Sample records for materials tests

  1. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  2. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  3. Coaxial test fixture

    DOEpatents

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  4. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  5. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  6. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  7. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  8. 21 CFR 610.12 - Sterility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... container material. (a) The test. Bulk material shall be tested separately from final container material and material from each final container shall be tested in individual test vessels as follows: (1) Using Fluid Thioglycollate Medium—(i) Bulk and final container material. The volume of product, as required by paragraph (d...

  9. Obtaining NASA Approval for use of Non-Metallic Materials in Manned Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Wise, Harry L.

    2003-01-01

    Material manufacturers and suppliers are often surprised when a material commonly provided to industry is not approved for use on manned spacecraft. Often the reason is a lack of test data in environments that simulate those encountered in space applications, especially oxygen-enriched conditions, which significantly increase both the likelihood of material combustion and the propagation of a fire. This paper introduces the requirements for flight approval of non-metallic materials, focusing on material testing for human-rated space flight programs; it reviews the history of flight materials requirements and provides the rationale for such and introduces specific requirements related to testing and to good material engineering and design practices. After describing the procedure for submitting materials to be tested, the paper outlines options available if a material fails testing. In addition, this treatise introduces the National Aeronautics and Space Administration's (NASA's) Materials and Processes Technical Information System (MAPTIS), a database housing all test data produced in accordance with NASA-STD-6001, Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion.

  10. Additive value of patch testing custom epoxy materials from the workplace at the occupational disease specialty clinic in Toronto.

    PubMed

    Houle, Marie-Claude; Holness, D Linn; Dekoven, Joel; Skotnicki, Sandy

    2012-01-01

    Allergic contact dermatitis (ACD) to epoxy resins is one of the major causes of occupationally induced ACD. Testing of custom epoxy materials from the workplace is often performed to diagnose ACD. The objective of this study was to investigate the additive value of patch testing custom-made epoxy materials. We retrospectively analyzed outcomes of 24 patients who were tested to custom epoxy resin materials between January 2002 and July 2011. For 11 patients (46%), the testing of their materials from work had no additional value (negative results). For 13 patients (54%), there was an additional value of testing custom allergens. Of those, 7 patients (54%) had positive reactions to custom epoxy materials that reinforced the test results found with the commercially available allergens, and 6 (46%) patients had positive reactions only to custom epoxy materials. Therefore, for 6 patients (25%), there was a definite additive value of testing custom epoxy materials because the allergy was discovered with custom testing and not with the commercially available allergens. Because of the high percentage (54%) of patients with additive value of patch testing custom epoxy materials, we think that the inclusion of actual workplace epoxy materials should be strongly considered when patch testing patients with occupational epoxy exposure.

  11. Novel antibacterial mouthguard material manufactured using silver-nanoparticleembedded ethylene-vinyl acetate copolymer masterbatch.

    PubMed

    Yoshida, Yuriko; Churei, Hiroshi; Takeuchi, Yasuo; Wada, Takahiro; Uo, Motohiro; Izumi, Yuichi; Ueno, Toshiaki

    2018-01-26

    The purpose of the present study was to develop an antibacterial mouthguard (MG) material using a masterbatch of silvernanoparticle-embedded ethylene-vinyl acetate (EVA) copolymers. In order to verify that the testing material was clinically applicable as an antibacterial MG material, we conducted an antibacterial test, a shock absorption test, and analysis of in vitro silver release. The colony-forming activity of Streptococcus sobrinus, Porphyromonas gingivalis, and Escherichia coli were significantly inhibited on the testing materials compared with the commercial EVA sheet (p<0.05). The shock absorption capability of the testing material was not significantly different from that of the commercial EVA sheet. Cumulative silver release (in pure water) from the testing materials were infinitesimal after soaking for 20 days, which implied that there could be no harm in wearing the MG during exercise. These results showed that this testing material could be clinically applicable as an antibacterial MG material.

  12. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  13. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  14. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  15. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  16. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  17. Reaction propagation test. Evaluation of the behavior of nonmetallic materials in hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, I. D.

    1972-01-01

    Results of tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The reaction propagation test simulates the conditions resulting from the interaction of an electrical wire in an overload condition in contract with a material in the test medium. The test is designed to evaluate the behavior of a material subjected to an energy input (usually heat) sufficient to cause a reaction which propagates to consume larger quantities of the material. Ten nonmetallic materials were evaluated to establish baseline data on the behavior of nonmetallic materials in hydrogen and to characterize, on an initial basis, one mode of material failure considered to be a factor pertinent to the safe use of a material in hydrogen.

  18. ESP – Data from Restarted Life Tests of Various Silicon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  19. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  20. Seal material development test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.

  1. Testing and Comparative Evaluation of Space Shuttle Main Engine Flowmeter Bearings

    NASA Technical Reports Server (NTRS)

    Hissam, Andy; Leberman, Mike; McLeroy, Rick

    2005-01-01

    This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.

  2. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...

  3. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...

  4. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...

  5. RUBBER BEARINGS FOR DOWN-HOLE PUMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bob Sullivan Mammoth Pacific, L.P.

    2005-09-07

    Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratorymore » was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.« less

  6. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  7. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  8. Thermal Protection System Aerothermal Screening Tests in HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.

  9. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.

  10. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  11. Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. H.; Kirkhart, F. P.; Kistler, C. W.; Duckworth, W. H.; Ungar, E. W.; Foster, E. L.

    1970-01-01

    Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook.

  12. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  13. The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.

    DTIC Science & Technology

    NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.

  14. Evaluation of elastomers as gasket materials in pneumatic and hydraulic systems

    NASA Technical Reports Server (NTRS)

    Bright, C. W.; Lockhart, B. J.

    1972-01-01

    In the search for superior materials from which to make gaskets for pneumatic and hydraulic systems, promising materials were selected and tested. The testing was conducted in two phases. Those materials that passed the tests of Phase 1 were tested in Phase 2, and categorized in the order of preference.

  15. Trusted materials using orthogonal testing. 2015 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark

    2015-09-01

    The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.

  16. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.

  17. Testing of Candidate Rigid Heatshield Materials at LHMEL for the Entry, Descent, and Landing Technology Development Project

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Gasch, Matthew; Beck, Robin A.; White, Susan

    2012-01-01

    The material testing results described in this paper were part of a material development program of vendor-supplied, proposed heat shield materials. The goal of this program was to develop low density, rigid material systems with an appreciable weight savings over phenolic-impregnated carbon ablator (PICA) while improving material response performance. New technologies, such as PICA-like materials in honeycomb or materials with variable density through-the-thickness were tested. The material testing took place at the Wright-Patterson Air Force Base Laser Hardened Materials Laboratory (LHMEL) using a 10.6 micron CO2 laser operating with the test articles immersed in a nitrogen-gas environment at 1 atmosphere pressure. Test measurements included thermocouple readings of in-depth temperatures, pyrometer readings of surface temperatures, weight scale readings of mass loss, and sectioned-sample readings of char depth. Two laser exposures were applied. The first exposure was at an irradiance of 450 W/cm2 for 50 or 60 seconds to simulate an aerocapture maneuver. The second laser exposure was at an irradiance of 115 W/cm2 for 100 seconds to simulate a planetary entry. Results from Rounds 1 and 2 of these screening tests are summarized.

  18. Evaluation of heat- and blast-protection materials

    NASA Technical Reports Server (NTRS)

    Morrison, J. D.; Lockhart, B. J.

    1971-01-01

    A program was initiated at the Kennedy Space Center in December 1967 and conducted through December 1969 to evaluate the performance of heat- and blast-protection materials for ground support equipment used during the Apollo/Saturn launches. Materials believed to be generally suitable for heat and blast protection were subjected to launch-exposure tests. Tests were made during the Apollo/Saturn 502, 503, and 505 launches. Tests were also made in a local laboratory, as an alternative to the restrictive requirements of launch-exposure tests, to determine the effects of torch-flame exposure on ablative materials. Five materials were found to be satisfactory in all major test categories. It was determined that torch-flame tests can probably be utilized as an acceptable substitute for the booster-engine-exhaust exposure tests for basic screening of candidate materials.

  19. The Behind-the-Knee test: an efficient model for evaluating mechanical and chemical irritation.

    PubMed

    Farage, Miranda A

    2006-05-01

    The 'Behind-the-Knee' method (BTK test), using the popliteal fossa as a test site, evaluates both the inherent chemical irritation, and the potential for mechanical irritation of substrates and products. This approach eliminates some of the difficulties of in-use clinical test systems while still providing reliable results. In this publication, examples of the results of BTK tests on several materials are presented with direct comparisons, where possible, with results of in-use clinical testing conducted on the same materials. In in-use clinical tests, volunteer panelists were provided with catamenial products to use in place of their normal product. In the BTK test, samples were applied daily to the popliteal fossa using an elastic athletic band. In both studies, irritation reactions were scored visually. Levels of irritation in the BTK test are consistently higher than those of standard patch tests, illustrating the contribution of mechanical irritation to the overall irritant potential of materials and products. Repeated tests on identical test materials demonstrated that the BTK test results are reproducible. Side-by-side comparisons of the BTK test and in-use clinical tests demonstrated that the BTK test produces results of similar quality to the in-use clinical. By using several concurrent panels with a common test material, it is possible to compare the irritant properties of several materials at once. We have tested over 25 different materials in over 35 BTK studies. The test method has proven reliable and versatile in testing a wide variety of materials, including menstrual pads, topsheets, interlabial pads, pantiliners, tampons and lotion coatings on products. Unlike in-use clinicals, the BTK test allows the direct comparison of two products at one time on the same individual, and is easily adapted to investigative programs. It is subject to fewer confounding factors, is much easier to implement, has a shorter turnaround time, and is less expensive than in-use clinical testing. Importantly, unlike standard patch tests, the BTK test evaluates both the inherent chemical irritation associated with materials and the mechanical irritation owing to friction. Although the BTK test was developed using catamenial products, the test system provides a valuable alternative for evaluating any material where mechanical irritation may play a role, including textiles, facial tissues, baby and adult diapers, and laundry products that may leave residues on fabrics.

  20. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...

  1. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...

  2. Test Methodology to Evaluate the Safety of Materials Using Spark Incendivity

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Ritz, Mindy; Starnes, Jeff

    2007-01-01

    For many years scientists and engineers have been searching for the proper test method to evaluate an electrostatic risk for materials used in hazardous environments. A new test standard created by the International Electrotechnical Commission is a promising addition to conventional test methods used throughout industry. The purpose of this paper is to incorporate this test into a proposed new methodology for the evaluation of materials exposed to flammable environments. However, initial testing using this new standard has uncovered some unconventional behavior in materials that conventional test methods were thought to have reconciled. For example some materials tested at higher humidities were more susceptible to incendive discharges than at lower humidity even though the surface resistivity was lower.

  3. Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure

    NASA Astrophysics Data System (ADS)

    Talib, Z. A.

    2018-04-01

    The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material

  4. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... materials, and finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written...

  5. Testing methods and techniques: Strength of materials and components. A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The methods, techniques, and devices used in testing the mechanical properties of various materials are presented. Although metals and metal alloys are featured prominently, some of the items describe tests on a variety of other materials, from concrete to plastics. Many of the tests described are modifications of standard testing procedures, intended either to adapt them to different materials and conditions, or to make them more rapid and accurate. In either case, the approaches presented can result in considerable cost savings and improved quality control. The compilation is presented in two sections. The first deals specifically with material strength testing; the second treats the special category of fracture and fatigue testing.

  6. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  7. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  8. Partial Testing Can Potentiate Learning of Tested and Untested Material from Multimedia Lessons

    ERIC Educational Resources Information Center

    Yue, Carole L.; Soderstrom, Nicholas C.; Bjork, Elizabeth Ligon

    2015-01-01

    Test-potentiated learning occurs when testing renders a subsequent study period more effective than it would have been without an intervening test. We examined whether testing only a subset of material from a multimedia lesson would potentiate the restudy of both tested and untested material. In Experiments 1a and 1b, participants studied a…

  9. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.

  10. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Phillips, Jeffrey; Hendrix, Howard

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C).more » These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO 2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of these components determining the optimum test location. The first step of the ComTest, the steam turbine test, was determined best suited for a site in Youngstown, Ohio. Efforts were also undertaken to identify and evaluate other potential sites for high pressure testing.« less

  11. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 3

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.

    1986-01-01

    Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.

  12. Operation HARDTACK. Phase 2

    DTIC Science & Technology

    1959-07-01

    Nevada Test Site. ditions, available equipment and material , and late criteria changes requesifd by the partici- "The Nevada tests will e held during...by visory personnel. H&N Field Engineers or the H&N Material TestsResident Engineer. The majority of material tests consisted of 3. Reports and...procurement of material and hol, date of request, date rquired, work to be equipment to be used in the test facilities pro- performed, and site or station

  13. Viscoelastic properties of elastomeric materials for O-ring applications

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1989-01-01

    Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  14. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  15. A rare allergy to a polyether dental impression material.

    PubMed

    Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried

    2012-08-01

    Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.

  16. Testing of materials from the Minnesota Cold Regions pavement research test facility

    DOT National Transportation Integrated Search

    1996-09-01

    The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...

  17. Resilient modulus testing of materials from MN/Road : phase 1

    DOT National Transportation Integrated Search

    1996-09-01

    The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted resilient modulus tests on materials from the MN/ROAD test site for the Minnesota Department of Transportation. Materials tested included samples of the lean clay subgra...

  18. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  19. LLNL Small-Scale Friction sensitivity (BAM) Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less

  20. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  1. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  2. Flash fire propensity of materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.

  3. Materials and processes laboratory composite materials characterization task, part 1. Damage tolerance

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.

    1991-01-01

    A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.

  4. Numerical analysis and experimental verification of elastomer bending process with different material models

    NASA Astrophysics Data System (ADS)

    Kut, Stanislaw; Ryzinska, Grazyna; Niedzialek, Bernadetta

    2016-01-01

    The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.

  5. Performance testing accountability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less

  6. Elaborated Odor Test for Extended Exposure

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.

    2016-01-01

    Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.

  7. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...

  8. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...

  9. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material...

  10. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  11. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  12. 76 FR 47262 - Brookwood-Sago Mine Safety Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... industry during the current reporting period. Pre-test and post- test results of trainees. Course... funding ends. 2. Agency creates training Increase number of Pre-test and post- materials and improves quality educational test results of the safety. materials developed. training materials. Provide quality...

  13. 75 FR 41531 - Brookwood-Sago Mine Safety Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... stated goals and current reporting period. objectives for improving safety. Conduct and report pre-test and post- test results of trainees. Course evaluations of trainer and training materials. The extent... pre-test and post- and improves safety. educational materials test results of the training materials...

  14. 77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0045] Leakage Tests on Packages for Shipment of..., ``Leakage Tests on Packages for Radioactive Material.'' ADDRESSES: You can access publicly available... Materials--Leakage Tests on Packages for Shipment'' approved February 1998. The NRC staff developed and...

  15. Fire tests for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1980-01-01

    Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.

  16. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  17. Life and stability testing of packaged low-cost energy storage materials

    NASA Astrophysics Data System (ADS)

    Frysinger, G. R.

    1980-07-01

    A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.

  18. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Gary Robert; Broilo, Robert M.; Lopez-Pulliam, Ian Daniel

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. Themore » proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a thermally robust igniter system.« less

  19. Diffusion-controlled reference material for VOC emissions testing: proof of concept.

    PubMed

    Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A

    2010-10-01

    Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.

  20. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  1. International Test Program for Synergistic Atomic Oxygen and VUV Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon; Banks, Bruce; Dever, Joyce; Savage, William

    2000-01-01

    Spacecraft in low Earth orbit (LEO) are subject to degradation in thermal and optical performance of components and materials through interaction with atomic oxygen and vacuum ultraviolet radiation which are predominant in LEO. Due to the importance of LEO durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests consisted of exposure of samples representing a variety of thermal control paints and multilayer insulation materials that have been used in space. Materials donated from various international sources were tested alongside a material whose performance is well known such as Teflon FEP or Kapton H for multilayer insulation, or Z-93-P for white thermal control paints. The optical, thermal or mass loss data generated during the test was then provided to the participating material supplier. Data was not published unless the participant donating the material consented to publication. This paper presents a description of the types of tests and facilities that have been used for the test program as well as some examples of data that have been generated. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects to enable improved prediction of spacecraft performance.

  2. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  3. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  4. Building world-class microlithographic lens systems: optical material requirements and qualification methods

    NASA Astrophysics Data System (ADS)

    DeStefano, Paul R.; Michaloski, Paul F.

    1993-12-01

    Building successive generations of state-of-the-art wide field, sub-micron microlithographic lens systems dictates ever-tightening material tolerances that challenge glass manufacturers. This paper discusses the optical material needs for microlithographic lens systems and Tropel's in-house material qualification program. Material qualification is divided into three successive stages: (1) fluorescence testing to qualitatively analyze color center characteristics of the material; (2) homogeneity testing to determine the relative volumetric variations in index; and (3) absolute index testing at multiple wavelengths to determine the material's dispersion characteristics.

  5. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products

    PubMed Central

    Bernatchez, Stéphanie F.; Tucker, Joseph; Chiffoleau, Gwenael

    2017-01-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed. PMID:29098113

  6. FLiNaK Compatability Studies with Inconel 600 and Silicon Carbide

    DOE PAGES

    Yoder, Jr, Graydon L.; Heatherly, Dennis Wayne; Wilson, Dane F.; ...

    2016-07-26

    A small liquid fluoride salt test apparatus has been constructed and testing conducted to examine the compatibility of SiC, Inconel 600, and a spiral wound gasket material in FLiNaK salt. These tests were conducted to test materials and sealing systems that would be used in a FLiNaK salt test loop. Three months of testing at 700oC was used to assure that these materials and seals would be acceptable operating under expected test loop conditions. The SiC specimens showed little or no change over the test period while the spiral wound gasket material showed no degradation, except for the possibility ofmore » salt seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 m in depth. Analysis indicated that the salt had leached chrome from the Inconel surface as was expected for this material. Because the test loop will have a limited working lifetime, it was concluded that these materials would be satisfactory for loop construction.« less

  7. Materials screening tests for the krypton-85 storage development program

    NASA Astrophysics Data System (ADS)

    Nagata, P. K.

    1981-04-01

    The results of a materials testing program for krypton-85 storage techniques are reported. Corrosion and stress corrosion tests were performed on a variety of materials including AISI 4130, Type 316 SS, Type 304 SS, Type 310 SS, Nitronic 50, and alloy A286. Test environments were high-purity liquid rubidium, liquid rubidium contaminated with oxygen, and rubidium hydroxide. Oxygen and water contaminations in liquid rubidium were found to greatly increase both general and localized corrosion of the materials tested. Alloy A286, Type 304 SS, and AISI 4130 were eliminated as candidate materials due to their susceptibility to general corrosion and stress corrosion cracking.

  8. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for both the dry transference and the extraction tests, the residue from each scan was interpreted.

  9. Structural impact and crashworthiness. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, J.

    1984-01-01

    These papers here were given at a conference on materials testing. The topics covered are mathematical modelling of materials, impact tests on pipes, and drop tests on scale models of lead shielded containers for radioactive materials.

  10. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  11. Deducing material quality in cast and hot-forged steels by new bending test

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  12. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  13. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, Shaun; Kittredge, Ken

    2003-01-01

    A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.

  14. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  15. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...

  16. Training Teachers and Serving Students: Applying Usability Testing in Writing Programs

    ERIC Educational Resources Information Center

    McGovern, Heather

    2007-01-01

    Teachers often test course materials by using them in class. Usability testing provides an alternative: teachers receive student feedback and revise materials "before" teaching a class. Case studies based on interviews and observations with two teaching assistants who usability tested materials before teaching introductory technical writing…

  17. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...

  18. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...

  19. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Test procedure. 164.009-15 Section 164.009-15 Shipping...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-15 Test procedure. (a) General. Paragraphs (b) through (k) of this section contain the test procedures for each material...

  20. Effects of long duration exposure to simulated space environment on nonmetallic materials properties

    NASA Technical Reports Server (NTRS)

    Peacock, C. L., Jr.; Whitaker, A. F.

    1983-01-01

    Nonmetallic materials specimens from the Viking program were tested in situ invacuo after continuous thermal vacuum exposure from 1971/1972 to the present. Eleven tests were done on appropriate specimens of 30 materials; however, no single material received all the tests. Some specimens also were exposed to 1 or 2.5 MeV electrons at differing fluences before testing. Baseline exposure data is reported for graphite/epoxy specimens that were exposed to vacuum since 1974. These materials were transferred to the thermal vacuum storage facility for future in situ testing and irradiation. Thin G/E specimens were tensile tested after thermal-vacuum cycling exposure. Photomicrographic examinations and SEM analyses were done on the failed specimens.

  1. Results of tests of K5NA and a revised formulation of EPDM/cork patch material in MSFC Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1982-01-01

    During prelaunch procedures at Kennedy Space Center some of the EPDM Thermal Protection System material was damaged on the Solid Rocket Booster stiffener stubs. The preferred solution was to patch the damaged areas with a cork-filled epoxy patching compound. Before this was done, however, it was requested that this patching technique be checked out by testing it in the MSFC Hot Gas Facility. Two tests were run in the HFG in 1980. The results showed the patch material to be adequate. Since that time, the formulation of the cork-filled epoxy material has been changed. It became necessary to retest this concept to be sure that the new material is as good as or better than the original material. In addition to the revised formulation material, tests were also made using K5NA as the patch material. The objectives of the tests reported herein were to: (1) compare the thermal performance of the original and the new cork-filled epoxy formulations, and (2) compare the K5NA closeout material to these epoxy materials. Material specifications are also discussed.

  2. Nondestructive Evaluation of Airport Pavements. Volume I. Program References,

    DTIC Science & Technology

    1979-09-01

    greater than its original capacity (see test 13 on Fig. 2.5). During the material tests by Majidzadeh, the dynamic E-value of frozen subgrade soil was...Sample the base and subbase material by conventional spoon and identify the material by standard soil -aggregate classification and penetration...such as shaker table. The new testing specification is designed for all paving materials including subgrade soils . The specifications of material

  3. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  4. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: Effect of specimen geometries, antagonist materials and test set-up configuration.

    PubMed

    Wimmer, Timea; Huffmann, Anne Mildred Sophie; Eichberger, Marlis; Schmidlin, Patrick R; Stawarczyk, Bogna

    2016-06-01

    To test and compare the two-body wear rate of three CAD/CAM polymer materials and the influence of specimen geometry, antagonist material and test set-up configuration. Three CAD/CAM polymeric materials were assessed: a thermoplastic polyetheretherketone (PEEK), an experimental nanohybrid composite (COMP) and a PMMA-based material (PMMA). Crown-shaped and flat specimens were prepared from each material. The specimens underwent thermo-mechanical loading (50N, 5/55°C; 600,000 chewing cycles) opposed to human enamel and stainless steel antagonists. Half of the specimens of each group were loaded with a sliding movement of 0.7mm, the remaining half without. Thereby, 24 different test set-ups were investigated (n=12). Wear of the materials and antagonists was evaluated with a match-3D procedure. The topography of all surfaces was examined with scanning electron microscopy (SEM). Data were statistically evaluated with four-/one-way ANOVA followed by Scheffé post hoc test and unpaired t-test (p<0.05). All PEEK specimens showed significantly less material loss than COMP and PMMA specimens when loaded laterally. Within the axial loaded groups this was only true for the flat specimens tested with enamel antagonists. Crown specimens of these groups exhibited lower loss values than flat ones. Lateral force application led mostly to significantly higher material loss than the axial load application. On the antagonist side, no impact of CAD/CAM polymer material, antagonist material, force application and specimen geometry was found. Wear of PEEK was lower than that of the resin-based materials when lateral forces were applied, but showed comparable antagonist wear rates at the same time. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  6. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  7. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  8. The Effect of Testing on the Retention of Coherent and Incoherent Text Material

    ERIC Educational Resources Information Center

    de Jonge, Mario; Tabbers, Huib K.; Rikers, Remy M. J. P.

    2015-01-01

    Research has shown that testing during learning can enhance the long-term retention of text material. In two experiments, we investigated the testing effect with a fill-in-the-blank test on the retention of text material. In Experiment 1, using a coherent text, we found no retention benefit of testing compared to a restudy (control) condition. In…

  9. Erratum to: Application of addition-cured silicone denture relining materials to adjust mouthguards.

    PubMed

    Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki

    2016-01-01

    The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.

  10. NASA-STD-6001B Test 7: Impact of Test Methodology and Detection Advancements on the Obsolescence of Historical Offgas Data

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Woods, Brenton; Harper, Susana A.; Beeson, Harold D.; Perez, Horacio; Ryder, Valerie; Tapia, Alma S.; Pedley, Michael D.

    2017-01-01

    NASA-STD-6001B states "all nonmetals tested in accordance with NASA-STD-6001 should be retested every 10 years or as required by the responsible program/project." The retesting of materials helps ensure the most accurate data are used in material selection. Manufacturer formulas and processes can change over time, sometimes without an update to product number and material information. Material performance in certain NASA-STD-6001 tests can be particularly vulnerable to these changes, such as material offgas (Test 7). In addition, Test 7 analysis techniques at NASA White Sands Test Facility were dramatically enhanced in the early 1990s, resulting in improved detection capabilities. Low level formaldehyde identification was improved again in 2004. Understanding the limitations in offgas analysis data prior to 1990 puts into question the validity and current applicability of that data. Case studies on Super Koropon (Registered trademark) and Aeroglaze (Registered trademark) topcoat highlight the importance of material retesting.

  11. Electrostatic Evaluation: SCAPE Suit Materials

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos

    2005-01-01

    The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.

  12. Combinatorial synthesis of ceramic materials

    DOEpatents

    Lauf, Robert J [Oak Ridge, TN; Walls, Claudia A [Oak Ridge, TN; Boatner, Lynn A [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  13. Combinatorial synthesis of ceramic materials

    DOEpatents

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  14. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  15. New Sentence Recognition Materials Developed Using a Basic Non-Native English Lexicon

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Smiljanic, Rajka

    2012-01-01

    Purpose: The objective of this project was to develop new sentence test materials drawing on a basic non-native English lexicon that could be used to test speech recognition for various listener populations. These materials have been designed to provide a test tool that is less linguistically biased, compared with materials that are currently…

  16. Correlation between strength properties in standard test specimens and molded phenolic parts

    NASA Technical Reports Server (NTRS)

    Turner, P S; Thomason, R H

    1946-01-01

    This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.

  17. Evaluation of Minimum Asphalt Concrete Thickness Criteria

    DTIC Science & Technology

    2008-10-01

    9 Figure 6. Dry density versus moisture content for CH material... density measurements. ............................ 24 Figure 18. EPC installation in a crushed gravel base course layer...Construction Materials Materials Characterization Laboratory Testing Field Testing Test Section Construction Hydrometer, Modified Proctor , Specific

  18. Toxicity of materials in fire situations: Laboratory data obtained at the University of San Francisco

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Approximately 300 materials were evaluated using a specific set of test conditions. Materials tested included wood, fibers, fabrics and synthetic polymers. Data obtained using 10 different sets of test conditions are presented.

  19. Subscale solid motor nozzle tests, phase 4 and nozzle materials screening and thermal characterization, phase 5

    NASA Technical Reports Server (NTRS)

    Arnold, J.; Dodson, J.; Laub, B.

    1979-01-01

    Subscale solid motor nozzles containing a baseline material or low cost materials to be considered as potential replacements for the baseline material are designed and tested. Data are presented from tests of four identically designed 2.5 inch throat diameter nozzles and one 7 inch throat diameter nozzle. The screening of new candidate low cost materials, as well as their thermophysical and thermochemical characterization is also discussed.

  20. Auto-ignition of hydrazine by engineering materials

    NASA Technical Reports Server (NTRS)

    Perkins, J. H.; Riehl, W. A.

    1978-01-01

    Hydrazine, being a monopropellant, can explode and/or detonate in contact with some materials. This has been generally recognized and minimized by testing the compatibility of engineering materials with hydrazine at ambient temperature. Very limited tests have been done at elevated temperatures. To assess the potential hazard of hydrazine leakage into a propulsion compartment (boattail), autoignition characteristics of hydrazine were tested on 18 engineering materials and coatings at temperatures of 120 C to over 330 C. Furthermore, since hydrazine can decompose violently in nitrogen or helium, common purging cannot assure safety. Therefore tests were also made in nitrogen. Detonations occurred on contact with five materials in air. Similar tests in nitrogen did not lead to ignition.

  1. Ares I-X USS Material Testing

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.

  2. Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case

    NASA Astrophysics Data System (ADS)

    Roebben, Gert; Kestens, Vikram; Varga, Zoltan; Charoud-Got, Jean; Ramaye, Yannic; Gollwitzer, Christian; Bartczak, Dorota; Geißler, Daniel; Noble, James; Mazoua, Stéphane; Meeus, Nele; Corbisier, Philippe; Palmai, Marcell; Mihály, Judith; Krumrey, Michael; Davies, Julie; Resch-Genger, Ute; Kumarswami, Neelam; Minelli, Caterina; Sikora, Aneta; Goenaga-Infante, Heidi

    2015-10-01

    This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterisation of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots. This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a 'reference material' (ISO Guide 30:2015) or rather those of the recently defined category of 'representative test material' (ISO TS 16195:2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to representative test material or reference material, and how this status depends on its intended use.

  3. Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van Winkle, Clinton Isaac

    Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.

  4. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  5. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  6. Evaluation of multidensity orthotic materials used in footwear for patients with diabetes.

    PubMed

    Foto, J G; Birke, J A

    1998-12-01

    Selected combinations of multidensity orthotic materials were tested under simulated walking conditions found in the forefoot of diabetic patients. Materials were compared for therapeutic effectiveness by their stress/strain properties and dynamic compression set. Results showed that all of the multidensity materials experienced losses in performance throughout the testing period of 100,000 cycles, with the greatest losses occurring within the first 10,000 cycles. Of the materials tested, Poron + Plastazote #2 and Spenco + Microcel Puff Lite had the highest dynamic material strain and the lowest dynamic compression set over 100,000 cycles. In comparison, these are better multidensity combinations than the others tested to use as therapeutic orthoses in footwear for diabetic patients.

  7. High temperature material interactions of thermoelectric systems using silicon germanium.

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1973-01-01

    The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.

  8. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  9. Testing ocular irritancy in vitro with the silicon microphysiometer.

    PubMed

    Bruner, L H; Miller, K R; Owicki, J C; Parce, J W; Muir, V C

    1991-01-01

    The silicon microphysiometer, an instrument based on the light-addressable potentiometric sensor, was evaluated as an in vitro alternative for assessing ocular irritancy potential. It indirectly and non-invasively measures cell metabolism by determining the rate of acid metabolite production from cells, in this case human epidermal keratinocytes, placed inside the microphysiometer chamber. The 17 materials used for the evaluation included bar soaps, a liquid hand soap, shampoos, dishwashing liquids, laundry detergents, a fabric softener and several single chemicals. All materials tested were in liquid form. The in vivo irritancy potential of the materials was obtained from historical data using the rabbit low-volume eye test. There was a positive correlation between the in vivo irritancy potential of the test materials and the concentration of test material that decreased the acidification rate of cells by 50% (MRD(50); r = 0.86, P < 0.0001). Preliminary studies suggest other endpoints obtainable from the system may also provide useful information for making ocular safety assessments. Because the method is non-invasive, it is possible to determine whether cells recover from a treatment with the test material. The metabolic rate of the cells also increases at sub-inhibitory concentrations of some of the test materials. Because of the good correlation between the in vivo and in vitro data, the ease with which test materials can be applied to the system, and the multiple endpoints available from the system, it holds great potential as a useful in vitro alternative for ocular safety testing.

  10. NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation

    NASA Technical Reports Server (NTRS)

    Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.

    2017-01-01

    Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.

  11. Application of addition-cured silicone denture relining materials to adjust mouthguards.

    PubMed

    Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki

    2016-01-01

    The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.

  12. Hot Hydrogen Testing of Tungsten-Uranium Dioxide (W-UO2) CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie

    2014-01-01

    CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.

  13. Compatibility testing of vacuum seal materials

    NASA Astrophysics Data System (ADS)

    Foster, P. A.; Rodin, W. A.

    1993-05-01

    Small scale materials compatibility testing was conducted for three elastomers considered for use as vacuum seal materials: Adiprene MOCA-cured; Adiprene Cyanacured; and Sylgard silastic rubber. The tests were conducted using orthogonal array designed experiments for each of the elastomers placed in contact with three materials commonly used during weapon disassembly operations: Duxseal, Sylgard 186 grease, and 2-propyl alcohol. The test results indicated that only the 2-propyl alcohol had a significant effect on the elastomer hardness and physical properties. The alcohol had the largest effect on the two Adiprene materials, and the silastic rubber was the least affected.

  14. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study.

    PubMed

    Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M

    2017-09-01

    The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.

  15. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions about the relative ballistic performances. The tests showed that all of the composites would outperform the alumina materials. Further, all of the tests led to the prediction that AD995 would be better ballistically than Sintox FA, possibly up to a factor of two better. The predictions were in very good agreement with literature values for depth-of-penetration testing. The situation was more complex for the carbide materials, with different tests leading to slightly different predictions. However, the predictions from the ultrasonic tests were consistent with the available ballistic data. Indeed, the ultrasonic data proved to be the most consistent predictor of ballistic performance, supporting the view that the total defect population is more relevant than a ‘critical flaw’ concept. Thus, it can be concluded that with further development, and subject to validation across a wider spread of materials and microstructures, thermal shock testing coupled with ultrasonic measurements could form the basis of a future screening test for ceramics for armour applications.

  16. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  17. A Multiscale Material Testing System for In Situ Optical and Electron Microscopes and Its Application

    PubMed Central

    Ye, Xuan; Cui, Zhiguo; Fang, Huajun; Li, Xide

    2017-01-01

    We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented. PMID:28777341

  18. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    PubMed

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.

  19. An in vitro investigation into the physical properties of irreversible hydrocolloid alternatives.

    PubMed

    Patel, Rishi D; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2010-11-01

    A number of manufacturers have introduced new products that are marketed as alternatives to irreversible hydrocolloid impression materials. However, there is a paucity of laboratory and clinical research on these products compared to traditional irreversible hydrocolloid. The purpose of this study was to evaluate the detail reproduction, gypsum compatibility, and linear dimensional change of 3 recently introduced impression materials designed as alternatives to irreversible hydrocolloid. The tested materials were Position Penta Quick, Silgimix, and AlgiNot. An irreversible hydrocolloid impression material, Jeltrate Plus Antimicrobial, served as the control. The parameters of detail reproduction, gypsum compatibility, and linear dimensional change were tested in accordance with ANSI/ADA Specifications No. 18 and 19. The gypsum compatibility was tested using a type III stone (Microstone Golden) and a type IV stone (Die-Keen Green). The data were analyzed using the Kruskal-Wallis rank test and the Mann-Whitney U test (α=.05). The test materials demonstrated significantly (P<.001) better detail reproduction than the control material. Silgimix exhibited the best compatibility with Microstone, whereas AlgiNot and Position Penta Quick exhibited the best gypsum compatibility with Die-Keen. An incompatibility was observed over time between the Jeltrate control material and the Microstone gypsum material. For linear dimensional change, the mean dimension of the control material most closely approximated the distance between the lines on the test die, but it exhibited the greatest variability in measurements. All of the test materials exhibited linear dimensional change within the ADA's accepted limit of 1.0%. The 3 new impression materials exhibited better detail reproduction and less variability in linear dimensional change than the irreversible hydrocolloid control. Gypsum compatibility varied with the brand of gypsum used, with an incompatibility identified between the control material (Jeltrate Plus Antimicrobial) and Microstone related to surface changes observed over time. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  1. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  2. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  3. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  4. Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus

    ERIC Educational Resources Information Center

    Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.

    2006-01-01

    A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…

  5. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  6. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  7. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  8. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  9. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  10. Potential of Organic Matrix Composites for Liquid Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Herald, Stephen D.; Stolzfus, Joel M.; Engel, Carl D.; Bohlen, James W.; Palm, Tod; Robinson, Michael J.

    2005-01-01

    Composite materials are being considered for the tankage of cryogenic propellants in access to space because of potentially lower structural weights. A major hurdle for composites is an inherent concern about the safety of using flammable structural materials in contact with liquid and gaseous oxygen. A hazards analysis approach addresses a series of specific concerns that must be addressed based upon test data. Under the 2nd Generation Reusable Launch Vehicle contracts, testing was begun for a variety of organic matrix composite materials both to aid in the selection of materials and to provide needed test data to support hazards analyses. The work has continued at NASA MSFC and the NASA WSTF to provide information on the potential for using composite materials in oxygen systems. Appropriate methods for oxygen compatibility testing of structural materials and data for a range of composite materials from impact, friction, flammability and electrostatic discharge testing are presented. Remaining concerns and conclusions about composite tank structures, and recommendations for additional testing are discussed. Requirements for system specific hazards analysis are identified.

  11. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR... Acceptance. (1) At least three specimens of the outer packaging materials must be tested; (2) Each test must...

  12. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  13. Space simulation test for thermal control materials

    NASA Technical Reports Server (NTRS)

    Hardgrove, W. R.

    1990-01-01

    Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.

  14. Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    NASA Technical Reports Server (NTRS)

    Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.

    1977-01-01

    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.

  15. Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1999-01-01

    Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.

  16. High throughput screening (HTS) for phototoxicity hazard using the in vitro 3T3 neutral red uptake assay.

    PubMed

    Jones, P A; King, A V

    2003-01-01

    Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity.

  17. Investigation on bending failure to characterize crashworthiness of 6xxx-series aluminium sheet alloys with bending-tension test procedure

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2018-05-01

    As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.

  18. DHS small-scale safety and thermal testing of improvised explosives-comparison of testing performance

    NASA Astrophysics Data System (ADS)

    Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.

    2014-05-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.

  19. Effect of Oxygen Concentration on Autogenous Ignition Temperature and Pneumatic Impact Ignitability of Nonmetallic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah

    2009-01-01

    Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.

  20. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  1. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  2. Quantification Of Fire Signatures For Practical Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.

    2003-01-01

    The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.

  3. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  4. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  5. Laboratory test methods for evaluating the fire response of aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1979-01-01

    The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.

  6. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  7. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ams, Bridget Elaine

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos Nationalmore » Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.« less

  8. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  9. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  10. Method and Apparatus for the Portable Identification Of Material Thickness And Defects Along Uneven Surfaces Using Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)

    2006-01-01

    A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.

  11. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.

  12. Effect of Time on Gypsum-Impression Material Compatibility

    NASA Astrophysics Data System (ADS)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p < 0.05). Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  13. Development of the technology for the fabrication of reliable laminar flow control panels

    NASA Technical Reports Server (NTRS)

    Weiss, D. D.; Lindh, D. V.

    1977-01-01

    Various configurations of porous, perforated and slotted materials were flow tested to determine if they would meet the LFC surface smoothness and flow requirements. The candidate materials were then tested for susceptibility to clogging and for resistance to corrosion. Of the materials tested, perforated titanium, porous polyimide, and slotted assemblies demonstrated a much greater resistance to clogging than other porous materials.

  14. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  15. Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load

    NASA Astrophysics Data System (ADS)

    Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar

    2018-03-01

    Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.

  16. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  17. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  18. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  19. SDU6 Interior Liner Testing & Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skidmore, T. E.

    Two liner materials (Marseal® M-3500 and REMA Chemoline® 4CN) proposed for use as a liner inside the Saltstone Disposal Unit 6 (SDU6) were subjected to specific ASTM tests (tensile and lap-shear) after immersion in 50% and 100% simulant solutions for 1000 hours at the Savannah River Ecology Laboratory. Both liner materials exhibited good resistance to the simulant chemistry, at least based on the tests performed and the test duration/conditions imposed. In lap-shear tests, both materials failed in the base material rather than peeling apart, confirming good adhesion. The REMA 4CN bromobutyl elastomer showed superior bonding characteristics and absence of warpingmore » or delamination at the conditions tested. The Marseal M-3500 material (PVC/EVA blend with polyester reinforcement) exhibited deformation and debonding in some locations. The cause of the deformation and delamination observed in the Marseal M-3500 material is not fully known, but possibly attributed to thermomechanical stress at immersion temperatures, and the thermoplastic nature of the material. The immersion temperature (68 °C) is slightly greater than the maximum use temperature limit quoted for the Marseal M- 3500 liner (65 °C), though the basis for the service limit is unknown. The testing performed was limited in scope and only for these two liner materials. These tests were primarily performed to screen for severe incompatibility or short-term degradation in Saltstone bleedwater simulants at bounding solution temperatures. Additional testing is recommended to assess long-term performance and the overall service life of the liner.« less

  20. Thermal interface material characterization for cryogenic electronic packaging solutions

    NASA Astrophysics Data System (ADS)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  1. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less

  2. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    PubMed

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P <.05. Specimens manufactured from materials intended for dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  3. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  4. Some possible reference materials for fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Solis, A. N.

    1977-01-01

    Suitable reference materials need to be selected in order to standardize any test method. The evaluation of cotton, polyethylene, polyether sulfone, polycarbonate, polystyrene, and polyurethane flexible and rigid foams as possible reference materials for the University of San Francisco/NASA toxicity screening test method is discussed.

  5. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  6. Progress and Strategies for Testing of Materials for Solar Panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progressmore » toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.« less

  7. Rolling, slip and traction measurements on low modulus materials

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.

  8. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  9. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  10. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    NASA Astrophysics Data System (ADS)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and integration of the material into the Department of Transportation construction program.

  11. 40 CFR 92.5 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) ASTM material. The following table sets forth material from the American Society for Testing and...., Philadelphia, PA 19103. The table follows: Document number and name 40 CFR part 92 reference ASTM D 86-95, Standard Test Method for Distillation of Petroleum Products § 92.113 ASTM D 93-94, Standard Test Methods...

  12. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  13. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  14. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  15. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  16. Research on medium and high temperature solar heat storage materials

    NASA Technical Reports Server (NTRS)

    Heine, D.; Jucker, J.; Koch, D.; Krahling, H.; Supper, W.

    1979-01-01

    Characteristics of solar heat storage materials, preliminary tests in which melting and solidification characteristics are tested, and service life and cycling tests are reported. Various aspects of corrosion are discussed as well as decision about ultimate selection of materials. A program for storage and evaluation of data is included.

  17. Effect of test conditions on relative toxicity rankings of fifteen materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Fifteen materials were evaluated for relative toxicity of pyrolysis effluents, using different test conditions in the USF methodology. Wool fabrics were consistently among the most toxic materials, and polystyrene and polychloroprene flexible foam were consistently among the least toxic materials.

  18. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Description of the specimens tested if the specimens are prepared from composite material. (i) If the test was... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory...

  19. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  20. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    NASA Astrophysics Data System (ADS)

    Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.

    2018-06-01

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.

  1. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  2. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Astrophysics Data System (ADS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2008-03-01

    Thermal conductivity testing under actual-use conditions is a key to understanding how cryogenic thermal insulation systems perform in regard to engineering, economics, and materials factors. The Cryogenics Test Laboratory at NASA's Kennedy Space Center tested a number of bulk-fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boiloff method were 78 K and 293 K. Tests were performed as a function of cold vacuum pressure under conditions ranging from high vacuum to no vacuum. Results were compared with those from complementary test methods in the range of 20 K to 300 K. Various testing techniques are required to completely understand the operating performance of a material and to provide data for answers to design engineering questions.

  3. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  4. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    PubMed

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-10-01

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p < 0.01). The lesion depth of FJ was significantly shallower than those of other materials (p < 0.01); that of CV was significantly shallower than those of BC, HC, SF, and the control; and those of BC0 and BC17 were significantly shallower than that of the control (p < 0.05). The resin-type tooth-coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  5. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  6. Compact and portable digitally controlled device for testing footwear materials: technical note.

    PubMed

    Foto, James G

    2008-01-01

    Little or no practical decision-making data are available to the foot-care provider regarding the selection of orthotic materials used in therapeutic footwear. A device for simulating in-shoe forefoot conditions for the testing of orthosis materials is described. Materials are tested for their effectiveness by evaluating and comparing stress-strain and dynamic compression fatigue characteristics. The device, called the Cyclical Compression Tester (CCT), has been optimized for size, simplicity of construction, and cost. Application of the device ranges from the clinician deciding the useful life of single- and multidensity orthosis materials to the researcher characterizing materials for finite-element analysis modeling. This real-time CCT device and custom user interface combine to make an evaluation tool useful for testing how the pressure distribution of in-shoe materials changes over time in therapeutic footwear for those with peripheral neuropathy at risk for foot injury.

  7. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  8. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  9. Effect of storage time on the viscoelastic properties of elastomeric impression materials.

    PubMed

    Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis

    2012-01-01

    The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. High temperature ultrasonic testing of materials for internal flaws

    DOEpatents

    Kupperman, David S.; Linzer, Melvin

    1990-01-01

    An apparatus is disclosed for nondestructive evaluation of defects in hot terials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  11. Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja A; Suuronen, Katri

    2015-10-01

    Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material, and this can be done by using this simple test method. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. A Testing Service for Industry

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.

  13. Contact angle and surface free energy of experimental resin-based dental restorative materials after chewing simulation.

    PubMed

    Rüttermann, Stefan; Beikler, Thomas; Janda, Ralf

    2014-06-01

    To investigate contact angle and surface free energy of experimental dental resin composites containing novel delivery systems of polymeric hollow beads and low-surface tension agents after chewing simulation test. A delivery system of novel polymeric hollow beads differently loaded with two low-surface tension agents was used in different amounts to modify commonly formulated experimental dental resin composites. The non-modified resin was used as standard. Surface roughness Ra, contact angle Θ, total surface free energy γS, its apolar γS(LW), polar γS(AB), Lewis acid γS(+) and base γS(-) terms were determined and the results prior to and after chewing simulation test were compared. Significance was p<0.05. After chewing simulation Ra increased, Θ decreased, Ra increased for two test materials and γS decreased or remained constant for the standard or the test materials after chewing simulation. Ra of one test material was higher than of the standard, Θ and γS of the test materials remained lower than of the standard and, indicating their highly hydrophobic character (Θ≈60-75°, γS≈30mJm(-2)). γS(LW), and γS(-) of the test materials were lower than of the standard. Some of the test materials had lower γS(AB) and γS(+) than of the standard. Delivery systems based on novel polymeric hollow beads highly loaded with low-surface tension agents were found to significantly increase contact angle and thus to reduce surface free energy of experimental dental resin composites prior to and after chewing simulation test. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Handbook of photothermal test data on encapsulant materials

    NASA Astrophysics Data System (ADS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-05-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  15. Handbook of photothermal test data on encapsulant materials

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-01-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  16. Single-Cycle Versus Multicycle Proof Testing

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1992-01-01

    Report compares single-cycle with multiple-cycle mechanical-stress tests of parts under mechanical stresses. Objective of proof testing: to screen out gross manufacturing or material deficiencies and provide additional assurance of quality. Report concludes that changes in distribution of crack sizes during multicycle proof testing depend on initial distribution, number of cycles, relationship between resistance of material and elastic/plastic fracture-mechanics parameter, relationship between load control and displacement control, and magnitude of applied load or displacement. Whether single-cycle or multicycle testing used depends on shape, material, and technique of fabrication of components tested.

  17. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  18. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  19. Rain droplet erosion mechanisms in transparent plastic materials

    NASA Technical Reports Server (NTRS)

    Schmitt, G. F., Jr.

    1974-01-01

    Tests were conducted to determine the damaging effects of rain erosion on optically transparent materials. The rotating arm test equipment used for the tests is described. Typical transparent materials such as those found in windshields, infrared windows, lasers, and television systems were tested. Nominal velocities of 400, 500, and 600 miles per hour and rainfall conditions of one inch per hour simulated rainfall were used in the tests. It was determined that an 80 percent reduction in laser transmittance can occur in plastics submitted to rain erosion. Significant results of the environmental tests are explained.

  20. MHD generator electrode development. Summary report, July 1, 1981-September 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossing, B.R.; Buckman, R.W. Jr.; Pouchot, W.D.

    Emphasis on this program was the development of and understanding wastage mechanism(s) of metallic electrodes which may be suitable alternatives to platinum anode material for use in long-term open cycle, coal-fired MHD generator operations. The laboratory tests simulate both modes of material wastage observed in MHD electrode operation; i.e., arc erosion (melting/vaporization) and electrochemical corrosion. Based on experimental results from the electrochemical tests at 1473/sup 0/K, the rank order listing of the materials tested for anode applications were platinum, E-Brite 26-1 modified with a five percent addition of platinum, chromium, IN 601, E-Brite 26-1, and 330 stainless steel ranked inmore » decreasing order. The rank order listing based on the arc erosion test was platinum, chromium, E-Brite 26-1, 330 stainless steel, and IN 601. The relative arc erosion resistance of materials based on the AVCO Mark VII generator test results gave a rank order of platinum, 330 stainless steel, IN 601, and E-Brite 26-1. Engineering tests under simulated open-cycle coal-fired MHD operating conditions were performed in the 500 kW Westinghouse Electrode System Test Facility (WESTF). Tests were conducted on candidate metallic anode materials (cold wall) and ceramic anode (hot wall) materials. A ten-hour duration cold wall slagging test was conducted on platinum, E-Brite 26-1, 330 stainless steel and IN 601 and the results were similar to those obtained for those materials in the AVCO Mark VII generator tests. Non-slagging, super hot (>1700/sup 0/C) wall hafnia-rare earth oxide electrodes were tested in a sulfurous, western coal-fired MHD environment. All four ceramic electrode pairs were destroyed. 20 references.« less

  1. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  2. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2011-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  3. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2010-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  4. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W,; Montgomery, Eliza M.

    2012-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1 G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  5. Preparation and Use of Polish Mushroom Proficiency Testing Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polkowska-Motrenko, Halina

    2008-08-14

    Mushroom reference materials have been prepared and characterized for the use in proficiency tests according to a procedure established within the frame of an IAEA Interregional Technical Cooperation Project. The materials were used for conducting the proficiency tests in Poland in 2005-2007. The results obtained by participating laboratories are presented and discussed.

  6. 46 CFR 159.007-9 - Production inspections and tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Production inspections and tests. 159.007-9 Section 159.007-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL APPROVAL OF EQUIPMENT AND MATERIALS Production Inspection and Tests of Approved Equipment and Materials §...

  7. 46 CFR 159.007-9 - Production inspections and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Production inspections and tests. 159.007-9 Section 159.007-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL APPROVAL OF EQUIPMENT AND MATERIALS Production Inspection and Tests of Approved Equipment and Materials §...

  8. Unit: Sticking Together, First Trial Materials, Inspection Set.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    These materials, including teacher's guide, student test booklet and laboratory guide, student workbook, test booklet, and a booklet explaining the answers to the questions in the test booklet, are first trial versions of a unit that will form part of the Australian Science Education Project instructional materials for grades seven through ten.…

  9. Sustainable Design of EPA's Campus in Research Triangle Park, NC—Environmental Performance Specifications in Construction Contracts—Section 01445 Testing for Indoor Air Quality, Baseline IAQ, and Materials

    EPA Pesticide Factsheets

    More information on testing for maximum indoor pollutant concentrations for acceptance of the facility, as well as requirements for Independent Materials Testing of specific materials anticipated to have major impact on indoor air quality.

  10. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  11. Material-mediated pyrogens in medical devices: Applicability of the in vitro Monocyte Activation Test.

    PubMed

    Borton, Lindsey K; Coleman, Kelly P

    2018-06-14

    Pyrogenicity presents a challenge to clinicians, medical device manufactures, and regulators. A febrile response may be caused by endotoxin contamination, microbial components other than endotoxin, or chemical agents that generate a material-mediated pyrogenic response. While test methods for the assessment of endotoxin contamination and some microbial components other than endotoxin are well-established, material-mediated pyrogens remain elusively undefined. This review presents the findings of literature searches conducted to identify material-mediated pyrogens associated with medical devices. The in vivo rabbit pyrogen test (RPT) is considered to be the "gold standard" for medical device pyrogenicity testing, despite the fact that few medical device-derived material-mediated pyrogens are known. In line with global efforts to reduce the use of research animals, an in vitro monocyte activation test (MAT) has the potential to replace the RPT. The MAT is used to detect substances that activate human monocytes to release cytokines. This review will also describe the potential opportunities and challenges associated with MAT adoption for the detection of material-mediated pyrogens in medical device testing.

  12. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  13. Comparative transition performance of several nosetip materials as defined by ballistics-range testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, D.C.

    1979-01-01

    Requirements and techniques for conducting aerothermodynamic tests of reentry body nosetips/materials in hypersonic ballistics-range environments (ISA 22nd IIS), and associated data interpretation/analyses methods using interactive graphics (ISA 24th IIS) have been outlined. Such testing, which centers on the utilization of electro-optical pyrometry for the measurement of nosetip surface temperature distributions, has provided both the aerothermodynamics and materials-development communities with valuable new capabilities. From an aerothermodynamics standpoint, experimental results serve to test the validity of existing computer codes/correlations, as well as to expand the data base necessary for the generation of improved predictive techniques. From a materials-development standpoint, results serve tomore » define relationships between fabrication/processing methods and associated material thermal response as well as to provide for relative ranking of candidate materials under controlled reentry conditions. Following these multipurpose objectives, ballistic-range tests of preablated graphite and carbon/carbon composite nosetips have been conducted. Results are presented herein which illustrate the comparative transition performance of five nosetip materials from both mean and statistical (degree-of-asymmetry) viewpoints.« less

  14. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  15. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  16. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  18. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Image and Video Library

    1998-05-14

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  19. Inspection Guide for Reinforced Concrete Vessels. Volume 2. Commentary

    DTIC Science & Technology

    1981-10-01

    situ testing of hardened concrete; and guidelines for inspection. < The material is designed for use by the U.S. Coast Guard Marine Inspector. It...Durability Tests 96 10.7 Other Tests 99 11. REPAIRS 102 11.1 Evaluation for Repair L02 11.2 Repair Materials 103 11.3 Repair of Cracks 104 11.4 Repair of...Cement 36 8 Characteristics and Tests of Aggregates 38 9 Tests for Deleterious Materials in Aggregates 39 10 Classification of Admixtures 43 11

  20. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  1. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  2. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  3. Cyclic arc plasma tests of RSI materials using a preheater

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.

    1973-01-01

    The results of a test program are reported in which a preheater was used with an arc plasma stream to study the thermal response of samples of candidate reusable surface insulation materials for the space shuttle. The preheater simulated the shuttle temperature history during the first and last portions of the test cycle, which could not be simulated by the air arc plasma flow. Pre- and post-test data taken for each of the materials included magnified views, optical properties, and chemical analyses. The test results indicate that the mullite base samples experience higher surface temperatures than the other materials at heating rates greater than 225 kw/sq m. The ceramic fibrous mullite and silica coatings show noncatalytic wall behavior. Internal temperature response data for the materials are compared and correlated with analytical predictions.

  4. Extractables characterization for five materials of construction representative of packaging systems used for parenteral and ophthalmic drug products.

    PubMed

    Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank

    2013-01-01

    Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.

  5. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  6. Potential countersample materials for in vitro simulation wear testing.

    PubMed

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  7. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less

  8. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE PAGES

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...

    2018-03-13

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  9. Abradable compressor and turbine seals, volume 1. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.

    1979-01-01

    The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests.

  10. Evaluation of some candidate materials for automobile thermal reactors in engine-dynamometer screening tests

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1971-01-01

    Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.

  11. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  12. Measurement at low strain rates of the elastic properties of dental polymeric materials.

    PubMed

    Chabrier, F; Lloyd, C H; Scrimgeour, S N

    1999-01-01

    To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.

  13. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  14. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  15. 49 CFR 173.468 - Test for LSA-III material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Test for LSA-III material. 173.468 Section 173.468 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 ...

  16. 49 CFR 173.468 - Test for LSA-III material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Test for LSA-III material. 173.468 Section 173.468 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 ...

  17. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    DTIC Science & Technology

    2012-01-24

    perform the environmental tests at cold temperatures, nitrogen tanks were purchased and connected to the environmental chamber via hoses . Fibers of... Braided Composites.” Journal of Composite Materials (30) (1) (1996): 51-68. 2. Graham, Derek. “Buckling of Thick-Section Composite Pressure Hulls

  18. 46 CFR 197.206 - Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Substitutes for required equipment, materials, apparatus... Operations General § 197.206 Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests. (a) The Coast Guard may accept substitutes for equipment, materials, apparatus...

  19. 46 CFR 197.206 - Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Substitutes for required equipment, materials, apparatus... Operations General § 197.206 Substitutes for required equipment, materials, apparatus, arrangements, procedures, or tests. (a) The Coast Guard may accept substitutes for equipment, materials, apparatus...

  20. Embankment Criteria and Performance Report: Adobe Dam Gila River Basin, New River and Phoenix City Streams, Arizona.

    DTIC Science & Technology

    1983-06-01

    Field Control Results 18 - Record Test Results 18 GRAVEL DRAIN MATERIAL, 19 FILTER MATERIAL, 20 ABUTMET INFILL MATERIAL- 20 X. EMBANKMENT ANALYSIS 21 XI...Thirty-three in-situ density tests were conducted in the near surface embankment foundation materials by the sand displacement method . An additional...seven densities were obtained from undisturbed samples by the bulk density method . The results of density tests in the foundation are shown on plate

  1. Results from Mechanical Testing of Silicon Carbide for Space Applications: Non-Destructive Evalution Samples and MISSE-6 Experiment Samples

    DTIC Science & Technology

    2010-06-07

    the materials properties of silicon carbide plates”, S. Kenderian et al., 2009 SPIE Proceedings, vol. 7425 • Materials – 10” x 16” SiC plates...CONFERENCE PROCEEDING 3. DATES COVERED (From - To) 2008-2010 4. TITLE AND SUBTITLE Results from Mechanical Testing of Silicon Carbide for Space...for silicon carbide optical systems that covers material verification through system development. Recent laboratory results for testing of materials

  2. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  3. Vibration and Thermal Cycling Effects on Bulk-fill Insulation Materials for Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.

    2006-04-01

    Large-scale (1,000,000 liters or more) cryogenic storage tanks are typically perlite-insulated double-walled vessels. Associated problems with perlite, such as mechanical compaction and settling, could be greatly reduced by using newer bulk-fill materials such as glass bubbles or aerogel beads. Using the newer materials should translate to lower life cycle costs and improved system reliability. NASA Kennedy Space Center is leveraging its experience in the areas of materials development, insulation testing, and cryogenic systems design to develop an insulation retrofit option that will meet both industry and NASA requirements. A custom 10-liter dewar test apparatus, developed by the KSC Cryogenics Test Laboratory, was used to determine the vibration and thermal cycling effects on different bulk-fill insulation materials for cryogenic tanks. The testing included liquid-nitrogen boiloff testing and thermal cycling (with vibration) of a number of test dewars. Test results show that glass bubbles have better thermal performance and less mechanical compaction compared to perlite powder. The higher cost of the bulk material should be offset by reduced commodity loss from boiloff and improvements in material handling, evacuation, and vacuum retention. The long-term problem with settling and compaction of perlite should also be eliminated. Aerogel beads are superior for the no-vacuum condition and can now be considered in some applications. Further studies on large-scale systems are presently being pursued.

  4. Characterization of Material Response During Arc-Jet Testing with Optical Methods Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    2012-01-01

    The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative characterization of the material response of ablative materials during arc-jet testing will be discussed.

  5. Implementation of Testing Equipment for Asphalt Materials : Tech Summary

    DOT National Transportation Integrated Search

    2009-05-01

    Three new automated methods for related asphalt material and mixture testing were evaluated under this study. Each of these devices is designed to reduce testing time considerably and reduce operator error by automating the testing process. The Thery...

  6. Implementation of testing equipment for asphalt materials : tech summary.

    DOT National Transportation Integrated Search

    2009-05-01

    Three new automated methods for related asphalt material and mixture testing were evaluated : under this study. Each of these devices is designed to reduce testing time considerably and reduce : operator error by automating the testing process. The T...

  7. Experimental Studies of Carbon Nanotube Materials for Space Radiators

    NASA Technical Reports Server (NTRS)

    SanSoucie, MIchael P.; Rogers, Jan R.; Craven, Paul D.; Hyers, Robert W.

    2012-01-01

    Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.

  8. Nondestructive material characterization

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  9. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.

  10. The Status of the Testing Effect for Complex Materials: Still a Winner

    ERIC Educational Resources Information Center

    Rawson, Katherine A.

    2015-01-01

    The target articles in the special issue address a timely and important question concerning whether practice tests enhance learning of complex materials. The consensus conclusion from these articles is that the testing effect does not obtain for complex materials. In this commentary, I discuss why this conclusion is not warranted either by the…

  11. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 2

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.

    1986-01-01

    Data from the particle impact tests are presented. Results are provided for the frictional heating tests of pairs of like materials. The materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steel 316, and zironium copper.

  12. Flammability tests for regulation of building and construction materials

    Treesearch

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  13. Evaluation of materials during outdoor testing using a computer-controlled test apparatus

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2006-01-01

    Ultraviolet radiation, moisture, heat, and cyclic fatigue are some of the stressors that cause materials to degrade outdoors. Considerable research has addressed the effects of ultraviolet radiation and moisture on the rate of this degradation. An often overlooked stressor on materials, during outdoor testing, is the cyclic fatigue. Cyclic fatigue is caused by self-...

  14. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for further...

  15. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for further...

  16. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for further...

  17. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for further...

  18. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Applicability § 113.10 Testing of bulk material for export or for further...

  19. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  20. Characterization of deformable materials in the THOR dummy

    DOT National Transportation Integrated Search

    2000-01-01

    Methodologies used to characterize the mechanical behavior of various materials used in the construction of the crash test dummy called THOR (Test device for Human Occupant Restraint) are described. These materials include polyurethane, neoprene, and...

  1. Investigation of contact allergy to dental materials by patch testing

    PubMed Central

    Rai, Reena; Dinakar, Devina; Kurian, Swetha S.; Bindoo, Y. A.

    2014-01-01

    Background: Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. Aim: This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Materials and Methods: Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG). Results: Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. Conclusion: The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials. PMID:25165644

  2. THE TOXICITY OF RUBBERS AND PLASTICS USED IN TRANSFUSION-GIVING SETS

    PubMed Central

    Cruickshank, C. N. D.; Hooper, Caroline; Lewis, H. B. M.; MacDougall, J. D. B.

    1960-01-01

    The toxicity of different rubbers and plastics used in transfusion-giving sets has been investigated by examining their effects on (a) cultures of chick embryo tissues, (b) the oxygen uptake of guinea-pig skin tissue cultures, and (c) the growth of Str. pyogenes. The results of the laboratory tests have been compared with the incidence of thrombophlebitis after prolonged transfusions through the various materials. It was found that where the materials inhibited the growth of Str. pyogenes they were also toxic to tissue cultures, but that some materials which were toxic to tissue cultures did not inhibit bacterial growth. The assessments of the relative toxicity of the materials tested by the two tissue culture methods were in agreement. The skin respiration studies, however, gave more information on the early effects of the toxic materials. The relative toxicity of the materials as revealed by these tests could be correlated with the differences in the incidence of thrombophlebitis following intravenous infusions administered through giving-sets assembled with the materials tested. It is suggested therefore that the toxicity revealed by these tests is of clinical importance, and that tissue culture toxicity tests will prove to be of value in selecting rubbers and plastics for clinical purposes. Images PMID:13813084

  3. Plasma-Facing Component and Materials Testing for the NSTX-U

    NASA Astrophysics Data System (ADS)

    Jaworski, Michael; Brooks, A.; Gerhardt, S.; Loesser, D.; Mardenfeld, M.; Menard, J.; Gray, T.; Reinke, M.

    2017-10-01

    The NSTX-U Recovery Project is developing plasma-facing components for use in the divertor of NSTX-U. The extreme conditions of the NSTX-U divertor make it possible to stress even graphite surfaces to the material limits leading to the possibility of component failures. In addition, the complex, mixed-material environment of the NSTX-U due to the use of boron and lithium wall conditioning techniques creates significant uncertainties in the monitoring of the PFCs. A testing program has been developed to inform on the material and design limitations of the NSTX-U high-heat flux components. These tests include high-heat flux testing in electron beam facilities as well as plasma-based testing. The NSTX-U components could experience perpendicular heat fluxes as high as 45 MW/m2. Parallel heat fluxes onto leading edges could reach 475 MW/m2. The testing program and material survey plan will be presented. Work supported by DOE contract DE-AC02-09CH11466 and DE-AC05-00OR22725.

  4. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  5. Standard Methods for Unnotched Tension Testing of Textile Composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1995-01-01

    An investigation was conducted by researchers at the Boeing Defense & Space Group to investigate the effects of specimen sizing on several braided textile materials. Test results from this and other test programs were compared in an effort to determine what effect, if any, specimen size has on elastic property measurements of unnotched tension test. In general, the unnotched tensile strength of 2-D braids was found to be insensitive to specimen width, length, or thickness effects. The results from this study suggest that standard testing methods used for tape materials may be sufficient for tension testing of textile composite materials. Specifically, the straight sided specimen geometry described in ASTM 3034, and used by Boeing, should provide acceptable results. Further experiments performed at Boeing and by other investigators on other textile architectures suggest similar results. Although specimen size studies were not conducted, failing stresses varied on the same order as those obtained with the 2-D materials. This suggests that the accuracy of the results were consistent with those obtained with the 2-D materials.

  6. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  7. High-Pressure Oxygen Test Evaluations

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  8. Development and Characterization of Reference Materials for Genetic Testing: Focus on Public Partnerships.

    PubMed

    Kalman, Lisa V; Datta, Vivekananda; Williams, Mickey; Zook, Justin M; Salit, Marc L; Han, Jin Yeong

    2016-11-01

    Characterized reference materials (RMs) are needed for clinical laboratory test development and validation, quality control procedures, and proficiency testing to assure their quality. In this article, we review the development and characterization of RMs for clinical molecular genetic tests. We describe various types of RMs and how to access and utilize them, especially focusing on the Genetic Testing Reference Materials Coordination Program (Get-RM) and the Genome in a Bottle (GIAB) Consortium. This review also reinforces the need for collaborative efforts in the clinical genetic testing community to develop additional RMs.

  9. Pre-Test Assessment

    ERIC Educational Resources Information Center

    Berry, Thomas

    2008-01-01

    Pre-tests are a non-graded assessment tool used to determine pre-existing subject knowledge. Typically pre-tests are administered prior to a course to determine knowledge baseline, but here they are used to test students prior to topical material coverage throughout the course. While counterintuitive, the pre-tests cover material the student is…

  10. Low Earth Orbit Environmental Effects on Space Tether Materials

    NASA Technical Reports Server (NTRS)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  11. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  12. Quarantine testing and biocharacterization of lunar materials

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Mieszkuc, B. J.; Simmonds, R. C.; Walkinshaw, C. H.

    1975-01-01

    Quarantine testing was conducted to ensure the safety of all life on earth. The plants and animals which were exposed to lunar material were carefully observed for prolonged periods to determine if any mutation or changes in growing characteristics and behavior occurred. The quarantine testing was terminated after the Apollo 14 flight when it became apparent that previously returned lunar material contained no potentially harmful agents. Further biological experimentation with the lunar material was conducted to determine its chemical, physical, and nutritional qualities.

  13. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  14. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less

  15. Experimental performance of an ablative material as an external insulator for a hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Chapman, A. J.

    1977-01-01

    An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.

  16. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  17. Design, durability and low cost processing technology for composite fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Blecherman, S. S.

    1979-01-01

    A lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application was investigated. Eight candidate material/design combinations were evaluated by NASTRAN finite element analyses. A total of four combinations were selected for further analytical evaluation, part fabrication by two ventors, and fatigue test in dry and wet condition. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation, and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Pre-test and post-test microstructural examination and nondestructive analyses were conducted to determine the effect of material variations on fatigue durability and failure mode. Relevant data were acquired with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits, and part price of the composite fan exit guide vane.

  18. Development of test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Fedro, Mark J.

    1993-01-01

    NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.

  19. Investigation of contact allergy to dental materials by patch testing.

    PubMed

    Rai, Reena; Dinakar, Devina; Kurian, Swetha S; Bindoo, Y A

    2014-07-01

    Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG). Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials.

  20. 40 CFR 94.5 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../code_of_federal_regulations/ibr_locations.html. (a) ASTM material. Table 1 of § 94.5 lists material... of § 94.5—ASTM Materials Document No. and name Part 94 reference ASTM D 86-01, Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure 94.108 ASTM D 93-02, Standard Test...

  1. Testing of Replacement Bag Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, J.E.

    1998-11-03

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties.

  2. Adaptable Holders for Arc-Jet Screening Candidate Thermal Protection System Repair Materials

    NASA Technical Reports Server (NTRS)

    Riccio, Joe; Milhoan, Jim D.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  3. Reproducibility of polycarbonate reference material in toxicity evaluation

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, P. A.

    1981-01-01

    A specific lot of bisphenol A polycarbonate has been used for almost four years as the reference material for the NASA-USF-PSC toxicity screening test method. The reproducibility of the test results over this period of time indicate that certain plastics may be more suitable reference materials than the more traditional cellulosic materials.

  4. State-of-the-art methods for testing materials outdoors

    Treesearch

    R. Sam Williams

    2004-01-01

    In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...

  5. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less

  6. Effect of a self-adhesive coating on the load-bearing capacity of tooth-coloured restorative materials.

    PubMed

    Bagheri, R; Palamara, Jea; Mese, A; Manton, D J

    2017-03-01

    The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.

  7. Rethinking the Use of Tests: A Meta-Analysis of Practice Testing

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Trevisan, Dominic A.; Sundararajan, Narayankripa

    2017-01-01

    The testing effect is a well-known concept referring to gains in learning and retention that can occur when students take a practice test on studied material before taking a final test on the same material. Research demonstrates that students who take practice tests often outperform students in nontesting learning conditions such as restudying,…

  8. Relative toxicity of pyrolysis products of some materials used in home furnishings

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Furst, A.

    1976-01-01

    Seventy samples of cushioning and upholstery materials used in home furnishings were evaluated for relative toxicity by means of the USF/NASA toxicity screening test. The materials were variably toxic under pyrolysis conditions, and this test appeared suitable for discriminating among them on the bases of time to incapacitation and time to death. The addition of fire retardants to these materials to comply with flammability regulations either had no significant effect on toxicity, or resulted in a reduction in relative toxicity. The modification of materials to comply with California upholstered furniture flammability regulations appears to have resulted in desirable limitations on toxicity. Fifty percent of the 70 materials tested caused incapacitation earlier than did the materials in compliance, and 30 percent caused death earlier.

  9. Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.

  10. NEXT GENERATION LEACHING TESTS FOR EVALUATING ...

    EPA Pesticide Factsheets

    In the U.S. as in other countries, there is increased interest in using industrial by-products as alternative or secondary materials, helping to conserve virgin or raw materials. The LEAF and associated test methods are being used to develop the source term for leaching or any inorganic constituents of potential concern (COPC) in determining what is environmentally acceptable. The leaching test methods include batch equilibrium, percolation column and semi-dynamic mass transport tests for monolithic and compacted granular materials. By testing over a range of values for pH, liquid/solid ratio, and physical form of the material, this approach allows one data set to be used to evaluate a range of management scenarios for a material, representing different environmental conditions (e.g., disposal or beneficial use). The results from these tests may be interpreted individually or integrated to identify a solid material’s characteristic leaching behavior. Furthermore the LEAF approach provides the ability to make meaningful comparisons of leaching between similar and dissimilar materials from national and worldwide origins. To present EPA's research under SHC to implement validated leaching tests referred to as the Leaching Environmental Assessment Framework (LEAF). The primary focus will be on the guidance for implementation of LEAF describing three case studies for developing source terms for evaluating inorganic constituents.

  11. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. H. Jackson; S. P. Teysseyre

    2012-10-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less

  12. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. H. Jackson; S. P. Teysseyre

    2012-02-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less

  13. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  14. Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance

    Treesearch

    Ondrej Grexa; Mark A. Dietenberger; Robert H. White

    2012-01-01

    This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...

  15. Hazardous material transportation safety and security field operational test final detailed test plans : executive summary

    DOT National Transportation Integrated Search

    2003-09-16

    The objective of this Hazardous Material (HazMat) Transportation Safety and Security Field Operational Test (FOT) Final Detailed Test Plans evaluation is to measure the impact of technology solutions on the safety, security, and operational efficienc...

  16. TESTING OF TMR SAND MANTIS FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D; William Daugherty, W

    2007-06-12

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conductedmore » to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.« less

  17. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  18. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  19. Survey of Experience Using Reinforced Concrete in Floating Marine Structures.

    DTIC Science & Technology

    1983-01-01

    organizations involved in materials research and testing . The second largest group consists of those involved in design, consulting, and construction...This distribution is consistent with the open literature where the majority of articles are concerned with materials research, testing , and design. Only...example, organizations involved in materials research, design, testing , and certification were visited in the Netherlands, France, Norway, Scotland, and

  20. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia National Laboratories. These tests are designed to validate aeroshell manufacturability using advanced material systems, and to demonstrate the maintenance of bondline integrity at realistically high temperatures and heating rates. Finally, a status is given of ongoing aeroshell modeling and analysis efforts which will be used to correlate with experimental testing, and to provide a reliable means of extrapolating to performance under actual flight conditions. The modeling and analysis effort includes a parallel series of experimental tests to determine TSP thermal expansion and other mechanical properties which are required for input to the analysis models.

  1. Application of headspace for research volatile organic compounds emitted from building materials

    NASA Astrophysics Data System (ADS)

    Kultys, Beata; Waląg, Karolina

    2018-01-01

    Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC) emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C) and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  2. Upscaling the pollutant emission from mixed recycled aggregates under compaction for civil applications.

    PubMed

    Galvín, Adela P; Ayuso, Jesús; Barbudo, Auxi; Cabrera, Manuel; López-Uceda, Antonio; Rosales, Julia

    2017-12-27

    In general terms, plant managers of sites producing construction wastes assess materials according to concise, legally recommended leaching tests that do not consider the compaction stage of the materials when they are applied on-site. Thus, the tests do not account for the real on-site physical conditions of the recycled aggregates used in civil works (e.g., roads or embankments). This leads to errors in estimating the pollutant potential of these materials. For that reason, in the present research, an experimental procedure is designed as a leaching test for construction materials under compaction. The aim of this laboratory test (designed specifically for the granular materials used in civil engineering infrastructures) is to evaluate the release of pollutant elements when the recycled aggregate is tested at its commercial grain-size distribution and when the material is compacted under on-site conditions. Two recycled aggregates with different gypsum contents (0.95 and 2.57%) were used in this study. In addition to the designed leaching laboratory test, the conventional compliance leaching test and the Dutch percolation test were performed. The results of the new leaching method were compared with the conventional leaching test results. After analysis, the chromium and sulphate levels obtained from the newly designed test were lower than those obtained from the conventional leaching test, and these were considered more seriously pollutant elements. This result confirms that when the leaching behaviour is evaluated for construction aggregates without density alteration, crushing the aggregate and using only the finest fraction, as is done in the conventional test (which is an unrealistic situation for aggregates that are applied under on-site conditions), the leaching behaviour is not accurately assessed.

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  4. Color stability of esthetic restorative materials: a spectrophotometric analysis.

    PubMed

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Mirando, Maria; Wassim, Jaffal; Colombo, Marco

    2016-12-01

    Objective: The aim of this in vitro study was to evaluate the color stability of different restorative materials (one microfilled composite, one nanofilled composite, one nanohybrid composite and one Ormocer-based composite) after exposure to different staining solutions (coffee, coca-cola and red wine). Material and methods: All materials were polymerized into silicon rings (2 mm ×6 mm ×8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. They were immersed in staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro-Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. The paired t -test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results: All restorative materials showed clinically perceptible color differences after immersion in coffee. L* and b* values showed the highest variability. Coca cola and red wine did not influence the color stability for all restorative materials except for Filtek Supreme XTE. Conclusions: Coffee caused a significant color change in all types of tested composite resins. Filtek Supreme XTE demonstrated alone a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials' different composition.

  5. ASTM test methods for composite characterization and evaluation

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1994-01-01

    A discussion of the American Society for Testing and Materials is given. Under the topic of composite materials characterization and evaluation, general industry practice and test methods for textile composites are presented.

  6. The utility of the in vitro micronucleus test for evaluating the genotoxicity of natural and manmade nano-scale fibres.

    PubMed

    Fowler, Paul; Homan, Andrew; Atkins, Derek; Whitwell, James; Lloyd, Melvyn; Bradford, Roberta

    2016-10-01

    A range of fibrous materials, including several types of asbestos and carbon fibres with nano scale diameters that had reported positive genotoxicity data (predominantly clastogenicity), were tested in the in vitro micronucleus test (OECD 487) in GLP-compliant studies in Chinese Hamster Ovary cells. Out of eight materials tested, only one (crocidolite, an asbestos fibre) gave a positive response either in the presence or absence of metabolic activation (S9) and at short (3h) or extended (24h) exposure times (p≤0.001). Our data suggest that the commonly used tests for clastogenicity in mammalian cells require extensive modification before fibrous materials are detected as positive, raising questions about the validity of these tests for detecting clastogenic and aneugenic fibrous materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The impact of rheologically controlled materials on the identification of airway compromise on the clinical and videofluoroscopic swallowing examinations.

    PubMed

    Groher, Michael E; Crary, Michael A; Carnaby Mann, Giselle; Vickers, Zata; Aguilar, Carlos

    2006-10-01

    Numerous studies have suggested that the clinical evaluation of swallowing fails to adequately identify those patients who aspirate or do not aspirate on a videofluoroscopic swallowing examination. These conclusions, however, are based on comparisons between swallowed materials that were not rheologically matched. The present study used a battery of rheologically matched test materials, involving thin and thick liquids and cohesive and adhesive semisolids. Using these test items, results from a clinical swallow evaluation were compared to the results of a videofluorographic evaluation using identical test materials. Results suggest that the use of three test materials, including thin and thick liquids given in volumes of 5 and 10 ml, demonstrated the strongest associations between cough on the clinical examination and aspiration on the videofluoroscopic examination.

  8. Space Systems - Safety and Compatibility of Materials - Method to Determine the Flammability Thresholds of Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2009-01-01

    Spacecraft fire safety emphasizes fire prevention, which is achieved primarily through the use of fire-resistant materials. Materials selection for spacecraft is based on conventional flammability acceptance tests, along with prescribed quantity limitations and configuration control for items that are non-pass or questionable. ISO 14624-1 and -2 are the major methods used to evaluate flammability of polymeric materials intended for use in the habitable environments of spacecraft. The methods are upward flame-propagation tests initiated in static environments and using a well-defined igniter flame at the bottom of the sample. The tests are conducted in the most severe flaming combustion environment expected in the spacecraft. The pass/fail test logic of ISO 14624-1 and -2 does not allow a quantitative comparison with reduced gravity or microgravity test results; therefore their use is limited, and possibilities for in-depth theoretical analyses and realistic estimates of spacecraft fire extinguishment requirements are practically eliminated. To better understand the applicability of laboratory test data to actual spacecraft environments, a modified ISO 14624 protocol has been proposed that, as an alternative to qualifying materials as pass/fail in the worst-expected environments, measures the actual upward flammability limit for the material. A working group established by NASA to provide recommendations for exploration spacecraft internal atmospheres realized the importance of correlating laboratory data with real-life environments and recommended NASA to develop a flammability threshold test method. The working group indicated that for the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extravehicular landers and habitats. Furthermore, recent research has shown that current normal gravity materials flammability tests do not correlate with flammability in ventilated, micro- or reduced-gravity conditions. Currently, the materials selection for spacecraft is based on the assumption of commonality between ground flammability test results and spacecraft environments, which does not appear to be valid. Materials flammability threshold data acquired in normal gravity can be correlated with data obtained in microgravity or reduced-gravity experiments, and consequently a more accurate assessment of the margin of safety of the material in the real environment can be made. In addition, the method allows the option of selecting better or best space system materials, as opposed to what would be considered just acceptable from a flammability point of view and realistic assessment of spacecraft fire extinguishment needs, which could result in significant weight savings. The knowledge afforded by this technique allows for limited extrapolations of flammability behavior to conditions not specifically tested and that could potentially result in significant cost and time savings. The intent of this Technical Specification is to bring to the attention of International Aerospace Community the importance of correlating laboratory test data with real-life space systems applications. The method presented is just one of the possibilities that are believed will lead to better understanding the applicability of laboratory aerospace materials flammability test data. International feedback on improving the proposed method, as well as suggestions for correlating other laboratory aerospace test data with real-life applications relevant to space systems are being sought.

  9. A novel multiple batch extraction test to assess contaminant mobilization from porous waste materials

    NASA Astrophysics Data System (ADS)

    Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.

    2009-04-01

    Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.

  10. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  11. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  12. Testing Prepares Students to Learn Better: The Forward Effect of Testing in Category Learning

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Ahn, Dahwi

    2018-01-01

    The forward effect of testing occurs when testing on previously studied information facilitates subsequent learning. The present research investigated whether interim testing on initially studied materials enhances the learning of new materials in category learning and examined the metacognitive judgments of such learning. Across the 4…

  13. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  14. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  15. Good Laboratory Practices of Materials Testing at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, James H.

    2005-01-01

    An approach to good laboratory practices of materials testing at NASA White Sands Test Facility is presented. The contents include: 1) Current approach; 2) Data analysis; and 3) Improvements sought by WSTF to enhance the diagnostic capability of existing methods.

  16. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  17. Finite Element Simulations for Investigating the Effects of Specimen Geometry in Superplastic Tensile Tests

    NASA Astrophysics Data System (ADS)

    Nazzal, Mohammad; Abu-Farha, Fadi; Curtis, Richard

    2011-08-01

    Characterizing the behavior of superplastic materials is largely based on the uniaxial tensile test; yet the unique nature of these materials requires a particularly tailored testing methodology, different to that used with conventional materials. One of the crucial testing facets is the specimen geometry, which has a great impact on the outcome of a superplastic tensile test, as a result of the associated extreme conditions. And while researchers agree that it should take a notably different form than the typical dog-bone shape; there is no universal agreement on the specimen's particular size and dimensions, as evident by the disparities in test specimens used in the various superplastic testing efforts found throughout the literature. In view of that, this article is dedicated to understanding the effects of specimen geometry on the superplastic behavior of the material during tensile testing. Deformation of the Ti6Al4V titanium alloy is FE simulated based on a multitude of specimen geometries, covering a wide range of gauge length, gauge width, grip length, and grip width values. The study provides key insights on the influences of each geometrical parameter as well as their interactions, and provides recommendations on selecting the specimen's proportions for accurate and unified tensile testing of superplastic materials.

  18. Effect of mechanical properties on erosion resistance of ductile materials

    NASA Astrophysics Data System (ADS)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.

  19. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  20. What LDEF means for development and testing of materials

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Stuckey, Wayne K.; Stein, Bland A.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) served as the ultimate laboratory to provide combined space environmental effects on materials. The LDEF structure and its 57 experiments contained an estimated 12,000 to 14,000 specimens of materials and materials processes. It not only provided information about the resistance of these materials to the space environment but gives us direction into future needs for spacecraft materials development and testing. This paper provides an overview of the materials effects observed on the satellite and suggests recommendations for the future work in space-qualified materials development and space environmental simulation.

  1. Iodine Beam Dump Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  2. Comparison of polyester, film-yarn composite, balloon materials subjected to shear and biaxial loading

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.

    1972-01-01

    A series of candidate materials for use in large balloons was tested and their tensile and shear strength capabilities were compared. The tests were done in a cold box at -68 C (-90 F). Some of these materials were fabricated on a special machine called the flying thread loom. This machine laminates various patterns of polyester yarn to a thin polyester film. The results show that the shear strength of materials changes with the angle selected for the transverse yarns, and substantial increases in biaxial load carrying capabilities, compared to materials formerly used, are possible. The loom capabilities and the test methods are discussed.

  3. Screening materials for smoke evolution

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Machado, A. M.

    1978-01-01

    The density of smoke produced by burning or smoldering materials is a factor that affects the ability of occupants to escape from a burning structure and the effectiveness of firefighters. Accordingly, considerable effort is being spent on developing materials that minimize the amount of smoke without impairing their performance characteristics. In the present paper, laboratory tests on such materials are described and evaluated. It is seen that the National Bureau of Standards smoke test and the Ohio State University release-rate test are the most promising for screening materials for smoke evolution. It is shown that, for plastics, smoke obscuration is a more realistic concern than smoke toxicity.

  4. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  5. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    PubMed

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  6. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    PubMed Central

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-01

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained. PMID:28772406

  7. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) ASTM material. Table 1 to this section lists material from the American Society for Testing and..., West Conshohocken, PA 19428 or http://www.astm.com. Table 1 follows: Table 1 to § 1060.810—ASTM Materials Document number and name Part 1060reference ASTM D471-06, Standard Test Method for Rubber Property...

  8. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  9. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  10. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  11. Photothermal characterization of encapsulant materials for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Gupta, A.; Distefano, S.

    1982-01-01

    A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.

  12. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  13. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 5. Dye/Colored Smokes

    DTIC Science & Technology

    1983-07-01

    mostly of test or training debtls, i.e., expanded rounds and/or packaging materials or munition duds. SOP’s and test 0 plans which are required for each...This procedure I; especially applicable to test sites, If a safety (handling) hazard exists with colored smoke munitions and for excess mix, the material ...Countermeasures and Test Division Roger L. Schultz, DRCPM-SMK-M, Material Development and Technology ".• ,.Division Sq 52 I.,.’. S%" 2. Chemical Research and

  14. The Method of Manufacturing Nonmetallic Test-Blocks on Different Sensitivity Classes

    NASA Astrophysics Data System (ADS)

    Kalinichenko, N. P.; Kalinichenko, A. N.; Lobanova, I. S.; Zaitseva, A. A.; Loboda, E. L.

    2016-01-01

    Nowadays in our modern world there is a vital question of quality control of details made from nonmetallic materials due to their wide spreading. Nondestructive penetrant testing is effective, and in some cases it is the only possible method of accidents prevention at high- risk sites. A brief review of check sample necessary for quality evaluation of penetrant materials is considered. There was offered a way of making agents for quality of penetrant materials testing according to different liquid penetrant testing sensibility classes.

  15. Enhancements to pavement marking testing procedures.

    DOT National Transportation Integrated Search

    2010-08-01

    The Oregon Department of Transportation (ODOT) requires performance and durability testing of all pavement : marking materials before they can be applied on construction projects on state highways. Manufacturers apply materials : on a two-year test d...

  16. Historical Evolution of NASA Standard Materials Testing with Hypergolic Propellants and Ammonia (NASA Standard 6001 Test 15)

    NASA Technical Reports Server (NTRS)

    Greene, Benjamin; McClure, Mark B.

    2012-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.

  17. Characterization of Shear Properties for APO/MBI Syntactic Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less

  18. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  19. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  20. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  1. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  2. 10 CFR 74.82 - Tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Tests. 74.82 Section 74.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Enforcement § 74.82 Tests. Each licensee shall perform, or permit the Commission to perform, any tests that the Commission deems...

  3. 49 CFR 178.609 - Test requirements for packagings for infectious substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paragraph (c), which, for test purposes, categorizes packagings according to their material characteristics... performance may be rapidly affected by moisture; plastics that may embrittle at low temperature; and other... the appropriate test. Table I—Tests Required Material of Outer packaging Fiberboard Plastics Other...

  4. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  5. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, Mark C.; Sham, Sam; Wang, Yanli

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less

  6. Review on the EFDA programme on tungsten materials technology and science

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  7. Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam

    NASA Astrophysics Data System (ADS)

    Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.

    2017-11-01

    In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  10. Investigation of Kevlar fabric-based materials for use with inflatable structures

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.; Munson, J. B.; Rueter, L. L.

    1977-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported. The practicality of using Kevlar in aerostat materials is demonstrated, and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar-based materials are compared with conventional Dacron-reinforced counterparts. A comprehensive test and qualification program is discussed, and considerable quantitative biaxial tensile and shear test data are provided.

  11. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1983-01-01

    A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.

  12. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  13. Chemical compatibility screening test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less

  14. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  15. Debye-Scherrer simulation and its use for nano-materials testing

    NASA Astrophysics Data System (ADS)

    Kalabushkin, Alexander E.

    2005-04-01

    Nano-material specimens of metallic glass were tested with the Debye-Scherrer x-ray diffraction method. For data simulation and data treatment new Debye-Scherrer simulator was devised. The simulator and test results are discussed.

  16. 48 CFR 45.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., special test equipment or special tooling. Government-furnished property means property in the possession... contractor-acquired property. Government property includes material, equipment, special tooling, special test... end-item. Material does not include equipment, special tooling, special test equipment or real...

  17. Quick test for percent of deleterious material.

    DOT National Transportation Integrated Search

    2009-08-28

    The Missouri Department of Transportation (MoDOT) is considering the replacement of its deleterious : materials test method (TM-71) with test methods that are more objective. MoDOT contracted with the Missouri : University of Science and Technology (...

  18. 76 FR 11288 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Guide, DG-7008, ``Leakage Tests on Packages for Shipment of Radioactive Materials.'' FOR FURTHER... regulatory guide (DG), entitled, ``Leakage Tests on Packages for Shipment of Radioactive Materials'' is... Radioactive and Nonnuclear Hazardous Materials, N14, Subcommittee of the American National Standards Institute...

  19. Entrepreneurship Education Materials.

    ERIC Educational Resources Information Center

    Muzzo, John F., Ed.; And Others

    This annotated bibliography is intended to provide instructors and trainers with a variety of materials that may be used to design or supplement a self-employment/small business management training program. The materials listed include lesson plans, handbooks, workbooks, textbooks, tests, test keys, instruction guides, videocassettes, pamphlets,…

  20. Department of Homeland Security (DHS) Proficiency Testing on Small-Scale Safety and Thermal Testing of Improvised Explosives

    NASA Astrophysics Data System (ADS)

    Reynolds, John; Sandstrom, Mary; Brown, Geoffrey; Warner, Kirstin; Phillips, Jason; Shelley, Timothy; Reyes, Jose; Hsu, Peter

    2013-06-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or HMEs to SSST testing, 18 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories--2 DoD and 3 DOE--sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials--powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. Over 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for development safe handling and storage practices. This presentation will discuss experimental difficulties encountered when testing these problematic samples, show inter-laboratory testing results, show some statistical interpretation of the results, and highlight some of the testing issues. Some of the work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-617519 (721812).

  1. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  2. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  3. Testing fireproof materials in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  4. Composite Overview and Composite Aerocover Overview

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad

    2014-01-01

    Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC

  5. Relative toxicity of products of pyrolysis and combustion of polymeric materials using various test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1976-01-01

    Relative toxicity data for a large number of natural and synthetic polymeric materials are presented which were obtained by 11 pyrolysis and three flaming-combustion test methods. The materials tested include flexible and rigid polyurethane foams, different kinds of fabrics and woods, and a variety of commodity polymers such as polyethylene. Animal exposure chambers of different volumes containing mice, rats, or rabbits were used in the tests, which were performed over the temperature range from ambient to 800 C with and without air flow or recirculation. The test results are found to be sensitive to such variables as exposure mode, temperature, air flow and dilution, material concentration, and animal species, but relative toxicity rankings appear to be similar for many methods and materials. It is concluded that times to incapacitance and to death provide a more suitable basis for relative toxicity rankings than percent mortality alone, that temperature is the most important variable in the tests reported, and that variables such as chamber volume and animal species may not significantly affect the rankings.

  6. A new penetration test method: protection efficiency of glove and clothing materials against diphenylmethane diisocyanate (MDI).

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja

    2015-03-01

    Reported cases of allergic contact dermatitis caused by methylenediphenyl diisocyanate (MDI) have increased and thereby increased the need for adequate skin protection. Current standardized permeation and penetration test methods give information about efficacy of protective materials against individual components of the polyurethane systems. They do not give information of what kind of clothing materials workers should wear against splashes when handling mixed MDI-polyurethane formulations, which contain MDI, its oligomers, and polyols. The aim of this study was to develop and validate a sensitive penetration test method that can be used to select clothing that is protective enough against uncured splashes of MDI-polyurethane, still easy to use, and also, to find affordable glove materials that provide adequate protection during a short contact. The penetration of MDI through eight representative glove or clothing materials was studied with the developed test procedure. One MDI hardener and two polymeric MDI (PMDI)-polyol formulations representing different curing times were used as test substances. The materials tested included work clothing (woven) fabric, arm shields (nonwoven fabric), old T-shirt, winter gloves, and gloves of nitrile rubber, leather, vinyl (PVC), and natural rubber. A drop (50 µl) of test substance was added to the outer surface of the glove/clothing material, which had Tape Fixomull attached to the inner surface as a collection medium. After penetration times of 5 or 20min, the collecting material was removed and immediately immersed into acetonitrile containing 1-(2-methoxyphenyl)-piperazine for derivatization. The formed urea derivatives of 2,4'-MDI and 4,4'-MDI were analysed using liquid chromatography with mass spectrometric and UV detection. The precision of the test method was good for the material with high penetration (work clothing fabric) of MDI, as the relative standard deviation (RSD) was 14 and 20%. For the arm shield with a low penetration (the nonwoven fabric), the precision was lower with RSDs of 35 and 50%. For two clothing materials, the penetration was high (134-577 µg cm(-2)). Low penetration (<0.5 µg cm(-2)) was shown by the arm shield and the natural rubber glove. Three glove materials showed no detectable MDI penetration (<0.002 µg cm(-2)). Two affordable glove materials (natural rubber and nitrile rubber) and one clothing material (dust proof arm shield) that can provide adequate protection during short contact with solvent free PMDI formulations were found. The new test procedure should be standardized in order to get a new international penetration standard. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. Color Stability of New Esthetic Restorative Materials: A Spectrophotometric Analysis.

    PubMed

    Poggio, Claudio; Vialba, Lodovico; Berardengo, Anna; Federico, Ricaldone; Colombo, Marco; Beltrami, Riccardo; Scribante, Andrea

    2017-07-06

    The aim of this in vitro study was to evaluate and compare the color stability of different esthetic restorative materials (one microfilled composite, one nanofilled composite, one nanoceramic composite, one microfilled hybrid composite, one microfilled hybrid composite, one nanohybrid Ormocer based composite and one supra-nano spherical hybrid composite) after exposure to different staining solutions (physiological saline, red wine, coffee). All materials were prepared and polymerized into silicon rings (2 mm × 6 mm × 8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. Specimens were immersed in staining solutions (physiological saline, coffee and red wine) over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro-Wilk test and ANOVA were applied to assess significant differences among restorative materials. A paired t -test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. All restorative materials showed significant color differences after immersion in coffee. Coffee caused a significant color change in all types of tested composite resins. Only Filtek Supreme XTE demonstrated a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials' different compositions.

  8. A new prosthesis for the metacarpophalangeal joint. Study of materials and biomechanics.

    PubMed

    Petrolati, M; Abbiati, G; Delaria, G; Soffiatti, R; Robotti, P; Guerriero, C

    1999-02-01

    This report discusses the Daphne prosthesis for the metacarpophalangeal joint on the basis of the mechanical, chemical and biological performance of the materials employed. The Daphne prosthesis is a mobile device. The main body is made of a new generation polymethylmetacrylate, while the hinge is made of AISI 316 L stainless steel. Biocompatibility tests were performed on the materials employed. Systemic toxicity, cytotoxicity and contact tests have given favourable results. Mechanical engineering tests have been used to investigate the performances and reliability of the selected materials. The polymethylmetacrylate used in Daphne behaves in a ductile fashion. No mechanical failures were encountered in fatigue tests after 10 million cycles.

  9. Testing and Selection of Fire-Resistant Materials for Spacecraft Use

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Jackson, Brian; Olson, Sandra

    2000-01-01

    Spacecraft fire-safety strategy emphasizes prevention, mostly through the selection of onboard items classified accord- ing to their fire resistance. The principal NASA acceptance tests described in this paper assess the flammability of materials and components under "worst-case" normal-gravity conditions of upward flame spread in controlled-oxygen atmospheres. Tests conducted on the ground, however, cannot duplicate the unique fire characteristics in the nonbuoyant low-gravity environment of orbiting spacecraft. Research shows that flammability an fire-spread rates in low gravity are sensitive to forced convection (ventilation flows) and atmospheric-oxygen concentration. These research results are helping to define new material-screening test methods that will better evaluate material performance in spacecraft.

  10. Machinability of some dentin simulating materials.

    PubMed

    Möllersten, L

    1985-01-01

    Machinability in low speed drilling was investigated for pure aluminium, Frasaco teeth, ivory, plexiglass and human dentin. The investigation was performed in order to find a suitable test material for drilling experiments using paralleling instruments. A material simulating human dentin in terms of cuttability at low drilling speeds was sought. Tests were performed using a specially designed apparatus. Holes to a depth of 2 mm were drilled with a twist drill using a constant feeding force. The time required was registered. The machinability of the materials tested was determined by direct comparison of the drilling times. As regards cuttability, first aluminium and then ivory were found to resemble human dentin most closely. By comparing drilling time variances the homogeneity of the materials tested was estimated. Aluminium, Frasaco teeth and plexiglass demonstrated better homogeneity than ivory and human dentin.

  11. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  12. In vitro testing of Nd:YAG laser processed calcium phosphate coatings.

    PubMed

    De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W

    2006-11-01

    Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.

  13. Influence of compact disk recording protocols on reliability and comparability of speech audiometry outcomes: acoustic analysis.

    PubMed

    Di Berardino, F; Tognola, G; Paglialonga, A; Alpini, D; Grandori, F; Cesarani, A

    2010-08-01

    To assess whether different compact disk recording protocols, used to prepare speech test material, affect the reliability and comparability of speech audiometry testing. We conducted acoustic analysis of compact disks used in clinical practice, to determine whether speech material had been recorded using similar procedures. To assess the impact of different recording procedures on speech test outcomes, normal hearing subjects were tested using differently prepared compact disks, and their psychometric curves compared. Acoustic analysis revealed that speech material had been recorded using different protocols. The major difference was the gain between the levels at which the speech material and the calibration signal had been recorded. Although correct calibration of the audiometer was performed for each compact disk before testing, speech recognition thresholds and maximum intelligibility thresholds differed significantly between compact disks (p < 0.05), and were influenced by the gain between the recording level of the speech material and the calibration signal. To ensure the reliability and comparability of speech test outcomes obtained using different compact disks, it is recommended to check for possible differences in the recording gains used to prepare the compact disks, and then to compensate for any differences before testing.

  14. Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2017-01-01

    Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  15. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  16. Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Word, J.Q.; Kohn, N.P.

    1993-10-01

    The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less

  17. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  18. 40 CFR Table B-2 to Subpart B of... - Test Atmospheres

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of ASTM Standards, American Society for Testing and Materials, 1916 Race St., Philadelphia, PA..., American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103. ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Atmospheres B Table B-2 to Subpart...

  19. 40 CFR Table B-2 to Subpart B of... - Test Atmospheres

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of ASTM Standards, American Society for Testing and Materials, 1916 Race St., Philadelphia, PA..., American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103. ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Atmospheres B Table B-2 to Subpart...

  20. 40 CFR Table B-2 to Subpart B of... - Test Atmospheres

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of ASTM Standards, American Society for Testing and Materials, 1916 Race St., Philadelphia, PA..., American Society for Testing and Materials, 1916 Race St., Philadelphia, PA 19103. ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Atmospheres B Table B-2 to Subpart...

  1. Construction and Analysis of Classroom Tests.

    ERIC Educational Resources Information Center

    Izard, J. F.

    This material provides a discussion of the construction and analysis of tests prepared for classroom use by teachers. The initial discussion is concerned with the purposes of evaluation and the specification of objectives. This is followed by an examination of theoretical and practical considerations in planning a test. The material on test item…

  2. 77 FR 55217 - Submission for OMB Review; Comment Request: Cognitive Testing of Instrumentation and Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...; Comment Request: Cognitive Testing of Instrumentation and Materials for the Population Assessment of..., unless it displays a currently valid OMB control number. Proposed Collection: Title: Cognitive Testing of... Administration (FDA). NIDA is requesting generic approval from OMB for cognitive testing of the PATH study's...

  3. A Testing Effect with Multimedia Learning

    ERIC Educational Resources Information Center

    Johnson, Cheryl I.; Mayer, Richard E.

    2009-01-01

    A testing effect occurs when a learner performs better on a retention test after studying the material and taking a practice-retention test than after studying the material twice. In the present study, 282 participants watched a narrated animation about lightning formation and then watched the presentation again (restudy), took a…

  4. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    NASA Astrophysics Data System (ADS)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  5. VZLUSAT-1: verification of new materials and technologies for space

    NASA Astrophysics Data System (ADS)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  6. Retention strength of impression materials to a tray material using different adhesive methods: an in vitro study.

    PubMed

    Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick

    2008-12-01

    A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.

  7. Leaching assessment of road materials containing primary lead and zinc slags.

    PubMed

    Barna, R; Moszkowicz, P; Gervais, C

    2004-01-01

    Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.

  8. Application of the inverse analysis for determining the material properties of the woven fabrics for macroscopic approach

    NASA Astrophysics Data System (ADS)

    Oleksik, Mihaela; Oleksik, Valentin

    2013-05-01

    The current paper intends to realise a fast method for determining the material characteristics in the case of composite materials used in the airbags manufacturing. For determining the material data needed for other complex numerical simulations at macroscopic level there was used the inverse analysis method. In fact, there were carried out tensile tests for the composite material extracted along two directions - the direction of the weft and the direction of the warp and afterwards there were realised numerical simulations (using the Ls-Dyna software). A second stage consisted in the numerical simulation through the finite element method and the experimental testing for the Bias test. The material characteristics of the composite fabric material were then obtained by applying a multicriterial analysis using the Ls-Opt software, for which there was imposed a decrease of the mismatch between the force-displacement curves obtained numerically and experimentally, respectively, for both directions (weft and warp) as well as the decrease of the mismatch between the strain - extension curves for two points at the Bias test.

  9. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    PubMed Central

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (Ed K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept Ed K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated Ed K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the Ed K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of Ed K for each material. The Ed K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the Ed K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  10. Radiopacity evaluation of contemporary resin composites by digitization of images.

    PubMed

    Ermis, R Banu; Yildirim, Derya; Yildiz, Gul; Gormez, Ozlem

    2014-07-01

    The aim of this study was to evaluate the radiopacity of different composite resins and compare the values to those of human enamel and dentine. Five specimens of each material with thicknesses of 2 mm were prepared and radiographed alongside aluminum step wedge and human enamel and dentin. Three occlusal radiographs for each material were taken and digitized using a desktop scanner. Mean gray values of the test materials were measured using Image J software. Then a conversion was performed according to establish the radiopacity of the test materials, in millimeters of equivalent Al. Data were analyzed using one-way analysis of variance and Duncan multiple range tests (P < 0.05). The radiopacity values varied among the restorative materials (P < 0.05). The radiopacity values of the materials tested were, in decreasing order: Enamel Plus HRI > Z250 > Filtek Ultimate ≥ Z550 > Nexcomp ≥ Nanoceram Bright > enamel ≥ Estelite Sigma Quick > Clearfil Majesty Esthetic ≥ Reflexions XLS ≥ Aelite LS Posterior ≥ dentin ≥ 2 mm Al. All resin composite materials investigated in this study presented different radiopacity values. However, all materials had radiopacity values greater than dentin and had sufficient radiopacity to meet International Organization for Standardization 4049 standard.

  11. Photovoltaic module encapsulation design and materials section, volume 2

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1984-01-01

    Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.

  12. Development and Design Application of Rigidized Surface Insulation Thermal Protection Systems, Volume 1. [for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Materials and design technology of the all-silica LI-900 rigid surface insulation (RSI) thermal protection system (TPS) concept for the shuttle spacecraft is presented. All results of contract development efforts are documented. Engineering design and analysis of RSI strain arrestor plate material selections, sizing, and weight studies are reported. A shuttle prototype test panel was designed, analyzed, fabricated, and delivered. Thermophysical and mechanical properties of LI-900 were experimentally established and reported. Environmental tests, including simulations of shuttle loads represented by thermal response, turbulent duct, convective cycling, and chemical tolerance tests are described and results reported. Descriptions of material test samples and panels fabricated for testing are included. Descriptions of analytical sizing and design procedures are presented in a manner formulated to allow competent engineering organizations to perform rational design studies. Results of parametric studies involving material and system variables are reported. Material performance and design data are also delineated.

  13. Compatibility Testing of Non-Metallic Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA). The urine is distilled, with the concentrated form containing about 15% brine solids, and the dilute form as a blend of pre-treated urine/wastewater. Eighteen candidate non-metallic materials for use with the UPA were tested in 2000 for compatibility with the concentrated and dilute urine solutions for continuous times of at least 30 days, and at conditions of 0.5 psia pressure and 100 F, to simulate the working UPA environment. A primary screening test for each material (virgin and conditioned) was dynamic mechanical analysis (DMA) in the stress relaxation mode, with the test data used to predict material performance for a 10-year use in space. Data showed that most of the candidate materials passed the compatibility testing, although a few significant changes in stress relaxation modulus were observed.

  14. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests

    PubMed Central

    TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario

    2017-01-01

    Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275

  15. Modulation of the electrophysiological correlates of retrieval cue processing by the specificity of task demands.

    PubMed

    Johnson, Jeffrey D; Rugg, Michael D

    2006-02-03

    Retrieval orientation refers to the differential processing of retrieval cues according to the type of information sought from memory (e.g., words vs. pictures). In the present study, event-related potentials (ERPs) were employed to investigate whether the neural correlates of differential retrieval orientations are sensitive to the specificity of the retrieval demands of the test task. In separate study-test phases, subjects encoded lists of intermixed words and pictures, and then undertook one of two retrieval tests, in both of which the retrieval cues were exclusively words. In the recognition test, subjects performed 'old/new' discriminations on the test items, and old items corresponded to only one class of studied material (words or pictures). In the exclusion test, old items corresponded to both classes of study material, and subjects were required to respond 'old' only to test items corresponding to a designated class of material. Thus, demands for retrieval specificity were greater in the exclusion test than during recognition. ERPs elicited by correctly classified new items in the two types of test were contrasted according to whether words or pictures were the sought-for material. Material-dependent ERP effects were evident in both tests, but the effects onset earlier and offset later in the exclusion test. The findings suggest that differential processing of retrieval cues, and hence the adoption of differential retrieval orientations, varies according to the specificity of the retrieval goal.

  16. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  17. Radiopacity evaluation of contemporary resin composites by digitization of images

    PubMed Central

    Ermis, R. Banu; Yildirim, Derya; Yildiz, Gul; Gormez, Ozlem

    2014-01-01

    Objective: The aim of this study was to evaluate the radiopacity of different composite resins and compare the values to those of human enamel and dentine. Materials and Methods: Five specimens of each material with thicknesses of 2 mm were prepared and radiographed alongside aluminum step wedge and human enamel and dentin. Three occlusal radiographs for each material were taken and digitized using a desktop scanner. Mean gray values of the test materials were measured using Image J software. Then a conversion was performed according to establish the radiopacity of the test materials, in millimeters of equivalent Al. Data were analyzed using one-way analysis of variance and Duncan multiple range tests (P < 0.05). Results: The radiopacity values varied among the restorative materials (P < 0.05). The radiopacity values of the materials tested were, in decreasing order: Enamel Plus HRI > Z250 > Filtek Ultimate ≥ Z550 > Nexcomp ≥ Nanoceram Bright > enamel ≥ Estelite Sigma Quick > Clearfil Majesty Esthetic ≥ Reflexions XLS ≥ Aelite LS Posterior ≥ dentin ≥ 2 mm Al. Conclusion: All resin composite materials investigated in this study presented different radiopacity values. However, all materials had radiopacity values greater than dentin and had sufficient radiopacity to meet International Organization for Standardization 4049 standard. PMID:25202214

  18. NERVA irradiation program. GTR 23, volume 1: Combined effects of reactor radiation and cryogenic temperature on NERVA structural materials

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. H.; Bradford, E. W.; Lewis, J. H.; Wattier, J. B.

    1973-01-01

    Specimens fabricated from structural materials that were candidates for certain NERVA applications were irradiated in liquid nitrogen (LN2), liquid hydrogen (LH2), water, and air. The specimens irradiated in LN2 were stored in LN2 and finally tested in LN2, or at some higher temperature in a few instances. The specimens irradiated in LH2 underwent an unplanned warmup while in storage so this portion of the test was lost; some specimens were tested in LN2 but none were tested in LH2. The Ground Test Reactor was the radiation source. The test specimens consisted mainly of tensile and fracture toughness specimens of several different materials, but other types of specimens such as tear, flexure, springs, and lubricant were also irradiated. Materials tested include Hastelloy X, Al, Ni steel, steel, Be, ZrC, Ti-6Al-4V, CuB, and Ti-5Al-2.5Sn.

  19. The Pre-Blast Concept for use on Armour Materials

    DTIC Science & Technology

    2016-02-01

    to improve blast resistance Repeated blast test results (up to 7 times) of candidate armour materials showed that the greatest deformation...may be used to increase blast resistance of steels. To test this, the ‘pre-blast’ concept test program includes hardening of materials by sheet charge...steels with hardness 450 HV or higher (up to 650 HV). In general, the improvement in deformation resistance is associated with increases in

  20. Perchlorate in Fertilizers

    DTIC Science & Technology

    1999-09-01

    Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with

  1. Review and Recommendations for the Interagency Ship Structure Committee’s Fiscal 1980 Research Program

    DTIC Science & Technology

    1979-03-01

    fracture-toughness tests and material performance in ships. Fracture criteria remains a field that resists satisfactory quantification, yet it is a...identical conditions of temperature, loading rate, and test material . Specimen configurations (e.g. bend and tensile), specimen dimensions, load train...compliance, and material characteristics should be systematically varied. In each test the specimen should be unloaded immediately after pop- in and the

  2. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m 2 over areas of 9×12 and 1×10 cm 2, respectively. This paper will present the overallmore » design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  3. 46 CFR 108.105 - Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....105 Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations, and tests. (a) Where this subchapter requires a particular fitting, material, apparatus, equipment... satisfaction of the Commandant that the use of any particular equipment, apparatus, arrangement, or test is...

  4. 46 CFR 108.105 - Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....105 Substitutes for required fittings, material, apparatus, equipment, arrangements, calculations, and tests. (a) Where this subchapter requires a particular fitting, material, apparatus, equipment... satisfaction of the Commandant that the use of any particular equipment, apparatus, arrangement, or test is...

  5. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  6. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  7. Repeatability of testing procedures for resilient modulus and fatigue.

    DOT National Transportation Integrated Search

    1989-04-01

    Extensive use of diametral resilient modulus and fatigue testing is made by the Oregon State Highway Division to evaluate asphaltic concrete materials. Test results on similar materials (e.g., adjacent field cores), however, often indicate a poor lev...

  8. A theoretical and experimental technique to measure fracture properties in viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Freitas, Felipe Araujo Colares De

    Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.

  9. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics.

    PubMed

    Lee, Min Wook; An, Seongpil; Yoon, Sam S; Yarin, Alexander L

    2018-02-01

    Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with another, the effect of weight must be considered. Weight measurement showed that the replacement of glass fabric reinforcement with basalt fabric has little effect on weight. Investigation also shows that mechanical behavior of basalt fabric is higher than glass fabric. This is due to the excellent mechanical properties of the ballast fabric such as Young modulus and strength in compare with the glass fabric. Figure1 shows the samples which used for tensile testing in warp direction.

  11. Guidelines for the Utilization of Composite Materials in Oxygen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Herald, Stephen

    2006-01-01

    Space travel is inherently dangerous and, currently, quite expensive. NASA has always done everything possible to minimize the risk associated with the materials chosen for space travel applications by requiring that all materials associated with NASA programs meet the strict requirements established by NASA testing standard NASA-STD-600 1 Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion. NASA also has the need to develop lighter weight structural materials that will allow more payload weight to be carried into space. NASA is utilizing composite materials inside the orbiter to lighten the overall weight, but has not considered composite materials for oxygen tanks because of the inherent incompatibility of composite materials with atomic oxygen. This presentation will focus on how oxygen tanks can be built from composite materials. Details will be provided for the design and compatibility testing techniques that will be utilized to create a new NASA standard, NASA-HDBK-6018, which will serve as the starting point for the design of oxygen tanks made from composite materials.

  12. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  13. Verification of three-microphone impedance tube method for measurement of transmission loss in aerogels

    NASA Astrophysics Data System (ADS)

    Connick, Robert J.

    Accurate measurement of normal incident transmission loss is essential for the acoustic characterization of building materials. In this research, a method of measuring normal incidence sound transmission loss proposed by Salissou et al. as a complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is verified. Two sam- ples from the original literature are used to verify the method as well as a Filtros RTM sample. Following the verification, several nano-material Aerogel samples are measured.

  14. Enhanced affordable methods for assessment of material characteristics and consolidation effects on stone and mortar

    NASA Astrophysics Data System (ADS)

    Drdacky, M.; Slizkova, Z.

    2012-04-01

    In situ considerate testing of surface cohesion of historic stone and mortar materials suffers from a lack of suitable affordable non-destructive methods. The problem is mainly important for assessment of surface degradation characteristics and/or evaluation of effectiveness of consolidation treatment of degraded historic materials. The paper presents two innovations of simple testing methods which provide reliable data on material cohesion and water uptake. The so called "Scotch Tape Test" or peeling test has been introduced into the field of conservation for testing the cohesion qualities of historic materials mainly stone and renders in sixties without any standards or reliably verified recommendations for the above mentioned application in the conservation practice. Licentious use without adequate knowledge and sufficient understanding leads to non-comparable and non-reproducible as well as in many cases incorrect and severely biased results and assessments. Therefore, the authors after a research and comparative testing have established limits for its application, reliable procedures and a "standard" protocol for testing of cohesion characteristics of brittle and quasi brittle materials mainly mortars and stones. This article presents a detailed analysis of the peeling test procedures, and suggests recommendations for performing peeling tests and for evaluating the obtained results. Also in situ testing of material water uptake is a very basic and indispensable technique in conservation practice and it correlates significantly with some other material characteristics. The capillary properties of porous materials can be measured in situ using a Karsten tube and modified tools or methods which are quite cumbersome, and cannot be performed on inclined surfaces, e.g. vaults or ceilings. There are other difficulties with Karsten tube measurements, e.g. problems with fixing a heavy glass tube on vertical surfaces, a need for two operators, and soiling of the surface by the sealing putty. An innovative method has therefore been developed and tested at ITAM AS CR for measuring water absorption under low pressure. It enables continuous or manually controlled electronic measurements of water infusion into the surface and recording the acquired data. This measurement procedure reduces the number of operators, and it is more precise, more effective and faster. Two prototypes will be presented: one for continuous laboratory measurements and a portable device for in situ applications. The portable device has been tested in laboratory conditions and also in situ for its basic performance on various types of stone and plaster surfaces, including treated and untreated historic materials. The acquired data was evaluated using software specially written for this purpose in MatLab, and the results were compared with standard capillary water uptake measurements on prismatic columns. Working with the innovated tubes, measurements can be made on complex stone or plaster surfaces, e.g. sculptures in a dense network. This feature is especially appreciated by restorers making interventions on materials that have been treated previously.

  15. Use of a two-body belt abrasion test to measure the grindability of advanced ceramic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, P.J.; Zanoria, E.S.

    1998-07-01

    Structural materials, such as superalloys, intermetallic alloys and engineering ceramics, have been developed to achieve high hardness, high temperature strength, and high fracture toughness. However, these strong materials also tend to be difficult to grind and finish. In the 1990's, the US Department of Energy supported a series of projects to help reduce the cost of machining advanced ceramics. The same properties that make engineering materials attractive for use on severe thermal and mechanical environments (e.g., high hardness, high temperature strength, high fracture toughness) generally tend to make those materials difficult to grind and finish. In the mid-1990's, a beltmore » abrasion test was developed under subcontract to Oak Ridge National Laboratory to help to assess the grindability of structural ceramic materials. The procedure involves applying a 10 N normal force to the end face of a 3 x 4 mm cross-section test bar for 30 seconds which is rubbed against a wet, 220 grit diamond belt moving at 10 m/s. By measuring the change in the bar length after at least six 30-second tests, a belt grindability index is computed and expressed using the same units as a traditional wear factor (i.e., mm{sup 3}/N-m). The test has shown an excellent capability to discriminate not only between ceramics of different basic compositions, e.g., Al{sub 2}O{sub 3}, SiC, and Si{sub 3}N{sub 4}, but also between different lots of the same basic ceramic. Test-to-test variability decreases if the belt is worn in on the material of interest. The surface roughness of the abraded ends of the test specimens does not correlate directly with the belt grindability index, but instead reflects another attribute of grindability; namely the ability of a material to abrade smoothly without leaving excessive rough and pitted areas.« less

  16. A comparison of the wear resistance and hardness of indirect composite resins.

    PubMed

    Mandikos, M N; McGivney, G P; Davis, E; Bush, P J; Carter, J M

    2001-04-01

    Various new, second-generation indirect composites have been developed with claimed advantages over existing tooth-colored restorative materials. To date, little independent research has been published on these materials, and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Four second-generation indirect composites (Artglass, belleGlass, Sculpture, and Targis) were tested for wear resistance and hardness against 2 control materials with well-documented clinical application. Human enamel was also tested for comparison. Twelve specimens of each material were fabricated according to the manufacturers' directions and subjected to accelerated wear in a 3-body abrasion, toothbrushing apparatus. Vickers hardness was measured for each of the tested materials, and energy dispersive x-ray (EDX) spectroscopy was performed to determine the elemental composition of the composite fillers. The statistical tests used for wear and hardness were the Kruskal-Wallis 1-way ANOVA test with Mann-Whitney tests and 1-way ANOVA with multiple comparisons (Tukey HSD). The Pearson correlation coefficient was used to determine the existence of a relationship between the hardness of the materials and the degree to which they had worn. The level of statistical significance chosen was alpha=.05. The control material Concept was superior to the other composites in wear resistance and hardness and had the lowest surface roughness. Significant relationships were observed between depth of wear and hardness and between depth of wear and average surface roughness. Enamel specimens were harder and more wear resistant than any of the composites. EDX spectroscopy revealed that the elemental composition of the fillers of the 4 new composites was almost identical, as was the composition of the 2 control composites. The differences in wear, hardness, and average surface roughness may have been due to differences in the chemistry or method of polymerization of the composites. Further research in this area should be encouraged. It was also apparent that the filler present in the tested composites did not exactly fit the manufacturers' descriptions.

  17. Study to develop improved fire resistant aircraft passenger seat materials, phase 1

    NASA Technical Reports Server (NTRS)

    Trabold, E. L.

    1977-01-01

    The procurement and testing of a wide range of candidate materials is reported. Improved fire resistant nonmetallic materials were subjected to tests to evaluate their thermal characteristics, such as burn, smoke generation, heat release rate and toxicity. In addition, candidate materials were evaluated for mechanical, physical and aesthetic properties. Other properties considered included safety, comfort, durability and maintainability. The fiscal year 1977 and the projected 1980 cost data were obtained for aircraft seat materials.

  18. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    PubMed

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid impression material. The alternative impression materials performed best for the parameters tested. Spray disinfection had no effect on the alternative impression materials. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. High-Temperature Storage Testing of ACF Attached Sensor Structures

    PubMed Central

    Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura

    2015-01-01

    Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735

  20. The Application of Problem-Based Learning in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Putra, Z. A.; Dewi, M.

    2018-02-01

    The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.

  1. A flammability study of thin plastic film materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1990-01-01

    The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.

  2. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  3. Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.

    1993-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.

  4. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  5. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maza R.; Wilson, J.A.; Hetherington, R.

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.

  6. NDIA 2018 IM and EM Technology Symposium: Innovative Insensitive Munition Solutions for Enhanced Warfighter Effectiveness

    DTIC Science & Technology

    2018-04-26

    decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a

  7. MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Skylab parasol material evaluation

    NASA Technical Reports Server (NTRS)

    Jacobs, S.

    1975-01-01

    Results of experimental work to evaluate the degradation rate of a parasol that was used as a means of alleviating thermal problems encountered soon after the launch of the Skylab 1 space vehicle are presented. Material selection criteria are discussed; the material chosen is described, and results of tests performed after environmental exposure at five facilities are given. The facilities used for exposure to ultraviolet radiation/thermal-vacuum environments and the equipment used for testing physical properties before and after exposure are described. Comparisons of ground test and flight test data are included.

  9. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  10. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  11. European tests on materials outgassing

    NASA Technical Reports Server (NTRS)

    Zwaal, A.

    1977-01-01

    With a view to international coordination of spacecraft materials, a number of European firms and institutes performed outgassing tests on identical materials at 125 C in high vacuum. The outgassing data obtained with the different types of equipment is presented and both the results and the critical parameters are discussed.

  12. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products significantly decreased phosphate amounts. For the 38 specific filter materials evaluated, based on a 60 percent contaminant reduction level, 12 materials removed nitrate, 26 materials removed phosphate, and 21 materials removed atrazine. Furthermore, 2 materials removed zero contaminants, 16 materials removed one contaminant, 17 materials removed two contaminants, and 3 of the materials removed all three contaminants. The most effective filter materials proved to be a steam activated carbon, a zero valent iron and sulfer modified iron mixture, and a surfactant modified clay. The findings of this study indicate that there are a variety of filter materials, either separately or in combination, which have the potential to treat agricultural drainage waters.

  13. 21 CFR 211.194 - Laboratory records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specific component, drug product container, closure, in-process material, or drug product, and lot tested... product container, closure, in-process material, or drug product tested. (7) The initials or signature of... of any testing and standardization of laboratory reference standards, reagents, and standard...

  14. Protecting raw data and psychological tests from wrongful disclosure: a primer on the law and other persuasive strategies.

    PubMed

    Kaufmann, Paul M

    2009-09-01

    Psychologists must advocate for more stringent legal protection of psychological test materials because using standardized tests is the most distinguishing and exclusive feature of psychological evaluation practice. With the rapid growth in forensic consulting, unrestrained discovery of raw data and psychological test materials during litigation erodes the reliability and validity of the test procedures. Dissemination of test materials reduces the interpretive value of the tests and promotes cheating, turning our best methods into junk science in the courtroom. This article proposes to reform the law and to revise the professional ethics of psychologists consistent with the strong public policy of test security as described by the U.S. Supreme Court in Detroit Edison v. NLRB (1979). Currently, federal courts and about 20 states protect psychological tests as a unique methodology, with some states enacting a psychologist nondisclosure privilege/duty to safeguard test materials from wrongful disclosure. The record management practices of psychologists vary considerably and are vulnerable to legal attack unless psychologists are aware of legal arguments to protect test materials from wrongful release. Although this article does not offer legal advice, it describes the most common records management problem confronting neuropsychologists and some practical solutions to the raw data problem. Best practice for protecting psychological tests requires the psychologist to understand the law and to assert the psychologist nondisclosure privilege. Other strategies are presented and evaluated. Organized psychology and the legal community should advocate for a uniform rule to protect the objectivity, fairness, and integrity psychological methods in litigation.

  15. Tow Tank Dynamic Test Rig Drawings and Bill of Materials for the Aquantis 2.5 MW Ocean Current Generation Device

    DOE Data Explorer

    Swales, Henry; Banko, Richard; Coakley, David

    2015-06-03

    Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.

  16. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  17. 46 CFR 164.007-6 - Test report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Test report. 164.007-6 Section 164.007-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-6 Test report. (a) The test report required shall contain at least the following: (1)...

  18. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  19. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  20. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  1. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  2. Patch testing custom isocyanate materials from the workplace.

    PubMed

    Burrows, Dianne; Houle, Marie-Claude; Holness, D Linn; DeKoven, Joel; Skotnicki, Sandy

    2015-01-01

    Patch testing with standard trays of commercially available allergens is the current practice for investigating suspected cases of isocyanate-induced allergic contact dermatitis (ACD). In some facilities, these standard trays are further supplemented with custom preparations of isocyanate-containing materials. The aim was to determine whether added value exists in patch testing patients to custom isocyanate preparations in suspected cases of ACD. We performed a retrospective analysis of 11 patients referred to our specialty clinic between January 2003 and March 2011 for suspected patients of ACD who had custom testing with isocyanate materials from their workplace. In addition to standard trays of allergens, all patients were patch tested with custom isocyanate materials from their workplaces. Three (27%) of 11 patients showed an added value in testing to custom isocyanate allergens. Of these 3 patients, one had a reaction that reinforced positive reactions to the standard isocyanate tray, but the other 2 (18%) had no reactions to any of the commercially available allergens. Because of the high proportion of reactions (27%), we recommend the use of custom testing to workplace isocyanate products as a supplement to current standard patch testing procedures.

  3. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  4. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Allen, Matthew R.; Roache, Nancy F.

    2016-09-01

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10-14 to 5.83 × 10-9 (m2/h) for the material phase diffusion coefficients.

  5. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    DTIC Science & Technology

    2012-02-21

    Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber

  6. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    DTIC Science & Technology

    2016-04-01

    Gerard Chaney, and Charles Pergantis Weapons and Materials Research Directorate, ARL Coatings, Corrosion, and Engineered Polymers Branch (CCEPB...SUBJECT TERMS single lap joint, adhesive, sample preparation, testing, database, metadata, material pedigree, ISO 16. SECURITY CLASSIFICATION OF: 17...temperature/water immersion conditioning test for lap-joint test specimens using the test tubes and convection oven method

  7. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  8. High reliability solid refractive index matching materials for field installable connections in FTTH network

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio

    2015-06-01

    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  9. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC)

    PubMed Central

    Jang, Seok-Joon; Rokugo, Keitetsu; Park, Wan-Shin; Yun, Hyun-Do

    2014-01-01

    This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior. PMID:28788522

  10. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO 2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less

  12. Outer skin protection of columbium Thermal Protection System (TPS) panels

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  13. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  14. Critical outlook and trends for environmental reference materials at the Measurements & Testing Generic Activity (European Commission).

    PubMed

    Quevauviller, P; Bennink, D; Bøwadt, S

    2001-05-01

    It is now well recognised that the quality control (QC) of all types of analyses, including environmental analyses depends on the appropriate use of reference materials. One of the ways to check the accuracy of methods is based on the use of Certified Reference Materials (CRMs), whereas other types of (not certified) Reference Materials (RMs) are used for routine quality control (establishment of control charts) and interlaboratory testing (e.g. proficiency testing). The perception of these materials, in particular with respect to their production and use, differs widely according to various perspectives (e.g. RM producers, routine laboratories, researchers). This review discusses some critical aspects of RM use and production for the QC of environmental analyses and describes the new approach followed by the Measurements & Testing Generic Activity (European Commission) to tackle new research and production needs.

  15. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  16. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  17. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  18. Materials samples face rigors of space.

    PubMed

    Flinn, Edward D

    2002-07-01

    The Materials International Space Station Experiment (MISSE) is described. This project is designed to conduct long duration materials tests on samples attached to the ISS. A batch of 750 material samples were delivered on STS-105 and attached to the ISS airlock. They will be exposed to the space environment for 18 months and are slated to return on STS-114. A second batch of 750 samples is being prepared. The experiment containers were used originally for the Mir Environmental Effects Payload, which tested a variety of substances, including some slated for use on the ISS. Researchers are particularly interested in the effects of atomic oxygen on the samples. Some samples are being tested to determine their use in radiation protection. As part of the MISSE project, ultrathin tether materials are being tested for use on the Propulsive Small Expendable Depoloyer System (ProSEDS), which will use a tether system to change a satellite's orbital altitude.

  19. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  20. The Use of Empirical Methods for Testing Granular Materials in Analogue Modelling

    PubMed Central

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo; Del Ventisette, Chiara

    2017-01-01

    The behaviour of a granular material is mainly dependent on its frictional properties, angle of internal friction, and cohesion, which, together with material density, are the key factors to be considered during the scaling procedure of analogue models. The frictional properties of a granular material are usually investigated by means of technical instruments such as a Hubbert-type apparatus and ring shear testers, which allow for investigating the response of the tested material to a wide range of applied stresses. Here we explore the possibility to determine material properties by means of different empirical methods applied to mixtures of quartz and K-feldspar sand. Empirical methods exhibit the great advantage of measuring the properties of a certain analogue material under the experimental conditions, which are strongly sensitive to the handling techniques. Finally, the results obtained from the empirical methods have been compared with ring shear tests carried out on the same materials, which show a satisfactory agreement with those determined empirically. PMID:28772993

  1. The Role of ESA TEC-QTE in the ISS Safety Process

    NASA Astrophysics Data System (ADS)

    Orlandi, M.; Rohr, T.; Stienstra, M. H.; Semprimoschnig, C.

    2013-09-01

    On the 17th of July 2000, the Materials and Processes Reciprocal Agreement was signed between NASA and ESA to define the process for selection and certification of materials used in the Space Shuttle and the International Space Station. Consecutively, on the 20th of June 2003 this agreement was extended to the Automated Transport Vehicle (ATV). It is therefore the responsibility of ESA TEC-QTE, the Materials Space Evaluation and Radiation Effects section, part of the Product Assurance and Safety Department, to ensure that all materials, parts and processes of each of the ISS payloads not only function as required but also do not pose a risk to the safety of the crew members. In this context, TEC-QTE provides qualified expertise to support the ESA Flight Safety Review and assesses safety aspects related to manned projects (materials properties, fluid system compatibility, fungus resistance). This is supported by the Materials Space Evaluation and Radiation Effects section's Materials and Electrical Components laboratory having at its disposition a range of facilities designed to perform environmental effects testing of which off-gassing tests according to ECSS-Q-ST-70-29C (equivalent to NASA STD 6001 test 7) and outgassing tests according to ECSS-Q-ST-70-02C (equivalent to ASTM-E-595). The ESA facility to perform flammability tests according to ECSS-Q-ST-70-21A (equivalent to NASA STD 6001 test1) was moved to Astrium Bremen.TEC-QTE is in charge of reviewing and approving, via RFA or MUA , all materials that do not meet safety requirements as well as COTS or CAM (black boxes) equipment.The safety process ends with the issue of the Materials Certification of the reviewed payload hardware that shows compliance with the relevant materials and processes requirements and standards.In addition to the safety related activities for the ISS, specialised TEC-QTE personnel provide measurements of the air quality inside the ATV and assess whether the toxicity index is within requirements.

  2. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  3. An Experimental Study of Launch Vehicle Propellant Tank Fragmentation

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben

    2014-01-01

    In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.

  4. SRB Materials and Processes Assessment from Laboratory and Ocean Environmental Tests

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Materials and Processes Laboratory evaluation of Solid Rocket Boosters (SRB) and Solid Rocket Motors (SRM) candidate material, both in-house and with ocean exposure tests at Panama City and Kennedy Space Center (KSC), Florida is presented. Early sample tests showed excellent seawater corrosion resistance for inconel 718 and titanium 6A1-4V alloys. Considerable corrosion and biofouling occurred with bare 2219-T87 aluminum. Subsequent tests conclusively demonstrated that epoxy coatings prevented corrosion of 2219-T87 aluminum as long as the coatings stays intact. The results and assessment of the series of ocean environmental tests that were conducted are also presented.

  5. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  6. Weight loss of endodontic sealers, cements and pastes in water.

    PubMed

    Orstavik, D

    1983-08-01

    A solubility test based on weight loss in water, as proposed for standard testing programs (ADA & ISO), was adapted for assessing the solubility of 10 root canal sealers, cements and pastes. The weight loss of the set materials during 24 hr in distilled water at 37 degrees C ranged from -0.84 (AH26) to 22.71 (Kloroperka N-O) weight per cent. The results were reproducible, and the test was considered suitable for routine testing of weight loss in water of endodontic materials. However, the test may not provide information which is directly related to the clinical behavior of the materials.

  7. Long term thermoelectric module testing system.

    PubMed

    D'Angelo, Jonathan; Hogan, Timothy

    2009-10-01

    Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.

  8. Testing of DentStat (trademark) and Competing Dental Materials

    DTIC Science & Technology

    2014-06-13

    NAVAL MEDICAL RESEARCH UNIT SAN ANTONIO TESTING OF DENTST AT™ AND COMPETING DENTAL MATERIALS Y OON HWANG PHD, JONATHAN STAHL DDS PHD, WAYNE M. D...LtCOL Wen Lien of the US Air Force Dental Evaluation and Consultation Service for assistance with the strength testing. 1 Reviewed and Approved by...direct dental repair materials. They are made of calcium or strontium aluminofluoro-silicate glass powder (base) combined with a water-soluble polymer

  9. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  10. Comparison of High-Performance Fiber Materials Properties in Simulated and Actual Space Environments

    NASA Technical Reports Server (NTRS)

    Finckernor, M. M.

    2017-01-01

    A variety of high-performance fibers, including Kevlar, Nomex, Vectran, and Spectra, have been tested for durability in the space environment, mostly the low Earth orbital environment. These materials have been tested in yarn, tether/cable, and fabric forms. Some material samples were tested in a simulated space environment, such as the Atomic Oxygen Beam Facility and solar simulators in the laboratory. Other samples were flown on the International Space Station as part of the Materials on International Space Station Experiment. Mass loss due to atomic oxygen erosion and optical property changes due to ultraviolet radiation degradation are given. Tensile test results are also presented, including where moisture loss in a vacuum had an impact on tensile strength.

  11. Teaching materials of algebraic equation

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

    2017-12-01

    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  12. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  13. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  14. Bio-Contamination Control for Spacesuit Garments - A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin

    2010-01-01

    This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are described for future microbial testing.

  15. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less

  16. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  17. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments.

    PubMed

    Elsaka, Shaymaa E

    2014-12-01

    To evaluate the effect of different surface treatments on the microtensile bond strength (μTBS) of novel CAD/CAM restorative materials to self-adhesive resin cement. Two types of CAD/CAM restorative materials (Vita Enamic [VE] and Lava Ultimate [LU]) were used. The specimens were divided into five groups in each test according to the surface treatment performed; Gr 1 (control; no treatment), Gr 2 (sandblasted [SB]), Gr 3 (SB+silane [S]), Gr 4 (hydrofluoric acid [HF]), and Gr 5 (HF+S). A dual-curing self-adhesive resin cement (Bifix SE [BF]) was applied to each group for testing the adhesion after 24 h of storage in distilled water or after 30 days using the μTBS test. Following fracture testing, specimens were examined with a stereomicroscope and SEM. Surface roughness and morphology of the CAD/CAM restorative materials were characterized after treatment. Data were analyzed using ANOVA and Tukey's test. The surface treatment, type of CAD/CAM restorative material, and water storage periods showed a significant effect on the μTBS (p<0.001). For the LU/BF system, there was no significant difference in the bond strength values between different surface treatments (p>0.05). On the other hand, for the VE/BF system, surface treatment with HF+S showed higher bond strength values compared with SB and HF surface treatments (p<0.05). Surface roughness and SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. The effect of surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement is material dependent. The VE/BF CAD/CAM material provided higher bond strength values compared with the LU/BF CAD/CAM material.

  18. International Space Station Materials: Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2007-01-01

    The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.

  19. Bisphenol A polycarbonate as a reference material

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Williams, J. B.

    1977-01-01

    Test methods require reference materials to standardize and maintain quality control. Various materials have been evaluated as possible reference materials, including a sample of bisphenol A polycarbonate without additives. Screening tests for relative toxicity under various experimental conditions were performed using male mice exposed to pyrolysis effluents over a 200-800 C temperature range. It was found that the bisphenol A polycarbonate served as a suitable reference material as it is available in large quantities, and does not significantly change with time.

  20. 49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Approval of non-domestic chemical analyses and tests. 107.807 Section 107.807 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION HAZARDOUS MATERIALS PROGRAM...

Top