ore by particle size. In-situ processes, chemical and thermal, are identified to stimulate further thinking by future researchers.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Cheng, Yingwen; Duan, Wentao
2015-12-04
PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flowmore » batteries. A perspective on future research and the synergy between the two technologies are also discussed.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
NASA Technical Reports Server (NTRS)
1973-01-01
The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.
Publications of the NASA Controlled Ecological Life Support System (CELSS) Program, 1979-1989
NASA Technical Reports Server (NTRS)
Wallace, Janice S.; Powers, Janet V.
1990-01-01
Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) Program from 1979 to 1989 are listed. The CELSS Program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life. The bibliography is divided into four major subject areas: food production, nutritional requirements, waste management, and systems management and control.
Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrick, Adam
The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less
Advanced Industrial Materials Program
NASA Astrophysics Data System (ADS)
Stooksbury, F.
1994-06-01
The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.
Economic efficiency of application of innovative materials and structures in high-rise construction
NASA Astrophysics Data System (ADS)
Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly
2018-03-01
The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony D. Rollett; Hasso Weiland; Mohammed Alvi
Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that willmore » provide a scientific basis for shortening processing times and consuming less energy during annealing.« less
Earth Remote Sensing: What is it Really? What to do with it?
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
1998-01-01
NASA!s Earth Sciences Program supports a wide range of endeavors in basic Earth system scientific research, technology development to support that research, development of materials and training for educators and students based on that research and information, and increasingly practical applications. A brief overview of the scope of this scientific research and the key features of the necessary remote sensing instrumentation will be given. I will also describe available educational materials and training courses for a wide range of grade levels. Information will be provided on how to obtain educational materials or to participate in a training course. Finally, a few examples will be given to illustrate how Earth remote sensing effects our daily life.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
Some functional properties of composite material based on scrap tires
NASA Astrophysics Data System (ADS)
Plesuma, Renate; Malers, Laimonis
2013-09-01
The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.
2004 research briefs :Materials and Process Sciences Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, Michael J.
2004-01-01
This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less
Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg
2001-01-01
As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.
(abstract) Formal Inspection Technology Transfer Program
NASA Technical Reports Server (NTRS)
Welz, Linda A.; Kelly, John C.
1993-01-01
A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.
Nonlinear Optical Properties of Traditional and Novel Materials
NASA Astrophysics Data System (ADS)
Krupa, Sean J.
Nonlinear optical processes are an excellent candidate to provide the heralded, indistinguishable, or entangled photons necessary for development of quantum mechanics based technology which currently lack bright sources of these photons. In order to support these technologies, and others, two classes of materials: traditional and novel, were investigated via optical characterization methods with goal of gaining insight into which materials and experimental conditions yield the greatest nonlinear optical effects. Optical characterization of periodically poled lithium niobate (PPLN) helped support the development of a simple, efficient photon pair source that could be easily integrated into optical networks. Additionally, an in-situ measurement of the 2nd order nonlinear optical coefficient was developed to aid in the characterization of PPLN pair sources. Lastly, an undergraduate demonstration of quantum key distribution was constructed such that students could see the primary application for PPLN photon pair sources in an affordable, approachable demonstration. A class of novel optical materials known as 2D materials has been identified as potential replacements to the traditional nonlinear optical materials discussed in Part I. Through optical characterization of second harmonic generation (SHG) the ideal conditions for spontaneous parametric downconversion were established as well as signal thresholds for successful detection. Attempts to observe SPDC produces hints that weak generate SPDC may be present in WS2 samples however this is incredibly difficult to confirm. As growth techniques of 2D materials improve, a photonic device constructed from these materials may be possible, however it will need some mechanism e.g. stacking, a cavity, etc. to help enhance the SPDC signal.
NASA Research to Support the Airlines
NASA Technical Reports Server (NTRS)
Mogford, Richard
2016-01-01
This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
The Hidden Technology: Dictation Systems.
ERIC Educational Resources Information Center
Barton, Kathy; And Others
This booklet provides business and office teachers with background information, supporting materials, recruiting techniques, and a suggested unit plan that integrates the concepts related to dictation systems into information processing curricula. An "Introduction" (Donna Everett) discusses the need for dictation skills. "Need for Dictation…
Bibliography on the Design and Performance of Rail Track Structures
DOT National Transportation Integrated Search
1974-01-01
This bibliography was prepared as part of the Rail Supporting Technology Program being sponsored by the Rail Programs Branch of the Urban Mass Transportation Administration. It is based on the reference material that was used to evaluate the technica...
Advance Manufacturing Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.
Advanced composite fuselage technology
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.
1993-01-01
Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.
Low Gravity Materials Science Research for Space Exploration
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.
2004-01-01
On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.
Advanced-technology space station study: Summary of systems and pacing technologies
NASA Technical Reports Server (NTRS)
Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.
1990-01-01
The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.
NEIS (NASA Environmental Information System)
NASA Technical Reports Server (NTRS)
Cook, Beth
1995-01-01
The NASA Environmental Information System (NEIS) is a tool to support the functions of the NASA Operational Environment Team (NOET). The NEIS is designed to provide a central environmental technology resource drawing on all NASA centers' capabilities, and to support program managers who must ultimately deliver hardware compliant with performance specifications and environmental requirements. The NEIS also tracks environmental regulations, usages of materials and processes, and new technology developments. It has proven to be a useful instrument for channeling information throughout the aerospace community, NASA, other federal agencies, educational institutions, and contractors. The associated paper will discuss the dynamic databases within the NEIS, and the usefulness it provides for environmental compliance efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percentmore » of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.« less
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
New Materials for Structural Composites and Protective Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.
2016-08-11
INSTITUTE | CARNEGIE MELLON UNIVERSITY [Distribution Statement A] This material has been approved for public release and unlimited distribution...Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721...05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded research and development
Making Microscopic Cubes Of Boron
NASA Technical Reports Server (NTRS)
Faulkner, Joseph M.
1993-01-01
Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.
Overview of ESA life support activities in preparation of future exploration
NASA Astrophysics Data System (ADS)
Lasseur, Christophe; Paille, Christel
2016-07-01
Since 1987, the European Space Agency has been active in the field of Life Support development. When compare to its international colleagues, it is clear that ESA started activities in the field with a "delay of around 25 years. Due to this situation and to avoid duplication, ESA decided to focus more on long term manned missions and to consider more intensively regenerative technologies as well as the associated risks management ( e.g. physical, chemical and contaminants). Fortunately or not, during the same period, no clear plan of exploration and consequently not specific requirements materialized. This force ESA to keep a broader and generic approach of all technologies. Today with this important catalogue of technologies and know-how, ESA is contemplating the different scenario of manned exploration beyond LEO. In this presentation we review the key scenario of future exploration, and identify the key technologies who loo the more relevant. An more detailed status is presented on the key technologies and their development plan for the future.
Foxon, Timothy J
2010-07-28
This paper addresses the probable levels of investment needed in new technologies for energy conversion and storage that are essential to address climate change, drawing on past evidence on the rate of cost improvements in energy technologies. A range of energy materials and technologies with lower carbon emissions over their life cycle are being developed, including fuel cells (FCs), hydrogen storage, batteries, supercapacitors, solar energy and nuclear power, and it is probable that most, if not all, of these technologies will be needed to mitigate climate change. High rates of innovation and deployment will be needed to meet targets such as the UK's goal of reducing its greenhouse gas emissions by 80 per cent by 2050, which will require significant levels of investment. Learning curves observed for reductions in unit costs of energy technologies, such as photovoltaics and FCs, can provide evidence on the probable future levels of investment needed. The paper concludes by making recommendations for policy measures to promote such investment from both the public and private sectors.
Progress in MMIC technology for satellite communications
NASA Technical Reports Server (NTRS)
Haugland, Edward J.; Leonard, Regis F.
1987-01-01
NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.
Controlled Ecological Life Support System: Regenerative Life Support Systems in Space
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.
1987-01-01
A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.
A Modern Explorer's Journey - using events for innovative multipurpose educational outreach
NASA Astrophysics Data System (ADS)
Lilja Bye, Bente
2014-05-01
Earth observations are important across the specter of geo-sciences. The Group on Earth Observations (GEO) is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. The lack of dedicated funding to support specific Science &Technology activities in support of GEOSS is one of the most important obstacles to engaging the Science &Technology communities in its implementation. Finding resources to outreach and capacity building is likewise a challenge. The continuation of GEO and GEOSS rely on political support which again is influenced by public opinions. The GEO Ministerial Summit in 2014 was an event that both needed visibility and represented an opportunity to mobilize the GEO community in producing outreach and educational material. Through the combined resources from two of GEO tasks in the GEO work plan, a multipurpose educational outreach project was planned and executed. This project addressed the following issues: How can the GEO community mobilize resources for its work plan projects in the Societal Benefit Area Water? How can we produce more educational and capacity building material? How can the GEO community support the GEO secretariat related to public relations (material and otherwise) Based on activities described in the GEO work plan, a showcase video and online campaign consisting on a series of webinars were developed and produced. The video and webinars were linked through a common reference: the water cycle. Various aspects of the water cycle ranging from general to more technical and scientific education were covered in the webinars, while the video called A Modern Explorer's Journey focused on story telling with a more emotional appeal. The video was presented to the Ministers at the GEO Ministerial Summit and distributed widely to the GEO community and through social media and articles (as embedded YouTube and more). A discussion of challenges and successes of this event-based educational outreach project will be presented. Continued use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community. Lessons learned need to be provided continuously and this project add to this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
Planetary Protection Considerations for Life Support and Habitation Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Hogan, John A.
2010-01-01
Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.
Supporting Collective Inquiry: A Technology Framework for Distributed Learning
NASA Astrophysics Data System (ADS)
Tissenbaum, Michael
This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in making timely and effective use of the community's knowledge base, towards producing solutions to sophisticated, ill defined problems in the domain of physics. Video analysis examined whether S3 supported teacher orchestration, freeing him to focus less on classroom management and more on students' inquiry. Three important outcomes of this research are a set of design principles for DTEL environments, a specific technology infrastructure (S3), and a DTEL research framework.
Differentiating between Distance/Open Education Systems: Parameters for Comparison.
ERIC Educational Resources Information Center
Guri-Rozenblit, Sarah
1993-01-01
Suggests eight parameters as criteria for describing and comparing distance education/open learning institutions: target population, dimensions of openness, organizational structure, design and development of learning materials, use of advanced technology, teaching/tutoring system, student support systems, and interinstitutional collaboration. (35…
MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...
Kramers–Henneberger Form of Strong Field Theory with the Correction of Dipole Approximation
NASA Astrophysics Data System (ADS)
Huo, Yi-Ning; Li, Jian; Ma, Feng-Cai
2018-04-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11274149 and 11304185, and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology under Grant No F12-254-1-00.
The use of technologies in African programmes of population education.
Krystall, A; Johnston, T
1985-06-01
In Africa South of the Sahara, the most commonly expressed purpose of population education, whether in or out of school, is an improved quality of life for the individual, family, community or nation. Use of the technologies available for population education can contribute to the efficiency and effectiveness of the learning process in a variety of ways. A significant contribution of visual and audiovisual media to population education is the power to stimulate visualization and imaginative comprehension, thereby increasing understanding and inducing affective change. Population education programs in schools and teacher training institutions in sub-Saharan Africa seem to rely heavily on the single technology of the printed text. This paper suggests that the initial priority when selecting materials for population education may be to explore the possible advantages of nontext technologies. Visual material loses its power to influence people's attitudes and actions if they are unable to identify with what they see; in some places, adequate localization may have a linguistic dimension. Basing materials on issues of relevance to specific target groups is only part of the task when the educational intent is behavior change. Pre-testing is necessary to determine the overall relevance of media materials for an intended audience. The assumption that educational media must be produced by educational experts has caused planners to make minimal use of other strategies such as: 1) users as producers and 2) professionals as producers. 4 suggestions to contribute to the quality of population education are: 1) for the 2 regional offices to disseminate all population-related materials used at the national level, 2) training for population educators in media use, 3) initiating and supporting comparisons of various technologies, and 4) assisting users to become producers of their own materials.
[The development of hospital medical supplies information management system].
Cao, Shaoping; Gu, Hongqing; Zhang, Peng; Wang, Qiang
2010-05-01
The information management of medical materials by using high-tech computer, in order to improve the efficiency of the consumption of medical supplies, hospital supplies and develop a new technology way to manage the hospital and material support. Using C # NET, JAVA techniques to develop procedures for the establishment of hospital material management information system, set the various management modules, production of various statistical reports, standard operating procedures. The system is convenient, functional and strong, fluent statistical functions. It can always fully grasp and understand the whole hospital supplies run dynamic information, as a modern and effective tool for hospital materials management.
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1990-09-18
Ye. Ponarina; POISK, 22-28 Jun 90] .. ■ ■ 7 People’s Deputies Propose Scientific- Industrial Union [SOVETSKAYA ROSSIYA, 18 May 90] 10...achievements of science and tech- nology in industry and other spheres of life, and for material and technical and financial support for the planned work, and...low: even in machine building it does not exceed 40 percent. Due to the slow penetration in industry of new techno- logical processes and systems
Critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Hodge, P. E.; Lowell, C. E.; Nainiger, J. J.; Schultz, D. F.
1983-01-01
A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
Computer-Based Instruction (CBI): Considerations for a User-Oriented Technology Data Base.
1985-10-14
CBI works primarily because of the systematic attention to instructional material it brings to the development process , and the extent to which quality...looked at CBI software multi-use potential, support and maintenance from a joint service perspective, and described requirements for a software...computer support for some aspect of the instructional process . Personnel involved in other TDAC projects are reviewing commercially available CBI and
NASA Technical Reports Server (NTRS)
1978-01-01
An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.
Magnetic Materials Suitable for Fission Power Conversion in Space Missions
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2012-01-01
Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.
Applied Nanotechnology for Human Space Exploration
NASA Technical Reports Server (NTRS)
Yowell, Leonard L.
2007-01-01
A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.
Advancement of CMOS Doping Technology in an External Development Framework
NASA Astrophysics Data System (ADS)
Jain, Amitabh; Chambers, James J.; Shaw, Judy B.
2011-01-01
The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.
Development of spacecraft toxic gas removal agents
NASA Technical Reports Server (NTRS)
Moore, R. S.
1974-01-01
The development of agents suitable for removal of CO, NH3, NO2 SO2, and other spacecraft contaminants was approached. An extensive technology review was conducted, yielding a large number of potentially useful materials and/or concepts. Because the two toxic gases of greatest interest, CO and NH3, suggested the use of catalysis principles emphasis was placed on the intestigation of transition metals on various supports. Forty-three materials were prepared or obtained and 25 were tested. Gas chromatographic techniques were used to find seven candidates that effectively managed various combinations of the four toxic gases: none managed all. These candidates included six transition metal-containing preparations and a supported LiOH material. Three commercial charcoals showed some efficiency for the toxic gases and may constitute candidates for enhancement by doping with transition metals.
A study on the utilization of advanced composites in commercial aircraft wing structure
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.
Elearn: A Collaborative Educational Virtual Environment.
ERIC Educational Resources Information Center
Michailidou, Anna; Economides, Anastasios A.
Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…
78 FR 26051 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
...; traditional and new media including web initiatives such as social media supported by innovative, increasingly mobile technologies; media relations; call center operations; consumer materials; public information... the media. Provides consultation, advice, and training to CMS' senior staff with respect to relations...
MISESS: Web-Based Examination, Evaluation, and Guidance
ERIC Educational Resources Information Center
Tanrikulu, Zuhal
2006-01-01
Many universities are reevaluating their traditional educational methods and providing pedagogical material through the Internet. Some Web-based systems offer a constructionist learning environment, for example, where students can learn by designing their own objects. Providing effective, convenient technology to support learning is important, and…
75 FR 49429 - Metal and Nonmetal Dams
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... internal water pressures. Pressures beyond a certain level would lead to structural instability. In the 18... foundation and embankment material strengths, and stability analyses to verify that the slopes of the dam..., rationales, benefits to miners, technological and economic feasibility, impact on small mines, and supporting...
A mobile concrete laboratory to support quality concrete, technology transfer, and training.
DOT National Transportation Integrated Search
2016-07-01
This report is a summary of work performed by the Mobile Infrastructure Materials Testing Laboratory (MIMTL) as a part of the Joint : Transportation Research Program (JTRP) through SPR-3858. The development of the MIMTL began in February of 2014 and ...
Orbit transfer rocket engine technology program: Oxygen materials compatibility testing
NASA Technical Reports Server (NTRS)
Schoenman, Leonard
1989-01-01
Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).
USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PEPPER,S.; QUEIROLO, A.; ZENDEL, M.
2007-11-13
The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contactsmore » with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise.« less
Detection of Nuclear Weapons and Materials: Science, Technologies, Observations
2010-06-04
extensive use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured...bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect...SNM by detecting the time pattern of neutron generation. A subcritical mass of highly enriched uranium or weapons-grade plutonium can support a
NASA Technical Reports Server (NTRS)
1983-01-01
The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.
Preparing for an aging population and improving chronic disease management.
Dexter, Paul R; Miller, Douglas K; Clark, Daniel O; Weiner, Michael; Harris, Lisa E; Livin, Lee; Myers, Isaac; Shaw, David; Blue, Lee Ann; Kunzer, John; Overhage, J Marc
2010-11-13
New models of health care delivery are inevitable. There is likely to be increasing emphasis on patient self-monitoring, health care delivery at patient homes, interdisciplinary treatment plans, a greater percentage of medical care delivered by non-physician health professionals, targeted health educational materials, and greater involvement and training of informal caregivers. The Information Technologies (IT) infrastructure of health systems will need to adapt. We have begun sorting out the implications of this future within a County public hospital system: defining the desirable features, relevant technologies, necessary modifications to the network, and additional data elements to be captured. We seek to build an infrastructure that will support new patient-focused technologies designed to more efficiently and effectively support older individuals. We hypothesize utility to further exploring the impact that new health care delivery models will have on health systems' IT infrastructures.
Beddoe, Rachael; Costanza, Robert; Farley, Joshua; Garza, Eric; Kent, Jennifer; Kubiszewski, Ida; Martinez, Luz; McCowen, Tracy; Murphy, Kathleen; Myers, Norman; Ogden, Zach; Stapleton, Kevin; Woodward, John
2009-01-01
A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity's central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and desirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability. PMID:19240221
Iron supported on bioinspired green silica for water remediation.
Alotaibi, Khalid M; Shiels, Lewis; Lacaze, Laure; Peshkur, Tanya A; Anderson, Peter; Machala, Libor; Critchley, Kevin; Patwardhan, Siddharth V; Gibson, Lorraine T
2017-01-01
Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
Task–Technology Fit of Video Telehealth for Nurses in an Outpatient Clinic Setting
Finkelstein, Stanley M.
2014-01-01
Abstract Background: Incorporating telehealth into outpatient care delivery supports management of consumer health between clinic visits. Task–technology fit is a framework for understanding how technology helps and/or hinders a person during work processes. Evaluating the task–technology fit of video telehealth for personnel working in a pediatric outpatient clinic and providing care between clinic visits ensures the information provided matches the information needed to support work processes. Materials and Methods: The workflow of advanced practice registered nurse (APRN) care coordination provided via telephone and video telehealth was described and measured using a mixed-methods workflow analysis protocol that incorporated cognitive ethnography and time–motion study. Qualitative and quantitative results were merged and analyzed within the task–technology fit framework to determine the workflow fit of video telehealth for APRN care coordination. Results: Incorporating video telehealth into APRN care coordination workflow provided visual information unavailable during telephone interactions. Despite additional tasks and interactions needed to obtain the visual information, APRN workflow efficiency, as measured by time, was not significantly changed. Analyzed within the task–technology fit framework, the increased visual information afforded by video telehealth supported the assessment and diagnostic information needs of the APRN. Conclusions: Telehealth must provide the right information to the right clinician at the right time. Evaluating task–technology fit using a mixed-methods protocol ensured rigorous analysis of fit within work processes and identified workflows that benefit most from the technology. PMID:24841219
Mixed Waste Focus Area alternative oxidation technologies development and demonstration program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.; Gombert, D.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology developmentmore » and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Hu, Ting-Jing; Cui, Xiao-Yan; Wang, Jing-Shu; Zhang, Jun-Kai; Li, Xue-Fei; Yang, Jing-Hai; Gao, Chun-Xiao
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374131, 11674404, 11404137, and 61378085), Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. 201201079 and 20150204085GX), Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150221), and Open Project of State Key Laboratory of Superhard Materials (Jilin University), China (Grant No. 201710).
The growth of materials processing in space - A history of government support for new technology
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
1991-02-01
of selected heat shield materials in a plasma arc. - (U) Identify technology requirements for rapid characterization of the geophysical parameters of...NY; Analytical Systems Engineering Corporation, Burlington, MA; Earth Technology Corporation, Seattle, WA; and the Electromagnetic Compatibility...and 1800 nautical miles . The radar system will provide surveillance coverage of the east and west approaches to North America. C. (U) JUSTIFICATION
Improved Durability of SOEC Stacks for High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang
2013-01-01
High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less
Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.
2016-01-01
Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.
NASA Astrophysics Data System (ADS)
Huang, Qi-Zhang; Zhu, Yan-Qing; Shi, Ji-Fu; Wang, Lei-Lei; Zhong, Liu-Wen; Xu, Gang
2017-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 21103194, 51506205, and 21673243), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A010106018 and 2013A011401011), the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505015), the Special Support Program of Guangdong Province, China (Grant No. 2014TQ01N610), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, China (Grant No. y307p81001), and the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province, China (Grant No. 2014B090904071).
NASA Astrophysics Data System (ADS)
Kage, Hiroyuki
New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.
Design protocols and analytical strategies that incorporate structural reliability models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1995-01-01
In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.
Design protocols and analytical strategies that incorporate structural reliability models
NASA Astrophysics Data System (ADS)
Duffy, Stephen F.
1995-08-01
In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.
Graphic arts techniques and equipment: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technology utilization of NASA sponsored projects involving graphic arts techniques and equipment is discussed. The subjects considered are: (1) modification to graphics tools, (1) new graphics tools, (3) visual aids for graphics, and (4) graphic arts shop hints. Photographs and diagrams are included to support the written material.
The Use of Life Cycle Tools to Support Decision Making for Sustainable Nanotechnologies
Nanotechnology is a broad-impact technology with applications ranging from materials and electronics to analytical methods and metrology. The many benefits that can be realized through the utilization of nanotechnology are intended to lead to an improved quality of life. However,...
Information Technology (IT) Ethics: Training and Awareness Materials for the Department of the Navy
2002-06-01
systems, organ transplantation and donation, artificial insemination , and in vitro fertilization. [Ref. 12] Yet another explanation could be that...multitude of ways, whether it be E-mail servers, workplace Internet access, decision support systems, or satellite links. The ubiquitous nature of
[The status and current problems of the radiation protection support for Naval personnel].
Sharaevskiĭ, G Iu; Murin, M B; Belikov, A D; Petrov, O I
1999-07-01
The article focuses on the radiation problems for the Navy personnel dealing with the nuclear and radioactive waste, since the existing standards become obsolete due to some new technologies in the development of the materials, endangering the environment and people's health.
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Southwest Energy Efficiency Project (SWEEP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Howard; Meyers, Jim
SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.
Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K
2009-01-01
In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less
Iles, Alastair; Mulvihill, Martin J
2012-06-05
Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business.
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.
Carbon Nanotubes for Human Space Flight
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Files, Brad; Yowell, Leonard
2003-01-01
Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.
PREFACE: APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology (AMSN08)
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen
2009-09-01
Dear friends To contribute to the enhancement of the international scientific cooperation of the ASEAN countries and in reply to the proposal of the Vietnam Academy of Science and Technology (VAST), the Asia-Pacific Center for Theoretical Physics (APCTP) and the Sub Committee on Materials Science and Technology (SCMST) of the ASEAN Committee of Science and Technology (ASEAN COST) agreed to organize this APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology with the participation of the Ministry of Science and Technology of Vietnam, the Vietnam Academy of Science and Technology, Rencontres du Vietnam, the Vietnam Physical Society, the Vietnam National University in Ho Chi Minh City and the Vietnam National University in Hanoi. As well as the participants from 9 of the 10 ASEAN countries and many other countries/regions of APCTP (Australia, China, Chinese Taipei, Japan and Korea) we warmly welcome the guests from Europe, the United States, Canada and Israel. Without the financial support of the Asia-Pacific Center for Theoretical Physics APCTP, Abdus Salam International Center for Theoretical Physics ICTP, the Asian Office of Aerospace Research and Development AOARD, the US Office of Naval Research Global-Asia ONRG, the Ministry of Science and Technology of Vietnam MOST, the Vietnam Academy of Science and Technology VAST, the Vietnam National University in Ho Chi Minh City VNU HCMC and other Sponsors, we would have been unable to hold this Workshop. On behalf of the International and Local Organizing Committees I would like to express our deep gratitude to the Sponsors. We highly appreciate the support and advice of the members of the International Advisory Committee, the scientific contribution of the invited speakers and all participants. We acknowledge the warm reception of the Khanh Hoa province Administration and citizens, and the hard work of the VAST staff for the success of the Workshop. We cordially wish all participants lively scientific discussions and enjoyable meetings at the Workshop and a pleasant stay in beautiful Nha Trang. We do hope that all foreign participants will take away good impressions of Vietnamese hospitality. Nguyen Van Hieu VAST and APCTP Chairman of the Workshop
Electroactive polymer (EAP) actuators for future humanlike robots
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-03-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
Electroactive Polymer (EAP) Actuators for Future Humanlike Robots
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
A new ion-beam laboratory for materials research at the Slovak University of Technology
NASA Astrophysics Data System (ADS)
Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert
2017-10-01
An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
High pressure and multiferroics materials: a happy marriage
Gilioli, Edmondo; Ehm, Lars
2014-01-01
The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138
Expediency of wet-mix shotcreting in mines of Vostoktsvetmet
NASA Astrophysics Data System (ADS)
Shaposhnik, YuN
2018-03-01
This paper offers a substantiation of the transition from heavy and difficult-to-install steel frame support to the cheaper and simpler reinforced shotcrete lining (at the same bearing-capacity of the support). The process line for the preparation of the shotcrete mix is designed. The author of the paper presents calculation of the material inputs and labor costs of installation of different support types in Kazakhstan Mines. The economic efficiency of the wet-mix shotcrete spraying technology is illustrated in terms of Orlov and Artemevsk Mines.
Commercial potential of space-based plant research
NASA Astrophysics Data System (ADS)
Bula, Raymond J.; Christophersen, Eric
1999-01-01
Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.
Electromagnetic Scattering from a Homogeneous Body of Revolution
1977-11-01
was supported by the Rome Air Development Center through the Deputy of Electronic Technology under Contract/ No. F19628-76-C-0300,’and through the... Air Force Post Doctoral Program under Contract No. F30602-75-0121. DFPARITfENT OF / ELECTRICAL AND COMPUTER ENGINEERIN(C SYRACUSE UNIVERS1 TY SYRACUSE...material cylinders by Chang and Harrington [21, and to material bodies of revolu- tion by Wu [3]. We will call this choice the PMCHW formulation
2016-11-01
the spring of 2016. Four of these materials were commercially available. The remaining formulations were designed specifically to support this... designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC TR-16-16 iii...The Program Manager was Jeb S. Tingle, ERDC-GSL. This work was performed by the Airfields and Pavements Branch (GMA) of the Engineering Systems
Robots and ICT to support play in children with severe physical disabilities: a systematic review.
van den Heuvel, Renée J F; Lexis, Monique A S; Gelderblom, Gert Jan; Jansens, Rianne M L; de Witte, Luc P
2015-09-02
Play is an essential part of children's lives. Children with physical disabilities experience difficulties in play, especially those with severe physical disabilities. With the progress of innovative technology, the possibilities to support play are increasing. The purpose of this literature study is to gain insight into the aims, control options and commercial availability of information and communication technology (ICT) and robots to support play (especially play for the sake of play) in children with severe physical disabilities. A systematic literature search in the databases PubMed, CINAHL, IEEE and ERIC was carried out. Titles and abstracts were assessed independently by three reviewers. In addition, studies were selected using Google Scholar, conference proceedings and reference lists. Three main groups of technology for play could be distinguished: robots (n = 8), virtual reality systems (n = 15) and computer systems (n = 4). Besides, ICT and robots developed for specific therapy or educational goals using play-like activities, five of the in total 27 technologies in this study described the aim of "play for play's sake". Many ICT systems and robots to support play in children with physical disabilities were found. Numerous technologies use play-like activities to achieve therapeutic or educational goals. Robots especially are used for "play for play's sake". Implications for Rehabilitation This study gives insight into the aims, control options and commercial availability for application of robots and ICT to support play in children with severe physical disabilities. This overview can be used in both the fields of rehabilitation and special education to search for new innovative intervention options and it can stimulate them to use these innovative play materials. Especially robots may have great potential in supporting "play for play's sake".
2010 Vehicle Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W
2011-06-01
In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less
Research and technology 1995 annual report
NASA Technical Reports Server (NTRS)
1995-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.
Strain sensing technology for high temperature applications
NASA Technical Reports Server (NTRS)
Williams, W. Dan
1993-01-01
This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Thermal Protection System Aerothermal Screening Tests in HYMETS Facility
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy
2011-01-01
The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.
Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Adam, Niklas M.; Roberts, Michael S.; Garland, Jay L.; Sager, John C.; Pickering, Karen D.
2007-01-01
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels. Preliminary data on silver biocide depletion rates in heritage spacecraft potable water system wetted-materials of construction has been gathered as part of a multi-phase test project aimed at the characterization of silver based biocide technology through: development of preferred materials lists, investigation of silver biocide forms and delivery methods, down-selection of silver biocide technologies, and integrated testing. A 10% - 20% loss in silver ion concentration per day was observed for acid passivated Nitronic 40 tubing with surface area to volume (S/V) ratios of approximately 4.59 cm-1. The Nitronic 40 tubes were tested both with and without biocide pretreatment. Silver biocide depletion was also observed at approximately 0.1% per day for the first 35 days of exposure to acid passivated Inconel 718 coupon, S/V of approximately 0.14 cm-1. Surface analysis by scanning election microscopy (SEM) suggested deposition of silver metal on both test materials. SEM analysis also provided evidence of potential variability in the passivation process for tube configuration of the Nitronic 40 test apparatus. These preliminary results are presented and discussed herein, along with the current project status.
NASA Technical Reports Server (NTRS)
Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam
1989-01-01
A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Research and Technology at the John F. Kennedy Space Center 1993
NASA Technical Reports Server (NTRS)
1993-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.
Technology for increased human productivity and safety on orbit
NASA Technical Reports Server (NTRS)
Ambrus, Judith; Gartrell, Charles F.
1991-01-01
Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.
Implementation of Quality Management in Core Service Laboratories
Creavalle, T.; Haque, K.; Raley, C.; Subleski, M.; Smith, M.W.; Hicks, B.
2010-01-01
CF-28 The Genetics and Genomics group of the Advanced Technology Program of SAIC-Frederick exists to bring innovative genomic expertise, tools and analysis to NCI and the scientific community. The Sequencing Facility (SF) provides next generation short read (Illumina) sequencing capacity to investigators using a streamlined production approach. The Laboratory of Molecular Technology (LMT) offers a wide range of genomics core services including microarray expression analysis, miRNA analysis, array comparative genome hybridization, long read (Roche) next generation sequencing, quantitative real time PCR, transgenic genotyping, Sanger sequencing, and clinical mutation detection services to investigators from across the NIH. As the technology supporting this genomic research becomes more complex, the need for basic quality processes within all aspects of the core service groups becomes critical. The Quality Management group works alongside members of these labs to establish or improve processes supporting operations control (equipment, reagent and materials management), process improvement (reengineering/optimization, automation, acceptance criteria for new technologies and tech transfer), and quality assurance and customer support (controlled documentation/SOPs, training, service deficiencies and continual improvement efforts). Implementation and expansion of quality programs within unregulated environments demonstrates SAIC-Frederick's dedication to providing the highest quality products and services to the NIH community.
Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.
2009-01-01
Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.
Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.
2008-01-01
Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1991-01-01
The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.
Degradation Mechanisms of Poly(ester urethane) Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, Alexander S.
This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos Nationalmore » Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.« less
The development of the ICME supply-chain: Route to ICME implementation and sustainment
NASA Astrophysics Data System (ADS)
Furrer, David; Schirra, John
2011-04-01
Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.
Microgravity Processing and Photonic Applications of Organic and Polymeric Materials
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.
1997-01-01
Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.
Life Online: Resources for Students with an Intellectual Disability.
ERIC Educational Resources Information Center
Weeks, Kerri
2001-01-01
Two Australian agencies planned, developed, piloted, and evaluated an online resource for teaching independent living skills to adult students with a mild intellectual disability using technology and the Internet. The resource, called Life Online, is a package of support resource materials tested in regional classrooms in Victoria, Australia.…
2017-05-01
a quality program for the standardization of test methods to support comprehensive characterization and comparison of the physical and functional...1 2. MATERIALS AND METHODS ...4 2.8 SPR Methodology
TOPILOT: An Application of New Technology for Distance Learning.
ERIC Educational Resources Information Center
Marks, Ken
1997-01-01
A European Community project is using telematics to serve the educational needs of children whose families are occupational travelers. Portable multimedia materials and a telecommunications system are intended to enable tutors to manage students' learning at a distance. Tutors are concerned about frustration, isolation, and lack of support. (SK)
The Course Development Plan: Macro-Level Decisions and Micro-Level Processes
ERIC Educational Resources Information Center
Franker, Karen; James, Dennis
2016-01-01
A key step in distance learning project management is the creation of a course development plan. The plan should account for decisions related to materials, curriculum, delivery methods, staffing, technology applications, resources, reporting lines, and project management--issues that may require administrator involvement and support, particularly…
Virtual Education and the Race to the Bottom
ERIC Educational Resources Information Center
Versluis, Arthur
2004-01-01
The president of a vastly profitable virtual education corporation asserted that customers flock to him, not for an education, but for the material comforts that an education provides. Compelled by technology and supported by the World Trade Organization, such huge credentialing agencies employ lowpaid contractors to dish out homogenized info…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... Administration, the Secretary of Defense, the Secretary of State, and the Secretary of Homeland Security when... entities found to be: (1) Materially assisting in, or providing financial or technological support for or..., Colombia; Colombia; POB Colombia; citizen Colombia; nationality Colombia; Cedula No. 15367370 (Colombia...
78 FR 8701 - Additional Designations, Foreign Narcotics Kingpin Designation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... Security may designate and block the property and interests in property, subject to U.S. jurisdiction, of persons who are found to be: (1) Materially assisting in, or providing financial or technological support.... ``DIEGO RASTROJO''); DOB 07 Apr 1971; POB Bolivar, Valle de Cauca, Colombia; nationality Colombia; citizen...
ERIC Educational Resources Information Center
Cassata-Widera, Amy; Century, Jeanne; Kim, Dae Y.
2011-01-01
The practical need for multidimensional measures of fidelity of implementation (FOI) of reform-based science, technology, engineering, and mathematics (STEM) instructional materials, combined with a theoretical need in the field for a shared conceptual framework that could support accumulating knowledge on specific enacted program elements across…
Capturing and Disseminating What Happens in the Classroom
ERIC Educational Resources Information Center
Daugherty, Hubert; Cohn, Julie; Gorry, G. Anthony
2004-01-01
Universities increasingly employ information technology to distribute elements of their educational programs beyond campus borders and to find new uses for the intellectual capital they produce. Some faculty, with varying support and success, are moving course materials--and sometimes courses themselves--to the Internet to reach wider audiences.…
ERIC Educational Resources Information Center
Stanford, Courtney; Cole, Renée; Froyd, Jeff; Friedrichsen, Debra; Khatri, Raina; Henderson, Charles
2015-01-01
Background: Every year, significant effort and resources are expended around the world to develop innovative instructional strategies and materials to improve undergraduate Science, Technology, Engineering, and Mathematics education. Despite convincing evidence of efficacy with respect to student learning, most will struggle to become successfully…
STELR: Improving Science Retention Rates in Australian Secondary Schools
ERIC Educational Resources Information Center
Finkel, Alan; Pentland, Peter; Hubber, Peter; Blake, Damian; Tytler, Russell
2009-01-01
The Australian Federal Department of Education, Employment and Workplace Relations has funded a rollout of the STELR (Science and Technology Education Leveraging Relevance) Stage One Project to 150 secondary schools in 2010. Participating schools will receive, at no cost, curriculum materials, class sets of supporting laboratory equipment, two…
This talk supports the NGAM workshop and webinar seires and prepares for NGAM 2 The Next Generation Air Monitoring (NGAM) webinar and workshop series captures the revolution in air pollution measurement science enabled by rapid advances in sensors, communication...
In-Service Support Plan for Electromagnetic Environment Effects.
1978-05-05
assure highly motivated and trained Fleet personnel are placed in positions to initiate formal EME deficiency reports. The human factors and technological...Assistant I )eputy C hief of Naval Material AD P Automiated Data Processing ALRE-I1 Air-LUmnhed G uided Weapons System Perform-rance Re- port APL
The influence of joint technologies on ELV recyclability.
Soo, Vi Kie; Compston, Paul; Doolan, Matthew
2017-10-01
Stricter vehicle emission legislation has led to the increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. To account for the complexity of multi-material vehicle designs, the choice of joining techniques used is becoming more diverse. Moreover, the different material combinations, and their respective joining methods play an important role in determining the potential of full material separation in a closed-loop system. This paper evaluates the types of joining technologies used in the automotive industry, and identifies those that hinder the sorting of ELV materials. The study is based on an industrial shredding trial of car doors. Observations from the case study showed that steel screws and bolts are increasingly used to combine different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints that lead to impurities and valuable material losses, such as joint strength, material type, size, diameter, location, and protrusion level, can influence the material liberation in the current sorting practices and thus, lead to ELV waste minimisation. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. Correlation analyses are carried out to further support the influence of mechanical screws and bolts on material separation efficiencies. The observations are representative of the initial phases of current global ELV sorting practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Imaginable Technologies for Human Missions to Mars
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2007-01-01
The thesis of the present discussion is that the simultaneous cost and inherent safety issues of human on-site exploration of Mars will require advanced-to-revolutionary technologies. The major crew safety issues as currently identified include reduced gravity, radiation, potentially extremely toxic dust and the requisite reliability for years-long missions. Additionally, this discussion examines various technological areas which could significantly impact Human-Mars cost and safety. Cost reductions for space access is a major metric, including approaches to significantly reduce the overall up-mass. Besides fuel, propulsion and power systems, the up-mass consists of the infrastructure and supplies required to keep humans healthy and the equipment for executing exploration mission tasks. Hence, the major technological areas of interest for potential cost reductions include propulsion, in-space and on-planet power, life support systems, materials and overall architecture, systems, and systems-of-systems approaches. This discussion is specifically offered in response to and as a contribution to goal 3 of the Presidential Exploration Vision: "Develop the Innovative Technologies Knowledge and Infrastructures both to explore and to support decisions about the destinations for human exploration".
Utilization of Multimedia Laboratory: An Acceptance Analysis using TAM
NASA Astrophysics Data System (ADS)
Modeong, M.; Palilingan, V. R.
2018-02-01
Multimedia is often utilized by teachers to present a learning materials. Learning that delivered by multimedia enables people to understand the information of up to 60% of the learning in general. To applying the creative learning to the classroom, multimedia presentation needs a laboratory as a space that provides multimedia needs. This study aims to reveal the level of student acceptance on the multimedia laboratories, by explaining the direct and indirect effect of internal support and technology infrastructure. Technology Acceptance Model (TAM) is used as the basis of measurement on this research, through the perception of usefulness, ease of use, and the intention, it’s recognized capable of predicting user acceptance about technology. This study used the quantitative method. The data analysis using path analysis that focuses on trimming models, it’s performed to improve the model of path analysis structure by removing exogenous variables that have insignificant path coefficients. The result stated that Internal Support and Technology Infrastructure are well mediated by TAM variables to measure the level of technology acceptance. The implications suggest that TAM can measure the success of multimedia laboratory utilization in Faculty of Engineering UNIMA.
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Research and Development Annual Report, 1992
NASA Technical Reports Server (NTRS)
1993-01-01
Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 42 additional JSC projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.
The JSC Research and Development Annual Report 1993
NASA Technical Reports Server (NTRS)
1994-01-01
Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.
Fifth Congress of Industrial Cell Technology 2014.
Rasch, Anja
2015-01-01
The highly specialized and informative Fifth Congress of Industrial Cell Technology took place in Luebeck, close to Hamburg, on 11-12 September 2014. It was organized by the Fraunhofer Institution for Marine Biotechnology (EMB), Luebeck and supported by the cluster agency Life Science Nord Management GmbH as well as the Luebeck Chamber of Industry and Commerce. The central aim of the congress was to promote the name-giving platform applications of industrial cell technologies, in other words, the development of complex cell culture systems, analyzing technologies, innovative instruments and materials, etc. This year's sessions were: smart cell culture, bioreactor systems and cell goods including 3D bioprinting. This article highlights selected presentations of the congress.
Integrating information technologies as tools for surgical research.
Schell, Scott R
2005-10-01
Surgical research is dependent upon information technologies. Selection of the computer, operating system, and software tool that best support the surgical investigator's needs requires careful planning before research commences. This manuscript presents a brief tutorial on how surgical investigators can best select these information technologies, with comparisons and recommendations between existing systems, software, and solutions. Privacy concerns, based upon HIPAA and other regulations, now require careful proactive attention to avoid legal penalties, civil litigation, and financial loss. Security issues are included as part of the discussions related to selection and application of information technology. This material was derived from a segment of the Association for Academic Surgery's Fundamentals of Surgical Research course.
TechTuning: Stress Management For 3D Through-Silicon-Via Stacking Technologies
NASA Astrophysics Data System (ADS)
Radojcic, Riko; Nowak, Matt; Nakamoto, Mark
2011-09-01
The concerns with managing mechanical stress distributions and the consequent effects on device performance and material integrity, for advanced TSV based technologies 3D are outlined. A model and simulation based Design For Manufacturability (DFM) type of a flow for managing the mechanical stresses throughout Si die, stack and package design is proposed. The key attributes of the models and simulators required to fuel the proposed flow are summarized. Finally, some of the essential infrastructure and the Supply Chain support items are described.
A critical review of the state of foreign space technology
NASA Technical Reports Server (NTRS)
Grey, J.; Gerard, M.
1978-01-01
Scientific and technical capabilities of foreign nations, i.e., USSR, Japan, West Germany, UK, France, and other ESA nations, are reviewed. Attention is given to areas in which these nations are concentrating their efforts, as well as to areas in which achievements have already been realized. Among them: space industry and processing (including nonterrestrial mining), communications satellite technology, life support systems and space colonies, earth observation, space-borne astronomy and unmanned planetary probes, materials and propulsion, and exobiology (CETI/SETI).
Interfacial Layer Effects in Ba(1-x)Sr(x)TiO3 Thick Films Prepared by Plasma Spray
2003-04-01
in Materials Development for Direct Write technologies, edited by D. B. Chrisey, D. R. Gamota, H . Helvajian , and D. P. Taylor, (Mater. Res. Soc. Proc...Direct Write technologies, edited by D. B. Chrisey, D. R. Gamota, H . Helvajian , and D. P. Taylor, (Mater. Res. Soc. Proc. 624, San Francisco, CA, 2000...Research Center at Northwestern University supported by the MRSEC program under a NSF grant (DMR-0076097). REFERENCES 1. K. H . Church, C. Fore, T. Feeley
2011-08-01
industries and key players providing equipment include Flow and OMAX. The decision tree for waterjet machining is shown in Figure 28. Figure 28...about the melt pool. Process parameters including powder flow , laser power, and scan speed are adjusted accordingly • Multiple materials o BD...project.eu.com/home/home_page_static.jsp o Working with multiple partners; one is Cochlear . Using LMD or SLM to fabricate cochlear implants with 10
Silicon Technologies Adjust to RF Applications
NASA Technical Reports Server (NTRS)
Reinecke Taub, Susan; Alterovitz, Samuel A.
1994-01-01
Silicon (Si), although not traditionally the material of choice for RF and microwave applications, has become a serious challenger to other semiconductor technologies for high-frequency applications. Fine-line electron- beam and photolithographic techniques are now capable of fabricating silicon gate sizes as small as 0.1 micron while commonly-available high-resistivity silicon wafers support low-loss microwave transmission lines. These advances, coupled with the recent development of silicon-germanium (SiGe), arm silicon integrated circuits (ICs) with the speed required for increasingly higher-frequency applications.
NASA Technical Reports Server (NTRS)
Dickman, Glen J.
1987-01-01
The technical trade studies and analyses reported in this book represent the accumulated work of the technical staff for the contract period. The general disciplines covered are as follows: (1) Guidance, Navigation, and Control; (2) Avionics Hardware; (3) Aeroassist Technology; (4) Propulsion; (5) Structure and Materials; and (6) Thermal Control Technology. The objectives in each of these areas were to develop the latest data, information, and analyses in support of the vehicle design effort.
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
Characteristics of photonic nanojets from two-layer dielectric hemisphere
NASA Astrophysics Data System (ADS)
Liu, Yunyue; Liu, Xianchao; Li, Ling; Chen, Weidong; Chen, Yan; Huang, Yuerong; Xie, Zhengwei
2017-10-01
Not Available Project supported by State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences; Sichuan Provincial Department of Education, China (Grant No. 16ZA0047); the State Key Laboratory of Metastable Materials Science and Technology, Yansan University, China (Grant No. 201509); and the Large Precision Instruments Open Project Foundation of Sichuan Normal University, China (Grant Nos. DJ2015-57, DJ2015-58, DJ2015-60, DJ2016-58, and DJ2016-59).
Materials for advanced ultrasupercritical steam turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purgert, Robert; Shingledecker, John; Saha, Deepak
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.« less
Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach
NASA Technical Reports Server (NTRS)
Pisharody, Suresh; Wignarajah, K.; Fisher, John
2002-01-01
Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.
AmO 2 Analysis for Analytical Method Testing and Assessment: Analysis Support for AmO 2 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Kevin John; Bland, Galey Jean; Fulwyler, James Brent
Americium oxide samples will be measured for various analytes to support AmO 2 production. The key analytes that are currently requested by the Am production customer at LANL include total Am content, Am isotopics, Pu assay, Pu isotopics, and trace element content including 237Np content. Multiple analytical methods will be utilized depending on the sensitivity, accuracy and precision needs of the Am matrix. Traceability to the National Institute of Standards and Technology (NIST) will be achieved, where applicable, by running NIST traceable quality control materials. This given that there are no suitable AmO 2 reference materials currently available for requestedmore » analytes. The primary objective is to demonstrate the suitability of actinide analytical chemistry methods to support AmO 2 production operations.« less
Technology development of a biowaste resistojet, volume 1
NASA Technical Reports Server (NTRS)
Phillips, D. G.
1972-01-01
The materials research effort conducted in support of a NASA-sponsored biowaste resistojet development program is summarized. The resistojet concept under development is the concentric tube design wherein the final pass of the gases through the thruster is through the resistance heated center tube. To produce high specific impulses, this center tube must operate at very high temperatures and it is this element that is most critical in the design. Because of the corrosive nature of the biowaste gases at high temperature, and because of the limited data available for many potential materials, the subject materials study was conducted.
SWIR hyperspectral imaging detector for surface residues
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick
2013-05-01
ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.
Thin-Film Solar Cells on Polymer Substrates for Space Power
NASA Technical Reports Server (NTRS)
Hepps, A. F.; McNatt, Jeremiah; Morel, D. L.; Ferckides, C. S.; Jin, M. H.; Orbey, N.; Cushman, M.; Birkmire, R. W.; Shafarman, W. N.; Newton, R.
2004-01-01
Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. Solar cells based on thin-film materials offer the promise of much higher MSP and much lower cost. However, for many space applications, a 20% or greater AM0 efficiency (eta) may be required. The leading thin-film materials, amorphous Si, CuInSe, and CdTe have seen significant advances in efficiency over the last decade but will not achieve the required efficiency in the near future. Several new technologies are herein described to maximize both device eta and MSP. We will discuss these technologies in the context of space exploration and commercialization. One novel approach involves the use of very lightweight polyimide substrates. We describe efforts to enable this advance including materials processing and device fabrication and characterization. Another approach involves stacking two cells on top of each other. These tandem devices more effectively utilize solar radiation by passing through non-absorbed longer wavelength light to a narrow-bandgap bottom cell material. Modeling of current devices in tandem format indicates that AM0 efficiencies near 20% can be achieved with potential for 25% in the near future. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Recent advances will be stressed.
The roles and functions of a lunar base Nuclear Technology Center
NASA Astrophysics Data System (ADS)
Buden, D.; Angelo, J. A., Jr.
This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.
NASA Astrophysics Data System (ADS)
Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.
2016-08-01
The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.
Solid State Division progress report for period ending March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1997-12-01
This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.
R and T report: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1993-01-01
The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.
1980-10-23
1700 N. Moore Street, Suite 1923 Mail Stop 24021000 Western Avenue Arlington, VA 22209 Lynn, MA 01910 KLIMAN, DR. M. KOTLER , R. Army Materials...Mechanics Research Center US Army Missile Command ATTN: DR. MORTON KLIMAN ATTN: MR. RICHARD KOTLER Army Materials & Mechanics Res. Cir. DRSMI-ET...SMITH, P. J. STOYKO, M. A. Naval Weapons Support Center US Army Mun. Prod. Base Mod. Agency ATTN: MR. PHILIP J. SMITH ATTN: MR. MICHAEL A. STOYKO Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallick, P. K.
2012-08-30
The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materialsmore » database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.« less
[Modern aspects of organization of medical support for the Armed Forces].
Stavila, A G; Krasavin, K D; Levchenko, V N; Lemeshko, A L; Roenko, A S
2015-09-01
The challenges that medical service of the Armed Forces of the Russian Federation faces cannot be solved without a new qualitative approach to military and medical support. In order to create a complete organizational system of the medical support, consisting of united process of material flow management and management of accompanying elements, the. structure of the medical support and its equipment must correspond to performed tasks. The article describes a set of activities that are performed in the system of military-medical support and offers some promising approaches, which are supposed to solve assigned tasks imposed upon the center of pharmacy and medical technology and its interaction with superior body control, maintainable and third party organizations.
Operation Joint Endeavor in Bosnia: telemedicine systems and case reports.
Calcagni, D E; Clyburn, C A; Tomkins, G; Gilbert, G R; Cramer, T J; Lea, R K; Ehnes, S G; Zajtchuk, R
1996-01-01
For the last several years the U.S. Department of Defense (DoD) has operated a telemedicine test bed at the U.S. Army Medical Research and Material Command's Medical Advanced Technology Management Office. The goal of this test bed is to reengineer the military health service system from the most forward deployed forces to tertiary care teaching medical centers within the United States by exploiting emerging telemedicine technologies. The test bed has conducted numerous proof-of-concept telemedicine demonstrations as part of military exercises and in support of real-world troop deployments. The most ambitious of those demonstrations is Primetime III, an ongoing effort to provide telemedicine and other advanced technology support to medical units supporting Operation Joint Endeavor in Bosnia. Several of the first instances of the clinical use of the Primetime III systems are presented as case reports in this paper. These reports demonstrate capabilities and limitations of telemedicine. The Primetime III system demonstrates the technical ability to provide current telecommunications capabilities to medical units stationed in the remote, austere, difficult-to-serve environment of Bosnia. Telemedicine capabilities cannot be used without adequate training, operations, and sustainment support. Video consultations have eliminated the need for some evacuations. The system has successfully augmented the clinical capability of physicians assigned to these medical units. Fullest clinical utilization of telemedicine technologies requires adjustment of conventional clinical practice patterns.
Sustainable hybrid photocatalysts: titania immobilized on ...
This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientific insights into widely used TiO2 supported on carbonaceous materials emanating from biopolymeric materials such as lignin, cellulose, cellulose acetate, bacterial cellulose, bamboo, wood, starch, chitosan and agricultural residues (biochar, charcoal, activated carbon and their magnetic forms, coal fly ash) or seafood wastes namely eggshell, clamshell and fish scales; materials that serve as a support/template for TiO2. Heightened awareness and future inspirational developments for the valorisation of various forms of carbonaceous functional materials is the main objective. This appraisal abridges various strategies available to upgrade renewable carbon-based feedstock via the generation of sustainable TiO2/carbon functional materials and provides remarks on their future prospects. Hopefully, this will stimulate the development of efficient and novel composite photocatalysts and engender the necessary knowledge base for further advancements in greener photocatalytic technologies. Prepared as a Critical Review for the Royal Society of Chemistry (RSC) journal, Green Chemistry. This review discusses the sustainable use of earth-abundant materials exemplified by Titanium dioxide and carbon.
The CELSS research program - A brief review of recent activities
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Tremor, J.; Bubenheim, D. L.; Gale, J.
1989-01-01
The history of the Controlled Ecological Life Support System program, initiated by NASA in the late 1970s to explore the use of bioregenerative methods of life support, is reviewed. The project focused on examining the process involved in converting inorganic minerals and gases into life support materials using sunlight as the primary energy source. The research, planning, and technological development required by the CELSS program and conducted at NASA field centers, at various universities, and by commercial organizations are reviewed. Research activities at universities have focused upon exploring methods of reducing the size of the system, reducing system power requirements, understanding issues that are associated with its long-term stability, and identifying new technologies that might be useful in improving its efficiency. Research activities at Ames research center have focused on the use of common duckweed as a high biomass-producing plant, which is high in protein and on waste processing.
Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.
Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi
2015-02-01
Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Critical Metals in Strategic Low-carbon Energy Technologies
NASA Astrophysics Data System (ADS)
Moss, R. L.
2012-04-01
Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection
An Architecture to Support Wearables in Education and Wellbeing
ERIC Educational Resources Information Center
Luis-Ferreira, Fernando; Artifice, Andreia; McManus, Gary; Sarraipa, João
2017-01-01
Technological devices help extending a person's sensory experience of the environment. From sensors to cameras, devices currently use embedded systems that can be used for the main goal they were designed but they can also be used for other objectives without additional costs of material or service subscription. Emotional assessment is a useful…
Student Interaction with Online Course Content: Build It and They Might Come
ERIC Educational Resources Information Center
Murray, Meg; Perez, Jorge; Geist, Debra; Hedrick, Alison
2012-01-01
Online learning continues to expand at educational institutions around the globe. Educators must better understand how interaction with online course content impacts student engagement and learning. Advances in technology amplify the imperative to gain further insights into how delivery of course materials can enhance and support the learning…
Project CREATE Final Report. Cooperative Resources To Enhance Access to Technology Education.
ERIC Educational Resources Information Center
Hampden County Employment and Training Consortium, Springfield, MA.
These materials have been developed by Project CREATE (Cooperative Resources to Enhance Access to Jobs through Technical Education), a demonstration program designed to develop a network, specific activities, and resources that would provide education and support services to a wide audience. A 13-page final report describes the hands-on training…
2013-01-01
and Technology Center, Aberdeen, Maryland 21001 c Brimrose Corporation of America, Baltimore, Maryland 21152 d Army Research Laboratory, Adelphi...supported by the Army Research Office through grant W911NF-12-1-0049 and the National Science Foundation through grant HRD-1137747. Brimrose Corporation
An Electric Preschool: Pros and Cons.
ERIC Educational Resources Information Center
Lee, Marjorie W.
An electric preschool is a classroom or center for children 3 to 5 years of age in which the curriculum with its supportive activities, materials, and equipment depends more on technology that is powered by electricity than on manually operated objects. Certainly, preschoolers need stimulating and safe environments managed by adults who allow them…
Support Units for University Teaching Based on WWW.
ERIC Educational Resources Information Center
Marzo, J. L.; Estebanell, M.; Fabregat, R.; Ferres, F.; Verdu, T.
This paper describes a University of Girona (Spain) project in which an interdisciplinary group has created an integrated platform for teachers to use to create and publish dynamic and interactive teaching materials that make use of new information technologies. Project objectives are summarized and an overview is provided of the functions of the…
The E-Learning Component of a Blended Learning Course
ERIC Educational Resources Information Center
Olejarczuk, Edyta
2014-01-01
Using new technologies in the academic field has become more and more visible in Poland in the recent years. In the past, digital learning resources were used as supplementary materials helping to support face-to-face instruction. Nowadays, we have the opportunity not only to apply "traditional" methods but also to use more sophisticated…
Writing a Dissertation: Tools for Success
ERIC Educational Resources Information Center
Montgomery, Anne E.
2017-01-01
Plenty of material exists to help with the writing process, but sometimes the writer needs tools to help organize the process. This paper reviews some of the tools needed to organize articles and other references. A discussion of keywords, note taking, and document organization provides examples on the choice use of technology tools to support the…
Approaches to Design and Evaluation of Sandwich Composites
NASA Technical Reports Server (NTRS)
Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)
2001-01-01
This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.
Greenhalgh, Trisha; Procter, Rob; Wherton, Joe; Sugarhood, Paul; Hinder, Sue; Rouncefield, Mark
2015-04-23
We sought to define quality in telehealth and telecare with the aim of improving the proportion of patients who receive appropriate, acceptable and workable technologies and services to support them living with illness or disability. This was a three-phase study: (1) interviews with seven technology suppliers and 14 service providers, (2) ethnographic case studies of 40 people, 60 to 98 years old, with multi-morbidity and assisted living needs and (3) 10 co-design workshops. In phase 1, we explored barriers to uptake of telehealth and telecare. In phase 2, we used ethnographic methods to build a detailed picture of participants' lives, illness experiences and technology use. In phase 3, we brought users and their carers together with suppliers and providers to derive quality principles for assistive technology products and services. Interviews identified practical, material and organisational barriers to smooth introduction and continued support of assistive technologies. The experience of multi-morbidity was characterised by multiple, mutually reinforcing and inexorably worsening impairments, producing diverse and unique care challenges. Participants and their carers managed these pragmatically, obtaining technologies and adapting the home. Installed technologies were rarely fit for purpose. Support services for technologies made high (and sometimes oppressive) demands on users. Six principles emerged from the workshops. Quality telehealth or telecare is 1) ANCHORED in a shared understanding of what matters to the user; 2) REALISTIC about the natural history of illness; 3) CO-CREATIVE, evolving and adapting solutions with users; 4) HUMAN, supported through interpersonal relationships and social networks; 5) INTEGRATED, through attention to mutual awareness and knowledge sharing; 6) EVALUATED to drive system learning. Technological advances are important, but must be underpinned by industry and service providers following a user-centred approach to design and delivery. For the ARCHIE principles to be realised, the sector requires: (1) a shift in focus from product ('assistive technologies') to performance ('supporting technologies-in-use'); (2) a shift in the commissioning model from standardised to personalised home care contracts; and (3) a shift in the design model from 'walled garden', branded products to inter-operable components that can be combined and used flexibly across devices and platforms. Please see related article: http://dx.doi.org/10.1186/s12916-015-0305-8.
High pressure and Multiferroics materials. A happy marriage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilioli, Edmondo; Ehm, Lars
2014-10-31
We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties andmore » the coupling to structural instabilities.« less
Jadán-Guerrero, Janio; Guerrero, Luis; López, Gustavo; Cáliz, Doris; Bravo, José
2015-06-24
Teaching children with intellectual disabilities is a big challenge for most parents and educators. Special education teachers use learning strategies to develop and enhance motivation for complex learning tasks. Literacy acquisition is an essential and life-long skill for a child with intellectual disabilities. In this context, technology can support specific strategies that will help children learn to read. This paper introduces a Tangible User Interface (TUI) system based on Radio Frequency Identification (RFID) technology to support literacy for children with Down syndrome. Our proposed system focuses on the integration of RFID tags in 3D printed objects and low cost toys. The paper describes the experience of using some materials covering the tags and the different problems related to the material and distance of radio wave propagation. The results of a preliminary evaluation in a special education institution showed that the system helps to improve the interaction between teachers and children. The use of a TUI seems to give a physical sensory experience to develop literacy skills in children with Down syndrome.
The role of materials in global competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A symposium on global competitiveness was sponsored by ASM`s Advisory Technical Awareness Council during Materials Week in Cleveland last October. Carpenter Technology`s approach to internationalization and diversification involves three steps: internationalization of core businesses, diversification into engineered products, and focused research and development. Aluminum`s potential was the basis of the Audi-Alcoa relationship, and the result was a true breakthrough: a spaceframe structure designed to integrate every component surface as a structural entity, featuring straight and curved extruded sections joined by complex diecast nodes at key intersections and connection points. Through the support of research and development, many federal departments andmore » agencies have long been involved directly or indirectly in the support of civilian as well as defense industries. New copper alloys and fabrication techniques are enhancing global competitiveness, based largely on copper`s natural advantages of conductivity and corrosion resistance. The heavy equipment industry is a major transformer and user of steel, rubber, aluminum, welding consumables and equipment; glass, plastics, microprocessors and electronics; machine tools, and energy. It comprises the construction, farming, mining, and powertrain equipment manufacturers.« less
Jadán-Guerrero, Janio; Guerrero, Luis; López, Gustavo; Cáliz, Doris; Bravo, José
2015-01-01
Teaching children with intellectual disabilities is a big challenge for most parents and educators. Special education teachers use learning strategies to develop and enhance motivation for complex learning tasks. Literacy acquisition is an essential and life-long skill for a child with intellectual disabilities. In this context, technology can support specific strategies that will help children learn to read. This paper introduces a Tangible User Interface (TUI) system based on Radio Frequency Identification (RFID) technology to support literacy for children with Down syndrome. Our proposed system focuses on the integration of RFID tags in 3D printed objects and low cost toys. The paper describes the experience of using some materials covering the tags and the different problems related to the material and distance of radio wave propagation. The results of a preliminary evaluation in a special education institution showed that the system helps to improve the interaction between teachers and children. The use of a TUI seems to give a physical sensory experience to develop literacy skills in children with Down syndrome. PMID:26115455
Survey of the supporting research and technology for the thermal protection of the Galileo Probe
NASA Technical Reports Server (NTRS)
Howe, J. T.; Pitts, W. C.; Lundell, J. H.
1981-01-01
The Galileo Probe, which is scheduled to be launched in 1985 and to enter the hydrogen-helium atmosphere of Jupiter up to 1,475 days later, presents thermal protection problems that are far more difficult than those experienced in previous planetary entry missions. The high entry speed of the Probe will cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermochemical ablation rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive survey of the experimental work and computational research that provide technological support for the Probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and first-principle computations of flow fields and heat-shield material response; base heating; turbulence modelling; new computational techniques; experimental heating and materials studies; code validation efforts; and a set of 'consensus' first-principle flow-field solutions through the entry maneuver, with predictions of the corresponding thermal protection requirements.
Sustainable Human Presence on the Moon using In Situ Resources
NASA Technical Reports Server (NTRS)
McLemore, Carol A.; Fikes, John C.; McCarley, Kevin S.; Darby, Charles A.; Curreri, Peter A.; Kennedy, James P.; Good, James E.; Gilley, Scott D.
2008-01-01
New capabilities, technologies and infrastructure must be developed to enable a sustained human presence on the moon and beyond. The key to having this permanent presence is the utilization of in situ resources. To this end, NASA is investigating how in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. To ensure that this capability is available when needed, technology development is required now. NASA/Marshall Space Flight Center (MSFC) is supporting this endeavor, along with other NASA centers, by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. Efforts at MSFC include development of lunar regolith simulant for hardware testing and development, extraction of oxygen and other materials from the lunar regolith, production of parts and tools on the moon from local materials or from provisioned feedstocks, and capabilities to show that produced parts are "ready for use". This paper discusses the lunar regolith, how the regolith is being replicated in the development of simulants and possible uses of the regolith.
Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands
NASA Astrophysics Data System (ADS)
Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum
2017-01-01
Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.
Nuclear programs in India and Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mian, Zia
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also formore » nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.« less
Nuclear programs in India and Pakistan
NASA Astrophysics Data System (ADS)
Mian, Zia
2014-05-01
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, Elizabeth L.; Hultman, Nathan E.; Anderson, Kate
Examining past examples of rapid, transformational changes in energy technologies could help governments understand the factors associated with such transitions. We used an existing dataset to assess government strategies to connect new energy technologies with national narratives. Analyzing the diffusion stories told by experts, we demonstrate how governments connected the new technologies with their national narratives. The United States government supported the development of nuclear power after World War II with the national narrative that the United States was destined to improve creation, increasing the potential of raw materials exponentially for the nation’s good (“atoms for peace,” electricity “too cheapmore » to meter”). In Brazil, the development of sugar cane ethanol was supported by the government’s invoking the national narrative of suffering leading to knowledge and redemption, coupled with the quest for improved societal well-being (technological development to produce ethanol and employment for farmers). In Sweden, biomass energy was tied to the national narrative of local control, as well as love of nature and tradition (the use of natural products). We found strong evidence that the pairing of technological transformations with national narratives facilitated the successful development and implementation of these major energy technologies in the three cases analyzed here.« less
Malone, Elizabeth L.; Hultman, Nathan E.; Anderson, Kate; ...
2017-07-03
Examining past examples of rapid, transformational changes in energy technologies could help governments understand the factors associated with such transitions. We used an existing dataset to assess government strategies to connect new energy technologies with national narratives. Analyzing the diffusion stories told by experts, we demonstrate how governments connected the new technologies with their national narratives. The United States government supported the development of nuclear power after World War II with the national narrative that the United States was destined to improve creation, increasing the potential of raw materials exponentially for the nation’s good (“atoms for peace,” electricity “too cheapmore » to meter”). In Brazil, the development of sugar cane ethanol was supported by the government’s invoking the national narrative of suffering leading to knowledge and redemption, coupled with the quest for improved societal well-being (technological development to produce ethanol and employment for farmers). In Sweden, biomass energy was tied to the national narrative of local control, as well as love of nature and tradition (the use of natural products). We found strong evidence that the pairing of technological transformations with national narratives facilitated the successful development and implementation of these major energy technologies in the three cases analyzed here.« less
Goyal, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2018-04-27
Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy 100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.
1996-10-01
systems currently headed for deployment ( BIDS is highlighted in the chart) to widely dispersed microsensors on micro, autonomous platforms. Small room... Small , Rapidly Deployable Forces" Joe Polito, Dan Rondeau, Sandia National Laboratory V.2. "Robotic Concepts for Small Rapidly Deployable Forces" V-7...Robert Palmquist, Jill Fahrenholtz, Richard Wheeler, Sandia National Laboratory V.3. "Potential for Distributed Ground Sensors in Support of Small Unit V
Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Suying; Wang, Weixing
2018-01-01
Two key issues regarding the use of clathrates and semiclathrates for practical gas storage and transport is the pressure-temperature stability of the material and very low formation kinetics. For many practical applications, the avoidance of cooling, gas overpressure, and mechanical mixing would be very desirable. Here, we show that biosilica supports from rice husks greatly enhance gases uptake kinetics in tetra-iso-amyl ammonium bromide semiclathrates without introducing complex mixing technologies. These systems show excellent thermal stability and good recyclability.
Howes-Mischel, Rebecca
2016-06-01
This article examines how amplified fetal heartbeats may be used to make claims about fetuses' social presence. These claims are supported by the Mexican Public Health system's selection of the maternal-child relationship as a key site of clinical intervention, intertwining medical and moral discourses. Drawing on the robust literature on cross-cultural propositions of "fetal personhood," this analysis uses ethnographic material from public health institutions in Oaxaca, Mexico, to explore how doctors use diagnostic technology to materialize fetuses for their patients. I argue that Spanish's epistemological distinction between saber (to have knowledge about) and conocer (to be acquainted with) is key to how diagnostic technologies may be deployed to make social claims. I use one doctor's attempts to use technology to shift her patient from saber to conocer as illustrative of underlying cultural logics about fetal embodiment and its proof. Focused on the under-theorized socio-medical deployment of audio fetal heartbeat technology, this article suggests that sound-in addition to sight-is a potent tool for constructing fetal personhood. © 2016 by the American Anthropological Association.
High temperature, harsh environment sensors for advanced power generation systems
NASA Astrophysics Data System (ADS)
Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.
2015-05-01
One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
Hidden flows and waste processing--an analysis of illustrative futures.
Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T
2010-12-14
An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.
Materials and applications of bioresorbable electronics
NASA Astrophysics Data System (ADS)
Huang, Xian
2018-01-01
Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework. Project supported by the National Natural Science Foundation of China (No. 61604108) and the Natural Science Foundation of Tianjin (No. 16JCYBJC40600).
Commercial applications of new photovoltaic technologies
NASA Technical Reports Server (NTRS)
Mcconnell, R.
1991-01-01
The National Renewable Energy Laboratory (NREL) has directed and managed photovoltaic (PV) research and development (R&D) activities for the Department of Energy for more than 13 years. The NREL budget for these activities is almost $33 million for FY 1991. With the world's increasing concern for the environment and the United States' renewed apprehension over secure and adequate energy supplies, the use of semiconducting materials for the direct conversion of sunlight to electricity - photovoltaics - is an excellent example of government-supported high technology ready for further development by U.S. companies. Some new PV technologies and their research progress, some commercial applications of PV, and NREL's technology transfer activities for helping U.S. industry in its efforts to bring new products or services to the marketplace are described.
Some operational aspects of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.
1988-01-01
The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
PREFACE: 3rd International Congress on Ceramics (ICC3)
NASA Astrophysics Data System (ADS)
Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio
2011-10-01
Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the Special Symposium 'Emerging Technologies and Future Aspects for Ceramics', which discussed the issues and challenges of various ceramic technologies for sustainable development of tomorrow's human society. More than 1850 research papers including invited talks, oral presentations, and posters were presented from 56 countries (according to the Program), with nearly 2000 registered participants. This ICC3 proceedings contains papers that were submitted to ICC3 and approved for publication on line in IOP Conference Series: Materials Science and Engineering (MSE). The organization of ICC3 and the publication of this proceedings were made possible thanks to the tireless dedication of many people and the valuable support of numerous bodies. Special thanks should go to the financial supporters for their generous patronage. We also would like to express our sincere thanks to the symposia organizers, session chairs, presenters, exhibitors and congress attendees for their efforts and enthusiastic participation in this vibrant and cutting-edge congress. July 2011 Koichi Niihara, ICC3 President Tatsuki Ohji, ICC3 Secretariat Yoshio Sakka, ICC3 Secretariat The PDF file contains a complete list of sponsors, committee members, board members and symposia organizers.
PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)
NASA Astrophysics Data System (ADS)
Veeraiah, N.
2009-07-01
The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous commercial and academic centers of Andhra Pradesh, India. The Departments of Physics of Acharya Nagarjuna University and the Nuzvid Campus have existed since the inception of the University. For the past decade and a half, these Departments have been actively involved in research on glass materials. More than 200 research articles have been published by staff members of these departments exclusively on glass materials. A number of Major Research Projects are being carried out by the staff members of these Departments. The organizing committee is indebted to all the scientists and scholars for their active participation in the seminar and their contribution to this proceedings. The committee expresses its gratitude to the authorities of Acharya Nagarjuna University (The Vice-Chancellor, The Rector and The Registrar), Department of Atomic Energy, Board of Research in Nuclear Sciences, Department of Science and Technology, Council of Scientific and Industrial Research, Defence Research and Development Organization and AP State Council of Science and Technology for their financial support. The committee thanks the IOP: Conference Series publisher for publishing this proceedings which added value to the seminar. Professor N Veeraiah Convener and Editor-in-Chief Professor D Krishna Rao Co-Convener
Byrne, E; Donaldson, L; Manda-Taylor, L; Brugha, R; Matthews, A; MacDonald, S; Mwapasa, V; Petersen, M; Walsh, A
2016-05-10
With the recognition of the need for research capacity strengthening for advancing health and development, this research capacity article explores the use of technology enhanced learning in the delivery of a collaborative postgraduate blended Master's degree in Malawi. Two research questions are addressed: (i) Can technology enhanced learning be used to develop health research capacity?, and: (ii) How can learning content be designed that is transferrable across different contexts? An explanatory sequential mixed methods design was adopted for the evaluation of technology enhanced learning in the Masters programme. A number of online surveys were administered, student participation in online activities monitored and an independent evaluation of the programme conducted. Remote collaboration and engagement are paramount in the design of a blended learning programme and support was needed for selecting the most appropriate technical tools. Internet access proved problematic despite developing the content around low bandwidth availability and training was required for students and teachers/trainers on the tools used. Varying degrees of engagement with the tools used was recorded, and the support of a learning technologist was needed to navigate through challenges faced. Capacity can be built in health research through blended learning programmes. In relation to transferability, the support required institutionally for technology enhanced learning needs to be conceptualised differently from support for face-to-face teaching. Additionally, differences in pedagogical approaches and styles between institutions, as well as existing social norms and values around communication, need to be embedded in the content development if the material is to be used beyond the pilot resource-intensive phase of a project.
NASA Astrophysics Data System (ADS)
Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Shim, Hee Sang
2013-11-01
Denting is a phenomenon that a steam generator tube is distorted by a volume expansion of corrosion products of the tube support and tubesheet materials adjacent to the tube. Although denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable concern in the crevice region of the top of tubesheet. This paper provides a new technology to prevent denting by cladding the secondary surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material was cladded onto the surface of an SA508 tubesheet to a thickness of about 9 mm. The corrosion rates of the original SA508 tubesheet and the Alloy 690 clad material were measured in acidic and alkaline simulated environments. Using Alloy 690 cladding, the corrosion rate of the tubesheet within a magnetite sludge pile decreased by a factor of 680 in 0.1 M NiCl2 solution at 300 °C, and by a factor of 58 in 2 M NaOH solution at 315 °C. This means that denting can drastically be prevented by cladding the secondary tubesheet surface with corrosion resistant materials.
Crystallization Process of Superlattice-Like Sb/SiO2 Thin Films for Phase Change Memory Application
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Qin; Zhang, Rui; Hu, Yi-Feng; Lai, Tian-Shu; Zhang, Jian-Hao; Zou, Hua; Song, Zhi-Tang
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11774438, the Natural Science Foundation of Jiangsu Province under Grant No BK20151172, the Changzhou Science and Technology Bureau under Grant No CJ20160028, the Qing Lan Project, the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04, and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences.
Advances in radiation detection technologies for responders.
Unterweger, Michael P; Pibida, Leticia S
2005-11-01
The Department of Homeland Security is supporting the development of a large number of standards for first responders. In the area of detection of radioactive and nuclear materials, four new standards (ANSI N42.32, N42.33, N42.34, and N42.35) and their corresponding test and evaluation protocols were developed to meet Department of Homeland Security needs. Testing of the standards and protocols was carried out at the National Institute of Standards and Technology, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.
Far-Infrared Blocked Impurity Band Detector Development
NASA Technical Reports Server (NTRS)
Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.
2007-01-01
DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.
Tuning topological phases in the XMnSb2 system via chemical substitution from first principles
NASA Astrophysics Data System (ADS)
Griffin, Sinead M.; Neaton, Jeffrey B.
New Dirac materials are sought for their interesting fundamental physics and for their potential technological applications. Protected symmetries offer a route to potential zero mass Dirac and Weyl fermions, and can lead unique transport properties and spectroscopic signatures. In this work, we use first-principles calculations to study the XMnSb2 family of materials and show how varying X changes the nature of bulk protected topological features in their electronic structure. We further discuss new design rules for predicting new topological materials suggested by our calculations. SG is supported by the Early Postdoc Mobility Fellowship of the SNF.
Turk, Gregory C; Sharpless, Katherine E; Cleveland, Danielle; Jongsma, Candice; Mackey, Elizabeth A; Marlow, Anthony F; Oflaz, Rabia; Paul, Rick L; Sieber, John R; Thompson, Robert Q; Wood, Laura J; Yu, Lee L; Zeisler, Rolf; Wise, Stephen A; Yen, James H; Christopher, Steven J; Day, Russell D; Long, Stephen E; Greene, Ella; Harnly, James; Ho, I-Pin; Betz, Joseph M
2013-01-01
Standard Reference Material 3280 Multivitamin/ Multielement Tablets was issued by the National Institute of Standards and Technology in 2009, and has certified and reference mass fraction values for 13 vitamins, 26 elements, and two carotenoids. Elements were measured using two or more analytical methods at NIST with additional data contributed by collaborating laboratories. This reference material is expected to serve a dual purpose: to provide quality assurance in support of a database of dietary supplement products and to provide a means for analysts, dietary supplement manufacturers, and researchers to assess the appropriateness and validity of their analytical methods and the accuracy of their results.
Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki
2012-01-01
The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.
Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application
NASA Astrophysics Data System (ADS)
Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan
2018-01-01
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.
Methods of silver recovery from radiographs - comparative study
NASA Astrophysics Data System (ADS)
Canda, L. R.; Ardelean, E.; Hepuţ, T.
2018-01-01
Management and recovery of waste are activities with multiple impacts: technologically (by using waste on current production flows, thus replacing poor raw materials), economically (can substantially reduce manufacturing costs by recycling waste), social (by creating new jobs where it is necessary to process the waste in a form more suited to technological flows) and ecologically (by removing waste that is currently produced or already stored - but poses a threat to the health of the population and / or to the environment). This is also the case for medical waste, for example radiographs, which are currently produced in large quantities, for which replacement solutions are sought, but are currently stored by archiving in hospital units. The paper presents two methods used for this kind of waste management, the result being the recovery of silver, material with applications and with increasing price, but also the proper disposal of the polymeric support. This analysis aims at developing a more efficient recycling technology for medical radiographs.
NASA Astrophysics Data System (ADS)
Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.; Duerloo, Karel-Alexander N.; Cui, Yi; Reed, Evan J.
We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To predict the likelihood of a candidate material exhibiting high lithium ion conductivity, we leverage machine learning techniques to train an ionic conductivity classification model using logistic regression based on experimental measurements reported in the literature. This model, which is built on easily calculable atomistic descriptors, provides new insight into the structure-property relationship for superionic behavior in solids and is approximately one million times faster to evaluate than DFT-based approaches to calculating diffusion coefficients or migration barriers. We couple this model with several other technologically motivated heuristics to reduce the list of candidate materials from the more than 12,000 known lithium containing solids to 21 structures that show promise as electrolytes, few of which have been examined experimentally. Our screening utilizes structures and electronic information contained in the Materials Project database. This work is supported by an Office of Technology Licensing Fellowship through the Stanford Graduate Fellowship Program and a seed Grant from the TomKat Center for Sustainable Energy at Stanford.
Smart systems and personalized health: the real challenge of bridging the innovation gap.
Lymberis, Andreas
2014-01-01
Smart miniaturized systems, emerging from the integration of heterogeneous technologies like micro- and nano electronics, photonics, biotechnology, materials and information & communication technologies are considered today, after two decades of intensive public support, proven concepts and functional prototypes, as key enablers opening up new opportunities for healthcare and in particular personalized health. They offer an enhanced ability to sense, detect, analyze, communicate, respond, and monitor phenomena from macro (e.g. body, tissues) to nano scale (e.g. molecules, genes). For the majority of these projects, planning for the next phase of prototype validation, product design, supply chain, user targeting, clinical validation and commercial roll-out are now taking full attention. The new EU Framework Program for Research and Innovation, Horizon 2020, is focusing on technology transfer support and building ecosystems and value chains to ensure better time to market and higher impact of knowledge-based technologies. The state-of-the-art and upcoming challenges for the implementation of H2020 and new opportunities in smart systems for pHealth are discussed in the paper.
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
Innovative technologies for asbestos removal, treatment and recycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Kasper, K.M.
This paper will provide an overview of the Office of Science and Technology`s Decontamination and Decommissioning (D & D) Focus Area`s investment in development and demonstration of innovative technologies for asbestos treatment, removal and recycle. The paper will cover the market opportunities for asbestos abatement, major regulations covering asbestos abatement, baseline technologies used by DOE for removal of asbestos, asbestos-related technology needs submitted by DOE`s Site Technology Coordinating Groups, and asbestos development and demonstration projects supported by the D & D Focus Area and other organizations. Based on the Environmental Management Integrated Database, there are about five million cubic feetmore » of asbestos within the DOE Weapons Complex that will be abated by 2030. DOE has three main forms of asbestos: transite used in building construction, thermal pipe insulation, and floor tile. The D & D Focus Area has or is supporting three projects in asbestos removal, and three projects on destruction of asbestos fibers by chemical and thermal treatment. In asbestos removal, the D & D Focus Area is investigating a robot which removes asbestos insulation from pipes; a laser cutting technology which melts asbestos fibers while cutting insulated pipes; and a vacuum system which removes thermal insulation sandwiched between panels of transite. For destruction of asbestos fibers, the D & D Focus Area is supporting development and demonstration of a trailer-mounted process which destroys asbestos fibers by a combination of thermal and chemical treatment; a three-step process which removes organic and radioactive contaminants from the asbestos prior to decomposing the asbestos fibers by acid attack; and an in situ chemical treatment process to convert asbestos fibers into a non-regulated material.« less
Evaluation of an online continuing education program from the perspective of new graduate nurses.
Karaman, Selcuk; Kucuk, Sevda; Aydemir, Melike
2014-05-01
The aim of this study is to evaluate the online continuing education program from the perspectives of new graduate nurses. An evaluation framework includes five factors (program and course structure, course materials, technology, support services and assessment). In this study, descriptive research methods were used. Participants of the study included 2.365 registered nurses enrolled in the first online nursing bachelor completion degree program in the country. Data were collected by survey. The findings indicated that students were mostly satisfied with this program. The results of this study suggest that well designed asynchronous online education methods can be effective and appropriate for registered nurses. However, the provision of effective support and technological infrastructure is as vital as the quality of teaching for online learners. © 2013.
Lightweight structure design for supporting plate of primary mirror
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng
2017-10-01
A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.
NASA Technical Reports Server (NTRS)
1990-01-01
As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.
Telerobotic electronic materials processing experiment
NASA Technical Reports Server (NTRS)
Ollendorf, Stanford
1991-01-01
The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.
Utilization of composite materials by the US Army: A look ahead
NASA Technical Reports Server (NTRS)
Chait, Richard
1992-01-01
An overview of the use of composite materials in the Army is given. Important efforts to document design information, supporting research, and some national applications for composite materials are given. The use of Kevlar fiber in both vests and helmets for the soldier is outlined. The advantages of using fiberglass in the hull of the Bradley fighting ground vehicle is given. The full potential of composite materials is realized in the recently awarded LH Comanche RAH-66 program. The use of composites for application to rocket motor uses, wings, fins, and casings is under development. Because of the uncertain funding profile, it is more important than ever that technology planning provide the basis for effective prioritization and leveraging of the tech base efforts involving advanced materials.