Science.gov

Sample records for maternal obesity up-regulates

  1. Maternal obesity is associated with ovarian inflammation and up-regulation of early growth response factor 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a pro-inflammatory gene signature and up-regulation of Egr-1 protein in ovaries from obese (OB, n=7) compared to lean (LN, n=10) ...

  2. Maternal dietary restriction during the periconceptional period in normal-weight or obese ewes results in adrenocortical hypertrophy, an up-regulation of the JAK/STAT and down-regulation of the IGF1R signaling pathways in the adrenal of the postnatal lamb.

    PubMed

    Zhang, Song; Morrison, Janna L; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M; Kleemann, David; Walker, Simon K; McMillen, I Caroline

    2013-12-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth.

  3. Maternal Dietary Restriction During the Periconceptional Period in Normal-Weight or Obese Ewes Results in Adrenocortical Hypertrophy, an Up-Regulation of the JAK/STAT and Down-Regulation of the IGF1R Signaling Pathways in the Adrenal of the Postnatal Lamb

    PubMed Central

    Zhang, Song; Morrison, Janna L.; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M.; Kleemann, David; Walker, Simon K.

    2013-01-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth. PMID:24108072

  4. Maternal obesity and pregnancy.

    PubMed

    Johnson, S R; Kolberg, B H; Varner, M W; Railsback, L D

    1987-05-01

    We examined the risk of maternal obesity in 588 pregnant women weighing at least 113.6 kilograms (250 pounds) during pregnancy. Compared with a control group matched for age and parity, we found a significantly increased risk in the obese patient for gestational diabetes, hypertension, therapeutic induction, prolonged second stage of labor, oxytocin stimulation of labor, shoulder dystocia, infants weighing more than 4,000 grams and delivery after 42 weeks gestation. Certain operative complications were also more common in obese women undergoing cesarean section including estimated blood loss of more than 1,000 milliliters, operating time of more than two hours and wound infection postoperatively. These differences remained significant after controlling for appropriate confounding variables. We conclude that maternal obesity should be considered a high risk factor.

  5. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    PubMed

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  6. Maternal obesity and prenatal programming.

    PubMed

    Elshenawy, Summer; Simmons, Rebecca

    2016-11-01

    Obesity is a significant and increasing public health concern in the United States and worldwide. Clinical and epidemiological evidence clearly shows that genetic and environmental factors contribute to the increased susceptibility of humans to obesity and its associated comorbidities; the interplay of these factors is explained by the concept of epigenetics. The impact of maternal obesity goes beyond the newborn period; fetal programming during the critical window of pregnancy, can have long term detrimental effects on the offspring as well as future generations. Emerging evidence is uncovering a link between the clinical and molecular findings in the offspring with epigenetic changes in the setting of maternal obesity. Research targeted towards reducing the transgenerational propagation and developmental programming of obesity is vital in reducing the increasing rates of disease.

  7. Late-onset exercise in female rat offspring ameliorates the detrimental metabolic impact of maternal obesity.

    PubMed

    Bahari, Hasnah; Caruso, Vanni; Morris, Margaret J

    2013-10-01

    Rising rates of maternal obesity/overweight bring the need for effective interventions in offspring. We observed beneficial effects of postweaning exercise, but the question of whether late-onset exercise might benefit offspring exposed to maternal obesity is unanswered. Thus we examined effects of voluntary exercise implemented in adulthood on adiposity, hormone profiles, and genes involved in regulating appetite and metabolism in female offspring. Female Sprague Dawley rats were fed either normal chow or high-fat diet (HFD) ad libitum for 5 weeks before mating and throughout gestation/lactation. At weaning, female littermates received either chow or HFD and, after 7 weeks, half were exercised (running wheels) for 5 weeks. Tissues were collected at 15 weeks. Maternal obesity was associated with increased hypothalamic inflammatory markers, including suppressor of cytokine signaling 3, TNF-α, IL-1β, and IL-6 expression in the arcuate nucleus. In the paraventricular nucleus (PVN), Y1 receptor, melanocortin 4 receptor, and TNF-α mRNA were elevated. In the hippocampus, maternal obesity was associated with up-regulated fat mass and obesity-associated gene and TNF-α mRNA. We observed significant hypophagia across all exercise groups. In female offspring of lean dams, the reduction in food intake by exercise could be related to altered signaling at the PVN melanocortin 4 receptor whereas in offspring of obese dams, this may be related to up-regulated TNF-α. Late-onset exercise ameliorated the effects of maternal obesity and postweaning HFD in reducing body weight, adiposity, plasma leptin, insulin, triglycerides, and glucose intolerance, with greater beneficial effects in offspring of obese dams. Overall, hypothalamic inflammation was increased by maternal obesity or current HFD, and the effect of exercise was dependent on maternal diet. In conclusion, even after a significant sedentary period, many of the negative impacts of maternal obesity could be improved by

  8. Impact of maternal obesity on perinatal and childhood outcomes.

    PubMed

    Santangeli, Louise; Sattar, Naveed; Huda, Shahzya S

    2015-04-01

    Maternal obesity is of major consequence, affecting every aspect of maternity care including both short- and long-term effects on the health of the offspring. Obese mothers are at a higher risk of developing gestational diabetes and pre-eclampsia, potentially exposing the foetus to an adverse intrauterine environment. Maternal obesity is linked to foetal macrosomia, resulting in increased neonatal and maternal morbidity. Foetal macrosomia is a result of a change in body composition in the neonate with an increase in both percentage fat and fat mass. Maternal obesity and gestational weight gain are associated with childhood obesity, and this effect extends into adulthood. Childhood obesity in turn increases chances of later life obesity, thus type 2 diabetes, and cardiovascular disease in the offspring. Further clinical trials of lifestyle and, potentially, pharmacological interventions in obese pregnant women are required to determine whether short- and long-term adverse effects for the mother and child can be reduced.

  9. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst.

    PubMed

    Shankar, Kartik; Zhong, Ying; Kang, Ping; Lau, Franchesca; Blackburn, Michael L; Chen, Jin-Ran; Borengasser, Sarah J; Ronis, Martin J J; Badger, Thomas M

    2011-11-01

    Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyperresponsive to high fat-diets, gaining greater body weight, fat mass, and additional metabolic sequelae compared to lean controls. In this report, we identify the impact of maternal obesity before conception, on the embryo, and intrauterine milieu during the periimplantation period. We conducted global transcriptomic profiling in the uterus and periimplantation blastocyst, gene/protein expression analyses of inflammatory pathways in conjunction with endocrine and metabolic characterization in the dams at implantation. Uterine gene expression profiles of lean and obese dams revealed distinct signatures for genes regulating inflammation and lipid metabolism. Both pathway and gene-set enrichment analysis revealed uterine nuclear factor-κB and c-Jun N-terminal kinase signaling to be up-regulated in the uterus of obese dams, which was confirmed via immunoblotting. Obese uteri also evidenced an inflammatory secretome with higher chemokine mRNA abundance (CCL2, CCL5, CCL7, and CxCL10) and related regulators (TLR2, CD14, and Ccr1). Increased inflammation in the uterus was associated with ectopic lipid accumulation and expression of lipid metabolic genes. Gene expression in sex-identified male periimplantation blastocyst at day postcoitum 4.5 was clearly influenced by maternal obesity (359 transcripts, ±1.4-fold), including changes in developmental and epigenetic regulators. Akin to the uterus, nuclear factor-κB-regulated proinflammatory genes (CCL4 and CCL5) increased and expression of antioxidant (GPx3) and mitochondrial (TFAM and NRF1) genes decreased in the obese embryos. Our results suggest that ectopic lipid and inflammation may link maternal obesity to increased predisposition of offspring to obesity later in life.

  10. Maternal Obesity Promotes Diabetic Nephropathy in Rodent Offspring

    PubMed Central

    Glastras, Sarah J.; Tsang, Michael; Teh, Rachel; Chen, Hui; McGrath, Rachel T.; Zaky, Amgad A.; Pollock, Carol A.; Saad, Sonia

    2016-01-01

    Maternal obesity is known to increase the risk of obesity and diabetes in offspring. Though diabetes is a key risk factor for the development of chronic kidney disease (CKD), the relationship between maternal obesity and CKD has not been clearly defined. In this study, a mouse model of maternal obesity was employed to determine the impact of maternal obesity on development of diabetic nephropathy in offspring. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow diet. At postnatal Week 8, offspring were randomly administered low dose streptozotocin (STZ, 55 mg/kg/day for five days) to induce diabetes. Assessment of renal damage took place at postnatal Week 32. We found that offspring of obese mothers had increased renal fibrosis, inflammation and oxidative stress. Importantly, offspring exposed to maternal obesity had increased susceptibility to renal damage when an additional insult, such as STZ-induced diabetes, was imposed. Specifically, renal inflammation and oxidative stress induced by diabetes was augmented by maternal obesity. Our findings suggest that developmental programming induced by maternal obesity has implications for renal health in offspring. Maternal obesity should be considered a risk factor for CKD. PMID:27277011

  11. Identifying 'at risk' women and the impact of maternal obesity on National Health Service maternity services.

    PubMed

    Heslehurst, Nicola

    2011-11-01

    Obesity is a public health concern worldwide, arising from multifaceted and complex causes that relate to individual choice and lifestyle, and the influences of wider society. In addition to a long-standing focus on both childhood and adult obesity, there has been more recent concern relating to maternal obesity. This review explores the published evidence relating to maternal obesity incidence and associated inequalities, the impact of obesity on maternity services, and associated guidelines. Epidemiological data comprising three national maternal obesity datasets within the UK have identified a significant increase in maternal obesity in recent years, and reflect broad socio-demographic inequalities particularly deprivation, ethnicity and unemployment. Obese pregnancies present increased risk of complications that require more resource intensive antenatal and perinatal care, such as caesarean deliveries, gestational diabetes, haemorrhage, infections and congenital anomalies. Healthcare professionals also face difficulties when managing the care of women in pregnancy as obesity is an emotive and stigmatising topic. There is a lack of good-quality evidence for effective interventions to tackle maternal obesity. Recently published national guidelines for the clinical management and weight management of maternal obesity offer advice for professionals, but acknowledge the limitations of the evidence base. The consequence of these difficulties is an absence of support services available for women. Further evaluative research is thus required to assess the effectiveness of interventions with women before, during and after pregnancy. Qualitative work with women will also be needed to help inform the development of more sensitive risk communication and women-centred services.

  12. Impact of maternal obesity on fetal programming of cardiovascular disease.

    PubMed

    Roberts, Victoria H J; Frias, Antonio E; Grove, Kevin L

    2015-05-01

    The in utero environment is a key determinant of long-term health outcomes; poor maternal metabolic state and placental insufficiency are strongly associated with these long-term health risks. Human epidemiological studies link maternal obesity and offspring cardiovascular disease in later life, but mechanistic studies in animal models are limited. Here, we review the literature pertaining to maternal consequences of obesity during pregnancy and the subsequent impact on fetal cardiovascular development.

  13. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    SciTech Connect

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  14. Feto-placental adaptations to maternal obesity in the baboon

    PubMed Central

    Farley, Darren; Tejero, Maria E.; Comuzzie, Anthony G.; Higgins, Paul B.; Cox, Laura; Werner, Sherry L.; Jenkins, Susan L.; Li, Cun.; Choi, Jaehyek; Dick, Edward J.; Hubbard, Gene B.; Frost, Patrice; Dudley, Donald D.; Ballesteros, Brandon; Wu, Guoyao; Nathanielsz, Peter W.; Schlabritz-Loutsevitch, Natalia E.

    2010-01-01

    Maternal obesity is present in 20–34% of pregnant women and has been associated with both intrauterine growth restriction and large-for-gestational age fetuses. While fetal and placental functions have been extensively studied in the baboon, no data are available on the effect of maternal obesity on placental structure and function in this species. We hypothesize that maternal obesity in the baboon is associated with a maternal inflammatory state and induces structural and functional changes in the placenta. The major findings of this study were 1) decreased placental syncytiotrophoblast amplification factor, intact syncytiotrophoblast endoplasmic reticulum structure and decreased system A placental amino acid transport in obese animals; 2) fetal serum amino acid composition and mononuclear cells (PBMC) transcriptome were different in fetuses from obese compared with non-obese animals 3) maternal obesity in humans and baboons is similar in regard of increased placental and adipose tissue macrophage infiltration, increased CD14 expression in maternal PBMC and maternal hyperleptinemia. In summary, these data demonstrate that in obese baboons in the absence of increased fetal weight, placental and fetal phenotype are consistent with those described for large- for-gestational age human fetuses. PMID:19632719

  15. Inflammation in Maternal Obesity and Gestational Diabetes Mellitus

    PubMed Central

    Pantham, Priyadarshini; Aye, Irving L. M. H; Powell, Theresa L.

    2015-01-01

    The prevalence of maternal obesity is rising rapidly worldwide and constitutes a major obstetric problem, increasing mortality and morbidity in both mother and offspring. Obese women are predisposed to pregnancy complications such as gestational diabetes mellitus (GDM), and children of obese mothers are more likely to develop cardiovascular and metabolic disease in later life. Maternal obesity and GDM may be associated with a state of chronic, low-grade inflammation termed “metainflammation”, as opposed to an acute inflammatory response. This inflammatory environment may be one mechanism by which offspring of obese women are programmed to develop adult disorders. Herein we review the evidence that maternal obesity and GDM are associated with changes in the maternal, fetal and placental inflammatory profile. Maternal inflammation in obesity and GDM may not always be associated with fetal inflammation. We propose that the placenta ‘senses’ and adapts to the maternal inflammatory environment, and plays a central role as both a target and producer of inflammatory mediators. In this manner, maternal obesity and GDM may indirectly program the fetus for later disease by influencing placental function. PMID:25972077

  16. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome

    PubMed Central

    Nelson, Scott M.; Matthews, Phillippa; Poston, Lucilla

    2010-01-01

    BACKGROUND Obesity among pregnant women is highly prevalent worldwide and is associated in a linear manner with markedly increased risk of adverse outcome for mother and infant. Obesity in the mother may also independently confer risk of obesity to her child. The role of maternal metabolism in determining these outcomes and the potential for lifestyle modification are largely unknown. METHODS Relevant studies were identified by searching PubMed, the metaRegister of clinical trials and Google Scholar without limitations. Sensitive search strategies were combined with relevant medical subject headings and text words. RESULTS Maternal obesity and gestational weight gain have a significant impact on maternal metabolism and offspring development. Insulin resistance, glucose homeostasis, fat oxidation and amino acid synthesis are all disrupted by maternal obesity and contribute to adverse outcomes. Modification of lifestyle is an effective intervention strategy for improvement of maternal metabolism and the prevention of type 2 diabetes and, potentially, gestational diabetes. CONCLUSIONS Maternal obesity requires the development of effective interventions to improve pregnancy outcome. Strategies that incorporate a detailed understanding of the maternal metabolic environment and its consequences for the health of the mother and the growth of the child are likely to identify the best approach. PMID:19966268

  17. Maternal obesity disrupts the methionine cycle in baboon pregnancy.

    PubMed

    Nathanielsz, Peter W; Yan, Jian; Green, Ralph; Nijland, Mark; Miller, Joshua W; Wu, Guoyao; McDonald, Thomas J; Caudill, Marie A

    2015-11-01

    Maternal intake of dietary methyl-micronutrients (e.g. folate, choline, betaine and vitamin B-12) during pregnancy is essential for normal maternal and fetal methionine metabolism, and is critical for important metabolic processes including those involved in developmental programming. Maternal obesity and nutrient excess during pregnancy influence developmental programming potentially predisposing adult offspring to a variety of chronic health problems. In the present study, we hypothesized that maternal obesity would dysregulate the maternal and fetal methionine cycle. To test this hypothesis, we developed a nulliparous baboon obesity model fed a high fat, high energy diet (HF-HED) prior to and during gestation, and examined methionine cycle biomarkers (e.g., circulating concentrations of homocysteine, methionine, choline, betaine, key amino acids, folate, and vitamin B-12). Animals were group housed allowing full physical activity and social interaction. Maternal prepregnancy percent body fat was 5% in controls and 19% in HF-HED mothers, while fetal weight was 16% lower in offspring of HF-HED mothers at term. Maternal and fetal homocysteine were higher, while maternal and fetal vitamin B-12 and betaine were lower in the HF-HED group. Elevations in circulating maternal folate were evident in the HF-HED group indicating impaired folate metabolism (methyl-trap) as a consequence of maternal vitamin B-12 depletion. Finally, fetal methionine, glycine, serine, and taurine were lower in the HF-HED fetuses. These data show that maternal obesity disturbs the methionine cycle in primate pregnancy, providing a mechanism for the epigenetic changes observed among obese pregnant women and suggesting diagnostic and therapeutic opportunities in human pregnancies complicated by obesity.

  18. The impact of maternal obesity during pregnancy on offspring immunity.

    PubMed

    Wilson, Randall M; Messaoudi, Ilhem

    2015-12-15

    In the United States, approximately 64% of women of childbearing age are either overweight or obese. Maternal obesity during pregnancy is associated with a greater risk for adverse maternal-fetal outcomes. Adverse health outcomes for the offspring can persist into adulthood, increasing the incidence of several chronic conditions including cardiovascular disease, diabetes, and asthma. Since these diseases have a significant inflammatory component, these observations are indicative of perturbation of the normal development and maturation of the immune system of the offspring in utero. This hypothesis is strongly supported by data from several rodent studies. Although the mechanisms of these perturbations are not fully understood, it is thought that increased placental inflammation due to obesity may directly affect neonatal development through alterations in nutrient transport. In this review we examine the impact of maternal obesity on the neonatal immune system, and potential mechanisms for the changes observed.

  19. Maternal employment and childhood obesity--a European perspective.

    PubMed

    Gwozdz, Wencke; Sousa-Poza, Alfonso; Reisch, Lucia A; Ahrens, Wolfgang; Eiben, Gabriele; M Fernandéz-Alvira, Juan; Hadjigeorgiou, Charalampos; De Henauw, Stefaan; Kovács, Eva; Lauria, Fabio; Veidebaum, Toomas; Williams, Garrath; Bammann, Karin

    2013-07-01

    The substantial increase in female employment rates in Europe over the past two decades has often been linked in political and public rhetoric to negative effects on child development, including obesity. We analyse this association between maternal employment and childhood obesity using rich objective reports of various anthropometric and other measures of fatness from the IDEFICS study of children aged 2-9 in 16 regions of eight European countries. Based on such data as accelerometer measures and information from nutritional diaries, we also investigate the effects of maternal employment on obesity's main drivers: calorie intake and physical activity. Our analysis provides little evidence for any association between maternal employment and childhood obesity, diet or physical activity. PMID:23721884

  20. Intergenerational impact of maternal obesity and postnatal feeding practices on pediatric obesity

    PubMed Central

    Thompson, Amanda L.

    2014-01-01

    The postnatal feeding practices of obese and overweight mothers may place their children at particular risk for the development of obesity through shared biology and family environments. This paper reviews the feeding practices of obese mothers, describes potential mechanisms linking maternal feeding behaviors to child obesity risk, and highlights potential avenues for intervention. This review documents that supporting breastfeeding, improving the food choices of obese women, and encouraging the development of feeding styles that are responsive to hunger and satiety cues are important for improving the quality of the eating environment and preventing the intergenerational transmission of obesity. PMID:24147925

  1. Maternal obesity: pregnancy complications, gestational weight gain and nutrition.

    PubMed

    Guelinckx, I; Devlieger, R; Beckers, K; Vansant, G

    2008-03-01

    The obesity epidemic affects all, including women of reproductive age. One in five women attending prenatal care in the UK is obese. Prepregnancy obesity is associated with serious short- and long-term complications for mother and child. Furthermore, gestational weight gain (GWG) of obese pregnant women generally exceeds the Institute of Medicine recommended ranges. This observation can partially be explained by an unbalanced diet and lack of daily physical activity. Despite this, few lifestyle intervention trials in obese pregnant women are available. Two out of seven intervention trials focusing on GWG, nutrition and physical activity, reached a significant decrease in GWG. Developing guidelines to promote appropriated weight gain and healthy lifestyle in overweight and obese pregnant women remains a challenge. This review aims to summarize the complications associated with maternal prepregnancy overweight and obesity and to discuss possible strategies to improve the lifestyle habits of pregnant women.

  2. Maternal Obesity is Associated with a Lipotoxic Placental Environment

    PubMed Central

    Saben, Jessica; Lindsey, Forrest; Zhong, Ying; Thakali, Keshari; Badger, Thomas M.; Andres, Aline; Gomez-Acevedo, Horacio; Shankar, Kartik

    2014-01-01

    Maternal obesity is associated with placental lipotoxicity, oxidative stress, and inflammation, where MAPK activity may play a central role. Accordingly, we have previously shown that placenta from obese women have increased activation of MAPK-JNK. Here, we performed RNA-sequencing on term placenta from twenty-two subjects who were dichotomized based on pre-pregnancy BMI into lean (BMI 19–24 kg/m2; n = 12) and obese groups (BMI, 32–43 kg/m2; n = 12). RNA-seq revealed 288 genes to be significantly different in placenta from obese women by ≥1.4-fold. GO analysis identified genes related to lipid metabolism, angiogenesis, hormone activity, and cytokine activity to be altered in placenta from obese women. Indicative of a lipotoxic environment, increased placental lipid and CIDEA protein were associated with decreased AMPK and increased activation of NF-κB(p65) in placenta from obese women. Furthermore, we observed a 25% decrease in total antioxidant capacity and increased nuclear FOXO4 localization in placenta from obese women that was significantly associated with JNK activation, suggesting that maternal obesity may also be associated with increased oxidative stress in placenta. Maternal obesity was also associated with decreased HIF-1α protein expression, suggesting a potential link between increased inflammation/oxidative stress and decreased angiogenic factors. Together, these findings indicate that maternal obesity leads to a lipotoxic placental environment that is associated with decreased regulators of angiogenesis and increased markers of inflammation and oxidative stress. PMID:24484739

  3. Maternal Obesity Affects Fetal Neurodevelopmental and Metabolic Gene Expression: A Pilot Study

    PubMed Central

    Edlow, Andrea G.; Vora, Neeta L.; Hui, Lisa; Wick, Heather C.; Cowan, Janet M.; Bianchi, Diana W.

    2014-01-01

    Objective One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. Methods This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. Results In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. Conclusion Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women. PMID:24558408

  4. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status

    PubMed Central

    Jones, Andrew D.; Zhao, Gengli; Jiang, Ya-ping; Zhou, Min; Xu, Guobin; Kaciroti, Niko; Zhang, Zhixiang; Lozoff, Betsy

    2015-01-01

    Background/Objectives Obesity among pregnant women may adversely affect both maternal iron status throughout pregnancy and placental transfer of iron. The objective of this study was to determine the association of maternal body mass index (BMI) with 1) maternal iron status and inflammation in mid and late pregnancy, 2) the change in maternal iron status throughout pregnancy, and 3) neonatal iron status. Subjects/Methods We examined longitudinal data from 1,613 participants in a pregnancy iron supplementation trial in rural China. Women with uncomplicated singleton pregnancies were enrolled in the early second trimester of pregnancy and followed through parturition. Maternal blood samples obtained at enrollment and in the third trimester, and cord blood samples were analyzed for a range of hematological and iron biomarkers. Results There was a negative association between maternal BMI and iron status at enrollment (transferrin receptor (sTfR): r=0.20, P<0.001; body iron (BI): r=−0.05; P=0.03). This association was markedly stronger among obese women. Maternal BMI was positively associated with maternal inflammation (C-reactive protein: r=0.33, P<0.001). In multiple linear regression models, maternal BMI was negatively associated with neonatal iron status (cord serum ferritin: −0.01, P=0.008; BI: −0.06, P=0.006) and associated with a lower decrease in iron status throughout pregnancy (sTfR: −4.6, P<0.001; BI: 1.1, P=0.004). Conclusions Maternal obesity during pregnancy may adversely affect both maternal and neonatal iron status, potentially through inflammatory pathways. PMID:26813939

  5. Maternal obesity during conception programs offspring's body composition: Modulation of fatty acid synthase expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in later life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats by intragastric feeding of diets using total...

  6. Maternal obesity in Africa: a systematic review and meta-analysis

    PubMed Central

    Onubi, Ojochenemi J.; Marais, Debbi; Aucott, Lorna; Okonofua, Friday; Poobalan, Amudha S.

    2016-01-01

    Background Maternal obesity is emerging as a public health problem, recently highlighted together with maternal under-nutrition as a ‘double burden’, especially in African countries undergoing social and economic transition. This systematic review was conducted to investigate the current evidence on maternal obesity in Africa. Methods MEDLINE, EMBASE, Scopus, CINAHL and PsycINFO were searched (up to August 2014) and identified 29 studies. Prevalence, associations with socio-demographic factors, labour, child and maternal consequences of maternal obesity were assessed. Pooled risk ratios comparing obese and non-obese groups were calculated. Results Prevalence of maternal obesity across Africa ranged from 6.5 to 50.7%, with older and multiparous mothers more likely to be obese. Obese mothers had increased risks of adverse labour, child and maternal outcomes. However, non-obese mothers were more likely to have low-birthweight babies. The differences in measurement and timing of assessment of maternal obesity were found across studies. No studies were identified either on the knowledge or attitudes of pregnant women towards maternal obesity; or on interventions for obese pregnant women. Conclusions These results show that Africa's levels of maternal obesity are already having significant adverse effects. Culturally adaptable/sensitive interventions should be developed while monitoring to avoid undesired side effects. PMID:26487702

  7. Maternal obesity impairs specific regulatory pathways in human myometrial arteries.

    PubMed

    Hayward, Christina E; Cowley, Elizabeth J; Mills, Tracey A; Sibley, Colin P; Wareing, Mark

    2014-03-01

    Obese women (body mass index ≥30 kg/m(2)) are at greater risk than normal weight women of pregnancy complications associated with maternal and infant morbidity, particularly the development of cardiovascular disease and metabolic disorders in later life; why this occurs is unknown. Nonpregnant, obese individuals exhibit systemic vascular endothelial dysfunction. We tested the hypothesis that obese pregnant women have altered myometrial arterial function compared to pregnant women of normal (18-24 kg/m(2)) and overweight (25-29 kg/m(2)) body mass index. Responses to vasoconstrictors, U46619 (thromboxane mimetic) and arginine vasopressin, and vasodilators, bradykinin and the nitric oxide donor sodium nitroprusside, were assessed by wire myography in myometrial arteries from normal weight (n = 18), overweight (n = 18), and obese (n = 20) women with uncomplicated pregnancies. Thromboxane-prostanoid receptor expression was assessed using immunostaining in myometrial arteries of normal weight and obese women. Vasoconstriction and vasodilatation were impaired in myometrial arteries from obese women with otherwise uncomplicated pregnancies. Disparate agonist responses suggest that vascular function in obese women is not globally dysregulated but may be specific to thromboxane and nitric oxide pathways. Because obesity rates are escalating, it is important to identify the mechanisms underlying impaired vascular function and establish why some obese women compensate for vascular dysfunction and some do not. Future studies are needed to determine whether central adiposity results in an altered endocrine milieu that may promote vascular dysfunction by altering the function of perivascular adipose tissue.

  8. Maternal Obesity: Lifelong Metabolic Outcomes for Offspring from Poor Developmental Trajectories During the Perinatal Period.

    PubMed

    Zambrano, Elena; Ibáñez, Carlos; Martínez-Samayoa, Paola M; Lomas-Soria, Consuelo; Durand-Carbajal, Marta; Rodríguez-González, Guadalupe L

    2016-01-01

    The prevalence of obesity in women of reproductive age is increasing in developed and developing countries around the world. Human and animal studies indicate that maternal obesity adversely impacts both maternal health and offspring phenotype, predisposing them to chronic diseases later in life including obesity, dyslipidemia, type 2 diabetes mellitus, and hypertension. Several mechanisms act together to produce these adverse health effects including programming of hypothalamic appetite-regulating centers, increasing maternal, fetal and offspring glucocorticoid production, changes in maternal metabolism and increasing maternal oxidative stress. Effective interventions during human pregnancy are needed to prevent both maternal and offspring metabolic dysfunction due to maternal obesity. This review addresses the relationship between maternal obesity and its negative impact on offspring development and presents some maternal intervention studies that propose strategies to prevent adverse offspring metabolic outcomes.

  9. Maternal Super Obesity and Neonatal Morbidity after Term Cesarean Delivery.

    PubMed

    Smid, Marcela C; Vladutiu, Catherine J; Dotters-Katz, Sarah K; Manuck, Tracy A; Boggess, Kim A; Stamilio, David M

    2016-10-01

    Objective To estimate the association between maternal super obesity (body mass index [BMI] ≥ 50 kg/m(2)) and neonatal morbidity among neonates born via cesarean delivery (CD). Methods Retrospective cohort of singleton neonates delivered via CD ≥ 37 weeks in the Maternal-Fetal Medicine Unit Cesarean Registry. Maternal BMI at delivery was stratified as 18.5 to 29.9 kg/m(2), 30 to 39.9 kg/m(2), 40 to 49.9 kg/m(2), and ≥ 50 kg/m(2). Primary outcomes included acute (5-minute Apgar score < 5, cardiopulmonary resuscitation and ventilator support < 24 hours, neonatal injury, and/or transient tachypnea of the newborn) and severe (grade 3 or 4 intraventricular hemorrhage, necrotizing enterocolitis, seizure, respiratory distress syndrome, hypoxic ischemic encephalopathy, meconium aspiration, ventilator support ≥ 2 days, sepsis and/or neonatal death) neonatal morbidity. Odds of neonatal morbidity were estimated for each BMI category adjusting for clinical and operative characteristics. Results Of 41,262 maternal-neonatal dyads, 36% of women were nonobese, 49% had BMI of 30 to 39.9 kg/m(2), 12% had BMI of 40 to 49.9 kg/m(2), and 3% were super obese. Compared with nonobese women, super obese women had twofold odds of acute (5 vs. 10%; adjusted odds ratio [aOR]: 1.81, 95% confidence interval [CI]: 1.59-2.73) and severe (3 vs. 6%; aOR: 2.08; 95% CI: 1.59-2.73) neonatal morbidity. Conclusion Among term infants delivered via CD, maternal super obesity is associated with increased risk of neonatal morbidity.

  10. Maternal Super Obesity and Neonatal Morbidity after Term Cesarean Delivery.

    PubMed

    Smid, Marcela C; Vladutiu, Catherine J; Dotters-Katz, Sarah K; Manuck, Tracy A; Boggess, Kim A; Stamilio, David M

    2016-10-01

    Objective To estimate the association between maternal super obesity (body mass index [BMI] ≥ 50 kg/m(2)) and neonatal morbidity among neonates born via cesarean delivery (CD). Methods Retrospective cohort of singleton neonates delivered via CD ≥ 37 weeks in the Maternal-Fetal Medicine Unit Cesarean Registry. Maternal BMI at delivery was stratified as 18.5 to 29.9 kg/m(2), 30 to 39.9 kg/m(2), 40 to 49.9 kg/m(2), and ≥ 50 kg/m(2). Primary outcomes included acute (5-minute Apgar score < 5, cardiopulmonary resuscitation and ventilator support < 24 hours, neonatal injury, and/or transient tachypnea of the newborn) and severe (grade 3 or 4 intraventricular hemorrhage, necrotizing enterocolitis, seizure, respiratory distress syndrome, hypoxic ischemic encephalopathy, meconium aspiration, ventilator support ≥ 2 days, sepsis and/or neonatal death) neonatal morbidity. Odds of neonatal morbidity were estimated for each BMI category adjusting for clinical and operative characteristics. Results Of 41,262 maternal-neonatal dyads, 36% of women were nonobese, 49% had BMI of 30 to 39.9 kg/m(2), 12% had BMI of 40 to 49.9 kg/m(2), and 3% were super obese. Compared with nonobese women, super obese women had twofold odds of acute (5 vs. 10%; adjusted odds ratio [aOR]: 1.81, 95% confidence interval [CI]: 1.59-2.73) and severe (3 vs. 6%; aOR: 2.08; 95% CI: 1.59-2.73) neonatal morbidity. Conclusion Among term infants delivered via CD, maternal super obesity is associated with increased risk of neonatal morbidity. PMID:27464019

  11. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil

    PubMed Central

    Heerwagen, Margaret J. R.; Miller, Melissa R.; Barbour, Linda A.

    2010-01-01

    The incidence of obesity and overweight has reached epidemic levels in the United States and developed countries worldwide. Even more alarming is the increasing prevalence of metabolic diseases in younger children and adolescents. Infants born to obese, overweight, and diabetic mothers (even when normal weight) have increased adiposity and are at increased risk of later metabolic disease. In addition to maternal glucose, hyperlipidemia and inflammation may contribute to the childhood obesity epidemic through fetal metabolic programming, the mechanisms of which are not well understood. Pregravid obesity, when combined with normal changes in maternal metabolism, may magnify increases in inflammation and blood lipids, which can have profound effects on the developing embryo and the fetus in utero. Fetal exposure to excess blood lipids, particularly saturated fatty acids, can activate proinflammatory pathways, which could impact substrate metabolism and mitochondrial function, as well as stem cell fate, all of which affect organ development and the response to the postnatal environment. Fetal and neonatal life are characterized by tremendous plasticity and the ability to respond to environmental factors (nutrients, oxygen, hormones) by altering gene expression levels via epigenetic modifications. Given that lipids act as both transcriptional activators and signaling molecules, excess fetal lipid exposure may regulate genes involved in lipid sensing and metabolism through epigenetic mechanisms. Epigenetic regulation of gene expression is characterized by covalent modifications to DNA and chromatin that alter gene expression independent of gene sequence. Epigenetic modifications can be maintained through positive and negative feedback loops, thereby creating stable changes in the expression of metabolic genes and their main transcriptional regulators. The purpose of this article is to review current literature on maternal-fetal lipid metabolism and maternal obesity

  12. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil.

    PubMed

    Heerwagen, Margaret J R; Miller, Melissa R; Barbour, Linda A; Friedman, Jacob E

    2010-09-01

    The incidence of obesity and overweight has reached epidemic levels in the United States and developed countries worldwide. Even more alarming is the increasing prevalence of metabolic diseases in younger children and adolescents. Infants born to obese, overweight, and diabetic mothers (even when normal weight) have increased adiposity and are at increased risk of later metabolic disease. In addition to maternal glucose, hyperlipidemia and inflammation may contribute to the childhood obesity epidemic through fetal metabolic programming, the mechanisms of which are not well understood. Pregravid obesity, when combined with normal changes in maternal metabolism, may magnify increases in inflammation and blood lipids, which can have profound effects on the developing embryo and the fetus in utero. Fetal exposure to excess blood lipids, particularly saturated fatty acids, can activate proinflammatory pathways, which could impact substrate metabolism and mitochondrial function, as well as stem cell fate, all of which affect organ development and the response to the postnatal environment. Fetal and neonatal life are characterized by tremendous plasticity and the ability to respond to environmental factors (nutrients, oxygen, hormones) by altering gene expression levels via epigenetic modifications. Given that lipids act as both transcriptional activators and signaling molecules, excess fetal lipid exposure may regulate genes involved in lipid sensing and metabolism through epigenetic mechanisms. Epigenetic regulation of gene expression is characterized by covalent modifications to DNA and chromatin that alter gene expression independent of gene sequence. Epigenetic modifications can be maintained through positive and negative feedback loops, thereby creating stable changes in the expression of metabolic genes and their main transcriptional regulators. The purpose of this article is to review current literature on maternal-fetal lipid metabolism and maternal obesity

  13. Early Maternal Employment and Childhood Obesity among Economically Disadvantaged Families in the USA

    ERIC Educational Resources Information Center

    Coley, Rebekah Levine; Lombardi, Caitlin McPherran

    2012-01-01

    Research indicates a link between maternal employment and children's risk of obesity, but little prior work has addressed maternal employment during children's infancy. This study examined the timing and intensity of early maternal employment and associations with children's later overweight and obesity in a sample of low-income families in…

  14. Maternal morbid obesity: financial implications of weight management.

    PubMed

    Caldas, M C; Serrette, J M; Jain, S K; Makhlouf, M; Olson, G L; McCormick, D P

    2015-12-01

    The objective of this study was to evaluate health outcomes and costs of pregnancies complicated by extreme maternal obesity (class III obesity, body mass index ≥ 40). We conducted a retrospective case-control descriptive study comparing extremely obese women (cases) and their infants with randomly selected controls. Health outcomes were obtained from the medical records and costs from billing data. Total costs for each mother-infant dyad were calculated. Compared with 85 controls, the 82 cases experienced higher morbidity, higher costs and prolonged hospital stay. However, 26% of cases maintained or lost weight during pregnancy, whereas none of the controls maintained or lost weight during pregnancy. When mother/infant dyads were compared on costs, case subjects who maintained or lost weight experienced lower costs than those who gained weight. Neonatal intensive care consumed 78% of total hospital costs for infants of the obese women who gained weight, but only 48% of costs for infants of obese women who maintained or lost weight. For extremely obese women, weight management during pregnancy was achievable, resulted in healthier neonatal outcomes and reduced perinatal healthcare costs.

  15. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    PubMed

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition. PMID:27536989

  16. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2

    PubMed Central

    Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring’s learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition. PMID:27536989

  17. Maternal over weight and obesity: its effect on pregnancy outcome.

    PubMed

    Mazumder, U; Sarker, S; Riaz, B K; Chowdhury, T A

    2011-04-01

    Obesity in pregnancy remains a significant health problem that result in physiological, emotional, social and economic consequences on woman, their families and society. Obesity is considered one of the nutritional problems complicating pregnancy in our country. This study was conducted in antenatal clinic at out patient department of Obstetrics & Gynecology, BIRDEM Hospital, one of the countries largest tertiary level hospitals, during January 2007 to December 2008. During the study period of two years, a total no. of 100 cases were enrolled in two groups. Out of this 50 were control and 50 were over weight and obese. In this study, Mean of height, weight and BMI of the over weight and obese group were 5.21±0.21, 79.35±13.66, 32.36±4.76 respectively. The Mean of birth weight, APGAR score after 1 min and after 5 min of the over weight and obese group were 3.07±0.75, 7.10±1.11, 9.92±0.98 respectively and in normal weight group were 2.74±0.55, 7.40±1.56, 9.92±1.83 respectively. There was significant difference in birth weight, APGAR score after 1 min between the groups (p<0.05) but there was no significant difference in APGAR score after 5 min between groups (p>0.05). Regarding the fetal outcome in this study, 20% of the over weight and obese group delivered macrosomic baby in comparison to only 4% in the normal weight group. On the other hand 46% of the case group had to refer their babies to the neonatal unit in comparison to only 12% in the control group. Gestational Diabetes Mellitus (GDM) (46%) and Preeclampsia (44%) developed more in obese group. Eighty eight (88%) of obese and overweight mother experienced in caesarean delivery. Asphyxia, Respiratory Distress Syndrome (RDS), congenital anomaly and prenatal death were more in the over weight and obese group than normal weight group. Thus, overweight and obesity has got significant deleterious effect on maternal and perinatal outcomes of pregnancy. PMID:21522090

  18. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain.

    PubMed

    Zhang, Zhi; Bassam, Bassam; Thomas, Ajit G; Williams, Monica; Liu, Jinhuan; Nance, Elizabeth; Rojas, Camilo; Slusher, Barbara S; Kannan, Sujatha

    2016-10-01

    Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by

  19. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed bo...

  20. Association between Maternal Obesity and Autism Spectrum Disorder in Offspring: A Meta-Analysis

    ERIC Educational Resources Information Center

    Li, Ya-Min; Ou, Jian-Jun; Liu, Li; Zhang, Dan; Zhao, Jing-Ping; Tang, Si-Yuan

    2016-01-01

    As the link between maternal obesity and risk of autism among offspring is unclear, the present study assessed this association. A systematic search of an electronic database was performed to identify observational studies that examined the association between maternal obesity and autism. The outcome measures were odds ratios comparing offspring…

  1. Maternal work and children's diet, activity, and obesity.

    PubMed

    Datar, Ashlesha; Nicosia, Nancy; Shier, Victoria

    2014-04-01

    Mothers' work hours are likely to affect their time allocation towards activities related to children's diet, activity and well-being. For example, mothers who work more may be more reliant on processed foods, foods prepared away from home and school meal programs for their children's meals. A greater number of work hours may also lead to more unsupervised time for children that may, in turn, allow for an increase in unhealthy behaviors among their children such as snacking and sedentary activities such as TV watching. Using data on a national cohort of children, we examine the relationship between mothers' average weekly work hours during their children's school years on children's dietary and activity behaviors, BMI and obesity in 5th and 8th grade. Our results are consistent with findings from the literature that maternal work hours are positively associated with children's BMI and obesity especially among children with higher socioeconomic status. Unlike previous papers, our detailed data on children's behaviors allow us to speak directly to affected behaviors that may contribute to the increased BMI. We show that children whose mothers work more consume more unhealthy foods (e.g. soda, fast food) and less healthy foods (e.g. fruits, vegetables, milk) and watch more television. Although they report being slightly more physically active, likely due to organized physical activities, the BMI and obesity results suggest that the deterioration in diet and increase in sedentary behaviors dominate.

  2. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyper-responsive to high fat diets, gaining greater body weight, fat mass and additional metabolic sequelae compared to lean controls. ...

  3. Does maternal psychopathology increase the risk of pre-schooler obesity? A systematic review.

    PubMed

    Benton, Pree M; Skouteris, Helen; Hayden, Melissa

    2015-04-01

    The preschool years may be a critical period for child obesity onset; however, literature examining obesity risk factors to date has largely focused on school-aged children. Several links have been made between maternal depression and childhood obesity risks; however, other types of maternal psychopathology have been widely neglected. The aim of the present review was to systematically identify articles that examined relationships between maternal psychopathology variables, including depressive and anxiety symptoms, self-esteem and body dissatisfaction, and risks for pre-schooler obesity, including weight outcomes, physical activity and sedentary behaviour levels, and nutrition/diet variables. Twenty articles meeting review criteria were identified. Results showed positive associations between maternal depressive symptoms and increased risks for pre-schooler obesity in the majority of studies. Results were inconsistent depending on the time at which depression was measured (i.e., antenatal, postnatal, in isolation or longitudinally). Anxiety and body dissatisfaction were only measured in single studies; however, both were linked to pre-schooler obesity risks; self-esteem was not measured by any studies. We concluded that maternal depressive symptoms are important to consider when assessing risks for obesity in preschool-aged children; however, more research is needed examining the impact of other facets of maternal psychopathology on obesity risk in pre-schoolers. PMID:25572134

  4. Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers

    PubMed Central

    Galley, Jeffrey D.; Bailey, Michael; Kamp Dush, Claire; Schoppe-Sullivan, Sarah; Christian, Lisa M.

    2014-01-01

    Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully delineated. A novel possible pathway linking maternal and child weight is the transmission of obesogenic microbes from mother to child. The current study examined whether maternal obesity was associated with differences in the composition of the gut microbiome in children in early life. Fecal samples from children 18–27 months of age (n = 77) were analyzed by pyro-tag 16S sequencing. Significant effects of maternal obesity on the composition of the gut microbiome of offspring were observed among dyads of higher socioeconomic status (SES). In the higher SES group (n = 47), children of obese (BMI≥30) versus non-obese mothers clustered on a principle coordinate analysis (PCoA) and exhibited greater homogeneity in the composition of their gut microbiomes as well as greater alpha diversity as indicated by the Shannon Diversity Index, and measures of richness and evenness. Also in the higher SES group, children born to obese versus non-obese mothers had differences in abundances of Faecalibacterium spp., Eubacterium spp., Oscillibacter spp., and Blautia spp. Prior studies have linked some of these bacterial groups to differences in weight and diet. This study provides novel evidence that maternal obesity is associated with differences in the gut microbiome in children in early life, particularly among those of higher SES. Among obese adults, the relative contribution of genetic versus behavioral factors may differ based on SES. Consequently, the extent to which maternal obesity confers measureable changes to the gut microbiome of offspring may differ based on the etiology of maternal obesity. Continued research is needed to examine this question as well as the relevance of the observed differences in gut microbiome composition for weight trajectory over the life course. PMID:25409177

  5. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats.

    PubMed

    Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.

  6. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  7. Maternal obesity in early pregnancy and subsequent pregnancy outcome in a Nigerian population.

    PubMed

    Ezeanochie, M C; Ande, A B; Olagbuji, B N

    2011-12-01

    Despite a rising prevalence worldwide, there is limited data on pregnancy outcome among African women with prepregnancy or early pregnancy obesity. This was a case-control study to determine the prevalence of maternal obesity in early pregnancy and compare the subsequent pregnancy outcome between 201 women with obesity and 201 non-obese controls in a University Teaching Hospital in Nigeria. The prevalence of obesity in early pregnancy was 9.63%. Obesity was significantly associated with advanced maternal age and parity > or =1. It was also a risk factor for pregnancy induced hypertension, admissions during pregnancy, caesarean delivery and associated with 5th minute apgar score < or =3 (0.044). Obesity in early pregnancy is a risk factor for adverse pregnancy outcome among pregnant Nigerian women. This information should be utilised by physicians to improve the outcome of pregnancy and promote safe motherhood.

  8. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is strongly influenced by maternal body composition. Here we examined the hypothesis that maternal obesity influences white adipose tissue (WAT) transcriptome and increases propensity for adipogenesis in the offspring, prior to the development of obesity, using an es...

  9. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes.

    PubMed

    Igosheva, Natalia; Abramov, Andrey Y; Poston, Lucilla; Eckert, Judith J; Fleming, Tom P; Duchen, Michael R; McConnell, Josie

    2010-01-01

    The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis.Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women.

  10. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  11. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring.

    PubMed

    Gaillard, Romy

    2015-11-01

    Maternal obesity during pregnancy is an important public health problem in Western countries. Currently, obesity prevalence rates in pregnant women are estimated to be as high as 30%. In addition, approximately 40% of women gain an excessive amount of weight during pregnancy in Western countries. An accumulating body of evidence suggests a long-term impact of maternal obesity and excessive weight gain during pregnancy on adiposity, cardiovascular and metabolic related health outcomes in the offspring in fetal life, childhood and adulthood. In this review, we discuss results from recent studies, potential underlying mechanisms and challenges for future epidemiological studies. PMID:26377700

  12. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring.

    PubMed

    Gaillard, Romy

    2015-11-01

    Maternal obesity during pregnancy is an important public health problem in Western countries. Currently, obesity prevalence rates in pregnant women are estimated to be as high as 30%. In addition, approximately 40% of women gain an excessive amount of weight during pregnancy in Western countries. An accumulating body of evidence suggests a long-term impact of maternal obesity and excessive weight gain during pregnancy on adiposity, cardiovascular and metabolic related health outcomes in the offspring in fetal life, childhood and adulthood. In this review, we discuss results from recent studies, potential underlying mechanisms and challenges for future epidemiological studies.

  13. Association of microtia with maternal obesity and periconceptional folic acid use.

    PubMed

    Ma, Chen; Carmichael, Suzan L; Scheuerle, Angela E; Canfield, Mark A; Shaw, Gary M

    2010-11-01

    The study objective was to examine the association of microtia with maternal intake of folic-acid-containing supplements and obesity. The study data included deliveries from 1997 to 2005 from the National Birth Defects Prevention Study. Non-syndromic cases of microtia were compared to non-malformed, population-based liveborn control infants, by estimating adjusted odds ratios (AORs) and 95% confidence intervals (CIs) from logistic regression models that included maternal race/ethnicity, education, and study site. Maternal obesity was only weakly associated with microtia. Maternal periconceptional intake of folic-acid-containing vitamin supplements reduced the risk for microtia, but only among non-obese women (OR: 0.63; 95% CI: 0.44-0.91). The reduced risk was stronger when analyses were restricted to isolated cases (OR: 0.51; 95% CI: 0.34-0.77), and it was independent of the level of maternal dietary folate intake. Adjusting for maternal race/ethnicity did not reveal alternative interpretations of this association. This analysis suggests that maternal periconceptional intake of folic-acid-containing supplements may provide protection from microtia for non-obese women.

  14. Childhood consequences of maternal obesity and excessive weight gain during pregnancy.

    PubMed

    Gaillard, Romy; Felix, Janine F; Duijts, Liesbeth; Jaddoe, Vincent W V

    2014-11-01

    Obesity is a major public health concern. In western countries, the prevalence of obesity in pregnant women has strongly increased, with reported prevalence rates reaching 30%. Also, up to 40% of women gain an excessive amount of weight during pregnancy. Recent observational studies and meta-analyses strongly suggest long-term impact of maternal obesity and excessive weight gain during pregnancy on adiposity, cardiovascular and respiratory related health outcomes in their children. These observations suggest that maternal adiposity during pregnancy may program common health problems in the offspring. Currently, it remains unclear whether the observed associations are causal, or just reflect confounding by family-based sociodemographic or lifestyle-related factors. Parent-offspring studies, sibling comparison studies, Mendelian randomization studies and randomized trials can help to explore the causality and underlying mechanisms. Also, the potential for prevention of common diseases in future generations by reducing maternal obesity and excessive weight gain during pregnancy needs to be explored.

  15. Mercury as a possible link between maternal obesity and autism spectrum disorder.

    PubMed

    Skalny, Anatoly V; Skalnaya, Margarita G; Bjørklund, Geir; Nikonorov, Alexandr A; Tinkov, Alexey A

    2016-06-01

    The incidence of both obesity and autism spectrum disorders (ASD) has dramatically increased during the last decades. Moreover, the most recent studies have revealed increased risk of ASD in offspring of overweight and obese women. However, the mechanisms of association between ASD and maternal obesity are unknown. Taking into account the existing data indicating the association between mercury (Hg) exposure and development of obesity and ASD, we hypothesize that Hg may serve as an additional link between maternal obesity and ASD. In particular, it is supposed that obesity is associated with excessive accumulation of Hg in the maternal organism. After conception, the fetus is developing in the conditions of Hg overload within the body of obese women thus predisposing to the development of ASD. The proposed hypothesis may be confirmed by the existing data. In particular, previous studies demonstrated that overweight and obese persons are characterized by a significantly higher level of Hg in hair, blood and urine than the lean ones. Therefore, an obese organism is characterized by elevated Hg burden that may be transferred to the fetus during pregnancy. Moreover, multiple studies have demonstrated a tight association between maternal and children Hg status being indicative of placental transfer of metal from maternal organism to offspring. Finally, a growing body of data indicates the influence of Hg exposure and Hg status on the risk of ASD in children. However, additional experimental and clinical studies are required to prove the hypothesis and provide novel data on the role of Hg in maternal obesity-associated ASD development. In particular, the contribution of Hg to ASD development in children from obese mothers should be determined. If a significant role of Hg in maternal obesity ASD risk will be confirmed, this will open additional perspectives of risk modification. Taking into account the universal mechanisms of Hg toxicity, transport, and accumulation

  16. Maternal Obesity During Pregnancy Associates With Premature Mortality and Major Cardiovascular Events in Later Life.

    PubMed

    Lee, Kuan Ken; Raja, Edwin A; Lee, Amanda J; Bhattacharya, Sohinee; Bhattacharya, Siladitya; Norman, Jane E; Reynolds, Rebecca M

    2015-11-01

    One in 5 pregnant women is obese but the impact on later health is unknown. We aimed to determine whether maternal obesity during pregnancy associates with increased premature mortality and later life major cardiovascular events. Maternity records of women who gave birth to their first child between 1950 and 1976 (n=18 873) from the Aberdeen Maternity and Neonatal databank were linked to the National Register of Deaths, Scotland and Scottish Morbidity Record. The effect of maternal obesity at first antenatal visit on death and hospital admissions for cardiovascular events was tested using time-to-event analysis with Cox proportional hazard regression to compare outcomes of mothers in underweight, overweight, or obese body mass index (BMI) categories compared with normal BMI. Median follow-up was at 73 years. All-cause mortality was increased in women who were obese during pregnancy (BMI>30 kg/m(2)) versus normal BMI after adjustment for socioeconomic status, smoking, gestation at BMI measurement, preeclampsia, and low birth weight (hazard ratio, 1.35; 95% confidence interval, 1.02-1.77). In adjusted models, overweight and obese mothers had increased risk of hospital admission for a cardiovascular event (1.16; 1.06-1.27 and 1.26; 1.01-1.57) compared with normal BMI mothers. Adjustment for parity largely unchanged the hazard ratios (mortality: 1.43, 1.09-1.88; cardiovascular events overweight: 1.17, 1.07-1.29; and obese: 1.30, 1.04-1.62). In conclusion, maternal obesity is associated with increased risk of premature death and cardiovascular disease. Pregnancy and early postpartum could represent an opportunity for interventions to identify obesity and reduce its adverse consequences.

  17. Maternal Obesity During Pregnancy Associates With Premature Mortality and Major Cardiovascular Events in Later Life.

    PubMed

    Lee, Kuan Ken; Raja, Edwin A; Lee, Amanda J; Bhattacharya, Sohinee; Bhattacharya, Siladitya; Norman, Jane E; Reynolds, Rebecca M

    2015-11-01

    One in 5 pregnant women is obese but the impact on later health is unknown. We aimed to determine whether maternal obesity during pregnancy associates with increased premature mortality and later life major cardiovascular events. Maternity records of women who gave birth to their first child between 1950 and 1976 (n=18 873) from the Aberdeen Maternity and Neonatal databank were linked to the National Register of Deaths, Scotland and Scottish Morbidity Record. The effect of maternal obesity at first antenatal visit on death and hospital admissions for cardiovascular events was tested using time-to-event analysis with Cox proportional hazard regression to compare outcomes of mothers in underweight, overweight, or obese body mass index (BMI) categories compared with normal BMI. Median follow-up was at 73 years. All-cause mortality was increased in women who were obese during pregnancy (BMI>30 kg/m(2)) versus normal BMI after adjustment for socioeconomic status, smoking, gestation at BMI measurement, preeclampsia, and low birth weight (hazard ratio, 1.35; 95% confidence interval, 1.02-1.77). In adjusted models, overweight and obese mothers had increased risk of hospital admission for a cardiovascular event (1.16; 1.06-1.27 and 1.26; 1.01-1.57) compared with normal BMI mothers. Adjustment for parity largely unchanged the hazard ratios (mortality: 1.43, 1.09-1.88; cardiovascular events overweight: 1.17, 1.07-1.29; and obese: 1.30, 1.04-1.62). In conclusion, maternal obesity is associated with increased risk of premature death and cardiovascular disease. Pregnancy and early postpartum could represent an opportunity for interventions to identify obesity and reduce its adverse consequences. PMID:26370890

  18. Sirtuins-mediators of maternal obesity-induced complications in offspring?

    PubMed

    Nguyen, Long T; Chen, Hui; Pollock, Carol A; Saad, Sonia

    2016-04-01

    Obesity is a complex metabolic disease, attributed to diverse and interactive genetic and environmental factors. The associated health consequences of obesity are pleiotropic, with individuals being more susceptible to chronic diseases such as type 2 diabetes mellitus, hypertension, and lipotoxicity-related chronic diseases. The contribution of maternal obesity to the offspring's predisposition to both obesity and its complications is increasingly recognized. Understanding the mechanisms underlying these "transmissible" effects is critical to develop therapeutic interventions to reduce the risk for "programmed" obesity. Sirtuins (SIRTs), particularly SIRT1 and SIRT3, are NAD(+)-dependent deacetylases that regulate metabolic balance and stress responses in both central and peripheral tissues, of which dysregulation is a well-established mediator for the development and effects of obesity. Nevertheless, their implication in the transmissible effects of maternal obesity across generations remains largely elusive. In this review, we examine multiple pathways and systems that are likely to mediate such effects, with particular emphasis on the role of SIRTs.-Nguyen, L. T., Chen, H., Pollock, C. A., Saad, S. Sirtuins-mediators of maternal obesity-induced complications in offspring?

  19. Programming Body Composition in Offspring by Maternal Obesity Is Associated with Increased Adipogenesis and Decreased WNT/ Beta-Catenin Signaling in the Adipose Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity during pregnancy significantly influences the risk of obesity in the offspring. We recently demonstrated that maternal obesity at conception programs obesity in the offspring. Obese dam offspring when weaned on high-fat diets gain significantly greater body weight/adiposity (via NMR...

  20. A systematic review of maternal obesity and breastfeeding intention, initiation and duration

    PubMed Central

    Amir, Lisa H; Donath, Susan

    2007-01-01

    Background Breastfeeding behaviour is multifactorial, and a wide range of socio-cultural and physiological variables impact on a woman's decision and ability to breastfeed successfully. An association has been reported between maternal obesity and low breastfeeding rates. This is of public health concern because obesity is rising in women of reproductive age and the apparent association with increased artificial feeding will lead to a greater risk of obesity in children. The aim of this paper is to examine the relationship between maternal overweight and obesity and breastfeeding intention and initiation and duration. Methods A systematic review was conducted in January and February 2007, using the following databases: Medline, CINAHL and the Australian Breastfeeding Association's Lactation Resource Centre. Studies which have examined maternal obesity and infant feeding intention, initiation, duration and delayed onset of lactation were tabulated and summarised. Results Studies have found that obese women plan to breastfeed for a shorter period than normal weight women and are less likely to initiate breastfeeding. Of the four studies that examined onset of lactation, three reported a significant relationship between obesity and delayed lactogenesis. Fifteen studies, conducted in the USA, Australia, Denmark, Kuwait and Russia, have examined maternal obesity and duration of breastfeeding. The majority of large studies found that obese women breastfed for a shorter duration than normal weight women, even after adjusting for possible confounding factors. Conclusion There is evidence from epidemiological studies that overweight and obese women are less likely to breastfeed than normal weight women. The reasons may be biological or they may be psychological, behavioral and/or cultural. We urgently need qualitative studies from women's perspective to help us understand women in this situation and their infant feeding decisions and behaviour. PMID:17608952

  1. Pre-pregnancy obesity and maternal circadian cortisol regulation: Moderation by gestational weight gain.

    PubMed

    Aubuchon-Endsley, Nicki L; Bublitz, Margaret H; Stroud, Laura R

    2014-10-01

    We investigated main and interactive effects of maternal pre-pregnancy obesity and gestational weight gain on circadian cortisol from the second to third trimester. A diverse sample of 215 pregnant women was enrolled. Maternal height and most recent pre-pregnancy weight were collected at study initiation (22% obese). Weight and circadian salivary cortisol samples were measured during second (24±4) and third (35±1 weeks) trimesters. During the third trimester, women who were obese prior to conception showed elevated evening cortisol versus normal weight women. This pattern was moderated by weight gain in excess of Institute of Medicine guidelines, such that women who were obese prior to conception and gained greater than 7.94kg by the 35±1 week visit displayed greatest elevations in evening cortisol. Given links between excessive prenatal glucocorticoid exposure and both poor maternal and offspring health outcomes, elevated maternal cortisol may be one mechanism underlying links between maternal obesity and adverse perinatal outcomes.

  2. Pre-pregnancy obesity and maternal circadian cortisol regulation: Moderation by gestational weight gain.

    PubMed

    Aubuchon-Endsley, Nicki L; Bublitz, Margaret H; Stroud, Laura R

    2014-10-01

    We investigated main and interactive effects of maternal pre-pregnancy obesity and gestational weight gain on circadian cortisol from the second to third trimester. A diverse sample of 215 pregnant women was enrolled. Maternal height and most recent pre-pregnancy weight were collected at study initiation (22% obese). Weight and circadian salivary cortisol samples were measured during second (24±4) and third (35±1 weeks) trimesters. During the third trimester, women who were obese prior to conception showed elevated evening cortisol versus normal weight women. This pattern was moderated by weight gain in excess of Institute of Medicine guidelines, such that women who were obese prior to conception and gained greater than 7.94kg by the 35±1 week visit displayed greatest elevations in evening cortisol. Given links between excessive prenatal glucocorticoid exposure and both poor maternal and offspring health outcomes, elevated maternal cortisol may be one mechanism underlying links between maternal obesity and adverse perinatal outcomes. PMID:25038305

  3. The role of maternal obesity in the risk of neuropsychiatric disorders

    PubMed Central

    Rivera, Heidi M.; Christiansen, Kelly J.; Sullivan, Elinor L.

    2015-01-01

    Recent evidence indicates that perinatal exposure to maternal obesity, metabolic disease, including diabetes and hypertension, and unhealthy maternal diet has a long-term impact on offspring behavior and physiology. During the past three decades, the prevalence of both obesity and neuropsychiatric disorders has rapidly increased. Epidemiologic studies provide evidence that maternal obesity and metabolic complications increase the risk of attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, anxiety, depression, schizophrenia, eating disorders (food addiction, anorexia nervosa, and bulimia nervosa), and impairments in cognition in offspring. Animal models of maternal high-fat diet (HFD) induced obesity also document persistent changes in offspring behavior and impairments in critical neural circuitry. Animals exposed to maternal obesity and HFD consumption display hyperactivity, impairments in social behavior, increased anxiety-like and depressive-like behaviors, substance addiction, food addiction, and diminished cognition. During development, these offspring are exposed to elevated levels of nutrients (fatty acids, glucose), hormones (leptin, insulin), and inflammatory factors (C-reactive protein, interleukin, and tumor necrosis factor). Such factors appear to permanently change neuroendocrine regulation and brain development in offspring. In addition, inflammation of the offspring brain during gestation impairs the development of neural pathways critical in the regulation of behavior, such as serotoninergic, dopaminergic, and melanocortinergic systems. Dysregulation of these circuits increases the risk of mental health disorders. Given the high rates of obesity in most developed nations, it is critical that the mechanisms by which maternal obesity programs offspring behavior are thoroughly characterized. Such knowledge will be critical in the development of preventative strategies and therapeutic interventions. PMID:26150767

  4. The role of maternal obesity in the risk of neuropsychiatric disorders.

    PubMed

    Rivera, Heidi M; Christiansen, Kelly J; Sullivan, Elinor L

    2015-01-01

    Recent evidence indicates that perinatal exposure to maternal obesity, metabolic disease, including diabetes and hypertension, and unhealthy maternal diet has a long-term impact on offspring behavior and physiology. During the past three decades, the prevalence of both obesity and neuropsychiatric disorders has rapidly increased. Epidemiologic studies provide evidence that maternal obesity and metabolic complications increase the risk of attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, anxiety, depression, schizophrenia, eating disorders (food addiction, anorexia nervosa, and bulimia nervosa), and impairments in cognition in offspring. Animal models of maternal high-fat diet (HFD) induced obesity also document persistent changes in offspring behavior and impairments in critical neural circuitry. Animals exposed to maternal obesity and HFD consumption display hyperactivity, impairments in social behavior, increased anxiety-like and depressive-like behaviors, substance addiction, food addiction, and diminished cognition. During development, these offspring are exposed to elevated levels of nutrients (fatty acids, glucose), hormones (leptin, insulin), and inflammatory factors (C-reactive protein, interleukin, and tumor necrosis factor). Such factors appear to permanently change neuroendocrine regulation and brain development in offspring. In addition, inflammation of the offspring brain during gestation impairs the development of neural pathways critical in the regulation of behavior, such as serotoninergic, dopaminergic, and melanocortinergic systems. Dysregulation of these circuits increases the risk of mental health disorders. Given the high rates of obesity in most developed nations, it is critical that the mechanisms by which maternal obesity programs offspring behavior are thoroughly characterized. Such knowledge will be critical in the development of preventative strategies and therapeutic interventions. PMID:26150767

  5. Update on Prepregnancy Maternal Obesity: Birth Defects and Childhood Outcomes

    PubMed Central

    Iessa, Noha; Bérard, Anick

    2015-01-01

    Obesity is a growing global health epidemic. It is estimated that more than 20% of pregnancies are complicated by obesity. Prepregnancy obesity has been associated with birth defects such as neural tube defects, macrosomia, fetal death, and long-term effects such as asthma on the offspring. We provide a summary of the most recent studies and meta-analyses on obesity and birth outcome. Possible mechanisms of actions are explored and recommendations for further research are highlighted. PMID:27617118

  6. Update on Prepregnancy Maternal Obesity: Birth Defects and Childhood Outcomes.

    PubMed

    Iessa, Noha; Bérard, Anick

    2015-06-01

    Obesity is a growing global health epidemic. It is estimated that more than 20% of pregnancies are complicated by obesity. Prepregnancy obesity has been associated with birth defects such as neural tube defects, macrosomia, fetal death, and long-term effects such as asthma on the offspring. We provide a summary of the most recent studies and meta-analyses on obesity and birth outcome. Possible mechanisms of actions are explored and recommendations for further research are highlighted. PMID:27617118

  7. Obesity during pregnancy alters maternal oxidant balance and micronutrient status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Little is known about the effect of obesity on inflammatory status in pregnant women. The objective of this study was to determine the effect of obesity on markers of inflammation, oxidative stress and micronutrient status in obese pregnant women compared to their lean counterparts. St...

  8. Maternal obesity and the developmental programming of hypertension: a role for leptin.

    PubMed

    Taylor, P D; Samuelsson, A-M; Poston, L

    2014-03-01

    Mother-child cohort studies have established that both pre-pregnancy body mass index (BMI) and gestational weight gain are independently associated with cardio-metabolic risk factors in young adult offspring, including systolic and diastolic blood pressure. Animal models in sheep and non-human primates provide further evidence for the influence of maternal obesity on offspring cardiovascular function, whilst recent studies in rodents suggest that perinatal exposure to the metabolic milieu of maternal obesity may permanently change the central regulatory pathways involved in blood pressure regulation. Leptin plays an important role in the central control of appetite, is also involved in activation of efferent sympathetic pathways to both thermogenic and non-thermogenic tissues, such as the kidney, and is therefore implicated in obesity-related hypertension. Leptin is also thought to have a neurotrophic role in the development of the hypothalamus, and altered neonatal leptin profiles secondary to maternal obesity are associated with permanently altered hypothalamic structure and function. In rodent studies, maternal obesity confers persistent sympathoexcitatory hyper-responsiveness and hypertension acquired in the early stages of development. Experimental neonatal hyperleptinaemia in naive rat pups provides further evidence of heightened sympathetic tone and proof of principle that hyperleptinaemia during a critical window of hypothalamic development may directly lead to adulthood hypertension. Insight from these animal models raises the possibility that early-life exposure to leptin in humans may lead to early onset essential hypertension. Ongoing mother-child cohort and intervention studies in obese pregnant women provide a unique opportunity to address associations between maternal obesity and offspring cardiovascular function. The goal of the review is to highlight the potential importance of leptin in the developmental programming of hypertension in obese

  9. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development. PMID:27699222

  10. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development.

  11. Maternal Exposure to Synthetic Chemicals and Obesity in the Offspring: Recent Findings.

    PubMed

    Liu, Yun; Peterson, Karen E

    2015-12-01

    Experimental studies suggest perinatal exposures to synthetic chemicals may be associated with early onset obesity, although this hypothesis has not been extensively examined in humans. This article summarizes the evidence relating maternal perinatal exposure to common persistent organic compounds (polychlorinated biphenyl, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, hexachlorobenzene, hexachlorocyclohexane), perfluoroalkyls, perfluorooctane sulfonate, polybrominated diphenyl ethers and tributyltin, and nonpersistent compounds (phthalates, bisphenol A) on child obesity during sensitive developmental periods. Twenty-two epidemiologic studies published from 2011 to 2015 offer inconsistent support for the obesogenic effects of most substances and are limited by relatively small sample sizes and indirect measures of adiposity. The clearest findings suggest an influence of maternal dichlorodiphenyldichloroethylene exposure on offspring overweight and obesity. Recommendations for future epidemiological research include longer follow-up of effects of pre- and postnatal exposures in large samples; utilization of direct measures of adiposity; and consideration of effect modification by sex, birth weight, dietary fat, and maternal weight status.

  12. Preventing maternal and early childhood obesity: the fetal flaw in Australian perinatal care.

    PubMed

    Miller, Margaret; Hearn, Lydia; van der Pligt, Paige; Wilcox, Jane; Campbell, Karen J

    2014-01-01

    Almost half of Australian women of child-bearing age are overweight or obese, with a rate of 30-50% reported in early pregnancy. Maternal adiposity is a costly challenge for Australian obstetric care, with associated serious maternal and neonatal complications. Excess gestational weight gain is an important predictor of offspring adiposity into adulthood and higher maternal weight later in life. Current public health and perinatal care approaches in Australia do not adequately address excess perinatal maternal weight or gestational weight gain. This paper argues that the failure of primary health-care providers to offer systematic advice and support regarding women's weight and related lifestyle behaviours in child-bearing years is an outstanding 'missed opportunity' for prevention of inter-generational overweight and obesity. Barriers to action could be addressed through greater attention to: clinical guidelines for maternal weight management for the perinatal period, training and support of maternal health-care providers to develop skills and confidence in raising weight issues with women, a variety of weight management programs provided by state maternal health services, and clear referral pathways to them. Attention is also required to service systems that clearly define roles in maternal weight management and ensure consistency and continuity of support across the perinatal period. PMID:24176286

  13. Interventions designed to prevent adverse programming outcomes resulting from exposure to maternal obesity during development

    PubMed Central

    Nathanielsz, PW; Ford, SP; Long, NM; Vega, CC; Reyes-Castro, LA; Zambrano, E

    2013-01-01

    Maternal obesity is a global epidemic affecting the developed and developing world. Human and animal studies indicate that maternal obesity programs development predisposing offspring to later-life chronic diseases. Several mechanisms act together to produce these adverse health problems. There is a need for effective interventions that prevent these outcomes and guide management in human pregnancy. We report here dietary and exercise intervention studies in both altricial and precocial species, rats and sheep, designed to prevent adverse offspring outcomes. Both interventions present exciting opportunities to at least in part prevent adverse metabolic and other outcomes in mother and offspring. PMID:24147928

  14. Maternal and Fetal Lipid and Adipokine Profiles and Their Association with Obesity

    PubMed Central

    Solis-Paredes, Mario; Espino y Sosa, Salvador; Estrada-Gutierrez, Guadalupe; Nava-Salazar, Sonia; Ortega-Castillo, Veronica; Rodriguez-Bosch, Mario; Bravo-Flores, Eyerahi; Espejel-Nuñez, Aurora; Tolentino-Dolores, Maricruz; Gaona-Estudillo, Rubí; Martinez-Bautista, Nancy; Perichart-Perera, Otilia

    2016-01-01

    Background. Maternal metabolic changes impact fetal metabolism resulting in a higher risk for developing chronic diseases later in life. The aim of this study was to assess the association between maternal and fetal adipokine and lipid profiles, as well as the influence of maternal weight on this association. Methods. Healthy pregnant women at term who delivered by C-section were enrolled. Maternal and fetal glucose, lipid profile, adiponectin, leptin, and resistin levels were analyzed by obesity and maternal weight gain. Statistics included descriptives, correlations, and mean differences (SPSS v20.0). Results. Adiponectin and resistin concentrations were higher in fetal blood, while leptin was lower (p < 0.05). A significant inverse association between maternal resistin and fetal LDL-cholesterol (LDL-C) (r = −0.327; p = 0.022) was observed. A positive correlation was found between maternal and fetal resistin (r = 0.358; p = 0.013). Women with excessive weight gain had higher leptin levels and their fetuses showed higher LDL-C levels (p < 0.05). Conclusions. Maternal resistin showed an inverse association with fetal LDL-C, suggesting that maternal adiposity status may play an active role in the regulation of fetal lipid profile and consequently, in fetal programming. Excessive maternal weight gain during pregnancy may exert an effect over metabolic mediators in both mother and newborn. PMID:27190514

  15. Joint effects of child temperament and maternal sensitivity on the development of childhood obesity.

    PubMed

    Wu, Tiejian; Dixon, Wallace E; Dalton, William T; Tudiver, Fred; Liu, Xuefeng

    2011-05-01

    The interplay between child characteristics and parenting is increasingly implicated as crucial to child health outcomes. This study assessed the joint effects of children's temperamental characteristics and maternal sensitivity on children's weight status. Data from the National Institute of Child Health and Human Development's Study of Early Child Care and Youth Development were utilized. Infant temperament, assessed at child's age of 6 months by maternal report, was categorized into three types: easy, average, and difficult. Maternal sensitivity, assessed at child's age of 6 months by observing maternal behaviors during mother-child semi-structured interaction, was categorized into two groups: sensitive and insensitive. Children's height and weight were measured longitudinally from age 2 years to Grade 6, and body mass index (BMI) was calculated. BMI percentile was obtained based on the Centers for Disease Control and Prevention's BMI charts. Children, who had a BMI ≥ the 85th percentile, were defined as overweight-or-obese. Generalized estimating equations were used to analyze the data. The proportions of children overweight-or-obese increased with age, 15.58% at 2 years old to 34.34% by Grade 6. The joint effects of children's temperament and maternal sensitivity on a child's body mass status depended on the child's age. For instance, children with difficult temperament and insensitive mothers had significantly higher risks for being overweight-or-obese during the school age phase but not during early childhood. Specific combinations of child temperament and maternal sensitivity were associated with the development of obesity during childhood. Findings may hold implications for childhood obesity prevention/intervention programs targeting parents.

  16. Enhanced Adipogenic and Lipogenic Signatures in White Adipose Tissue of Offspring Exposed to Maternal Obesity In Utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity throughout life is subject to programming beginning early in development. Exposure to maternal obesity (MO) at conception and during gestation increases the risk of obesity in adult-life. MO was induced in female Sprague Dawley rats via overfeeding of liquid diets (30% excess cal...

  17. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

  18. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers

  19. Maternal obesity programs senescence signaling and glucose metabolism in osteo-progenitors from rat and human

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases, presumably via epigenetic mechanisms. However, evidence on the impact of gestational events on regulation of embryonic bone cell fate is sparse. We investigated the effects of maternal obesity on fe...

  20. Effect of diet-induced maternal obesity on fetal skeletal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maternal environment, in particular nutritional status and diet composition during pregnancy, can alter the developmental trajectory of the fetus and change the risk for chronic disease processes such as cardiovascular disease, obesity, diabetes and cancer in the offspring. This knowledge suppor...

  1. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    PubMed Central

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  2. Effect of maternal obesity on fetal bone development in the rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...

  3. Altered maternal lipid metabolism is associated with higher inflammation in obese women during late pregnancy

    PubMed Central

    Tinius, Rachel A.; Cahill, Alison G.; Strand, Eric A.; Cade, W. Todd

    2016-01-01

    Inflammation is elevated in obese pregnant women and is associated with adverse maternal and neonatal outcomes. Maternal lipid metabolism and its relationships with maternal inflammation, insulin resistance and neonatal metabolic health are poorly understood in obese pregnant women. 18 lean (age: 26.1 ± 5.0 years, pre-pregnancy BMI: 21.5 ± 1.9 kg/m2) and 16 obese (age: 25.0 ± 4.8 years, pre-pregnancy BMI: 36.3 ± 4.3 kg/m2) women participated in this case-control study during the third trimester of pregnancy. Maternal plasma markers of insulin resistance (HOMA-IR) and inflammation (C-reactive protein (CRP)) were measured at rest, and lipid concentration and kinetics (lipid oxidation rate and lipolysis) were measured at rest, during a 30-minute bout of low-intensity (40% VO2peak) exercise, and during a recovery period. Umbilical cord blood was collected for measurement of neonatal plasma insulin sensitivity, inflammation, and lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Pregnant obese women had higher plasma CRP (9.1 ± 4.0 mg/L versus 2.3 ± 1.8 mg/L, p<0.001) and higher HOMA-IR (3.8 ± 1.9 versus 2.3 ± 1.5, p=0.009) compared to pregnant lean women. Obese women had higher lipid oxidation rates during recovery from low-intensity exercise (0.13 ± 0.03 g/min versus 0.11 ±0.04 g/min, p=0.02) that was associated with higher maternal CRP (r=0.55, p=0.001). Maternal CRP was positively associated with maternal HOMA-IR (r=0.40, p<0.02) and systolic blood pressure (r=0.40, p<0.02). Maternal lipid metabolism-associated inflammation may contribute to insulin resistance and higher blood pressure in obese women during pregnancy. PMID:27239331

  4. Maternal gestational diabetes mellitus and overweight and obesity in offspring: a study in Chinese children.

    PubMed

    Zhao, Y L; Ma, R M; Lao, T T; Chen, Z; Du, M Y; Liang, K; Huang, Y K; Zhang, L; Yang, M H; Sun, Y H; Li, H; Ding, Z B

    2015-12-01

    The purpose of this study was to investigate the effects of maternal gestational diabetes mellitus (GDM) and breast feeding on childhood overweight and obesity in a mainland Chinese population. The incidence of and factors associated with overweight and obesity were compared between children of mothers with (n=1068) and without (n=1756) GDM. The independent roles of the associated factors were examined by multiple logistic regression analysis. The incidence of overweight was higher (16.6 v. 12.6%, P=0.002) in the GDM group, but that of obesity was not different (10.7 v. 12.0%, P=0.315). At age 1-2 and 2-5 years, no difference in overweight (11.0 v. 12.0%, P=0.917, and 15.7 v. 14.6%, P=0.693, respectively) was found, while obesity (8.0 v. 13.6%, P=0.019, and 8.4 v. 13.4%, P=0.014, respectively) was less frequent in the GDM offspring. At age 5-10 years, increased overweight (22.2 v. 12.1%, P<0.001) and obesity (15.9 v. 9.0%, P=0.001) were found in the GDM group, which was associated with maternal obesity, being born large-for-gestational age, male gender and formula feeding. After adjusting for confounding factors, GDM remained an independent determinant of offspring overweight and obesity (aOR 2.28, 95% CI 1.61-3.22), suggesting that the effects of GDM were independent of breast feeding, as well as of maternal obesity and birth size.

  5. Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy.

    PubMed

    Nathanielsz, Peter W; Ford, Stephen P; Long, Nathan M; Vega, Claudia C; Reyes-Castro, Luis A; Zambrano, Elena

    2013-10-01

    Maternal obesity is a global epidemic affecting both developed and developing countries. Human and animal studies indicate that maternal obesity adversely programs the development of offspring, predisposing them to chronic diseases later in life. Several mechanisms act together to produce these adverse health effects. There is a consequent need for effective interventions that can be used in the management of human pregnancy to prevent these outcomes. The present review analyzes the dietary and exercise intervention studies performed to date in both altricial and precocial animals, rats and sheep, with the aim of preventing adverse offspring outcomes. The results of these interventions present exciting opportunities to prevent, at least in part, adverse metabolic and other outcomes in obese mothers and their offspring.

  6. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    PubMed

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  7. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study.

    PubMed

    Gaillard, Romy; Steegers, Eric A P; Duijts, Liesbeth; Felix, Janine F; Hofman, Albert; Franco, Oscar H; Jaddoe, Vincent W V

    2014-04-01

    Maternal prepregnancy obesity is associated with impaired cardiometabolic health in offspring. Whether these associations reflect direct intrauterine causal mechanisms remains unclear. In a population-based prospective cohort study among 4871 mothers, fathers, and their children, we examined the associations of both maternal and paternal prepregnancy body mass index (BMI) with childhood body fat distribution and cardiometabolic outcomes and explored whether any association was explained by pregnancy, birth, and childhood factors. We measured childhood BMI, total body and abdominal fat distribution, blood pressure, and blood levels of lipids, insulin, and C-peptide at the age of 6 years. We observed that higher maternal and paternal prepregnancy BMI were associated with higher childhood BMI, total body and abdominal fat mass measures, systolic blood pressure, and insulin levels and lower high-density lipoprotein cholesterol levels (P<0.05). Stronger associations were present for maternal than paternal BMI, with statistical support for heterogeneity between these associations. The associations for childhood fat mass and cardiometabolic outcomes attenuated after adjustment for childhood current BMI. Compared with children from normal-weight mothers, those from obese mothers had increased risks of childhood overweight (odds ratio, 3.84 [95% confidence interval, 3.01-4.90]) and clustering of cardiometabolic risk factors (odds ratio, 3.00 [95% confidence interval, 2.09-4.34]). Smaller effect estimates for these outcomes were observed for paternal obesity. In conclusion, higher maternal and paternal prepregnancy BMI were associated with an adverse cardiometabolic profile in offspring, with stronger associations present for maternal prepregnancy BMI. These findings suggest that maternal prepregnancy BMI may influence the cardiometabolic health of offspring through direct intrauterine mechanisms.

  8. The impact of preconceptional obesity on trajectories of maternal lipids during gestation

    PubMed Central

    Bozkurt, Latife; Göbl, Christian S.; Hörmayer, Anna-Theresa; Luger, Anton; Pacini, Giovanni; Kautzky-Willer, Alexandra

    2016-01-01

    Growing challenges of maternal obesity necessitate to focus metabolic management on alternative factors than glycaemia. The objective is to assess longitudinal changes in lipids and inflammatory parameters during pregnancies stratified by pregestational BMI. Therefore, 222 pregnant women (normal-weight BMI < 25: n = 91 (41%), overweight BMI 25–29.9: n = 69 (31%), obese BMI ≥ 30: n = 62 (28%)) underwent a detailed metabolic characterization including fasting lipids and glucometabolic parameters at <21st gestational week (GW) with follow-up assessments at further three visits (24–28th GW, 32–34th GW, >36th GW). Overweight and obesity was related to dyslipidemia already at baseline, i.e. elevated triglycerides (TG, p < 0.001), decreased high-density-lipoprotein-C (p = 0.009) and increased ultrasensitive-c-reactive-protein (usCRP, p < 0.001) independent of gestational diabetes prevalence. Trajectories of lipids during pregnancy progress revealed an unexpected less pronounced increase in TG, low-density-lipoprotein-C and total-cholesterol in overweight/obese women. usCRP remained associated with higher BMI throughout pregnancy showing no time-dependent longitudinal changes. Newborns of obese/overweight women were affected by higher birth-weight percentiles. Regarding lipids only maternal TG showed tendency for relation to prevalence of large-for-gestational-age offspring, particularly at the end of pregnancy (p = 0.048). Overweight and obese women show significant differences in trajectories of lipids during pregnancy that distinguish them from normal-weight women. Further studies should evaluate if targeting lipid metabolism could improve clinical management of maternal obesity. PMID:27436227

  9. Maternal inflammation during late pregnancy is lower in physically active compared to inactive obese women

    PubMed Central

    Tinius, Rachel A.; Cahill, Alison G.; Strand, Eric A.; Todd Cade, W.

    2016-01-01

    Purpose The primary purpose of this study was to compare maternal plasma inflammation between physically active and inactive obese women during late pregnancy. The secondary purpose was to examine the relationships between maternal plasma inflammation and lipid metabolism and maternal and neonatal metabolic health in these women. Methods A cross-sectional, observational study design was performed in 16 obese-inactive ((OBI) age: 25.0 ± 4.8 years, pre-pregnancy BMI: 36.3 ± 4.3kg/m2, body fat percentage in late gestation: 37.7 ± 3.5%) and 16 obese-active ((OBA) age: 28.9 ± 4.8 years, pre-pregnancy BMI: 34.0±3.7kg/m2, body fat in late gestation: 36.6 ± 3.8%) women during the third trimester of pregnancy. Maternal plasma inflammation (C -reactive protein (CRP)) and insulin resistance (Homeostatic Model Assessment-Insulin Resistance (HOMA-IR)) were measured at rest. Plasma lipid concentration and metabolism (lipid oxidation and lipolysis) were measured at rest, during a 30-minute bout of low-intensity (40% VO2peak) exercise, and during a resting recovery period using indirect calorimetry. Umbilical cord blood was collected for measurement of neonatal plasma insulin resistance, inflammation, and lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Results Maternal plasma CRP concentration was significantly higher in OBI compared to OBA women (9.1 ± 4.0 mg/L versus 6.3 ±2.5mg/L, p=0.02). Maternal plasma CRP concentration was significantly associated with maternal lipolysis (r=0.43, p=0.02), baseline lipid oxidation rate (r=0.39, p=0.03), and baseline plasma free fatty acid concentration (r=0.36, p=0.04). Conclusions Maternal physical activity may reduce inflammation during pregnancy in obese women. Maternal lipid metabolism is related to systemic inflammation. PMID:26799789

  10. Proper Maternal Folate Level May Reduce Child Obesity Risk

    MedlinePlus

    ... and throughout the world on fetal, infant and child development; maternal, child and family health; reproductive biology and ... Institute/Center Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Contact Linda Huynh Robert Bock 301-496- ...

  11. Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development.

    PubMed

    Muhlhausler, Beverly S; Gugusheff, Jessica R; Ong, Zhi Yi; Vithayathil, Mini A

    2013-09-01

    A substantial body of literature has demonstrated that the nutritional environment an individual experiences before birth or in early infancy is a key determinant of their health outcomes across the life course. This concept, the developmental origins of health and disease (DOHaD) hypothesis, was initially focused on the adverse consequences of exposure to a suboptimal nutrient supply and provided evidence that maternal undernutrition, fetal growth restriction, and low birth weight were associated with heightened risk of central adiposity, insulin resistance, and cardiovascular disease. More recently, the epidemic rise in the incidence of maternal obesity has seen the attention of the DOHaD field turn toward identifying the impact on the offspring of exposure to an excess nutrient supply in early life. The association between maternal obesity and increased risk of obesity in the offspring has been documented in human populations worldwide, and animal models have provided critical insights into the biological mechanisms that drive this relationship. This review will discuss the important roles that programming of the adipocyte and programming of the central neural networks which control appetite and reward play in the early life programming of metabolic disease by maternal overnutrition. It will also highlight the important research gaps and challenges that remain to be addressed and provide a personal perspective on where the field should be heading in the coming 5-10 years.

  12. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  13. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth

    PubMed Central

    Aye, Irving L. M. H.; Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2015-01-01

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  14. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity.

  15. Toddlers' bias to look at average versus obese figures relates to maternal anti-fat prejudice.

    PubMed

    Ruffman, Ted; O'Brien, Kerry S; Taumoepeau, Mele; Latner, Janet D; Hunter, John A

    2016-02-01

    Anti-fat prejudice (weight bias, obesity stigma) is strong, prevalent, and increasing in adults and is associated with negative outcomes for those with obesity. However, it is unknown how early in life this prejudice forms and the reasons for its development. We examined whether infants and toddlers might display an anti-fat bias and, if so, whether it was influenced by maternal anti-fat attitudes through a process of social learning. Mother-child dyads (N=70) split into four age groups participated in a preferential looking paradigm whereby children were presented with 10 pairs of average and obese human figures in random order, and their viewing times (preferential looking) for the figures were measured. Mothers' anti-fat prejudice and education were measured along with mothers' and fathers' body mass index (BMI) and children's television viewing time. We found that older infants (M=11months) had a bias for looking at the obese figures, whereas older toddlers (M=32months) instead preferred looking at the average-sized figures. Furthermore, older toddlers' preferential looking was correlated significantly with maternal anti-fat attitudes. Parental BMI, education, and children's television viewing time were unrelated to preferential looking. Looking times might signal a precursor to explicit fat prejudice socialized via maternal anti-fat attitudes.

  16. A review of national health policies and professional guidelines on maternal obesity and weight gain in pregnancy.

    PubMed

    Schumann, N L; Brinsden, H; Lobstein, T

    2014-08-01

    Maternal obesity creates an additional demand for health-care services, as the routine obstetric care pathway requires alterations to ensure the most optimal care for obese women of childbearing age. This review examines the extent to which relevant national health documents reflect and respond to the health implications of maternal obesity and excessive gestational weight gain. A targeted search of peer-reviewed publications and grey literature was conducted for each country to identify national health documents, which were subsequently content analyzed according to an adapted framework. A total of 37 documents were identified, including one policy, 10 strategies and 26 guidelines, published within the last 10 years. Out of the 31 countries investigated, only 13 countries address maternal obesity while none address excessive gestational weight gain. We found inconsistencies and gaps in the recommendations to health-care service providers for the management of maternal obesity and weight gain in pregnancy. The findings show that only limited guidance on maternal obesity and gestational weight gain exists. The authors recommend that international, evidence-based guidelines on the management of maternal obesity and excessive gestational weight gain should be developed to reduce the associated health-care and economic costs.

  17. From fatalism to mitigation: A conceptual framework for mitigating fetal programming of chronic disease by maternal obesity.

    PubMed

    Boone-Heinonen, Janne; Messer, Lynne C; Fortmann, Stephen P; Wallack, Lawrence; Thornburg, Kent L

    2015-12-01

    Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci - diet and physical activity - in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children.

  18. Obesogens, stem cells and the maternal programming of obesity

    PubMed Central

    Blumberg, B.

    2015-01-01

    Obesity and metabolic syndrome diseases have exploded into a global epidemic. Consumption of calorie-dense food and diminished physical activity are the generally accepted causes for obesity. But, could environmental factors expose preexisting genetic differences or exacerbate the root causes of diet and exercise? The environmental obesogen model proposes that chemical exposure during critical developmental stages influences subsequent adipogenesis, lipid balance and obesity. Obesogens are chemicals that stimulate adipogenesis and fat storage or alter the control of metabolism, appetite and satiety to promote weight gain. Tributyltin (TBT) is a high-affinity agonistic ligand for the retinoid X receptor (RXR) and peroxisome proliferator activated receptor gamma (PPARγ). RXR-PPARγ signaling is a key component in adipogenesis and the function of adipocytes; activation of this heterodimer increases adipose mass in rodents and humans. Thus, inappropriate activation of RXR-PPARγ can directly alter adipose tissue homeostasis. TBT exposure promoted adipocyte differentiation, modulated adipogenic genes and increased adiposity in mice after in utero exposure. These results suggest that organotin exposure is a previously unappreciated risk factor for the development of obesity and related disorders. Based on the observed effects of TBT on adipogenesis, we hypothesized that organotin exposure during prenatal adipose tissue development would create an environment that led to more adipocytes. We observed that the multipotent stromal cell compartment was altered by prenatal TBT exposure leading to an increased number of preadipocytes. This increase in the number of preadipocytes could correspondingly increase the steady state number of adipocytes in the adult, which could favor the development of obesity over time. PMID:26401242

  19. Central role for melanocortin-4 receptors in offspring hypertension arising from maternal obesity

    PubMed Central

    Samuelsson, Anne-Maj S.; Mullier, Amandine; Maicas, Nuria; Oosterhuis, Nynke R.; Eun Bae, Sung; Novoselova, Tatiana V.; Chan, Li F.; Pombo, Joaquim M.; Taylor, Paul D.; Joles, Jaap A.; Coen, Clive W.; Balthasar, Nina; Poston, Lucilla

    2016-01-01

    Melanocortin-4 receptor (Mc4r)–expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health. PMID:27791019

  20. Social cognitive maternal-mediated nutritional correlates of childhood obesity.

    PubMed

    Knowlden, Adam P; Sharma, Manoj

    2015-01-01

    The purpose of this investigation was to examine the extent to which the maternal-facilitated, social cognitive theory constructs of environment, emotional coping, expectations, self-control, and self-efficacy predicted child fruit and vegetable consumption and sugar-free beverage intake. Instrumentation comprised three stages of data collection and analysis. Stage 1 included item generation, face and content validity by a panel of six experts, and readability by Flesch Reading Ease and Flesch-Kincaid Grade Level tests. Stage 2 assessed stability of the theoretical constructs using the test-retest procedure with 30 participants. Structural equation modeling was used during Stage 3 to conduct confirmatory factor analysis and to establish predictive validity of the models. A total of 224 respondents participated in this study. Maternal-facilitated home environment and self-efficacy were significant predictors of child fruit and vegetable consumption while maternal-mediated home environment and emotional coping were significant predictors of child sugar-free beverage intake.

  1. Developmental Programming Resulting from Maternal Obesity: Effects on Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Calvert, John W.; Lefer, David J.; Gundewar, Susheel; Poston, Lucilla; Coetzee, William A.

    2010-01-01

    A comprehensive number of epidemiological and animal studies suggest that prenatal and early life events are important determinants for disorders later in life. Among them, prenatal stress (i.e. stress experienced by the pregnant mother with impact on the fetal ontogeny) has clear programming effects on the cardiovascular system. A fetus developing under adverse conditions becomes an adult who is susceptible to disease, which may include hypertension, insulin resistance, altered blood lipid levels and cardiovascular disease. Recent evidence demonstrates that maternal programming can occur in the absence of other adverse environmental factors. Obesity, which is becoming a problem of large proportions in Western countries, is a possible cause of programming. With over 30% of the US population currently obese, many mothers currently suffer from obesity during their child-bearing years (in fact, these conditions are often aggravated during pregnancy). One of the targets of programming is the cardiovascular system and reported consequences include hypertension, endothelial dysfunction and vascular abnormalities. The overall goal of our studies was to investigate the susceptibility of the heart to ischemia/reperfusion in an animal model of maternal obesity. Our data demonstrate that normal (non-mutant) offspring from obese Agouti mouse dams had an increased susceptibility to ischemia/reperfusion injury. These data may provide insights into the long-term cardiovascular consequences of programming. PMID:19395658

  2. A systems approach to reducing maternal obesity: The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative.

    PubMed

    Skouteris, Helen; Huang, Terry; Millar, Lynne; Kuhlberg, Jill; Dodd, Jodie; Callaway, Leonie; Forster, Della; Collins, Clare; Hills, Andrew; Harrison, Paul; Nagle, Cate; Moodie, Marj; Teede, Helena

    2015-08-01

    Obesity in our childbearing population has increased to epidemic proportions in developed countries; efforts to address this issue need to focus on prevention. The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative - a group of researchers, practitioners, policymakers and end-users - was formed to take up the challenge to address this issue as a partnership. Application of systems thinking, participatory systems modelling and group model building was used to establish research questions aiming to optimise periconception lifestyle, weight and health. Our goal was to reduce the burden of maternal obesity through systems change. PMID:26121995

  3. A systems approach to reducing maternal obesity: The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative.

    PubMed

    Skouteris, Helen; Huang, Terry; Millar, Lynne; Kuhlberg, Jill; Dodd, Jodie; Callaway, Leonie; Forster, Della; Collins, Clare; Hills, Andrew; Harrison, Paul; Nagle, Cate; Moodie, Marj; Teede, Helena

    2015-08-01

    Obesity in our childbearing population has increased to epidemic proportions in developed countries; efforts to address this issue need to focus on prevention. The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative - a group of researchers, practitioners, policymakers and end-users - was formed to take up the challenge to address this issue as a partnership. Application of systems thinking, participatory systems modelling and group model building was used to establish research questions aiming to optimise periconception lifestyle, weight and health. Our goal was to reduce the burden of maternal obesity through systems change.

  4. Maternal ratings of child health and child obesity, variations by mother's race/ethnicity and nativity.

    PubMed

    Baker, Elizabeth H; Altman, Claire E

    2015-05-01

    We examined whether indicators of child health, focusing on obesity, are associated with maternal ratings of child health (MRCH) and its variation by mother's ethnicity/nativity, focusing on Hispanics. The early childhood longitudinal study, kindergarten cohort kindergarten-eighth grade waves (n = 48,814) and nested general linear mixed modeling are used to examine excellent MRCH. The only indicator of child health that varies by mother's ethnicity/nativity for MRCH is child obesity. Child obesity did not influence MRCH for foreign-born Hispanic mothers, especially among less acculturated mothers, though significant differences among immigrants by acculturation were not found. However, among native-born white, black, and Hispanic mothers child obesity was associated with a lower likelihood of excellent MRCH even after controls for socioeconomic characteristics, family characteristics, and other indicators of child health are included. MRCH reflect not only child's actual health, but also the mother's perception of what contributes to poor child health. Our findings suggest that less acculturated foreign-born Hispanic mothers are less likely to associate child obesity with poor child health. Cultural orientations that prefer heavier children or are unlikely to associate child obesity with poor child health may contribute to the higher levels of obesity found among their children.

  5. Maternal ratings of child health and child obesity, variations by mother's race/ethnicity and nativity.

    PubMed

    Baker, Elizabeth H; Altman, Claire E

    2015-05-01

    We examined whether indicators of child health, focusing on obesity, are associated with maternal ratings of child health (MRCH) and its variation by mother's ethnicity/nativity, focusing on Hispanics. The early childhood longitudinal study, kindergarten cohort kindergarten-eighth grade waves (n = 48,814) and nested general linear mixed modeling are used to examine excellent MRCH. The only indicator of child health that varies by mother's ethnicity/nativity for MRCH is child obesity. Child obesity did not influence MRCH for foreign-born Hispanic mothers, especially among less acculturated mothers, though significant differences among immigrants by acculturation were not found. However, among native-born white, black, and Hispanic mothers child obesity was associated with a lower likelihood of excellent MRCH even after controls for socioeconomic characteristics, family characteristics, and other indicators of child health are included. MRCH reflect not only child's actual health, but also the mother's perception of what contributes to poor child health. Our findings suggest that less acculturated foreign-born Hispanic mothers are less likely to associate child obesity with poor child health. Cultural orientations that prefer heavier children or are unlikely to associate child obesity with poor child health may contribute to the higher levels of obesity found among their children. PMID:25108502

  6. Maternal BMI and migration status as predictors of childhood obesity in Mexico

    PubMed Central

    Jiménez-Cruz, A.; Wojcicki, J. M.; Bacardí-Gascón, M.; Castellón-Zaragoza, A.; García-Gallardo, J. L.; Schwartz, N.; Heyman, M. B.

    2011-01-01

    Objective To assess the association of maternal migration to Baja California, body mass index (BMI) status, children’s perceived food insecurity, and childhood lifestyle behaviors with overweight (BMI > 85% ile), obesity (BMI > 95% ile) and abdominal obesity (Waist Circumference > 90% ile). Methods Convenience sampling methods were used to recruit a cross-sectional sample of 4th, 5th and 6th grade children and their parents at Tijuana and Tecate Public Schools. Children‘s and parents’ weights and heights were measured. Children were considered to have migrant parents if parents were not born in Baja California. Results One hundred and twenty-two children and their parents were recruited. The mean age of the children was 10.1 ± 1.0 years. Forty nine per cent of children were overweight or obese. Children with obese parents (BMI > 30) had greater odds of being obese, Odds Ratio (OR) 4.9 (95% Confidence Interval (CI), 1.2–19, p = 0.03). Children with migrant parents had greater odds of being obese, OR= 3.7 (95% CI, 1.6–8.3), p = 0.01) and of having abdominal obesity, OR = 3.2 (95% CI, 1.4–7.1, p = 0.01). Children from migrant parents have greater risk of higher consumption of potato chips, OR = 8.0 (95% CI, 2.1–29.1, p = 0.01). Children from non-migrant parents had greater odds of being at risk of hunger. Conclusions Parental obesity and migration are associated with increased risk of obesity among Mexican children. Children whose parents were born in Baja California have greater odds of being at risk of hunger. Further studies should evaluate the role of migration on risk for childhood obesity. PMID:21519746

  7. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction In animal models, maternal obesity (OB) leads to augmented risk of offspring OB. While placental function is influenced by maternal habitus, the effect of maternal obesity on the interacting zones of the placenta [the labyrinth (LZ), junctional (JZ) and metrial gland (MG)] remains unkno...

  8. Effect of breastfeeding on obesity of schoolchildren: influence of maternal education

    PubMed Central

    Pudla, Katia Jakovljevic; Gonzaléz-Chica, David Alejandro; de Vasconcelos, Francisco de Assis Guedes

    2015-01-01

    Abstract Objective: To evaluate the association between duration of breastfeeding (BF) and obesity in schoolchildren of Florianópolis (SC), and the role of possible effect modifiers. Methods: Cross-sectional study with a random sample of 2826 schoolchildren (7-14 years). Weight and height were measured according to standardized procedures. Data concerning BF and sociodemographic variables were obtained from a questionnaire sent to parents/guardians. Children's nutritional status was evaluated by BMI-for-age z-score for gender (WHO reference curves). Adjusted analyses were performed through logistic regression, considering a possible interaction among variables. Results: Prevalence of obesity was 8.6% (95% CI: 7.6-9.7%) and 55.7% (95% CI: 53.8-57.6%) received breastmilk for ≥6 months. BF was not associated with obesity, even in the adjusted analysis. Stratified analysis according to maternal schooling showed that, in children aged 7-10 years and children whose mothers had 0-8 years of schooling, the chance of obesity was lower among those breastfeed for >1 month, especially among those who received breastmilk for 1-5 months (OR=0.22; 95% CI 0.08-0.62). Among children of women with higher schooling (>8 years), the chance of obesity was 44% lower in those who were breastfed for >12 months (p-value for interaction <0.01). This interaction was not found in older children (11-14 years). Conclusions: Among children of women with lower schooling, BF for any period longer than 1 month is protective against obesity; however, for a higher maternal schooling, BF for less than 12 months increases the odds of obesity. PMID:26100592

  9. Relative importance of heritable characteristics and lifestyle in the development of maternal obesity

    PubMed Central

    Harris, H. E.; Ellison, G. T.; Clement, S.

    1999-01-01

    STUDY OBJECTIVE: To assess the relative importance of heritable characteristics and lifestyle in the development of "maternal obesity" after pregnancy. SETTING: South east London, in the homes of mothers who had delivered their babies at either Guy's, Lewisham or St Thomas's hospitals. PARTICIPANTS: Seventy four mothers of low antenatal risk who had been enrolled in the Antenatal Care (ANC) Project (a previous trial of antenatal care) during the first trimester of pregnancy, and who had subsequently been followed up 2.5 years after delivery. DESIGN: Information on parental obesity, psychosocial and sociodemographic factors as well as lifestyle, was gathered during a semi-structured interview at each mother's home. Additional anthropometric and psychosocial data were taken from the existing ANC Project database. These data were used to assess the relative importance of heritable characteristics and lifestyle on changes in maternal body weight from the beginning of pregnancy to the follow up interview. MAIN RESULTS: After adjusting for the effects of potential confounders and known risk factors for maternal obesity, women who selected larger silhouettes to represent their biological mothers were significantly more likely to have higher long term weight gains than those who selected thinner maternal silhouettes (r = 0.083, p = 0.004). Women who were less satisfied with their bodies postpartum had significantly greater long term weight gains than those women who displayed no increase in dissatisfaction with their bodies after pregnancy (r = 0.067, p = 0.010). CONCLUSIONS: A heritable predisposition to gain weight together with changing attitudes to body size, both had an independent role in the development of maternal body weight after pregnancy. Differences in each woman's heritable predisposition to gain weight and any changes in body image that occur after pregnancy might explain why some women gain weight in association with pregnancy.   PMID:10396466

  10. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity.

    PubMed

    Laursen, Martin Frederik; Andersen, Louise B B; Michaelsen, Kim F; Mølgaard, Christian; Trolle, Ellen; Bahl, Martin Iain; Licht, Tine Rask

    2016-01-01

    The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses, and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from early infant feeding to family foods is a major determinant for gut microbiota development. IMPORTANCE The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of "obesogenic" gut microbes. However, the findings presented here suggest that maternal obesity per

  11. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity

    PubMed Central

    Laursen, Martin Frederik; Andersen, Louise B. B.; Michaelsen, Kim F.; Mølgaard, Christian; Trolle, Ellen; Bahl, Martin Iain

    2016-01-01

    ABSTRACT The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses, and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from early infant feeding to family foods is a major determinant for gut microbiota development. IMPORTANCE The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of “obesogenic” gut microbes. However, the findings presented here suggest that

  12. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity.

    PubMed

    Laursen, Martin Frederik; Andersen, Louise B B; Michaelsen, Kim F; Mølgaard, Christian; Trolle, Ellen; Bahl, Martin Iain; Licht, Tine Rask

    2016-01-01

    The first years of life are paramount in establishing our endogenous gut microbiota, which is strongly affected by diet and has repeatedly been linked with obesity. However, very few studies have addressed the influence of maternal obesity on infant gut microbiota, which may occur either through vertically transmitted microbes or through the dietary habits of the family. Additionally, very little is known about the effect of diet during the complementary feeding period, which is potentially important for gut microbiota development. Here, the gut microbiotas of two different cohorts of infants, born either of a random sample of healthy mothers (n = 114), or of obese mothers (n = 113), were profiled by 16S rRNA amplicon sequencing. Gut microbiota data were compared to breastfeeding patterns and detailed individual dietary recordings to assess effects of the complementary diet. We found that maternal obesity did not influence microbial diversity or specific taxon abundances during the complementary feeding period. Across cohorts, breastfeeding duration and composition of the complementary diet were found to be the major determinants of gut microbiota development. In both cohorts, gut microbial composition and alpha diversity were thus strongly affected by introduction of family foods with high protein and fiber contents. Specifically, intake of meats, cheeses, and Danish rye bread, rich in protein and fiber, were associated with increased alpha diversity. Our results reveal that the transition from early infant feeding to family foods is a major determinant for gut microbiota development. IMPORTANCE The potential influence of maternal obesity on infant gut microbiota may occur either through vertically transmitted microbes or through the dietary habits of the family. Recent studies have suggested that the heritability of obesity may partly be caused by the transmission of "obesogenic" gut microbes. However, the findings presented here suggest that maternal obesity per

  13. Maternal pregravid obesity changes gene expression profiles toward greater inflammation and reduced insulin sensitivity in umbilical cord

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods: UCs from 12 lean (pre-gravid BMI < 24.9) and 10 overweight/obese (OW/OB, pre-gravid BMI =25) women without gestationa...

  14. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile.

    PubMed

    Cinelli, Giulia; Fabrizi, Marta; Ravà, Lucilla; Ciofi Degli Atti, Marta; Vernocchi, Pamela; Vallone, Cristina; Pietrantoni, Emanuela; Lanciotti, Rosalba; Signore, Fabrizio; Manco, Melania

    2016-01-01

    Fatty acids (FAs) are fundamental for a foetus's growth, serving as an energy source, structural constituents of cellular membranes and precursors of bioactive molecules, as well as being essential for cell signalling. Long-chain polyunsaturated FAs (LC-PUFAs) are pivotal in brain and visual development. It is of interest to investigate whether and how specific pregnancy conditions, which alter fatty acid metabolism (excessive pre-pregnancy body mass index (BMI) or gestational weight gain (GWG)), affect lipid supply to the foetus. For this purpose, we evaluated the erythrocyte FAs of mothers and offspring (cord-blood) at birth, in relation to pre-pregnancy BMI and GWG. A total of 435 mothers and their offspring (237 males, 51%) were included in the study. Distribution of linoleic acid (LA) and α-linolenic acid (ALA), and their metabolites, arachidonic acid, dihomogamma linoleic (DGLA) and ecosapentanoic acid, was significantly different in maternal and foetal erythrocytes. Pre-pregnancy BMI was significantly associated with maternal percentage of MUFAs (Coeff: -0.112; p = 0.021), LA (Coeff: -0.033; p = 0.044) and DHA (Coeff. = 0.055; p = 0.0016); inadequate GWG with DPA (Coeff: 0.637; p = 0.001); excessive GWG with docosaexahenoic acid (DHA) (Coeff. = -0.714; p = 0.004). Moreover, pre-pregnancy BMI was associated with foetus percentage of PUFAs (Coeff: -0.172; p = 0.009), omega 6 (Coeff: -0.098; p = 0.015) and DHA (Coeff: -0.0285; p = 0.036), even after adjusting for maternal lipids. Our findings show that maternal GWG affects maternal but not foetal lipid profile, differently from pre-pregnancy BMI, which influences both. PMID:27314385

  15. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile

    PubMed Central

    Cinelli, Giulia; Fabrizi, Marta; Ravà, Lucilla; Ciofi degli Atti, Marta; Vernocchi, Pamela; Vallone, Cristina; Pietrantoni, Emanuela; Lanciotti, Rosalba; Signore, Fabrizio; Manco, Melania

    2016-01-01

    Fatty acids (FAs) are fundamental for a foetus’s growth, serving as an energy source, structural constituents of cellular membranes and precursors of bioactive molecules, as well as being essential for cell signalling. Long-chain polyunsaturated FAs (LC-PUFAs) are pivotal in brain and visual development. It is of interest to investigate whether and how specific pregnancy conditions, which alter fatty acid metabolism (excessive pre-pregnancy body mass index (BMI) or gestational weight gain (GWG)), affect lipid supply to the foetus. For this purpose, we evaluated the erythrocyte FAs of mothers and offspring (cord-blood) at birth, in relation to pre-pregnancy BMI and GWG. A total of 435 mothers and their offspring (237 males, 51%) were included in the study. Distribution of linoleic acid (LA) and α-linolenic acid (ALA), and their metabolites, arachidonic acid, dihomogamma linoleic (DGLA) and ecosapentanoic acid, was significantly different in maternal and foetal erythrocytes. Pre-pregnancy BMI was significantly associated with maternal percentage of MUFAs (Coeff: −0.112; p = 0.021), LA (Coeff: −0.033; p = 0.044) and DHA (Coeff. = 0.055; p = 0.0016); inadequate GWG with DPA (Coeff: 0.637; p = 0.001); excessive GWG with docosaexahenoic acid (DHA) (Coeff. = −0.714; p = 0.004). Moreover, pre-pregnancy BMI was associated with foetus percentage of PUFAs (Coeff: −0.172; p = 0.009), omega 6 (Coeff: −0.098; p = 0.015) and DHA (Coeff: −0.0285; p = 0.036), even after adjusting for maternal lipids. Our findings show that maternal GWG affects maternal but not foetal lipid profile, differently from pre-pregnancy BMI, which influences both. PMID:27314385

  16. The maternal womb: a novel target for cancer prevention in the era of the obesity pandemic?

    PubMed

    Simmen, Frank A; Simmen, Rosalia C M

    2011-11-01

    The dramatic rise in worldwide prevalence of obesity has necessitated the search for more efficacious antiobesity strategies to counter the increased cancer risks in overweight and obese individuals. The mechanistic pathways linking obesity status with adult chronic diseases such as cancer remain incompletely understood. A growing body of evidence suggests that novel approaches and interventional agents to disrupt the feed-forward cycle of maternal to offspring obesity transfer that is initiated in utero will be important for stemming both the obesity pandemic and the associated increase in cancer incidence. The convergence of multiple research areas including those encompassing the insulin and insulin-like growth factor systems, epigenetics, and stem cell biology is providing insights into the potential for cancer prevention in adult offspring previously exposed to the intrauterine environment of overweight/obese mothers. Here, we review the current state of this nascent research field, with a focus on three major cancers, namely breast, colorectal, and liver, and suggest some possible future directions to optimize its impact for the health of future generations.

  17. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols?

    PubMed

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; Masella, Roberta

    2014-01-01

    Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account.

  18. Obesity and Endocrine Dysfunction Programmed by Maternal Smoking in Pregnancy and Lactation

    PubMed Central

    Lisboa, Patricia Cristina; de Oliveira, Elaine; de Moura, Egberto Gaspar

    2012-01-01

    Obesity is a global epidemic, and maternal smoking has been shown to be associated with the development of childhood obesity. Overall, approximately 40% of children worldwide are exposed to tobacco smoke at home. It is well known that environmental changes within a critical window of development, such as gestation or lactation, can initiate permanent alterations in metabolism that lead to diseases in adulthood, a phenomenon called programming. It is known that programming is based on epigenetic alterations (changes in DNA methylation, histone acetylation, or small interfering RNA expression) that change the expression pattern of several genes. However, little is known concerning the mechanisms by which smoke exposure in neonatal life programs the adipose tissue and endocrine function. Here, we review several epidemiological and experimental studies that confirm the association between maternal nicotine or tobacco exposure during gestation or lactation and the development of obesity and endocrine dysfunction. For example, a positive correlation was demonstrated in rodents between increased serum leptin in the neonatal period and exposure of the mothers to nicotine during lactation, and the further development of leptin and insulin resistance, and thyroid and adrenal dysfunction, in adulthood in the same offspring. Thus, a smoke-free environment during the lactation period is essential to improving health outcomes in adulthood and reducing the risk for future diseases. An understanding of the pathophysiological mechanisms underlying the effects of smoking on programming can provide new insights into therapeutic strategies for obesity. PMID:23181022

  19. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight

    PubMed Central

    Tyrrell, Jessica; Richmond, Rebecca C.; Palmer, Tom M.; Feenstra, Bjarke; Rangarajan, Janani; Metrustry, Sarah; Cavadino, Alana; Paternoster, Lavinia; Armstrong, Loren L.; De Silva, N. Maneka G.; Wood, Andrew R.; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Bradfield, Jonathan P.; Kreiner-Møller, Eskil; Huikari, Ville; Painter, Jodie N.; Hottenga, Jouke-Jan; Allard, Catherine; Berry, Diane J.; Bouchard, Luigi; Das, Shikta; Evans, David M.; Hakonarson, Hakon; Hayes, M. Geoffrey; Heikkinen, Jani; Hofman, Albert; Knight, Bridget; Lind, Penelope A.; McCarthy, Mark I.; McMahon, George; Medland, Sarah E.; Melbye, Mads; Morris, Andrew P.; Nodzenski, Michael; Reichetzeder, Christoph; Ring, Susan M.; Sebert, Sylvain; Sengpiel, Verena; Sørensen, Thorkild I.A.; Willemsen, Gonneke; de Geus, Eco J. C.; Martin, Nicholas G.; Spector, Tim D.; Power, Christine; Järvelin, Marjo-Riitta; Bisgaard, Hans; Grant, Struan F.A.; Nohr, Ellen A.; Jaddoe, Vincent W.; Jacobsson, Bo; Murray, Jeffrey C.; Hocher, Berthold; Hattersley, Andrew T.; Scholtens, Denise M.; Smith, George Davey; Hivert, Marie-France; Felix, Janine F.; Hyppönen, Elina; Lowe, William L.; Frayling, Timothy M.; Lawlor, Debbie A.; Freathy, Rachel M.

    2016-01-01

    Structured abstract Importance Neonates born to overweight/obese women are larger and at higher risk of birth complications. Many maternal obesity-related traits are observationally associated with birth weight, but the causal nature of these associations is uncertain. Objective To test for genetic evidence of causal associations of maternal body mass index (BMI) and related traits with birth weight. Design, Setting and Participants We used Mendelian randomization to test whether maternal BMI and obesity-related traits are causally related to offspring birth weight. Mendelian randomization makes use of the fact that genotypes are randomly determined at conception and are thus not confounded by non-genetic factors. Data were analysed on 30,487 women from 18 studies. Participants were of European ancestry from population- or community-based studies located in Europe, North America or Australia and participating in the Early Growth Genetics (EGG) Consortium. Live, term, singleton offspring born between 1929 and 2013 were included. We tested associations between a genetic score of 30 BMI-associated single nucleotide polymorphisms (SNPs) and (i) maternal BMI and (ii) birth weight, to estimate the causal relationship between BMI and birth weight. Analyses were repeated for other obesity-related traits. Exposures Genetic scores for BMI, fasting glucose level, type 2 diabetes, systolic blood pressure (SBP), triglyceride level, HDL-cholesterol level, vitamin D status and adiponectin level. Main Outcome(s) and Measure(s) Offspring birth weight measured by trained study personnel (n=2 studies), from medical records (n= 10 studies) or from maternal report (n=6 studies). Results Among the 30,487 newborns the mean birth weight in the various cohorts ranged from 3325 g to 3679 g. The genetic score for BMI was associated with a 2g (95%CI: 0, 3g) higher offspring birth weight per maternal BMI-raising allele (P=0.008). The maternal genetic scores for fasting glucose and SBP were

  20. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation.

    PubMed

    Tang, Xinyu; Cleves, Mario A; Nick, Todd G; Li, Ming; MacLeod, Stewart L; Erickson, Stephen W; Li, Jingyun; Shaw, Gary M; Mosley, Bridget S; Hobbs, Charlotte A

    2015-06-01

    Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity. PMID:25846410

  1. Obstructive Heart Defects Associated with Candidate Genes, Maternal Obesity, and Folic Acid Supplementation

    PubMed Central

    Tang, Xinyu; Cleves, Mario A.; Nick, Todd G.; Li, Ming; MacLeod, Stewart L.; Erickson, Stephen W.; Li, Jingyun; Shaw, Gary M.; Mosley, Bridget S.; Hobbs, Charlotte A.

    2015-01-01

    Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity. PMID:25846410

  2. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation.

    PubMed

    Tang, Xinyu; Cleves, Mario A; Nick, Todd G; Li, Ming; MacLeod, Stewart L; Erickson, Stephen W; Li, Jingyun; Shaw, Gary M; Mosley, Bridget S; Hobbs, Charlotte A

    2015-06-01

    Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity.

  3. Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring.

    PubMed

    Saad, M I; Abdelkhalek, T M; Haiba, M M; Saleh, M M; Hanafi, M Y; Tawfik, S H; Kamel, M A

    2016-06-01

    The effect of in-utero environment on fetal health and survival is long-lasting, and this is known as the fetal origin hypothesis. The oxidative stress state during gestation could play a pivotal role in fetal programming and development of diseases such as diabetes. In this study, we investigated the effect of intra-uterine obesity and malnutrition on oxidative stress markers in pancreatic and peripheral tissues of F1 offspring both prenatally and postnatally. Furthermore, the effect of postnatal diet on oxidative stress profile was evaluated. The results indicated that intra-uterine obesity and malnourishment significantly increased oxidative stress in F1 offspring. Moreover, the programming effect of obesity was more pronounced and protracted than malnutrition. The obesity-induced programming of offspring tissues was independent of high-caloric environment that the offspring endured; however, high-caloric diet potentiated its effect. In addition, pancreas and liver were the most affected tissues by fetal reprogramming both prenatally and postnatally. In conclusion, maternal obesity and malnutrition-induced oxidative stress could predispose offspring to insulin resistance and diabetes.

  4. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  5. Influences of Gestational Obesity on Associations between Genotypes and Gene Expression Levels in Offspring following Maternal Gastrointestinal Bypass Surgery for Obesity

    PubMed Central

    Guénard, Frédéric; Lamontagne, Maxime; Bossé, Yohan; Deshaies, Yves; Cianflone, Katherine; Kral, John G.; Marceau, Picard; Vohl, Marie-Claude

    2015-01-01

    Maternal obesity and excess gestational weight gain with compromised metabolic fitness predispose offspring to lifelong obesity and its comorbidities. We demonstrated that compared to offspring born before maternal gastrointestinal bypass surgery (BMS) those born after (AMS) were less obese, with less cardiometabolic risk reflected in the expression and methylation of diabetes, immune and inflammatory pathway genes. Here we examine relationships between gestational obesity and offspring gene variations on expression levels. Methods Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. Results Significant interactions (p ≤ 1.22x10-12) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. Conclusion We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism. PMID:25603303

  6. Association between maternal obesity and offspring Apgar score or cord pH: a systematic review and meta-analysis.

    PubMed

    Zhu, Tingting; Tang, Jun; Zhao, Fengyan; Qu, Yi; Mu, Dezhi

    2015-12-22

    Previous results are inconsistent regarding the association between maternal obesity and Apgar score or cord pH in humans. The aim of this study was to investigate the association between maternal pre-pregnancy and pregnancy body mass index (BMI) and infant Apgar score or cord pH. We conducted a systematic review of studies published in English before 20 August 2015 using PubMed, EMBASE, and Cochrane Library. Eleven cohort studies with a total of 2,586,265 participants finally met our inclusion criteria. Pooled results revealed the following factors associated with Apgar score <7 at 5 minutes: overweight (odds ratio [OR] 1.13; 95% confidence interval [CI], 1.08-1.20), obese (OR 1.40; 95% CI, 1.27-1.54), and very obese (OR 1.71; 95% CI, 1.55-1.89). The pooled analysis also revealed that maternal overweight or obesity increased the risk for Apgar score <7 at 1 minute. There was no association between maternal BMI and neonatal cord pH. Thus, this study suggests that maternal overweight and obesity affect baby's condition immediately after birth in general. More studies are needed to confirm these results and detect the influence of variables across studies.

  7. Short inter-pregnancy intervals, parity, excessive pregnancy weight gain and risk of maternal obesity.

    PubMed

    Davis, Esa M; Babineau, Denise C; Wang, Xuelei; Zyzanski, Stephen; Abrams, Barbara; Bodnar, Lisa M; Horwitz, Ralph I

    2014-04-01

    To investigate the relationship among parity, length of the inter-pregnancy intervals and excessive pregnancy weight gain in the first pregnancy and the risk of obesity. Using a prospective cohort study of 3,422 non-obese, non-pregnant US women aged 14-22 years at baseline, adjusted Cox models were used to estimate the association among parity, inter-pregnancy intervals, and excessive pregnancy weight gain in the first pregnancy and the relative hazard rate (HR) of obesity. Compared to nulliparous women, primiparous women with excessive pregnancy weight gain in the first pregnancy had a HR of obesity of 1.79 (95% CI 1.40, 2.29); no significant difference was seen between primiparous without excessive pregnancy weight gain in the first pregnancy and nulliparous women. Among women with the same pregnancy weight gain in the first pregnancy and the same number of inter-pregnancy intervals (12 and 18 months or ≥18 months), the HR of obesity increased 2.43-fold (95% CI 1.21, 4.89; p = 0.01) for every additional inter-pregnancy interval of <12 months; no significant association was seen for longer inter-pregnancy intervals. Among women with the same parity and inter-pregnancy interval pattern, women with excessive pregnancy weight gain in the first pregnancy had an HR of obesity 2.41 times higher (95% CI 1.81, 3.21; p < 0.001) than women without. Primiparous and nulliparous women had similar obesity risk unless the primiparous women had excessive pregnancy weight gain in the first pregnancy, then their risk of obesity was greater. Multiparous women with the same excessive pregnancy weight gain in the first pregnancy and at least one additional short inter-pregnancy interval had a significant risk of obesity after childbirth. Perinatal interventions that prevent excessive pregnancy weight gain in the first pregnancy or lengthen the inter-pregnancy interval are necessary for reducing maternal obesity.

  8. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    SciTech Connect

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  9. Obesity and overweight: Impact on maternal and milk microbiome and their role for infant health and nutrition.

    PubMed

    Garcia-Mantrana, Izaskun; Collado, Maria Carmen

    2016-08-01

    Obesity, particularly in infants, is becoming a significant public health problem that has reached "epidemic" status worldwide. Obese children have an increased risk of developing obesity-related diseases, such as metabolic syndromes and diabetes, as well as increased risk of mortality and adverse health outcomes later in life. Experimental data show that maternal obesity has negative effects on the offspring's health in the short and long term. Increasing evidence suggests a key role for microbiota in host metabolism and energy harvest, providing novel tools for obesity prevention and management. The maternal environment, including nutrition and microbes, influences the likelihood of developing childhood diseases, which may persist and be exacerbated in adulthood. Maternal obesity and weight gain also influence microbiota composition and activity during pregnancy and lactation. They affect microbial diversity in the gut and breast milk. Such microbial changes may be transferred to the offspring during delivery and also during lactation, affecting infant microbial colonisation and immune system maturation. Thus, an adequate nutritional and microbial environment during the peri-natal period may provide a window of opportunity to reduce the risk of obesity and overweight in our infants using targeted strategies aimed at modulating the microbiota during early life.

  10. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of obese women who become pregnant continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are matern...

  11. Higher maternal protectiveness is associated with higher odds of child overweight and obesity: a longitudinal Australian study.

    PubMed

    Hancock, Kirsten J; Lawrence, David; Zubrick, Stephen R

    2014-01-01

    In recent years there has been an increasing interest in overprotective parenting and the potential role it plays in child development. While some have argued that a trend towards increased parental fear and reduced opportunity for independent mobility may be linked to increasing rates of child overweight and obesity, there is limited empirical information available to support this claim. Using data from the Longitudinal Study of Australian Children, this study aimed to examine the longitudinal relationships between maternal protectiveness and child overweight and obesity. A cohort of 4-5 year old children was followed up at 6-7, 8-9 and 10-11 years of age (n  =  2596). Measures included a protective parenting scale administered when children were 6-7 and 8-9 years of age, child body mass index (BMI), family characteristics including household income, neighbourhood disadvantage, child's position amongst siblings, and maternal BMI, education, employment, mental health and age at first birth. International Obesity Taskforce age- and sex-specific BMI cut points were used to determine if children were in the normal, overweight or obese BMI range. There was no association between maternal protectiveness and the odds of children being overweight or obese at age 4-5, 6-7 or 8-9 years. However at age 10-11 years, a 1 standard deviation increase in maternal protectiveness was associated with a 13% increase in the odds of children being overweight or obese. The results provide evidence of a relationship between maternal protectiveness and child overweight and obesity, however further research is required to understand the mechanism(s) that links the two concepts. PMID:24955586

  12. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome.

    PubMed

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-07-15

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.

  13. Maternal socialization of children's eating habits: strategies used by obese Mexican-American mothers.

    PubMed

    Olvera-Ezzell, N; Power, T G; Cousins, J H

    1990-04-01

    Mexican-Americans are more likely to be obese than the general population, yet little research has been conducted on the socialization of eating habits in Mexican-American children. 38 obese mothers enrolled in a weight-loss program and their 4-8-year-old children were observed during mealtime and the mothers interviewed about their socialization practices. Mothers relied primarily on nondirective verbal control strategies during the observation. Child compliance was more likely to follow a maternal serving or command than a nondirective behavior. Mothers encouraged sons to eat more than did mothers of girls. Child age was negatively correlated with mother's use of commands, reasoning, threats, and bribes, and positively correlated with maternal nondirectives, servings, and child compliance. Mothers with more years of formal education served healthier foods and were more likely to report using reasoning strategies, prohibiting consumption of unhealthy food, monitoring child food consumption away from home, and allowing child input into the eating situation than were less educated mothers.

  14. Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1.

    PubMed

    Ruebel, Meghan; Shankar, Kartik; Gaddy, Dana; Lindsey, Forrest; Badger, Thomas; Andres, Aline

    2016-07-01

    Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a proinflammatory gene signature and upregulation of Egr-1 protein in ovaries from obese (OB; n = 7) compared with lean (LN; n = 10) female Sprague-Dawley rats during the peri-implantation period at 4.5 days postcoitus (dpc). Obesity was induced by overfeeding (40% excess calories for 28 days) via total enteral nutrition prior to mating. OB dams had higher body weight (P < 0.001), greater fat mass (P < 0.001), and reduced lean mass (P < 0.05) and developed metabolic dysfunction with elevated serum lipids, insulin, leptin, and CCL2 (P < 0.05) compared with LN dams. Microarray analyses identified 284 differentially expressed genes between ovaries from LN vs. OB dams (±1.3 fold, P < 0.05). RT-qPCR confirmed a decrease in expression of glucose transporters GLUT4 and GLUT9 and elevation of proinflammatory genes, including CCL2, CXCL10, CXCL11, CCR2, CXCR1, and TNFα in ovaries from OB compared with LN (P < 0.05). Protein levels of PI3K and phosphorylated Akt were significantly decreased (P < 0.05), whereas nuclear levels of Egr-1 (P < 0.05) were increased in OB compared with LN ovaries. Moreover, Egr-1 was localized to granulosa cells, with the highest expression in cumulus cells of preovulatory follicles. mRNA expression of VCAN, AURKB, and PLAT (P < 0.05) correlated with %visceral fat weight (r = 0.51, -0.77, and -0.57, respectively, P ≤ 0.05), suggesting alterations in ovarian function with obesity. In summary, maternal obesity led to an upregulation of inflammatory genes and Egr-1 expression in peri-implantation ovarian tissue and a concurrent downregulation of GLUTs and Akt and PI3K protein levels. PMID:27279249

  15. THE IMPACT OF MATERNAL OBESITY ON MOTHER AND NEONATAL HEALTH: STUDY IN A TERTIARY HOSPITAL OF ASTANA, KAZAKHSTAN

    PubMed Central

    AIMUKHAMETOVA, GULZHAN; UKYBASOVA, TALSHYN; HAMIDULLINA, ZAITUNA; ZHUBANYSHEVA, KARLYGASH; HARUN-OR-RASHID, MD.; YOSHIDA, YOSHITOKU; KASUYA, HIDEKI; SAKAMOTO, JUNICHI

    2012-01-01

    ABSTRACT This study was aimed to investigate the impact of maternal obesity on mothers and their neonatal health. Our study population consisted of 157 women with completed singleton pregnancies, which included both obese (Body mass index, BMI≥30) and non-obese women (BMI<30). Data were collected from case histories, and ante- and postnatal records at the tertiary hospital in Astana, Kazakhstan between January and February of 2008. Associations between pregnancy and delivery-related complications, outcomes, and maternal obesity were estimated as odds ratios (ORs) and 95% confidence intervals (CIs) using a logistic regression model. Women aged 30 years or more were at higher risk of obesity (OR=3.1, 95% CI=0.8–11.6) than women less than 30 years old. Multiparous women were also at higher risk of obesity (OR=4.1, 95% CI=0.9–19.6) than primiparous ones. Obese women were also more likely to have longer hospital stays of more than 10 days (OR=2.2, 95% CI=0.8–6.2), and were more prone to eclampsia/pre-eclampsia (OR=24.7, 95% CI=2.2–44.8), cesarean sections (OR=2.1, 95% CI=0.7–6.2), and abnormal labor (OR=8.1, 95% CI=1.0–63.8) compared to non-obese women. Neonatal complications such as pneumonia (OR=3.4, 95% CI=0.6–20.2) and fetal macrosomia (OR=2.2, 95% CI=0.6–8.0) were also more common among babies born to obese mothers. Congenital baby birth defects were strongly associated with maternal obesity (P=0.016). We concluded that maternal obesity is associated with increased risks of both maternal and neonatal complications, and that such risks increase with advanced age and parity of the mother. Hence, medical practices must take these complications into account by ensuring an adaptable and early management in order to improve mothers and their neonatal health. PMID:22515114

  16. The childhood obesity epidemic as a result of nongenetic evolution: the maternal resources hypothesis.

    PubMed

    Archer, Edward

    2015-01-01

    Over the past century, socioenvironmental evolution (eg, reduced pathogenic load, decreased physical activity, and improved nutrition) led to cumulative increments in maternal energy resources (ie, body mass and adiposity) and decrements in energy expenditure and metabolic control. These decrements reduced the competition between maternal and fetal energy demands and increased the availability of energy substrates to the intrauterine milieu. This perturbation of mother-conceptus energy partitioning stimulated fetal pancreatic β-cell and adipocyte hyperplasia, thereby inducing an enduring competitive dominance of adipocytes over other tissues in the acquisition and sequestering of nutrient energy via intensified insulin secretion and hyperplastic adiposity. At menarche, the competitive dominance of adipocytes was further amplified via hormone-induced adipocyte hyperplasia and weight-induced decrements in physical activity. These metabolic and behavioral effects were propagated progressively when obese, inactive, metabolically compromised women produced progressively larger, more inactive, metabolically compromised children. Consequently, the evolution of human energy metabolism was markedly altered. This phenotypic evolution was exacerbated by increments in the use of cesarean sections, which allowed both the larger fetuses and the metabolically compromised mothers who produced them to survive and reproduce. Thus, natural selection was iatrogenically rendered artificial selection, and the frequency of obese, inactive, metabolically compromised phenotypes increased in the global population. By the late 20th century, a metabolic tipping point was reached at which the postprandial insulin response was so intense, the relative number of adipocytes so large, and inactivity so pervasive that the competitive dominance of adipocytes in the sequestering of nutrient energy was inevitable and obesity was unavoidable.

  17. The Childhood Obesity Epidemic As a Result of Non-Genetic Evolution: the Maternal Resources Hypothesis

    PubMed Central

    Archer, Edward

    2014-01-01

    Over the past century, socio-environmental evolution (e.g., reduced pathogenic load, decreased physical activity [PA], improved nutrition) led to cumulative increments in maternal energy resources (i.e., body mass, adiposity) and decrements in energy expenditure and metabolic control. These decrements reduced the competition between maternal and fetal energy demands and increased the availability of energy substrates to the intrauterine milieu. This perturbation of mother-conceptus energy partitioning stimulated fetal pancreatic beta-cell and adipocyte hyperplasia, thereby inducing an enduring competitive advantage of adipocytes over other tissues in the acquisition and sequestering of nutrient-energy via intensified insulin secretion and hyperplastic adiposity. At menarche, the competitive dominance of adipocytes was further amplified via hormone-induced adipocyte hyperplasia and weight-induced decrements in PA. These metabolic and behavioral effects were propagated progressively when obese, inactive, metabolically compromised women produced progressively larger, more inactive and metabolically compromised children. Consequently, the evolution of human energy metabolism was significantly altered. This phenotypic evolution was exacerbated by increments in the use of Caesarian sections that allowed both the larger fetuses and the metabolically compromised mothers who produced them to survive and reproduce. Thus, natural selection was iatrogenically rendered artificial selection, and the frequency of obese, inactive, metabolically compromised phenotypes increased in the global population. By the late 20th century, a metabolic tipping point was reached in which the post-prandial insulin response was so intense, the relative number of adipocytes so magnified, and inactivity so pervasive that the competitive dominance of adipocytes in the sequestering of nutrient-energy was inevitable, and obesity was unavoidable. PMID:25440888

  18. Maternal obesity caused by overnutrition exposure leads to reversal learning deficits and striatal disturbance in rats.

    PubMed

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  19. Maternal Obesity Caused by Overnutrition Exposure Leads to Reversal Learning Deficits and Striatal Disturbance in Rats

    PubMed Central

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  20. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

    PubMed

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-10-01

    Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6. PMID:27326907

  1. Maternal and newborn infants amino acid concentrations in obese women born themselves with normal and small for gestational age birth weight.

    PubMed

    Tsyvian, P B; Bashmakova, N V; Kovtun, O P; Makarenko, L V; Pestryaeva, L A

    2015-08-01

    This study was undertaken to compare amino acid concentrations in maternal and newborn infants' serum in normal pregnancy and two groups of obese women who were born themselves with normal and small for gestational age (SGA) birth weight. Maternal cholesterol, lipoproteins concentrations and maternal and infants amino acid concentrations were evaluated at the time of delivery in 28 normal pregnancies, 46 obese pregnant women with normal birth weight (Ob-AGA group) and 44 obese pregnant women born themselves SGA (Ob-SGA group). Mean birth weight of newborn infants in Ob-SGA group was significantly less than in normal and Ob-AGA groups. Cholesterol and lipoproteins were significantly elevated in obese women (more prominent in Ob-SGA group). Most amino acid concentrations and fetal-maternal amino acid gradients were significantly lower in Ob-SGA group. These data suggest significant changes in placental amino acid transport/synthetic function in obese women who were born themselves SGA.

  2. Differential Effects of Exposure to Maternal Obesity or Maternal Weight Loss during the Periconceptional Period in the Sheep on Insulin Signalling Molecules in Skeletal Muscle of the Offspring at 4 Months of Age

    PubMed Central

    Nicholas, Lisa M.; Morrison, Janna L.; Rattanatray, Leewen; Ozanne, Susan E.; Kleemann, Dave O.; Walker, Simon K.; MacLaughlin, Severence M.; Zhang, Song; Martin-Gronert, Malgorzata S.; McMillen, Isabella C.

    2013-01-01

    Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation. PMID:24386400

  3. Maternal obesity: implications for pregnancy outcome and long-term risks-a link to maternal nutrition.

    PubMed

    Aviram, Amir; Hod, Moshe; Yogev, Yariv

    2011-11-01

    As obesity becomes a worldwide epidemic, its prevalence during reproductive age is also increased. Alarming reports state that two-thirds of adults in the USA are overweight or obese, with half of them in the latter category, and the rate of obese pregnant women is estimated at 18-38%. These women are of major concern to women's health providers because they encounter numerous pregnancy-related complications. Obesity-related reproductive health complications range from infertility to a wide spectrum of diseases such as hypertensive disorders, coagulopathies, gestational diabetes mellitus, respiratory complications, and fetal complications such as large-for-gestational-age infants, congenital malformations, stillbirth, and shoulder dystocia. Recent reports suggest that obesity during pregnancy can be a risk factor for developing obesity, diabetes, and cardiovascular diseases in the newborn later in life. This review will address the implication of obesity on pregnancy and child health, and explore recent literature on obesity during pregnancy.

  4. [Impact of maternal overnutrition on the periconceptional period].

    PubMed

    Velázquez, Miguel Abraham

    2015-05-01

    Overnutrition may lead to obesity. Maternal obesity may affect fertility not only via anovulation, but also through direct effects on oocytes and preimplantation embryos, indicating that the periconceptional period is sensitive to conditions of overnutrition. The periconceptional period includes from folliculogenesis to implantation. Animal model studies suggest that oocytes derived from obese females usually have a small size and mitochondrial abnormalities. These disruptions are probably induced by changes in the components of the ovarian follicular fluid. Experimental evidence also suggests that obesity may affect the microenvironment in oviducts and uterus, resulting in development of preimplantation embryos with reduced cell numbers and up-regulation of proinflammatory genes. However, further research is needed for in-depth characterization of the effects of maternal obesity during the periconceptional period.

  5. Invited Commentary: Maternal Obesity and Impaired Fetal and Infant Survival-One More Piece Added to the Puzzle.

    PubMed

    Nohr, Ellen A

    2016-07-15

    The association between maternal obesity and increased risks of stillbirth and infant mortality is well documented, but it has often been questioned whether the association is driven by obesity per se or by unmeasured factors such as insulin resistance or genes. In this issue of the Journal, Lindam et al. (Am J Epidemiol. 2016;184(2):98-105) present results from a sibling case-control study which strongly support that these tragic outcomes are independent of genetic and early environmental risk factors shared within families. By sampling sisters from the Swedish Medical Birth Register, Lindam et al. compared the body mass indices (weight (kg)/height (m)(2)) of women who had stillbirths and infant deaths with those of their sisters or of population controls. Significant excess risks of both outcomes were observed in obese women (body mass index ≥30), and associations were strongest when sister controls were used. Although this careful analysis adds to the existing evidence of a causal relationship between maternal obesity and impaired fetal and infant survival, a biological pathway has not yet been established. Additionally, we are in urgent need of effective tools to reduce obesity in childbearing women and to identify and treat high-risk pregnancies. PMID:27358268

  6. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth.

    PubMed

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-01-01

    Fetal overgrowth is common in obese women and is associated with perinatal complications and increased risk for the child to develop metabolic syndrome later in life. Placental nutrient transport capacity has been reported to be increased in obese women giving birth to large infants; however, the underlying mechanisms are not well established. Obesity in pregnancy is characterized by elevated maternal serum insulin and leptin, hormones that stimulate placental amino acid transporters in vitro. We hypothesized that maternal obesity activates placental insulin/IGF-I/mTOR and leptin signaling pathways. We tested this hypothesis in a mouse model of obesity in pregnancy that is associated with fetal overgrowth. C57BL/6J female mice were fed a control (C) or a high-fat/high-sugar (HF/HS) pelleted diet supplemented by ad libitum access to sucrose (20%) solution. Placentas were collected at embryonic day 18.5. Using Western blot analysis, placental mTOR activity was determined along with energy, inflammatory, leptin, and insulin signaling pathways (upstream modulators of mTOR). Phosphorylation of S6 ribosomal protein (S-235/236), 4E-BP1 (T-37/46), Insulin receptor substrate 1 (Y-608), Akt (T-308), and STAT-3 (Y-705) was increased in obese dams. In contrast, expression of placental caspase-1, IкBα, IL-1β, and phosphorylated-JNK(p46/54-T183/Y185) was unaltered. Fetal amino acid availability is a key determinant of fetal growth. We propose that activation of placental insulin/IGF-I/mTOR and leptin signaling pathways in obese mice stimulates placental amino acid transport and contributes to increased fetal growth.

  7. Maternal nutrient restriction between early-to-mid gestation and its impact upon appetite regulation following juvenile obesity

    PubMed Central

    Sébert, S.P.; Hyatt, M.A.; Chan, L.L.Y.; Patel, N.; Bell, R. C.; Keisler, D.; Stephenson, T.; Budge, H.; Symonds, M.E.; Gardner, D.S.

    2009-01-01

    The impact of maternal nutrient restriction during early-to-mid gestation, a period coinciding with early fetal brain development, on appetite regulation and energy balance in the offspring following juvenile obesity was examined. Pregnant sheep were either fed to fully meet their nutritional requirements throughout gestation or 50% of this amount between 30-80 days gestation. Following weaning, offspring were either made obese through exposure to a sedentary obesogenic environment or remained lean. Maternal nutrient restriction had no effect on birth weight or subsequent growth. At one week of age, only, gene expression for neuropeptide Y in the hypothalamus was reduced in nutrient restricted offspring. By 1 year of age, all obese animals had raised plasma leptin, non-esterified fatty acids and insulin, with the latter effect amplified in nutrient restricted offspring. Fasting plasma glucose, triglycerides and cortisol were unaffected by obesity. The entrained reduction in physical activity that led to obesity persisted when all animals were maintained within individual pens. Obese nutrient restricted offspring, however, exhibited reduced daily food intake and were, therefore, no longer in positive “energy balance”. This adaptation was accompanied by elevated hypothalamic gene expression for the melanocortin-4 and insulin receptors, AMP-activated kinase and acetyl CoA carboxylase α. In conclusion, nutrient restriction specifically targeted over the period of early fetal brain development, contributes to a profoundly different adaptation in energy balance following juvenile obesity. The extent to which this adaptive response may benefit the offspring or result in an exacerbated risk for type II diabetes remains to be established. PMID:18818297

  8. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational

  9. Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity.

    PubMed

    Zambrano, Elena; Sosa-Larios, Tonantzin; Calzada, Lizbeth; Ibáñez, Carlos A; Mendoza-Rodríguez, Carmen A; Morales, Angélica; Morimoto, Sumiko

    2016-10-01

    Maternal obesity (MO) is a deleterious condition that enhances susceptibility of adult offspring to metabolic diseases such as type 2 diabetes. The objective is to study the effect of MO on in vitro insulin secretion and pancreatic cellular population in offspring. We hypothesize that a harmful antenatal metabolic environment due to MO diminishes the basal glucose-responsive secretory function of pancreatic beta cells in offspring. Mothers were fed a control (C) or high-fat diet from weaning through pregnancy (120 days) and lactation. At postnatal days (PNDs) 36 and 110, pups were killed, peripheral blood was collected and pancreatic islets were isolated. Basal insulin secretion was measured in vitro in islets for 60 min. It was found that blood insulin, glucose and homeostasis model assessment (HOMA) index were unaffected by maternal diet and age in females. However, male MO offspring at PND 110 showed hyperinsulinemia and insulin resistance compared with C. Body weight was not modified by MO, but fat content was higher in MO pups compared with C pups. Triglycerides and leptin concentrations were higher in MO than in C offspring in all groups except in females at PND 36. Pancreatic islet cytoarchitecture was unaffected by MO. At PND 36, islets of male and female C and MO offspring responded similarly to glucose, but at PND 110, male and female MO offspring islets showed a 50% decrease in insulin secretion. It was concluded that MO impairs basal insulin secretion of offspring with a greater impact on males than females, and this effect mainly manifests in adulthood. PMID:27496224

  10. Maternal obesity in the agouti viable yellow (Avy) mouse produces defective secretory activation that is associated with mammary inflammation and activation of adrenocorticosteroid-dependent gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity is known to interfere with normal lactation in women, rodents, and dairy animals. Obesity is also correlated with profound changes in an array of endocrine factors and is causally linked with inflammation and insulin resistance. Recent work suggests that elevated aldosterone actin...

  11. The maternal womb: a novel target for cancer prevention in the era of the obesity pandemic?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dramatic rise in worldwide prevalence of obesity has necessitated the search for more efficacious anti-obesity strategies to counter the increased cancer risks in overweight and obese individuals. The mechanistic pathways linking obesity status with adult chronic diseases such as cancer remain i...

  12. Effect of Maternal Age at Childbirth on Obesity in Postmenopausal Women

    PubMed Central

    We, Ji-Sun; Han, Kyungdo; Kwon, Hyuk-Sang; Kil, Kicheol

    2016-01-01

    Abstract The object of this study was to assess the obesity in postmenopausal women, according to age at childbirth. We analyzed the association between age at first childbirth, age at last childbirth, parity, and subject obesity status (general obesity; BMI >25 kg/m2, nongeneral obesity; BMI ≤25 kg/m2, abdominal obesity; waist circumference >85 cm, nonabdominal obesity; waist circumference ≤85 cm), using data from a nationwide population-based survey, the 2010 to 2012 Korean National Health and Nutrition Examination Survey. Data from a total of 4382 postmenopausal women were analyzed using multivariate regression analysis with complex survey design sampling. And, the subjects were subdivided into groups according to obesity or not. Age, smoking, alcohol consumption, exercise, education, income level, number of pregnancies, oral contraceptive uses, breast feeding experience were adjusted as the confounders. The prevalence of general obesity among Korean postmenopausal women was 37.08%. Women with general obesity and abdominal obesity were significantly younger at first childbirth compared with women with nongeneral obesity and no abdominal obesity (23.89 ± 0.1 vs. 23.22 ± 0.1, P <0.001). Age at first childbirth was inversely associated with obesity, while age at last childbirth was not associated with obesity or abdominal obesity. Women with a higher number of pregnancies were also more likely to have obesity and abdominal obesity. Age at first childbirth remained significantly associated with obesity, after adjusting for confounding factors. Obesity in postmenopausal women is associated with first childbirth at a young age, and higher parity. Further research is needed to clarify the association between obesity and reproductive characteristics. PMID:27175656

  13. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature.

    PubMed

    Nommsen-Rivers, Laurie A

    2016-03-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  14. Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity

    PubMed Central

    Muralimanoharan, S; Guo, C; Myatt, L; Maloyan, A

    2015-01-01

    BACKGROUND Maternal obesity is a major problem in obstetrics, and the placenta is involved in obesity-related complications via its roles at the maternal–fetal interface. We have recently shown a causative role for micro(mi)RNA-210, a so called ‘hypoxamir’ regulated by HIF-1α, in mitochondrial dysfunction in placentas from women with preeclampsia. We also reported mitochondrial dysfunction in placentas with maternal obesity. Here we hypothesized that expression of miR-210 is dysregulated in the placentas with obesity. METHODS Placentas from uncomplicated pregnancies were collected at term from healthy weight or control (CTRL, pre-pregnancy body mass index (BMI)<25), overweight (OW, BMI = 25–24.9) and obese (OB, BMI>30) women following C-section with no labor. Expression of miRNA-210 and its target genes was measured by reverse transcription–PCR and Western Blot, respectively. Mitochondrial respiration was assessed by Seahorse Analyzer in syncytiotrophoblast (ST) 72 h after cytotrophoblast isolation. RESULTS Expression of miR-210 was significantly increased in placentas of OB and OW women with female but not male fetuses compared with CTRL placentas of females. However, expression of HIF-1α in these placentas remained unchanged. Levels of tumor-necrosis factor-alpha (TNFα) were increased in OW and OB placentas of females but not males, and in silico analysis suggested that activation of miR-210 expression in these placentas might be activated by NFκB1 (p50) signaling. Indeed, chromatin Immunoprecipitation assay showed that NFkB1 binds to placental miR-210 promoter in a fetal sex-dependent manner. Female but not male STs treated with TNFα showed overexpression of miR-210, reduction of mitochondrial target genes and decreased mitochondrial respiration. Pre-treatment of these STs with small interfering RNA to NFkB1 or antagomiR-210 prevented the TNFα-mediated inhibition of mitochondrial respiration. CONCLUSIONS Our data suggest that the inflammatory

  15. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    PubMed

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.

  16. Maternal depression, stress and feeding styles: towards a framework for theory and research in child obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Against the background of rising rates of obesity in children and adults in the USA, and modest effect sizes for obesity interventions, the aim of the present narrative review paper is to extend the UNICEF care model to focus on childhood obesity and its associated risks with an emphasis on the emot...

  17. Maternal dietary protein supplement confers long-term sex-specific beneficial consequences of obesity resistance and glucose tolerance to the offspring in Brandt's voles.

    PubMed

    Lou, Mei-Fang; Shen, Wei; Fu, Rong-Shu; Zhang, Xue-Ying; Wang, De-Hua

    2015-04-01

    Maternal under- or over-nutrition not only alters neonatal body mass but also increases the risk of metabolic disorders in adulthood. Little is known about how maternal dietary protein affects offspring fitness in wild rodents. The present study was conducted to test the hypothesis that maternal dietary protein supplement has a long-term beneficial effect on offspring fitness in Brandt's vole (Lasiopodomys brandtii), a herbivorous rodent model. The vole dams were fed either a control (18% protein) or high-protein (36% protein) diet throughout pregnancy and lactation. After weaning, all offspring received a control diet till 14 weeks old. Energetic parameters, serum leptin concentration and glucose tolerance were measured. The adult offspring were fed high-fat diet for 8 weeks, and body weight and food intake were measured. No difference was observed in litter size, litter mass or pup mass before weaning. Maternal protein supplement increased body mass and the mass of reproductive organ but decreased digestibility and fat deposition and alleviated HFD-induced obesity especially in the males. Glucose tolerance was elevated in the offspring from maternal protein supplement, especially in the females. The accelerated growth may be associated with high serum leptin concentration at weaning, a state of leptin resistance, and the low digestibility may predispose obesity resistance especially in male offspring from maternal high-protein diet. These data demonstrate that maternal protein supplement confers the long-term sex-specific beneficial consequences of accelerated growth and improved obesity resistance and glucose tolerance of their offspring.

  18. An Evaluation of the Implementation of Maternal Obesity Pathways of Care: A Mixed Methods Study with Data Integration

    PubMed Central

    Heslehurst, Nicola; Dinsdale, Sarah; Sedgewick, Gillian; Simpson, Helen; Sen, Seema; Summerbell, Carolyn Dawn; Rankin, Judith

    2015-01-01

    Objectives Maternal obesity has multiple associated risks and requires substantial intervention. This research evaluated the implementation of maternal obesity care pathways from multiple stakeholder perspectives. Study Design A simultaneous mixed methods model with data integration was used. Three component studies were given equal priority. 1: Semi-structured qualitative interviews explored obese pregnant women’s experiences of being on the pathways. 2: A quantitative and qualitative postal survey explored healthcare professionals’ experiences of delivering the pathways. 3: A case note audit quantitatively assessed pathway compliance. Data were integrated using following a thread and convergence coding matrix methods to search for agreement and disagreement between studies. Results Study 1: Four themes were identified: women’s overall (positive and negative) views of the pathways; knowledge and understanding of the pathways; views on clinical and weight management advice and support; and views on the information leaflet. Key results included positive views of receiving additional clinical care, negative experiences of risk communication, and weight management support was considered a priority. Study 2: Healthcare professionals felt the pathways were worthwhile, facilitated good practice, and increased confidence. Training was consistently identified as being required. Healthcare professionals predominantly focussed on women’s response to sensitive obesity communication. Study 3: There was good compliance with antenatal clinical interventions. However, there was poor compliance with public health and postnatal interventions. There were some strong areas of agreement between component studies which can inform future development of the pathways. However, disagreement between studies included a lack of shared priorities between healthcare professionals and women, different perspectives on communication issues, and different perspectives on women

  19. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    PubMed Central

    Borengasser, Sarah J.; Faske, Jennifer; Kang, Ping; Blackburn, Michael L.; Badger, Thomas M.

    2014-01-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life. PMID:25336449

  20. Obesity

    MedlinePlus

    Morbid obesity; Fat - obese ... is because the body stores unused calories as fat. Obesity can be caused by: Eating more food ... use your BMI to estimate how much body fat you have. Your waist measurement is another way ...

  1. Maternal malnutrition and offspring sex determine juvenile obesity and metabolic disorders in a swine model of leptin resistance.

    PubMed

    Barbero, Alicia; Astiz, Susana; Lopez-Bote, Clemente J; Perez-Solana, Maria L; Ayuso, Miriam; Garcia-Real, Isabel; Gonzalez-Bulnes, Antonio

    2013-01-01

    The present study aimed to determine, in a swine model of leptin resistance, the effects of type and timing of maternal malnutrition on growth patterns, adiposity and metabolic features of the progeny when exposed to an obesogenic diet during their juvenile development and possible concomitant effects of the offspring sex. Thus, four groups were considered. A CONTROL group involved pigs born from sows fed with a diet fulfilling their daily maintenance requirements for pregnancy. The treated groups involved the progeny of females fed with the same diet but fulfilling either 160% or 50% of pregnancy requirements during the entire gestation (OVERFED and UNDERFED, respectively) or 100% of requirements until Day 35 of pregnancy and 50% of such amount from Day 36 onwards (LATE-UNDERFED). OVERFED and UNDERFED offspring were more prone to higher corpulence and fat deposition from early postnatal stages, during breast-feeding; adiposity increased significantly when exposed to obesogenic diets, especially in females. The effects of sex were even more remarkable in LATE-UNDERFED offspring, which had similar corpulence to CONTROL piglets; however, females showed a clear predisposition to obesity. Furthermore, the three groups of pigs with maternal malnutrition showed evidences of metabolic syndrome and, in the case of individuals born from OVERFED sows, even of insulin resistance and the prodrome of type-2 diabetes. These findings support the main role of early nutritional programming in the current rise of obesity and associated diseases in ethnics with leptin resistance.

  2. Maternal obesity in females born small: Pregnancy complications and offspring disease risk.

    PubMed

    Mahizir, Dayana; Briffa, Jessica F; Hryciw, Deanne H; Wadley, Glenn D; Moritz, Karen M; Wlodek, Mary E

    2016-01-01

    Obesity is a major public health crisis, with 1.6 billion adults worldwide being classified as overweight or obese in 2014. Therefore, it is not surprising that the number of women who are overweight or obese at the time of conception is increasing. Obesity during pregnancy is associated with the development of gestational diabetes and preeclampsia. The developmental origins of health and disease hypothesis proposes that perturbations during critical stages of development can result in adverse fetal changes that leads to an increased risk of developing diseases in adulthood. Of particular concern, children born to obese mothers are at a greater risk of developing cardiometabolic disease. One subset of the population who are predisposed to developing obesity are children born small for gestational age, which occurs in 10% of pregnancies worldwide. Epidemiological studies report that these growth-restricted children have an increased susceptibility to type 2 diabetes, obesity, and hypertension. Importantly during pregnancy, growth-restricted females have a higher risk of developing cardiometabolic disease, indicating that they may have an exacerbated phenotype if they are also overweight or obese. Thus, the development of early pregnancy interventions targeted to obese mothers may prevent their children from developing cardiometabolic disease in adulthood. PMID:26173914

  3. Maternal obesity in females born small: Pregnancy complications and offspring disease risk.

    PubMed

    Mahizir, Dayana; Briffa, Jessica F; Hryciw, Deanne H; Wadley, Glenn D; Moritz, Karen M; Wlodek, Mary E

    2016-01-01

    Obesity is a major public health crisis, with 1.6 billion adults worldwide being classified as overweight or obese in 2014. Therefore, it is not surprising that the number of women who are overweight or obese at the time of conception is increasing. Obesity during pregnancy is associated with the development of gestational diabetes and preeclampsia. The developmental origins of health and disease hypothesis proposes that perturbations during critical stages of development can result in adverse fetal changes that leads to an increased risk of developing diseases in adulthood. Of particular concern, children born to obese mothers are at a greater risk of developing cardiometabolic disease. One subset of the population who are predisposed to developing obesity are children born small for gestational age, which occurs in 10% of pregnancies worldwide. Epidemiological studies report that these growth-restricted children have an increased susceptibility to type 2 diabetes, obesity, and hypertension. Importantly during pregnancy, growth-restricted females have a higher risk of developing cardiometabolic disease, indicating that they may have an exacerbated phenotype if they are also overweight or obese. Thus, the development of early pregnancy interventions targeted to obese mothers may prevent their children from developing cardiometabolic disease in adulthood.

  4. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning.

    PubMed

    Franco, J G; Fernandes, T P; Rocha, C P D; Calviño, C; Pazos-Moura, C C; Lisboa, P C; Moura, E G; Trevenzoli, I H

    2012-11-01

    Maternal nutritional status affects the future development of offspring. Both undernutrition and overnutrition in critical periods of life (gestation or lactation) may cause several hormonal changes in the pups and programme obesity in the adult offspring. We have shown that hyperleptinaemia during lactation results in central leptin resistance, higher adrenal catecholamine secretion, hyperthyroidism, and higher blood pressure and heart rate in the adult rats. Here, we evaluated the effect of a maternal isocaloric high-fat diet on breast milk composition and its impact on leptinaemia, energy metabolism, and adrenal and thyroid function of the offspring at weaning. We hypothesised that the altered source of fat in the maternal diet even under normal calorie intake would disturb the metabolism of the offspring. Female Wistar rats were fed a normal (9% fat; C group) or high-fat diet (29% fat as lard; HF group) for 8 weeks before mating and during pregnancy and lactation. HF mothers presented increased total body fat content after 8 weeks (+27%, P < 0.05) and a similar fat content at the end of lactation. In consequence, the breast milk from the HF group had higher concentration of protein (+18%, P < 0.05), cholesterol (+52%, P < 0.05) and triglycerides (+86%, P < 0.05). At weaning, HF offspring had increased body weight (+53%, P < 0.05) and adiposity (2 fold, P < 0.05), which was associated with lower β3-adrenoreceptor content in adipose tissue (-40%, P < 0.05). The offspring also presented hyperglycaemia (+30%, P < 0.05) and hyperleptinaemia (+62%, P < 0.05). In the leptin signalling pathway in the hypothalamus, we found lower p-STAT3/STAT3 (-40%, P < 0.05) and SOCS3 (-55%, P < 0.05) content in the arcuate nucleus, suggesting leptin resistance. HF offspring also had higher adrenal catecholamine content (+17%, P < 0.05), liver glycogen content (+50%, P < 0.05) and hyperactivity of the thyroid axis at weaning. Our results suggest that a high fat diet increases

  5. Impact of Maternal Glucose and Gestational Weight Gain on Child Obesity over the First Decade of Life in Normal Birth Weight Infants.

    PubMed

    Hillier, Teresa A; Pedula, Kathryn L; Vesco, Kimberly K; Oshiro, Caryn E S; Ogasawara, Keith K

    2016-08-01

    Objective To determine, among children with normal birth weight, if maternal hyperglycemia and weight gain independently increase childhood obesity risk in a very large diverse population. Methods Study population was 24,141 individuals (mothers and their normal birth weight offspring, born 1995-2003) among a diverse population with universal GDM screening [50-g glucose-challenge test (GCT); 3 h. 100 g oral glucose tolerance test (OGTT) if GCT+]. Among the 13,037 full-term offspring with normal birth weight (2500-4000 g), annual measured height/weight was ascertained between ages 2 and 10 years to calculate gender-specific BMI-for-age percentiles using USA norms (1960-1995 standard). Results Among children who began life with normal birth weight, we found a significant trend for developing both childhood overweight (>85 %ile) and obesity (>95 %ile) during the first decade of life with both maternal hyperglycemia (normal GCT, GCT+ but no GDM, GDM) and excessive gestational weight gain [>40 pounds (18.1 kg)]; p < 0.0001 for both trends. These maternal glucose and/or weight gain effects to imprint for childhood obesity in the first decade remained after adjustment for potential confounders including maternal age, parity, as well as pre-pregnancy BMI. The attributable risk (%) for childhood obesity was 28.5 % (95 % CI 15.9-41.1) for GDM and 16.4 % (95 % CI 9.4-23.2) for excessive gestational weight gain. Conclusions for Practice Both maternal hyperglycemia and excessive weight gain have independent effects to increase childhood obesity risk. Future research should focus on prevention efforts during pregnancy as a potential window of opportunity to reduce childhood obesity.

  6. Impact of Maternal Glucose and Gestational Weight Gain on Child Obesity over the First Decade of Life in Normal Birth Weight Infants.

    PubMed

    Hillier, Teresa A; Pedula, Kathryn L; Vesco, Kimberly K; Oshiro, Caryn E S; Ogasawara, Keith K

    2016-08-01

    Objective To determine, among children with normal birth weight, if maternal hyperglycemia and weight gain independently increase childhood obesity risk in a very large diverse population. Methods Study population was 24,141 individuals (mothers and their normal birth weight offspring, born 1995-2003) among a diverse population with universal GDM screening [50-g glucose-challenge test (GCT); 3 h. 100 g oral glucose tolerance test (OGTT) if GCT+]. Among the 13,037 full-term offspring with normal birth weight (2500-4000 g), annual measured height/weight was ascertained between ages 2 and 10 years to calculate gender-specific BMI-for-age percentiles using USA norms (1960-1995 standard). Results Among children who began life with normal birth weight, we found a significant trend for developing both childhood overweight (>85 %ile) and obesity (>95 %ile) during the first decade of life with both maternal hyperglycemia (normal GCT, GCT+ but no GDM, GDM) and excessive gestational weight gain [>40 pounds (18.1 kg)]; p < 0.0001 for both trends. These maternal glucose and/or weight gain effects to imprint for childhood obesity in the first decade remained after adjustment for potential confounders including maternal age, parity, as well as pre-pregnancy BMI. The attributable risk (%) for childhood obesity was 28.5 % (95 % CI 15.9-41.1) for GDM and 16.4 % (95 % CI 9.4-23.2) for excessive gestational weight gain. Conclusions for Practice Both maternal hyperglycemia and excessive weight gain have independent effects to increase childhood obesity risk. Future research should focus on prevention efforts during pregnancy as a potential window of opportunity to reduce childhood obesity. PMID:27154523

  7. Placental fractalkine is up-regulated in severe early onset preeclampsia

    PubMed Central

    Siwetz, Monika; Dieber-Rotheneder, Martina; Cervar-Zivkovic, Mila; Kummer, Daniel; Kremshofer, Julia; Weiss, Gregor; Herse, Florian; Huppertz, Berthold; Gauster, Martin

    2015-01-01

    The pathogenesis of preeclampsia includes the release of placental factors into the maternal circulation inducing an inflammatory environment in the mother. One of the factors may be the pro-inflammatory chemokine fractalkine, which is expressed in the syncytiotrophoblast of human placenta, from where it is released into the maternal circulation by constitutive shedding. We examined whether placental fractalkine is up-regulated in severe early onset preeclampsia and whether the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin-6 are able to increase the expression of fractalkine. Gene expression analysis, ELISA, and immunohistochemistry consistently showed increased fractalkine expression in placentas from severe early onset preeclampsia, compared to gestational age-matched controls. Expression of the metalloproteinases ADAM10 and ADAM17, which convert transmembrane fractalkine into the soluble form, was significantly increased in these cases. Incubation of first trimester placental explants with TNF-α provoked a significant increase in fractalkine expression and release of the soluble form, whereas interleukin-6 had no effect. TNF-α-mediated up-regulation of placental fractalkine was reversed in the presence of the Aspirin-derivative salicylate, which impaired activation of NF-κB p65 in TNF-α-treated explants. Based on data from placental explants we suggest that increased maternal TNF-α may up-regulate the expression and release of placental fractalkine, which in turn may contribute to an exaggerated systemic inflammatory response in preeclampsia. PMID:25769431

  8. Placental fractalkine is up-regulated in severe early-onset preeclampsia.

    PubMed

    Siwetz, Monika; Dieber-Rotheneder, Martina; Cervar-Zivkovic, Mila; Kummer, Daniel; Kremshofer, Julia; Weiss, Gregor; Herse, Florian; Huppertz, Berthold; Gauster, Martin

    2015-05-01

    The pathogenesis of preeclampsia (PE) includes the release of placental factors into the maternal circulation, inducing an inflammatory environment in the mother. One of the factors may be the proinflammatory chemokine fractalkine, which is expressed in the syncytiotrophoblast of human placenta, from where it is released into the maternal circulation by constitutive shedding. We examined whether placental fractalkine is up-regulated in severe early-onset PE and whether the proinflammatory cytokines tumor necrosis factor (TNF)-α and IL-6 are able to increase the expression of fractalkine. Gene expression analysis, enzyme-linked immunosorbent assay, and immunohistochemistry consistently showed increased fractalkine expression in placentas from severe early-onset PE, compared to gestational age-matched controls. Expression of a disintegrin and metalloproteinases (ADAMs) 10 and 17, which convert transmembrane fractalkine into the soluble form, was significantly increased in these cases. Incubation of first-trimester placental explants with TNF-α provoked a significant increase in fractalkine expression and release of the soluble form, whereas IL-6 had no effect. TNF-α-mediated up-regulation of placental fractalkine was reversed in the presence of the aspirin-derivative salicylate, which impaired activation of NF-κB p65 in TNF-α-treated explants. On the basis of data from placental explants, we suggest that increased maternal TNF-α may up-regulate the expression and release of placental fractalkine, which, in turn, may contribute to an exaggerated systemic inflammatory response in PE. PMID:25769431

  9. Maternal depression, stress and feeding styles: towards a framework for theory and research in child obesity.

    PubMed

    El-Behadli, Ana F; Sharp, Carla; Hughes, Sheryl O; Obasi, Ezemenari M; Nicklas, Theresa A

    2015-01-01

    Against the background of rising rates of obesity in children and adults in the USA, and modest effect sizes for obesity interventions, the aim of the present narrative review paper is to extend the UNICEF care model to focus on childhood obesity and its associated risks with an emphasis on the emotional climate of the parent-child relationship within the family. Specifically, we extended the UNICEF model by applying the systems approach to childhood obesity and by combining previously unintegrated sets of literature across multiple disciplines including developmental psychology, clinical psychology and nutrition. Specifically, we modified the extended care model by explicitly integrating new linkages (i.e. parental feeding styles, stress, depression and mother's own eating behaviour) that have been found to be associated with the development of children's eating behaviours and risk of childhood obesity. These new linkages are based on studies that were not incorporated into the original UNICEF model, but suggest important implications for childhood obesity. In all, this narrative review offers important advancements to the scientific understanding of familial influences on children's eating behaviours and childhood obesity.

  10. Maternal Obesity in Sheep Increases Fatty Acid Synthesis, Upregulates Nutrient Transporters, and Increases Adiposity in Adult Male Offspring after a Feeding Challenge

    PubMed Central

    Long, Nathan M.; Rule, Daniel C.; Tuersunjiang, Nuermaimaiti; Nathanielsz, Peter W.; Ford, Stephen P.

    2015-01-01

    Maternal obesity in women is increasing worldwide. The objective of this study was to evaluate differences in adipose tissue metabolism and function in adult male offspring from obese and control fed mothers subjected to an ad libitum feeding challenge. We developed a model in which obese ewes were fed 150% of feed provided for controls from 60 days before mating to term. All ewes were fed to requirements during lactation. After weaning, F1 male offspring were fed only to maintenance requirements until adulthood (control = 7, obese = 6), when they were fed ad libitum for 12 weeks with intake monitored. At the end of the feeding challenge offspring were given an intravenous glucose tolerance test (IVGTT), necropsied, and adipose tissue collected. During the feeding trial F1obese males consumed more (P < 0.01), gained more weight (P < 0.01) and became heavier (P < 0.05) than F1control males. During IVGTT, Obese F1 offspring were hyperglycemic and hypoinsulinemic (P < 0.01) compared to F1 control F1. At necropsy perirenal and omental adipose depots weights were 47% and 58% greater respectively and subcutaneous fat thickness 41% greater in F1obese vs F1control males (P < 0.05). Adipocyte diameters were greater (P ≤ 0.04) in perirenal, omental and subcutaneous adipose depots in F1obese males (11, 8 and 7% increase vs. control, respectively). When adipose tissue was incubated for 2 hrs with C-14 labeled acetate, subcutaneous, perirenal, and omental adipose tissue of F1 obese males exhibited greater incorporation (290, 83, and 90% increase vs. control, respectively P < 0.05) of acetate into lipids. Expression of fatty acid transporting, binding, and syntheses mRNA and protein was increased (P < 0.05) compared to F1 control offspring. Maternal obesity increased appetite and adiposity associated with increased adipocyte diameters and increased fatty acid synthesis in over-nourished adult male offspring. PMID:25875659

  11. Insatiable insecurity: maternal obesity as a risk factor for mother-child attachment and child weight.

    PubMed

    Keitel-Korndörfer, Anja; Sierau, Susan; Klein, Annette M; Bergmann, Sarah; Grube, Matthias; von Klitzing, Kai

    2015-01-01

    Childhood obesity has become a rising health problem, and because parental obesity is a basic risk factor for childhood obesity, biological factors have been especially considered in the complex etiology. Aspects of the family interaction, e.g., mother-child attachment, have not been the main focus. Our study tried to fill this gap by investigating whether there is a difference between children of obese and normal weight mothers in terms of mother-child attachment, and whether mother-child attachment predicts child's weight, in a sample of 31 obese and 31 normal weight mothers with children aged 19 to 58 months. Mother-child attachment was measured with the Attachment Q-Set. We found that (1) children of obese mothers showed a lower quality of mother-child attachment than children of normal weight mothers, which indicates that they are less likely to use their mothers as a secure base; (2) the attachment quality predicted child`s BMI percentile; and (3) the mother-child attachment adds incremental validity to the prediction of child's BMI beyond biological parameters (child's BMI birth percentile, BMI of the parents) and mother's relationship status. Implications of our findings are discussed.

  12. Effects of an antenatal dietary intervention on maternal anthropometric measures in pregnant women with obesity

    PubMed Central

    Kannieappan, Lavern M.; Grivell, Rosalie M.; Deussen, Andrea R.; Moran, Lisa J.; Yelland, Lisa N.; Owens, Julie A.

    2015-01-01

    Objective The effect of providing antenatal dietary and lifestyle advice on secondary measures of maternal anthropometry was evaluated and their correlation with both gestational weight gain and infant birth weight was assessed. Methods In a multicenter, randomized controlled trial, pregnant women with BMI of ≥25 kg/m2 received either Lifestyle Advice or Standard Care. Maternal anthropometric outcomes included arm circumference, biceps, triceps, and subscapular skinfold thickness measurements (SFTM), percentage body fat (BF), gestational weight gain, and infant birth weight. The intention to treat principles were utilized by the analyses. Results The measurements were obtained from 807 (74.7%) women in the Lifestyle Advice Group and 775 (72.3%) women in the Standard Care Group. There were no statistically significant differences identified between the treatment groups with regards to arm circumference, biceps, triceps, and subscapular SFTM, or percentage BF at 36‐week gestation. Maternal anthropometric measurements were not significantly correlated with either gestational weight gain or infant birth weight. Conclusions Among pregnant women with a BMI of ≥25 kg/m2, maternal SFTM were not modified by an antenatal dietary and lifestyle intervention. Furthermore, maternal SFTM correlate poorly with both gestational weight gain and infant birth weight. PMID:26175260

  13. Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection.

    PubMed

    Correia-Branco, Ana; Keating, Elisa; Martel, Fátima

    2015-02-01

    An adequate maternal nutrition during pregnancy is crucial for the health outcome of offspring in adulthood. Maternal undernutrition during critical periods of fetal development can program the fetus for metabolic syndrome (MetS) later in life, especially when postnatally challenged with a hypernutritive diet. Adipogenesis, which begins in utero and accelerates in neonatal life, is a major candidate for developmental programming. During fetal development, the hypothalamic-pituitary-adrenal (HPA) axis is extremely susceptible to programming, and the HPA tone is increased throughout life in undernourished conditions. As a consequence, an alteration in the expression and function of glucocorticoid (GC) receptors and of the major GC regulatory enzymes (11β-hydroxysteroid dehydrogenase 1 and -2) occurs. In this review, we will give insights into the role of maternoplacental adverse interactions under the specific context of maternal undernutrition, for later-in-life MetS development, with a special emphasis on the role of GCs.

  14. Obesity

    MedlinePlus

    Obesity means having too much body fat. It is different from being overweight, which means weighing too ... what's considered healthy for his or her height. Obesity occurs over time when you eat more calories ...

  15. CCAAT-enhancer-binding Protein β (C/EBPβ) and Downstream Human Placental Growth Hormone Genes Are Targets for Dysregulation in Pregnancies Complicated by Maternal Obesity*

    PubMed Central

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A.

    2013-01-01

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in “normal” pregnancy. Maternal obesity can exacerbate this “resistance,” suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m2) versus lean (BMI 20–25 kg/m2) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development. PMID:23782703

  16. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity.

    PubMed

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A

    2013-08-01

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.

  17. Maternal Pre-Pregnancy Obesity and Risk for Inattention and Negative Emotionality in Children

    ERIC Educational Resources Information Center

    Rodriguez, Alina

    2010-01-01

    Objective: This study aimed to replicate and extend previous work showing an association between maternal pre-pregnancy adiposity and risk for attention deficit hyperactivity disorder (ADHD) symptoms in children. Methods: A Swedish population-based prospective pregnancy-offspring cohort was followed up when children were 5 years old (N = 1,714).…

  18. Differences in Obesity Rates Among Minority and White Women: The Latent Role of Maternal Stress.

    PubMed

    Patchen, Loral; Rebok, George; Astone, Nan M

    2016-07-01

    White and minority women experience different rates of obesity in the United States. Yet our understanding of the dynamics that give rise to this gap remains limited. This article presents a conceptual framework that considers pathways leading to these different rates. It draws upon the life-course perspective, allostatic load, and the weathering hypothesis to identify pathways linking childbearing, stress, and obesity. This conceptual framework extends prior work by identifying age at first birth as an important parameter that influences these pathways. Empirical evidence to test these pathways is needed. PMID:27355406

  19. Maternal Environmental Contribution to Adult Sensitivity and Resistance to Obesity in Long Evans Rats

    PubMed Central

    Schroeder, Mariana; Shbiro, Liat; Moran, Timothy H.; Weller, Aron

    2010-01-01

    Background The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity. Methodology On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored. Principal Findings During the suckling period, the pups' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term. Conclusions The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the

  20. Maternal Obesity Reduces Milk Lipid Production in Lactating Mice by Inhibiting Acetyl-CoA Carboxylase and Impairing Fatty Acid Synthesis

    PubMed Central

    Saben, Jessica L.; Bales, Elise S.; Jackman, Matthew R.; Orlicky, David; MacLean, Paul S.; McManaman, James L.

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis. PMID:24849657

  1. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis.

    PubMed

    Saben, Jessica L; Bales, Elise S; Jackman, Matthew R; Orlicky, David; MacLean, Paul S; McManaman, James L

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.

  2. Diet-Induced Maternal Obesity Alters Insulin Signalling in Male Mice Offspring Rechallenged with a High-Fat Diet in Adulthood

    PubMed Central

    de Fante, Thaís; Simino, Laís Angélica; Reginato, Andressa; Payolla, Tanyara Baliani; Vitoréli, Débora Cristina Gustavo; de Souza, Monique; Torsoni, Márcio Alberto; Milanski, Marciane; Torsoni, Adriana Souza

    2016-01-01

    Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metabolism. However, it is important to assess whether maternal consumption of a HFD during critical periods of development can lead to metabolic changes in the offspring metabolism. This study evaluated the potential effects of metabolic programming on the impairment of insulin signalling in recently weaned offspring from obese dams. Additionally, we investigated if early exposure to an obesogenic environment could exacerbate the impairment of glucose metabolism in adult life in response to a HFD. Swiss female mice were fed with Standard Chow (SC) or a HFD during gestation and lactation and tissues from male offspring were analysed at d28 and d82. Offspring from obese dams had greater weight gain and higher adiposity and food intake than offspring from control dams. Furthermore, they showed impairment in insulin signalling in central and peripheral tissues, which was associated with the activation of inflammatory pathways. Adipose tissue was ultimately the most affected in adult offspring after HFD rechallenge; this may have contributed to the metabolic deregulation observed. Overall, our results suggest that diet-induced maternal obesity leads to increased susceptibility to obesity and impairment of insulin signalling in offspring in early and late life that cannot be reversed by SC consumption, but can be aggravated by HFD re-exposure. PMID:27479001

  3. Multi-generational Impact of Maternal Overnutrition/Obesity in the Sheep on the Neonatal Leptin Surge in Granddaughters

    PubMed Central

    Shasa, Desiree R.; Odhiambo, John F.; Long, Nathan M.; Tuersunjiang, Nuermaimaiti; Nathanielsz, Peter W.; Ford, Stephen P.

    2014-01-01

    Background/Objectives We have reported that maternal overnutrition/obesity (OB) in sheep resulting from feeding 150% of National Research Council (NRC) requirements throughout gestation, leads to maternal hyperglycemia and hyperinsulinemia. Further, newborn lambs born to OB vs. control-fed (CON, 100% of NRC) ewes exhibited greater adiposity, increased blood cortisol, insulin and glucose and the elimination of the postnatal leptin spike seen in lambs born to CON ewes. This early postnatal leptin peak is necessary for development of hypothalamic circuits which program appetite in later life. This study evaluated the multigenerational impact of OB on insulin:glucose dynamics of mature female F1 offspring fed only to requirements throughout gestation, and on their lambs (F2 generation). Design and Methods Adult F1 female offspring born to OB (n=10) or CON (n=7) ewes were utilized. All F1 ewes were subjected to a glucose tolerance test at midgestation and late gestation. Jugular blood was obtained from F2 lambs at birth (day 1) through postnatal day 11, and plasma glucose, insulin, cortisol and leptin concentrations determined. Dual Energy X-ray Absorptiometry (DEXA) was utilized to determine bone mineral density (BMD), bone mineral content (BMC), lean tissue mass, and fat tissue mass. Results Fasted blood glucose and insulin concentrations were greater (P < 0.05) in OBF1 than CONF1 ewes at mid- and late gestation. Further, after glucose infusion, both glucose and insulin concentrations remained higher in OBF1 ewes (P < 0.05) than CONF1 ewes demonstrating greater insulin resistance. Blood concentrations of glucose, insulin, and cortisol, and adiposity were higher (P < 0.01) in OBF2 lambs than CONF2 lambs at birth. Importantly, OBF2 lambs failed to exhibit the early postnatal leptin peak exhibited by CONF2 lambs. Conclusions These data suggest that these OBF2 lambs are predisposed to exhibit the same metabolic alterations as their mothers, suggesting a multi

  4. Maternal obesity disturbs the postnatal development of gonocytes in the rat without impairment of testis structure at prepubertal age.

    PubMed

    Christante, Caroline Maria; Taboga, Sebastião Roberto; Pinto-Fochi, Maria Etelvina; Góes, Rejane Maira

    2013-12-01

    In this study, we evaluated whether maternal obesity (MO) affects testis development and gonocyte differentiation in the rat from 0.5 to 14.5 postnatal days. Male Wistar rats were used at 0.5, 4.5, 7.5, and 14.5 days post partum (dpp). These rats were born from obese mothers, previously fed with a high-fat diet (20% saturated fat), for 15 weeks, or normal mothers that had received a balanced murine diet (4% lipids). MO did not affect testis weight or histology at birth but changed the migratory behavior of gonocytes. The density of relocated cells was higher in MO pups at 0.5 dpp, decreased at 4.5 dpp, and differed from those of control pups, where density increased exponentially from 0.5 to 7.5 dpp. The numerical density of gonocytes within seminiferous cords did not vary in MO, in relation to control neonates, for any age considered, but the testis weight was 50% lower at 4.5 dpp. A wide variation in plasmatic testosterone and estrogen levels was observed among the groups during the first week of age and MO pups exhibited higher steroid concentrations at 4.5 dpp, in comparison with controls. At this age, higher estrogen levels of MO pups impaired the gonocyte proliferation. At 7.5 dpp, the testicular size and other parameters of gonocyte development are retrieved. In conclusion, MO and saturated lipid diets disturb gonocyte development and sexual steroid levels during the first days of life, with recovery at prepubertal age.

  5. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring.

    PubMed

    Kirk, Shona L; Samuelsson, Anne-Maj; Argenton, Marco; Dhonye, Hannah; Kalamatianos, Theodosis; Poston, Lucilla; Taylor, Paul D; Coen, Clive W

    2009-06-11

    Hypothalamic systems which regulate appetite may be permanently modified during early development. We have previously reported hyperphagia and increased adiposity in the adult offspring of rodents fed an obesogenic diet prior to and throughout pregnancy and lactation. We now report that offspring of obese (OffOb) rats display an amplified and prolonged neonatal leptin surge, which is accompanied by elevated leptin mRNA expression in their abdominal white adipose tissue. At postnatal Day 30, before the onset of hyperphagia in these animals, serum leptin is normal, but leptin-induced appetite suppression and phosphorylation of STAT3 in the arcuate nucleus (ARC) are attenuated; the level of AgRP-immunoreactivity in the hypothalamic paraventricular nucleus (PVH), which derives from neurones in the ARC and is developmentally dependent on leptin, is also diminished. We hypothesise that prolonged release of abnormally high levels of leptin by neonatal OffOb rats leads to leptin resistance and permanently affects hypothalamic functions involving the ARC and PVH. Such effects may underlie the developmental programming of hyperphagia and obesity in these rats.

  6. Physical activity and maternal obesity: cardiovascular adaptations, exercise recommendations, and pregnancy outcomes.

    PubMed

    Mottola, Michelle F

    2013-10-01

    Although a healthy lifestyle approach is intuitive for obese pregnant women, no guidelines currently exist to manage these women throughout pregnancy. Women who are medically prescreened for contraindications can engage in a walking program three to four times per week, starting at 25 min per session and adding 2 min per week until reaching 40 min, with sessions continuing until delivery. A target heart rate of 102-124 beats per minute should be promoted for women 20-29 years of age and a rate of 101-120 beats per minute for women 30-39 years of age. A pedometer step count of 10,000 steps per day is suggested as a goal, as this level of activity provides important health benefits. Combining healthy eating with a walking plan prevents excessive weight gain during pregnancy and promotes a healthy fetal environment.

  7. What is the Risk of Having Offspring with Cleft Lip/Palate in Pre-Maternal Obese/Overweight Women When Compared to Pre-Maternal Normal Weight Women? A Systematic Review and Meta-Analysis

    PubMed Central

    Izedonmwen, Omoroghogho Maria; Cunningham, Claudia

    2015-01-01

    ABSTRACT Objectives The purpose of the study was to identify the risk of orofacial cleft in the offspring of women with pre-maternal obesity/overweight when compared with pre-maternal normal weight women. Material and Methods MEDLINE and EMBASE were searched from 1980 to July 2014 for cohort, case control and cross sectional studies. BMI were categorized according to WHO recommendation: normal weight (BMI 18.5 - 24.9), overweight (BMI 25 - 29.9) and obese (BMI ≥ 30). Results Six studies were identified; three case control studies which were used for the meta-analysis and two cross sectional studies and one cohort study. Compared with women of recommended BMI, obese women were at increased odds of pregnancy affected by CLP (OR = 1.16; 95% CI 1, 1.34) and CP (OR = 1.14; 95% CI 0.95, 1.37). Overweight women were also at increased odds of pregnancy affected by CLP (OR = 1.06; 95% CI 0.93, 1.21) but not CP (OR = 0.89; 95% CI 0.75, 1.06). The results of the risk ratios reported in the cross sectional and cohort studies were similar to the results of the meta-analysis. Conclusions The results of this study reveal that there is an increased risk of having offspring with orofacial cleft in obese/overweight women. The reason for this association is not known. Although, the risk is small, it is important because of the increasing incidence of obesity. PMID:25937872

  8. Effect of Maternal Age at Childbirth on Obesity in Postmenopausal Women: A Nationwide Population-Based Study in Korea.

    PubMed

    We, Ji-Sun; Han, Kyungdo; Kwon, Hyuk-Sang; Kil, Kicheol

    2016-05-01

    The object of this study was to assess the obesity in postmenopausal women, according to age at childbirth.We analyzed the association between age at first childbirth, age at last childbirth, parity, and subject obesity status (general obesity; BMI >25 kg/m, nongeneral obesity; BMI ≤25 kg/m, abdominal obesity; waist circumference >85 cm, nonabdominal obesity; waist circumference ≤85 cm), using data from a nationwide population-based survey, the 2010 to 2012 Korean National Health and Nutrition Examination Survey. Data from a total of 4382 postmenopausal women were analyzed using multivariate regression analysis with complex survey design sampling. And, the subjects were subdivided into groups according to obesity or not. Age, smoking, alcohol consumption, exercise, education, income level, number of pregnancies, oral contraceptive uses, breast feeding experience were adjusted as the confounders.The prevalence of general obesity among Korean postmenopausal women was 37.08%. Women with general obesity and abdominal obesity were significantly younger at first childbirth compared with women with nongeneral obesity and no abdominal obesity (23.89 ± 0.1 vs. 23.22 ± 0.1, P <0.001). Age at first childbirth was inversely associated with obesity, while age at last childbirth was not associated with obesity or abdominal obesity. Women with a higher number of pregnancies were also more likely to have obesity and abdominal obesity. Age at first childbirth remained significantly associated with obesity, after adjusting for confounding factors.Obesity in postmenopausal women is associated with first childbirth at a young age, and higher parity. Further research is needed to clarify the association between obesity and reproductive characteristics. PMID:27175656

  9. Price and maternal obesity influence purchasing of low- and high-energy-dense foods2

    PubMed Central

    Epstein, Leonard H; Dearing, Kelly K; Paluch, Rocco A; Roemmich, James N; Cho, David

    2007-01-01

    Background Price can influence food purchases, which can influence consumption. Limited laboratory research has assessed the effect of price changes on food purchases, and no research on individual differences that may interact with price to influence purchases exists. Objective We aimed to assess the influence of price changes of low-energy-density (LED) and high-energy-density (HED) foods on mother’s food purchases in a laboratory food-purchasing analogue. Design Mothers were randomly assigned to price conditions in which the price of either LED or HED foods was manipulated from 75% to 125% of the reference purchase price, whereas the price of the alternative foods was kept at the reference value. Mothers completed purchases for 2 income levels ($15 or $30 per family member). Results Purchases were reduced when prices of LED (P < 0.01) and HED (P < 0.001) foods were increased. Maternal BMI interacted with price to influence purchases of HED foods when the price of HED foods increased (P = 0.016) and interacted with price to influence purchases of LED foods when the price of HED foods increased (P = 0.008). Conclusion These results show the relevance of considering price change as a way to influence food purchases of LED compared with HED foods and the possibility that individual differences may influence the own-price elasticity of HED foods and substitution of LED for HED foods. PMID:17921365

  10. Association between Maternal Fish Consumption and Gestational Weight Gain: Influence of Molecular Genetic Predisposition to Obesity

    PubMed Central

    Larsen, Sofus C.; Ängquist, Lars; Laurin, Charles; Morgen, Camilla S.; Jakobsen, Marianne U.; Paternoster, Lavinia; Smith, George Davey; Olsen, Sjurdur F.; Sørensen, Thorkild I. A.; Nohr, Ellen A.

    2016-01-01

    Background Studies suggest that fish consumption can restrict weight gain. However, little is known about how fish consumption affects gestational weight gain (GWG), and whether this relationship depends on genetic makeup. Objective To examine the association between fish consumption and GWG, and whether this relationship is dependent on molecular genetic predisposition to obesity. Design A nested case-cohort study based on the Danish National Birth Cohort (DNBC) sampling the most obese women (n = 990) and a random sample of the remaining participants (n = 1,128). Replication of statistically significant findings was attempted in the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 4,841). We included 32 body mass index (BMI) associated single nucleotide polymorphisms (SNPs) and 5 SNPs found associated with GWG. BMI associated SNPs were combined in a genetic risk score (GRS). Associations between consumption of fish, GRS or individual variants and GWG were analysed, and interactions between fish and the GRS or individual variants were examined. Results In the DNBC, each portion/week (150 g) of fatty fish was associated with a higher GWG of 0.58 kg (95% CI: 0.16, 0.99, P<0.01). For total fish and lean fish, similar patterns were observed, but these associations were not statistically significant. We found no association between GRS and GWG, and no interactions between GRS and dietary fish on GWG. However, we found an interaction between the PPARG Pro12Ala variant and dietary fish. Each additional Pro12Ala G-allele was associated with a GWG of -0.83 kg (95% CI: -1.29, -0.37, P<0.01) per portion/week of dietary fish, with the same pattern for both lean and fatty fish. In ALSPAC, we were unable to replicate these findings. Conclusion We found no consistent evidence of association between fish consumption and GWG, and our results indicate that the association between dietary fish and GWG has little or no dependency on GRS or individual SNPs. PMID:26930408

  11. Effects of running wheel training on adult obese rats programmed by maternal prolactin inhibition.

    PubMed

    Boaventura, G; Casimiro-Lopes, G; Pazos-Moura, C C; Oliveira, E; Lisboa, P C; Moura, E G

    2013-10-01

    The inhibition of maternal prolactin production in late lactation leads to metabolic syndrome and hypothyroidism in adult offspring. Physical training is a therapeutic strategy that could prevent or reverse this condition. We evaluated the effects of a short-duration low-intensity running wheel training program on the metabolic and hormonal alterations in rats. Lactating Wistar rats were treated with bromocriptine (Bro, 1 mg twice a day) or saline on days 19, 20, and 21 of lactation, and the training of offspring began at 35 days of age. Offspring were divided into sedentary and trained controls (C-Sed and C-Ex) and sedentary and trained Bro-treated rats (Bro-Sed and Bro-Ex). Chronic exercise delayed the onset of weight gain in Bro-Ex offspring, and the food intake did not change during the experimental period. At 180 days, visceral fat mass was higher (+46%) in the Bro-Sed offspring than in C-Sed and Bro-Ex rats. As expected, running capacity was higher in trained animals. Most parameters observed in the Bro-Sed offspring were consistent with hypothyroidism and metabolic syndrome and were reversed in the Bro-Ex group. Chronic exercise did not influence the muscle glycogen in the C-Ex group; however, liver glycogen was higher (+30%) in C-Ex group and was unchanged in both Bro offspring groups. Bro-Ex animals had higher plasma lactate dehydrogenase levels, indicating skeletal muscle damage and intolerance of the training program. Low-intensity chronic training is able to normalize many clinical aspects in Bro animals; however, these animals might have had a lower threshold for exercise adaptation than the control rats. PMID:23863192

  12. Dog Ownership during Pregnancy, Maternal Activity, and Obesity: A Cross-Sectional Study

    PubMed Central

    Westgarth, Carri; Liu, Jihong; Heron, Jon; Ness, Andrew R.; Bundred, Peter; Gaskell, Rosalind M.; German, Alexander J.; McCune, Sandra; Dawson, Susan

    2012-01-01

    The Avon Longitudinal Study of Parents and Children (ALSPAC) is an observational study of 14273 UK pregnant singleton mothers in 1990/1991. We examined outcomes of self report of strenuous activity (hours per week) at 18 and 32 weeks of gestation, hours spent in leisure-time physical activities and types, and pre-pregnancy body mass index (BMI); overweight status was defined as pre-pregnancy BMI≥25 and obesity BMI≥30. Pet ownership and activity data were reported for 11,466 mothers. Twenty-five percent of mothers owned at least one dog. There was a positive relationship between participation in activity at least once a week and dog ownership (at 18 weeks, Odds ratio 1.27, 95% confidence interval 1.11–1.44, P<0.001). Dog owners were 50% more likely to achieve the recommended 3 hours activity per week, equivalent to 30 minutes per day, most days of the week (1.53, 1.35–1.72, P<0.001). Dog owners were also more likely to participate in brisk walking activity than those who did not have a dog (compared to no brisk walking 2–6 hrs per week 1.43, 1.23 to 1.67, P<0.001; 7+ hrs per week 1.80, 1.43 to 2.27, P<0.001). However, no association was found with any other types of activities and there was no association between dog ownership and weight status. During the time period studied, pregnant women who had dogs were more active, through walking, than those who did not own dogs. As walking is a low-risk exercise, participation of pregnant women in dog walking activities may be a useful context to investigate as part of a broader strategy to improve activity levels in pregnant women. PMID:22355356

  13. The Impact of Maternal Obesity and Excessive Gestational Weight Gain on Maternal and Infant Outcomes in Maine: Analysis of Pregnancy Risk Assessment Monitoring System Results from 2000 to 2010

    PubMed Central

    Sarton, Cheryl; Lichter, Erika

    2016-01-01

    The objective of this study is to understand the relationships between prepregnancy obesity and excessive gestational weight gain (GWG) and adverse maternal and fetal outcomes. Pregnancy risk assessment monitoring system (PRAMS) data from Maine for 2000–2010 were used to determine associations between demographic, socioeconomic, and health behavioral variables and maternal and infant outcomes. Multivariate logistic regression analysis was performed on the independent variables of age, race, smoking, previous live births, marital status, education, BMI, income, rurality, alcohol use, and GWG. Dependent variables included maternal hypertension, premature birth, birth weight, infant admission to the intensive care unit (ICU), and length of hospital stay of the infant. Excessive prepregnancy BMI and excessive GWG independently predicted maternal hypertension. A high prepregnancy BMI increased the risk of the infant being born prematurely, having a longer hospital stay, and having an excessive birth weight. Excessive GWG predicted a longer infant hospital stay and excessive birth weight. A low pregnancy BMI and a lower than recommended GWG were also associated with poor outcomes: prematurity, low birth weight, and an increased risk of the infant admitted to ICU. These findings support the importance of preconception care that promotes achievement of a healthy weight to enhance optimal reproductive outcomes. PMID:27747104

  14. Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age – A Follow Up from the PREOBE Cohort

    PubMed Central

    Torres-Espinola, Francisco J.; Berglund, Staffan K; García-Valdés, Luz Mª; Segura, Mª Teresa; Jerez, Antonio; Campos, Daniel; Moreno-Torres, Rosario; Rueda, Ricardo; Catena, Andrés; Pérez-García, Miguel; Campoy, Cristina

    2015-01-01

    Background Brain development in fetal life and early infancy is critical to determine lifelong performance in various neuropsychological domains. Metabolic pathologies such as overweight, obesity, and gestational diabetes in pregnant women are prevalent and increasing risk factors that may adversely affect long-term brain development in their offspring. Objective The objective of this research was to investigate the influence of maternal metabolic pathologies on the neurodevelopment of the offspring at 6 and 18 months of life. Design This was a prospective case-control study of 331 mother- and child pairs from Granada, Spain. The mothers were included during pregnancy into four groups according to their pre-gestational body mass index and their gestational diabetes status; overweight (n:56), obese (n:64), gestational diabetic (n:79), and healthy normal weight controls (n:132). At 6 months and 18 months we assessed the children with the Bayley III scales of neurodevelopment. Results At 6 months (n=215), we found significant group differences in cognition composite language, and expressive language. Post hoc test revealed unexpectedly higher scores in the obese group compared to the normal weight group and a similar trend in overweight and diabetic group. The effects on language remained significant after adjusting for confounders with an adjusted odds ratio for a value above median in composite language score of 3.3 (95% CI: 1.1, 10.0; p=0.035) for children of obese mothers. At 18 month (n=197), the offspring born to obese mothers had lost five points in language composite scores and the previous differences in language and cognition was replaced by a suggestive trend of lower gross motor scores in the overweight, obese, and diabetic groups. Conclusions Infants of obese mothers had a temporary accelerated development of cognition and language, followed by a rapid deceleration until 18 months of age, particularly of language scores. This novel observation prompts

  15. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  16. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    SciTech Connect

    Miki, Takanori; Liu, Jun-Qian; Ohta, Ken-ichi; Suzuki, Shingo; Kusaka, Takashi; Warita, Katsuhiko; Yokoyama, Toshifumi; Jamal, Mostofa; Ueki, Masaaki; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2013-12-06

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.

  17. StartSmart: a randomized intervention to promote maternal weight control and reduce childhood obesity in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive gestational weight gain (GWG) can complicate a woman’s pregnancy and put her and her child at risk for poor delivery and birth outcomes and chronic conditions such as obesity. Further, feeding and activity habits established early in life can significantly impact the development of obesity...

  18. FRZB up-regulated in hepatocellular carcinoma bone metastasis

    PubMed Central

    Huang, Jia; Hu, Wenhao; Lin, Xiangjin; Wang, Xuanwei; Jin, Ketao

    2015-01-01

    The clinical relevance of frizzled-related protein (FRZB) in hepatocellular carcinoma (HCC) bone metastasis remains uncertain. The aim of this study was to assess the clinical relationship of FRZB in patients with HCC bone metastasis after surgical resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) HCC and paired bone metastasis tissues from 13 patients that underwent surgical resection. The clinical characteristics of 13 HCC patients with synchronous or metachronous bone metastasis received surgery were retrospectively reviewed. We found that FRZB was positive in 9 HCC tissues (69.2%) and in 11 paired bone metastatic tissues (84.6%) among these 13 paired samples. The expression of FRZB in the bone metastases was noticeably higher than that in the paired HCC tissues. The expression of FRZB was up-regulated in 10 (76.9%) paired bone metastases tissues. FRZB expression was up-regulated in HCC bone metastasis tissue, which suggested that FRZB might play a key role in the HCC bone metastasis. PMID:26722540

  19. Maternal dietary n-6/n-3 fatty acid ratio affects type 1 diabetes development in the offspring of non-obese diabetic mice.

    PubMed

    Kagohashi, Yukiko; Abiru, Norio; Kobayashi, Masakazu; Hashimoto, Michio; Shido, Osamu; Otani, Hiroki

    2010-12-01

    Environment factors, including maternal or infant dietary nutrition have been reported to have an influence on the pathogenesis of type 1 diabetes. In the present study, to investigate the effect of maternal or post-weaning offspring's nutrition, in particular the essential fatty acid ratio (n-6/n-3) on the development of type 1 diabetes, we prepared two kinds of chows with n-6/n-3 ratios of 3.0 (L) and 14.5 (H), and provided them to mothers of non-obese diabetic (NOD) mice during gestation and lactation and to the offspring after weaning. The n-6/n-3 ratios in breast milk and erythrocyte membrane of NOD offspring became nearly the same with that of the maternal diet at 2 weeks after birth. In the L chow-fed offspring from L chow-fed mother (LLL), levels of insulitis were higher than those in the H chow-fed offspring from H chow-fed mother (HHH) at 4 weeks of age, while the levels in the LLL offspring became lower than those in the HHH after 6 weeks. Early insulin autoantibody expressions were found from 2 to 6 weeks in the HHH offspring, but not in the LLL. The LLL offspring exhibited strong suppression of overt diabetes development in regard to the onset and accumulated incidence of diabetes compared to the HHH. The study with combined L and H chows during gestation, lactation in mother and in post-weaning offspring revealed that only the LLH chow significantly suppressed the development of diabetes with similar kinetics to LLL chow, although the other combinations may delay the onset of diabetes. The present findings suggest that n-6/n-3 ratio of the maternal diet during gestation and lactation rather than that of offspring after weaning strongly affects the development of overt diabetes in NOD mice. PMID:20846138

  20. Maternal air pollution exposure induces fetal neuroinflammation and predisposes offspring to obesity in aduthood in a sex-specific manner

    EPA Science Inventory

    Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pre...

  1. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    PubMed

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.

  2. Maternal Depressive and Anxiety Symptoms, Self-Esteem, Body Dissatisfaction and Preschooler Obesity: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Benton, Pree; Skouteris, Helen; Hayden, Melissa

    2016-01-01

    The primary aim of the present study was to cross-sectionally examine the associations between maternal psychosocial variables, child feeding practices, and preschooler body mass index z-score (BMI-z) in children (aged 2-4 years). A secondary aim was to examine differences in child weight outcomes between mothers scoring above and below specified…

  3. Coordinately up-regulated genes in ovarian cancer.

    PubMed

    Hough, C D; Cho, K R; Zonderman, A B; Schwartz, D R; Morin, P J

    2001-05-15

    A better understanding of the molecular circuitry in normal ovarian tissues and in ovarian cancer will likely provide new targets for diagnosis and therapy. Recently, much has been learned about the genes expressed in ovarian cancer through studies with cDNA arrays and serial analysis of gene expression. However, these methods do not allow highly quantitative analysis of gene expression on a large number of specimens. Here, we have used quantitative real-time RT-PCR in a panel of 39 microdissected ovarian carcinomas of various subtypes to systematically analyze the expression of 13 genes, many of which were previously identified as up-regulated in a subset of ovarian cancers by serial analyses of gene expression. The genes analyzed are glutathione peroxidase 3 (GPX3), apolipoprotein J/clusterin, insulin-like growth factor-binding protein 2, epithelial cell adhesion molecule/GA733-2, Kop protease inhibitor, matrix gla protein, tissue inhibitor of metalloproteinase 3, folate receptor 1, S100A2, signal transducer and activator of transcription 1, secretory leukocyte protease inhibitor, apolipoprotein E, and ceruloplasmin. All of the genes were found overexpressed, some at extremely high levels, in the vast majority of ovarian carcinomas irrespective of the subtype. Interestingly, GPX3 was found at much higher levels in tumors with clear cell histology and may represent a biomarker for this subtype. Some of the genes studied here may thus represent targets for early detection ovarian cancer. The gene expression patterns were not associated with age at diagnosis, stage, or K-ras mutation status in ovarian cancer. We find that several genes are coordinately regulated in ovarian cancer, likely representing the fact that many genes are activated as part of common signaling pathways or that extensive cross-talk exists between several pathways in ovarian cancer. A statistical analysis shows that genes commonly up-regulated in ovarian cancer may result from the aberrant

  4. Obesity in obstetrics.

    PubMed

    Liat, Salzer; Cabero, Luis; Hod, Moshe; Yogev, Yariv

    2015-01-01

    Obesity is a rising global epidemic. Obesity during pregnancy is associated with increased maternal and fetal risks, which is inversely correlated with the severity level of obesity. Other comorbidities are common (diabetes mellitus, hypertensive disorders, etc.) and contribute to an even increased risk. Maternal obesity during pregnancy contributes also to offspring obesity and noncommunicable diseases later in life in a vicious cycle. Managing these problems, and potentially reducing their risk, can pose a challenge in obstetric care. It is important to provide preconception nutritional and exercise care, and guidance during pregnancy and post pregnancy for appropriate weight loss.

  5. Influence of maternal and child lifestyle-related characteristics on the socioeconomic inequality in overweight and obesity among 5-year-old children; the "Be Active, Eat Right" Study.

    PubMed

    Veldhuis, Lydian; Vogel, Ineke; van Rossem, Lenie; Renders, Carry M; Hirasing, Remy A; Mackenbach, Johan P; Raat, Hein

    2013-06-06

    It is unclear whether the socioeconomic inequality in prevalence of overweight and obesity is already present among very young children. This study investigates the association between overweight and socioeconomic status (SES, with maternal educational level as an indicator of SES) among 5-year-old children. This cross-sectional study uses baseline data from 5-year-olds of Dutch ethnicity (n = 5,582) and their mothers collected for the "Be active, eat right" study. Compared to children of mothers with the highest educational level, for children of mothers with the lowest educational level the odds ratio (adjusted for demographic characteristics) for having overweight was 2.10 (95% confidence interval: 1.57-2.82), and for having obesity was 4.18 (95% confidence interval: 2.32-7.55). Addition of maternal and child lifestyle-related characteristics decreased the odds ratios for overweight and obesity by 26.4% and 42.1%, respectively. The results show that an inverse SES-overweight/obesity association is already present at elementary school entry, and that watching TV by mother and child, the child consuming breakfast and, especially maternal weight status, are contributing factors in this association. These results should be taken into account when developing policies to reduce inequalities in (childhood) health.

  6. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  7. NFAT5 Is Up-Regulated by Hypoxia: Possible Implications in Preeclampsia and Intrauterine Growth Restriction.

    PubMed

    Dobierzewska, Aneta; Palominos, Macarena; Irarrazabal, Carlos E; Sanchez, Marianela; Lozano, Mauricio; Perez-Sepulveda, Alejandra; Monteiro, Lara J; Burmeister, Yara; Figueroa-Diesel, Horacio; Rice, Gregory E; Illanes, Sebastian E

    2015-07-01

    During gestation, low oxygen environment is a major determinant of early placentation process, while persistent placental hypoxia leads to pregnancy-related complications such as preeclampsia (PE) and intrauterine growth restriction (IUGR). PE affects 5%-8% of all pregnancies worldwide and is a cause of maternal and fetal morbidity and mortality. During placental development, persistent hypoxia due to poor trophoblast invasion and reduced uteroplacental perfusion leads to maternal endothelial dysfunction and clinical manifestation of PE. Here we hypothesized that nuclear factor of activated T cells-5 (NFAT5), a well-known osmosensitive renal factor and recently characterized hypoxia-inducible protein, is also activated in vivo in placentas of PE and IUGR complications as well as in the in vitro model of trophoblast hypoxia. In JAR cells, low oxygen tension (1% O2) induced NFAT5 mRNA and increased its nuclear abundance, peaking at 16 h. This increase did not occur in parallel with the earlier HIF1A induction. Real-time PCR and Western blot analysis confirmed up-regulation of NFAT5 mRNA and NFAT5 nuclear content in human preeclamptic placentas and in rabbit placentas of an experimentally induced IUGR model, as compared with the control groups. In vitro lambda protein phosphatase (lambda PPase) treatment revealed that increased abundance of NFAT5 protein in nuclei of either JAR cells (16 h of hypoxia) or PE and IUGR placentas is at least partially due to NFAT5 phosphorylation. NFAT5 downstream targets aldose reductase (AR) and sodium-myo-inositol cotransporter (SMIT; official symbol SLC5A3) were not significantly up-regulated either in JAR cells exposed to hypoxia or in placentas of PE- and IUGR-complicated pregnancies, suggesting that hypoxia-dependent activation of NFAT5 serves as a separate function to its tonicity-dependent stimulation. In conclusion, we propose that NFAT5 may serve as a novel marker of placental hypoxia and ischemia independently of HIF1A. PMID

  8. A plant gene up-regulated at rust infection sites.

    PubMed

    Ayliffe, Michael A; Roberts, James K; Mitchell, Heidi J; Zhang, Ren; Lawrence, Gregory J; Ellis, Jeffrey G; Pryor, Tony J

    2002-05-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.

  9. Mycoplasma arthritidis mitogen up-regulates human NK cell activity.

    PubMed Central

    D'Orazio, J A; Cole, B C; Stein-Streilein, J

    1996-01-01

    While the effects of superantigens on T lymphocytes are well characterized, how superantigens interact with other immune cells is less clear. This report examines the effects of Mycoplasma arthritidis mitogen (MAM) on human natural killer (NK) cell activity. Incubation of peripheral blood mononuclear cells (PBMC) with MAM for 16 to 20 h augmented NK cytotoxicity (against K562) in a dose-dependent manner (P < or = 0.05). Superantigen-dependent cellular cytotoxicity, an activity of superantigen-activated cytotoxic T cells, was not involved in lysis of K562 cells because the erythroleukemic tumor target cells expressed no class II major histocompatibility complex by fluorescence-activated cell sorter analysis. Kinetic experiments showed that the largest increase in NK activity induced by MAM occurred within 48 h. Incubation with MAM caused a portion of NK cells to become adherent to tissue culture flasks, a quality associated with activation, and augmented NK activity was found in both adherent and nonadherent subpopulations. Experiments using cytokine-specific neutralizing antibodies showed that interleukin-2 contributed to enhancement of the NK activity observed in superantigen-stimulated PBMC. Interestingly, MAM was able to augment NK lysis of highly purified NK (CD56+) cells in the absence of other immune cells in 9 of 12 blood specimens, with the augmented lytic activity ranging from 110 to 170% of unstimulated NK activity. In summary, data presented in this report show for the first time that MAM affects human NK cells directly by increasing their lytic capacity and indirectly in PBMC as a consequence of cytokines produced by T cells. Results of this work suggest that, in vivo, one consequence of interaction with superantigen-secreting microorganisms may be up-regulation of NK lytic activity. These findings may have clinical application as a means of generating augmented NK effector cells useful in the immunotherapy of parasitic infections or neoplasms. PMID

  10. Up-regulation of apolipoprotein E by leptin in the hypothalamus of mice and rats

    PubMed Central

    Shen, Ling; Tso, Patrick; Wang, David Q.-H.; Woods, Stephen C.; Davidson, W. Sean; Sakai, Randall; Liu, Min

    2009-01-01

    Apolipoprotein E (apoE) is a satiation factor, playing an important role in the regulation of food intake and body weight. We previously reported that apoE was present in the hypothalamus, but it is unclear which type of the cells in this brain area expressing apoE. In addition, hypothalamic apoE mRNA levels were significantly reduced in both genetically obese ob/ob (leptin deficient) mice and high-fat diet-induced obese (leptin resistant) rats, raising the possibility that deficient leptin signaling might be related to the change in apoE gene expression. In the present studies, using double-staining immunohistochemistry, we demonstrated that apoE is mainly present in astrocytes. To characterize the effect of leptin on apoE gene expression, ob/ob and db/db mice were treated with recombinant mouse leptin (3 μg/g daily, i.p.) or vehicle for 5 days. We found that the increased hypothalamic apoE mRNA levels occurred only in leptin-treated ob/ob, but not in pair-fed ob/ob, or db/db, mice, indicating that leptin up-regulated hypothalamic apoE gene expression depends upon an intact leptin receptor, and this effect is not related to the changes in food intake and body weight. The reduced apoE gene expression caused by fasting, which also results in relatively lower leptin level, is restored by intracerebroventricular administration of leptin. In addition, leptin was significantly less efficacious in apoE KO mice because these animals consumed more food and lost less weight following leptin treatment, compared with wild-type controls. These observations imply that apoE signaling, at least partially, mediates the inhibitory effects of leptin on feeding. PMID:19481557

  11. The prevention and treatment of hypoadiponectinemia-associated human diseases by up-regulation of plasma adiponectin.

    PubMed

    Hossain, Md Murad; Mukheem, Abdul; Kamarul, Tunku

    2015-08-15

    Hypoadiponectinemia is characterized by low plasma adiponectin levels that can be caused by genetic factors, such as single nucleotide polymorphisms (SNPs) and mutations in the adiponectin gene or by visceral fat deposition/obesity. Reports have suggested that hypoadiponectinemia is associated with dyslipidemia, hypertension, hyperuricemia, metabolic syndrome, atherosclerosis, type 2 diabetes mellitus and various cardiovascular diseases. Previous studies have highlighted several potential strategies to up-regulate adiponectin secretion and function, including visceral fat reduction through diet therapy and exercise, administration of exogenous adiponectin, treatment with peroxisome proliferator-activating receptor gamma (PPARγ) agonists (e.g., thiazolidinediones (TZDs)) and ligands (e.g., bezafibrate and fenofibrate) or the blocking of the renin-angiotensin system. Likewise, the up-regulation of the expression and stimulation of adiponectin receptors by using adiponectin receptor agonists would be an effective method to treat obesity-related conditions. Notably, adiponectin is an abundantly expressed bioactive protein that also exhibits a wide spectrum of biological properties, such as insulin-sensitizing, anti-diabetic, anti-inflammatory and anti-atherosclerotic activities. Although targeting adiponectin and its receptors has been useful for treating diabetes and other metabolic-related diseases in experimental studies, current drug development based on adiponectin/adiponectin receptors for clinical applications is scarce, and there is a lack of available clinical trial data. This comprehensive review discusses the strategies that are presently being pursued to harness the potential of adiponectin up-regulation. In addition, we examined the current status of drug development and its potential for clinical applications. PMID:25818192

  12. Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig

    PubMed Central

    Newell-Fugate, Annie E.; Taibl, Jessica N.; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M.; Nowak, Romana A.; Krisher, Rebecca L.

    2015-01-01

    The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the

  13. Obesity in pregnancy.

    PubMed

    Lim, Chu Chin; Mahmood, Tahir

    2015-04-01

    The prevalence of obesity has reached alarming proportions globally, and continues to rise in both developed and developing countries. Maternal obesity has become one of the most commonly occurring risk factors in obstetric practice. The 2003-2005 report of the Confidential Enquiries into Maternal Deaths in the United Kingdom highlighted obesity as a significant risk for maternal death [1]. More than half of all women who died from direct or indirect causes were either overweight or obese. For the mother, obesity increases the risk of obstetric complications during the antenatal, intrapartum and postnatal period, as well as contributing to technical difficulties with fetal assessment. The offspring of obese mothers also have a higher rate of perinatal morbidity and an increased risk of long-term health problems.

  14. Analysis of Maternal and Fetal Cardiovascular Systems During Hyperglycemic Pregnancy in the Non-Obese Diabetic Mouse

    PubMed Central

    Aasa, Kristiina L.; Kwong, Kenneth K.; Adams, Michael A.; Croy, B. Anne

    2013-01-01

    Pre-conception or gestationally-induced diabetes increases morbidities and elevates long-term cardiovascular disease risks in women and their children. Spontaneously hyperglycemic (d)-NOD/ShiLtJ females, a type 1 diabetes model, develop bradycardia and hypotension after midpregnancy compared with normoglycemic, age and gestation day (gd)-matched controls (c-NOD). We hypothesized that onset of the placental circulation at gd9–10 and rapid fetal growth from gd14 correlate with aberrant hemodynamic outcomes in d-NOD females. To develop further gestational time course correlations between maternal cardiac and renal parameters, high-frequency ultrasonography was applied to virgin and gd8–16 d- and c-NODs. Cardiac output and left ventricular (LV) mass increased in c- but not d-NODs. Ultrasound and postmortem histopathology showed overall greater LV dilation in d- than c-NOD mice in mid-late gestation. These changes suggest blunted remodeling and altered functional adaptation of d-NOD hearts. Umbilical cord ultrasounds revealed lower fetal heart rates from gd12 and lower umbilical flow velocities at gd14 and 16 in d- versus c-NOD pregnancies. From gd14–16, d-NOD fetal losses exceeded those of c-NOD. Similar aberrant responses in human diabetic pregnancies may elevate postpartum maternal and child cardiovascular risk, particularly if mothers lack adequate prenatal care or have poor glycemic control over gestation. PMID:23636813

  15. Risk factors for obesity and high blood pressure in Chinese American children: maternal acculturation and children's food choices.

    PubMed

    Chen, Jyu-Lin; Weiss, Sandra; Heyman, Melvin B; Lustig, Robert

    2011-04-01

    The objective of this study is to explore risk factors associated with overweight and high blood pressure in Chinese American children. Students and their parents were recruited from Chinese language schools in the San Francisco Bay Area. Data were collected on 67 children and their mothers, and included children's weight, height, waist and hip circumferences, blood pressure, level of physical activity, dietary intake, usual food choice, knowledge about nutrition and physical activity, and self-efficacy regarding diet and physical activity. Mothers completed questionnaires on demographic data and acculturation. About 46% of children had a body mass index exceeding the 85th percentile. Lower level of maternal acculturation is a risk factor for overweight and higher waist to hip ratio. Children's unhealthy food choices were predictive of high body mass index and high systolic blood pressure, whereas older age and less physical activity in children were predictors of high diastolic blood pressure. Developing culturally sensitive and developmentally appropriate interventions to reduce overweight and high blood pressure is critical to reduce health disparities among minority children.

  16. Programming of the appetite-regulating neural network: a link between maternal overnutrition and the programming of obesity?

    PubMed

    Mühlhäusler, B S

    2007-01-01

    The concept of a functional foetal "appetite regulatory neural network" is a new and potentially critical one. There is a growing body of evidence showing that the nutritional environment to which the foetus is exposed during prenatal and perinatal development has long-term consequences for the function of the appetite-regulating neural network and therefore the way in which an individual regulates energy balance throughout later life. This is of particular importance in the context of evidence obtained from a wide range of epidemiological studies, which have shown that individuals exposed to an elevated nutrient supply before birth have an increased risk of becoming obese as children and adults. This review summarises the key pieces of experimental evidence, by our group and others, that have contributed to our current understanding of the programming of appetite, and highlights the important questions that are yet to be answered. It is clear that this area of research has the potential to generate, within the next few years, interventions that could begin to alleviate the adverse long-term consequences of being exposed to an elevated nutrient supply before birth.

  17. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling

    PubMed Central

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. PMID:27555521

  18. Maternal correlates of maternal child feeding practices: a systematic review.

    PubMed

    McPhie, Skye; Skouteris, Helen; Daniels, Lynne; Jansen, Elena

    2014-01-01

    Establishing healthy eating habits early in life is one important strategy to combat childhood obesity. Given that early maternal child feeding practices have been linked to child food intake and weight, identifying the maternal correlates of maternal child feeding practices is important in order to understand the determinants of childhood obesity; this was the overall aim of the current review. Academic databases were searched for studies examining the relationship between maternal child feeding practices and parenting, personal characteristics and psychopathology of mothers with preschoolers. Papers were limited to those published in English, between January 2000 and June 2012. Only studies with mothers of normally developing children between the ages of 2 and 6 years were included. There were no restrictions regarding the inclusion of maternal nationality or socioeconomic status (SES). Seventeen eligible studies were sourced. Information on the aim, sample, measures and findings of these was summarised into tables. The findings of this review support a relationship between maternal controlling parenting, general and eating psychopathology, and SES and maternal child feeding practices. The main methodological issues of the studies reviewed included inconsistency in measures of maternal variables across studies and cross-sectional designs. We conclude that the maternal correlates associated with maternal child feeding practices are complex, and the pathways by which maternal correlates impact these feeding practices require further investigation.

  19. Maternal low protein diets decrease skeletal muscle growth, PGC-1alpha mRNA expression and mitochondrial oxidative respiration and increase obesity and insulin resistance in obesity prone Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition during the fetal growth period followed by postnatal catch-up growth results in obesity and the development of type 2 diabetes (T2D). To determine whether a prenatal low protein diet followed by postnatal high fat diet increases propensity for obesity and T2D in offspring, obese-prone f...

  20. Body fat mass reduction and up-regulation of uncoupling protein by novel lipolysis-promoting plant extract.

    PubMed

    Mori, Shinobu; Satou, Mayumi; Kanazawa, Satoshi; Yoshizuka, Naonobu; Hase, Tadashi; Tokimitsu, Ichiro; Takema, Yoshinori; Nishizawa, Yoshinori; Yada, Toshihiko

    2009-01-01

    We have found natural products exhibiting lipolysis-promoting activity in subcutaneous adipocytes, which are less sensitive to hormones than visceral adipocytes. The activities and a action mechanisms of a novel plant extract of Cirsium oligophyllum (CE) were investigated in isolated adipocytes from rat subcutaneous fat, and its fat-reducing effects by peroral administration and topical application were evaluated in vivo. CE-induced lipolysis was synergistically enhanced by caffeine, a phosphodiesterase inhibitor, and was reduced by propranolol, a beta adrenergic antagonist. The peroral administration of 10% CE solution to Wistar rats for 32 days reduced body weight gain, subcutaneous, and visceral fat weights by 6.6, 26.2, and 3.0%, respectively, as compared to the control group. By the topical application of 2% of this extract to rats for 7 days, weight of subcutaneous fat in the treated skin was reduced by 23.2%. This fat mass reduction was accompanied by the up-regulation of uncoupling protein 1 (UCP), a principal thermogenic mitochondrial molecule related to energy dissipating, in subcutaneous fat and UCP3 in skin except for the fat layer. These results indicate that CE promotes lipolysis via a mechanism involving the beta adrenergic receptor, and affects the body fat mass. This fat reduction may be partially due to UCP up-regulation in the skin including subcutaneous fat. This is the first report showing that repeated lipolysis promotion through CE administration may be beneficial for the systematic suppression of body fat accumulation or the control of fat distribution in obesity.

  1. Up-regulation in the expression of renin gene by the influence of aluminium.

    PubMed

    Ezomo, Ojeiru F; Matsushima, Fumiko; Meshitsuka, Shunsuke

    2009-11-01

    The excretion of aluminium in urine was significantly increased after intake of analgesics containing aluminium, confirming increased absorption and hence exposure to aluminium with such medication. The effect of aluminium on the kidney was further investigated by study of gene expression in mice. After a single dose of aluminium, an up-regulation of renin gene was found by DNA sequencing of the products of differential display analysis. The up-regulation of renin was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments in the dose dependent treatments and the time course observation after aluminium citrate injection. The up-regulation of the renin expression by aluminium is a strong indication of the influence of aluminium on the renin-angiotensin-aldosterone-system, resulting in possible induction of essential hypertension.

  2. Up-regulation of emotional responses to reward-predicting stimuli: an ERP study.

    PubMed

    Langeslag, Sandra J E; van Strien, Jan W

    2013-09-01

    Altered reward processing is a hallmark symptom of many psychiatric disorders. It has recently been shown that people are capable of down-regulating reward processing. Here, we examined whether people are capable of up-regulating emotional responses to reward-predicting stimuli. Participants passively viewed colored squares that predicted a reward or no reward, and up- or down-regulated their emotional responses to these reward-predicting stimuli by focusing on the reward meaning or the color of the squares respectively. The amplitude of the late positive potential (LPP) was taken as an objective index of regulation success. The LPP in response to reward-predicting squares was enhanced by up-regulation, suggesting that up-regulation of emotional responses to reward-predicting stimuli using a cognitive strategy is feasible. These results are highly relevant for the treatment of disorders characterized by diminished motivation, and for reward-based decision making in daily life. PMID:23770414

  3. Mu opioid receptor up-regulation and participation in excitability of hippocampal pyramidal cell electrophysiology

    SciTech Connect

    Moudy, A.M.

    1988-01-01

    Chronic administration of opiate antagonists to rats results in up-regulation of their brain opioid receptors. Using subcellular fractionation techniques, brain opioid receptors were resolved into two membrane populations, one associated with synaptic plasma membranes (SPM) and the other enriched in smooth endoplasmic reticulum and Golgi (microsomes). This study addressed in part the question of whether an antagonist induces up-regulation uniformly in these two populations. Rats were administered naltrexone by subcutaneously implanted osmotic minipumps. Forebrain mu receptor levels were determined by homologous displacement of ({sup 3}H)D-ala{sup 2}-mePhe{sup 4}-gly-ol{sup 5}-enkephalin (DAGO) followed by computer estimation of binding parameters. Receptor levels in crude membranes rose 77% after treatment. Microsomes displayed a 92% increase, a two-fold greater change than in SPMs (51%). These results establish that naltrexone induces up-regulation of both membrane populations; and that microsomal and SPM receptors represent discrete populations of intracellular and cell surface sites, respectively. Binding experiments on isolated hippocampi also demonstrated up-regulation (71%) of mu receptors. To demonstrate up-regulation of opioid receptors electrophysiologically, hippocampal slices were prepared from rats which had been chronically treated with naltrexone. After superfusion with DAGO, these slices showed a 42% greater population spike output than controls in response to the same EPSP input. Hippocampi from animals treated for two weeks showed an additional increase in sensitivity. The results support a disinhibitory role for opioids in pyramidal cell hyper-excitability. More importantly, they demonstrate a significant physiological correlate to opioid receptor up-regulation.

  4. Maternal pre-gravid body mass index and adiposity influence umbilical cord gene expression at term in AGA infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While maternal obesity is associated with unfavorable maternal and fetal outcomes, the influence of maternal obesity on fetal gene expression is less clear. Umbilical cords (UC) from 12 lean (pre-gravid BMI < 25) and 10 overweight/obese (OB, pre-gravid BMI =25) women without gestational diabetes wer...

  5. Metabolic imprinting in obesity.

    PubMed

    Sullivan, E L; Grove, K L

    2010-01-01

    Increasing evidence indicates that early metabolic programming contributes to escalating obesity rates in children and adults. Metabolic imprinting is involved in the establishment of set points for physiologic and metabolic responses in adulthood. Evidence from epidemiological studies and animal models indicates that maternal health and nutritional status during gestation and lactation have long-term effects on central and peripheral systems that regulate energy balance in the developing offspring. Perinatal nutrition also impacts susceptibility to developing metabolic disorders and plays a role in programming body weight set points. The states of maternal energy status and health that are implicated in predisposing offspring to increased risk of developing obesity include maternal overnutrition, diabetes, and undernutrition. This chapter discusses the evidence from epidemiologic studies and animal models that each of these states of maternal energy status results in metabolic imprinting of obesity in offspring. Also, the potential molecular mediators of metabolic imprinting of obesity by maternal energy status including glucose, insulin, leptin, inflammatory cytokines and epigenetic mechanisms are considered.

  6. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. PMID:26877262

  7. Executive functions and the down-regulation and up-regulation of emotion

    PubMed Central

    Gyurak, Anett; Goodkind, Madeleine S.; Kramer, Joel H.; Miller, Bruce L.; Levenson, Robert W.

    2011-01-01

    This study examined the relationship between individual differences in executive functions (EF; assessed by measures of working memory, Stroop, trail making, and verbal fluency) and ability to down-regulate and up-regulate responses to emotionally evocative film clips. To ensure a wide range of EF, 48 participants with diverse neurodegenerative disorders and 21 older neurologically normal aging participants were included. Participants were exposed to three different movie clips that were designed to elicit a mix of disgust and amusement. While watching the films they were either instructed to watch, down-regulate, and up-regulate their visible emotional responses. Heart-rate and facial behaviors were monitored throughout. Emotion regulatory ability was operationalized as changes in heart-rate and facial behavior in the down- and up-regulation conditions, controlling for responses in the watch condition. Results indicated that higher verbal fluency scores were related to greater ability to regulate emotion in both the down-regulation and up-regulation conditions. This finding remained significant even after controlling for age and general cognitive functioning. No relationships were found between emotion regulation and the other EF measures. We believe these results derive from differences among EF measures, with verbal fluency performance best capturing the complex sequence of controlled planning, activation, and monitoring required for successful emotion regulation. These findings contribute to our understanding of emotion-cognition interaction, suggesting a link between emotion-regulatory abilities and individual differences in complex executive functions. PMID:21432634

  8. Impaired up-regulation of type II corticosteroid receptors in hippocampus of aged rats.

    PubMed

    Eldridge, J C; Fleenor, D G; Kerr, D S; Landfield, P W

    1989-01-30

    Several recent investigations have reported a decline of rat hippocampal corticosteroid-binding receptors (CSRs) with aging. This decline has been proposed to be an initial cause (through disinhibition) of the elevated adrenal steroid secretion that apparently occurs with aging; however, it could instead be an effect of corticoid elevation (through down-regulation). In order to assess the effects of age on CSR biosynthetic capacity in the absence of down-regulatory influences of endogenous corticoids, as well as to study aging changes in CSR plasticity, we examined the up-regulation of hippocampal CSR that follows adrenalectomy (ADX). The rat hippocampus contains at least two types of CSR binding and differential analysis of types I and II CSR was accomplished by selective displacement of [3H]corticosterone with RU-28362, a specific type II agonist. In young (3 months old) Fischer-344 rat hippocampus, up-regulation of type II binding above 2-day ADX baseline was present by 3-7 days and increased still further by 8-10 days post-ADX; type I CSR density did not change significantly between 1 and 10 days post-ADX. However, in aged (24-26 months old) rats, type II CSR up-regulation did not occur over the 10 day post-ADX period. Thus, the age-related impairment of type II up-regulation may reflect an intrinsic deficit in CSR biosynthesis or lability that is independent of the acute endogenous adrenal steroid environment.

  9. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  10. CD84 is markedly up-regulated in Kawasaki disease arteriopathy

    PubMed Central

    Reindel, R; Bischof, J; Kim, K-Y A; Orenstein, J M; Soares, M B; Baker, S C; Shulman, S T; Perlman, E J; Lingen, M W; Pink, A J; Trevenen, C; Rowley, A H

    2014-01-01

    The major goals of Kawasaki disease (KD) therapy are to reduce inflammation and prevent thrombosis in the coronary arteries (CA), but some children do not respond to currently available non-specific therapies. New treatments have been difficult to develop because the molecular pathogenesis is unknown. In order to identify dysregulated gene expression in KD CA, we performed high-throughput RNA sequencing on KD and control CA, validated potentially dysregulated genes by real-time reverse transcription–polymerase chain reaction (RT–PCR) and localized protein expression by immunohistochemistry. Signalling lymphocyte activation molecule CD84 was up-regulated 16-fold (P < 0·01) in acute KD CA (within 2 months of onset) and 32-fold (P < 0·01) in chronic CA (5 months to years after onset). CD84 was localized to inflammatory cells in KD tissues. Genes associated with cellular proliferation, motility and survival were also up-regulated in KD CA, and immune activation molecules MX2 and SP140 were up-regulated in chronic KD. CD84, which facilitates immune responses and stabilizes platelet aggregates, is markedly up-regulated in KD CA in patients with acute and chronic arterial disease. We provide the first molecular evidence of dysregulated inflammatory responses persisting for months to years in CA significantly damaged by KD. PMID:24635044

  11. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    PubMed

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  12. Pregnancy risks associated with obesity.

    PubMed

    Mission, John F; Marshall, Nicole E; Caughey, Aaron B

    2015-06-01

    Obesity has increased dramatically in the United States over the last several decades, with approximately 40% of pregnant women now considered overweight or obese. Obesity has been shown to be associated with numerous poor pregnancy outcomes, including increased rates of preeclampsia, gestational diabetes, fetal macrosomia, stillbirth, postterm pregnancy, and increased rates of cesarean delivery. Many of these complications have been found to increase even further with increasing body mass index in a dose-response fashion. In this review, the association of obesity with maternal, fetal, and pregnancy outcomes is discussed as are the recommendations for caring for the obese gravida.

  13. Maternal microchimerism

    PubMed Central

    Ye, Jody; Vives-Pi, Marta; Gillespie, Kathleen M

    2014-01-01

    Increased levels of non-inherited maternal HLA alleles have been detected in the periphery of children with type 1 diabetes and an increased frequency of maternal cells have been identified in type 1 diabetes pancreas. It is now clear that the phenotype of these cells is pancreatic,1 supporting the hypothesis that maternal cells in human pancreas are derived from multipotent maternal progenitors. Here we hypothesize how increased levels of maternal cells could play a role in islet autoimmunity. PMID:25093746

  14. Weight Loss Instead of Weight Gain within the Guidelines in Obese Women during Pregnancy: A Systematic Review and Meta-Analyses of Maternal and Infant Outcomes

    PubMed Central

    Kapadia, Mufiza Zia; Park, Christina K.; Beyene, Joseph; Giglia, Lucy; Maxwell, Cindy; McDonald, Sarah D.

    2015-01-01

    Background Controversy exists about how much, if any, weight obese pregnant women should gain. While the revised Institute of Medicine guidelines on gestational weight gain (GWG) in 2009 recommended a weight gain of 5–9 kg for obese pregnant women, many studies suggested even gestational weight loss (GWL) for obese women. Objectives A systematic review was conducted to summarize pregnancy outcomes in obese women with GWL compared to GWG within the 2009 Institute of Medicine guidelines (5–9 kg). Design Five databases were searched from 1 January 2009 to 31 July 2014. The Cochrane Handbook for Systematic Reviews of Interventions and the PRISMA Statement were followed. A modified version of the Newcastle-Ottawa scale was used to assess individual study quality. Small for gestational age (SGA), large for gestational age (LGA) and preterm birth were our primary outcomes. Results Six cohort studies were included, none of which assessed preterm birth. Compared to GWG within the guidelines, women with GWL had higher odds of SGA <10th percentile (adjusted odds ratio [AOR] 1.76; 95% confidence interval [CI] 1.45–2.14) and SGA <3rd percentile (AOR 1.62; 95% CI 1.19–2.20) but lower odds of LGA >90th percentile (AOR 0.57; 95% CI 0.52–0.62). There was a trend towards a graded relationship between SGA <10th percentile and each of three obesity classes (I: AOR 1.73; 95% CI 1.53–1.97; II: AOR 1.63; 95% CI 1.44–1.85 and III: AOR 1.39; 95% CI 1.17–1.66, respectively). Conclusion Despite decreased odds of LGA, increased odds of SGA and a lack of information on preterm birth indicate that GWL should not be advocated in general for obese women. PMID:26196130

  15. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation.

    PubMed

    Rodriguez, J S; Rodríguez-González, G L; Reyes-Castro, L A; Ibáñez, C; Ramírez, A; Chavira, R; Larrea, F; Nathanielsz, P W; Zambrano, E

    2012-04-01

    We studied the effects of maternal high fat diet (HFD, 25% calories from fat administered before and during pregnancy and lactation) and dietary intervention (switching dams from HFD to control diet) at different periconceptional periods on male offspring anxiety related behavior, exploration, learning, and motivation. From weaning at postnatal day (PND) 21, female subjects produced to be the mothers in the study received either control diet (CTR - 5% calories from fat), HFD through pregnancy and lactation (MO), HFD during PNDs 21-90 followed by CTR diet (pre-gestation (PG) intervention) or HFD from PND 21 to 120 followed by CTR diet (gestation and lactation (G) intervention) and bred at PND 120. At 19 days of gestation maternal serum corticosterone was increased in MO and the PG and G dams showed partial recovery with intermediate levels. In offspring, no effects were found in the elevated plus maze test. In the open field test, MO and G offspring showed increase zone entries, displaying less thigmotaxis; PG offspring showed partial recuperation of this behavior. During initial operant conditioning MO, PG and G offspring displayed decreased approach behavior with subsequent learning impairment during the acquisition of FR-1 and FR-5 operant conditioning for sucrose reinforcement. Motivation during the progressive ratio test increased in MO offspring; PG and G intervention recuperated this behavior. We conclude that dietary intervention can reverse negative effects of maternal HFD and offspring outcomes are potentially due to elevated maternal corticosterone.

  16. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells.

    PubMed

    Giordano, Cinzia; Vizza, Donatella; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Sisci, Diego; De Amicis, Francesca; Fuqua, Suzanne A W; Catalano, Stefania; Andò, Sebastiano

    2013-06-01

    Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.

  17. Leptin up-regulates the lactogenic effect of prolactin in the bovine mammary gland in vitro.

    PubMed

    Feuermann, Y; Shamay, A; Mabjeesh, S J

    2008-11-01

    The ability of leptin to up-regulate prolactin action in the mammary gland is well established. We examined the effect of leptin and prolactin on traits associated with lactation. Leptin and prolactin enhanced proliferation (thymidine incorporation) of the mammary gland cells, elevated the cells' proliferation in a dose-responsive manner, and synergized to elevate the expression of amino acid metabolism via a 90% increase in aminopeptidase N expression. Leptin and prolactin decreased apoptosis (decreased caspase-3 expression by 60%) in the same manner. Leptin enhanced the effect of prolactin on all of these processes in bovine mammary explants. Leptin and prolactin regulated mTOR (mammalian target of rapamycin) by increasing expression by 66%, which is one of the signal-transduction junctions involved in the regulation of proliferation, apoptosis, and protein synthesis. These findings support the hypothesis that leptin up-regulates prolactin action in the bovine mammary gland. PMID:18946122

  18. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  19. Delta healthy sprouts: a randomized comparative effectiveness trail to promote maternal weight control and reduce childhood obesity in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive and inadequate gestational weight gain can complicate a woman’s pregnancy and put her and her child at risk for poor delivery and birth outcomes. Further, feeding and activity habits established early in life can significantly impact the development of childhood obesity. Methods: The on...

  20. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    PubMed Central

    Zakaria, Yusmazura; Rahmat, Asmah; Pihie, Azimahtol Hawariah Lope; Abdullah, Noor Rain; Houghton, Peter J

    2009-01-01

    Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2. PMID:19508737

  1. High Glucose Up-regulates ADAM17 through HIF-1α in Mesangial Cells.

    PubMed

    Li, Renzhong; Uttarwar, Lalita; Gao, Bo; Charbonneau, Martine; Shi, Yixuan; Chan, John S D; Dubois, Claire M; Krepinsky, Joan C

    2015-08-28

    We previously showed that ADAM17 mediates high glucose-induced matrix production by kidney mesangial cells. ADAM17 expression is increased in diabetic kidneys, suggesting that its up-regulation may augment high glucose profibrotic responses. We thus studied the effects of high glucose on ADAM17 gene regulation. Primary rat mesangial cells were treated with high glucose (30 mm) or mannitol as osmotic control. High glucose dose-dependently increased ADAM17 promoter activity, transcript, and protein levels. This correlated with augmented ADAM17 activity after 24 h versus 1 h of high glucose. We tested involvement of transcription factors shown in other settings to regulate ADAM17 transcription. Promoter activation was not affected by NF-κB or Sp1 inhibitors, but was blocked by hypoxia-inducible factor-1α (HIF-1α) inhibition or down-regulation. This also prevented ADAM17 transcript and protein increases. HIF-1α activation by high glucose was shown by its increased nuclear translocation and activation of the HIF-responsive hypoxia-response element (HRE)-luciferase reporter construct. Assessment of ADAM17 promoter deletion constructs coupled with mutation analysis and ChIP studies identified HIF-1α binding to its consensus element at -607 as critical for the high glucose response. Finally, inhibitors of epidermal growth factor receptor (EGFR) and downstream PI3K/Akt, or ADAM17 itself, prevented high glucose-induced HIF-1α activation and ADAM17 up-regulation. Thus, high glucose induces ADAM17 transcriptional up-regulation in mesangial cells, which is associated with augmentation of its activity. This is mediated by HIF-1α and requires EGFR/ADAM17 signaling, demonstrating the potentiation by ADAM17 of its own up-regulation. ADAM17 inhibition thus provides a potential novel therapeutic strategy for the treatment of diabetic nephropathy.

  2. Selective CB2 up-regulation in women affected by endometrial inflammation

    PubMed Central

    Iuvone, Teresa; De Filippis, Daniele; Di Spiezio Sardo, Attilio; D'Amico, Alessandra; Simonetti, Sara; Sparice, Stefania; Esposito, Giuseppe; Bifulco, Giuseppe; Insabato, Luigi; Nappi, Carmine; Guida, Maurizio

    2008-01-01

    Abstract Endometritis is defined as an inflammation of the endometrial mucosa of the uterus. In endometritis large amounts of toxic mediators, including nitric oxide (NO) are released by inflammatory cells. As a consequence of nitric oxide-dependent injury, the cells respond by triggering protective mechanisms, by changing the endo-cannabinoid system (ECS) which comprises both CB1 and CB2 cannabinoid receptors and their endogenous ligands. The aim of our study was to seek out evidence for the presence of cannabinoid receptors in inflammatory endometrial tissue as well as for their potential role in endometrial inflammation. Our results showed a selective up-regulation of both transcription and expression of CB2 receptors in biopsies from women affected by endometrial inflammation compared to healthy women. The experiments with the nitric oxide-donor S-Nitroso-L-Glutathione (GSNO) suggest that such a selective up-regulation may be related to the nitric oxide release occurring during endometrial inflammation. In addition, we demonstrated an increase in chymase expression, a marker of mast cells, in biopsies of women affected by endometritis. Therefore our results support the hypothesis that the up-regulation of CB2 occurs mainly on mast cells and that it might tend to sensitize these cells to the anti-inflammatory effect exerted by endogenous cannabinoids by binding their receptor and thus preventing the mast cell degranulation and the release of pro-inflammatory mediators. In conclusion, we believe that the selective CB2 up-regulation might play a role as a novel prognostic factor in endometrial inflammation. PMID:18419603

  3. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  4. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib.

    PubMed

    Furfaro, Anna Lisa; Piras, Sabrina; Passalacqua, Mario; Domenicotti, Cinzia; Parodi, Alessia; Fenoglio, Daniela; Pronzato, Maria Adelaide; Marinari, Umberto Maria; Moretta, Lorenzo; Traverso, Nicola; Nitti, Mariapaola

    2014-04-01

    High-risk neuroblastoma (NB) is characterized by the development of chemoresistance, and bortezomib (BTZ), a selective inhibitor of proteasome, has been proposed in order to overcome drug resistance. Considering the involvement of the nuclear factor-erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the antioxidant and detoxifying ability of cancer cells, in this study we have investigated their role in differently aggressive NB cell lines treated with BTZ, focusing on the modulation of HO-1 to improve sensitivity to therapy. We have shown that MYCN amplified HTLA-230 cells were slightly sensitive to BTZ treatment, due to the activation of Nrf2 that led to an impressive up-regulation of HO-1. BTZ-treated HTLA-230 cells down-regulated p53 and up-regulated p21, favoring cell survival. The inhibition of HO-1 activity obtained by Zinc (II) protoprophyrin IX (ZnPPIX) was able to significantly increase the pro-apoptotic effect of BTZ in a p53- and p21-independent way. However, MYCN non-amplified SH-SY5Y cells showed a greater sensitivity to BTZ in relation to their inability to up-regulate HO-1. Therefore, we have shown that HO-1 inhibition improves the sensitivity of aggressive NB to proteasome inhibition-based therapy, suggesting that HO-1 up-regulation can be used as a marker of chemoresistance in NB. These results open up a new scenario in developing a combined therapy to overcome chemoresistance in high-risk neuroblastoma.

  5. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling.

    PubMed

    Walker, Heather A; Whitelock, John M; Garl, Pamela J; Nemenoff, Raphael A; Stenmark, Kurt R; Weiser-Evans, Mary C M

    2003-05-01

    We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.

  6. Hyaluronan up-regulation is linked to renal dysfunction and hearing loss induced by silver nanoparticles.

    PubMed

    Feng, Hao; Pyykkö, Ilmari; Zou, Jing

    2015-10-01

    Increased application of silver nanoparticles (AgNPs) has raised concerns on their potential adverse effects on human health. However, the precise toxicological mechanisms are not known in detail. The current study hypothesized that AgNPs induced glycosaminoglycan accumulation in the basement membrane that associated with the up-regulation of its component hyaluronic acid, known as a hydrophilic molecule of binding and retaining water, and caused toxicities in the kidney and cochlea. Rats administered AgNPs through either intravenous or intratympanic injection were observed at different time points after exposure. The concentrations of creatinine and urea in the serum were elevated remarkably, and proteins leaked into the urine were increased. A significant hearing loss over a broad range of frequencies was indicated. AgNP exposure induced glycosaminoglycan accumulation and hyaluronic acid up-regulation in the basement membrane. Abundant apoptotic cell death was demonstrated in the AgNP-exposed organs. Our results suggested that glycosaminoglycan accumulation associated with the up-regulation of hyaluronic acid was involved in the toxicities of kidney and cochlea caused by AgNPs.

  7. Identification and analysis of Phytophthora cactorum genes up-regulated during cyst germination and strawberry infection.

    PubMed

    Chen, Xiaoren; Klemsdal, Sonja Sletner; Brurberg, May Bente

    2011-10-01

    The oomycete Phytophthora cactorum can cause economically important diseases on numerous host plants worldwide, such as crown rot on strawberry. To explore the molecular mechanisms underlying the pathogenicity of P. cactorum on strawberry, transcriptional analysis of P. cactorum during strawberry infection and cyst germination was performed by applying suppression subtractive hybridization (SSH) and effector-specific differential display (ESDD) techniques. Two SSH cDNA libraries were generated, enriched for P. cactorum genes expressed during infection or during cyst germination, respectively, and 137 unique differentially expressed genes were identified. To specifically select RxLR effector genes from P. cactorum, ESDD was performed using RxLR and EER motif-based degenerate primers. Eight RxLR effector candidate genes as well as 67 other genes were identified out of 124 selected fragments. The expression levels of 20 putatively up-regulated genes were further analyzed using real-time RT-PCR, showing that, indeed 19 of these 20 genes were up-regulated during at least one of the studied developmental stages or during strawberry crown invasion, relative to the mycelium. This study provides a first overview of P. cactorum genes that are up-regulated immediately prior to or during strawberry infection and also provides a novel method for selecting RxLR effector genes from the unsequenced genome of P. cactorum.

  8. A20 is up-regulated in primary mouse hepatocytes subjected to hypoxia and reperfusion.

    PubMed

    Sun, Jiao; Sun, Luning; Zhang, Ning; Lu, Xiaomei; Zhang, Haipeng

    2012-12-01

    Hepatic ischemia reperfusion-induced injury is a major medical concern, and it is important to characterize the adaptive mechanisms of hepatocytes to hypoxia and reoxygenation to sustain liver function. In this study, we reported a proteomic analysis of ischemia reperfusion-induced global responses in primary hepatocytes. The primary hepatocytes were isolated from mice and exposed to oxygen to mimic ischemia reperfusion. Total proteins were extracted from the cells and analyzed by two-dimensional gel electrophoresis followed by matrix-assisted laser desorption time-of-flight mass spectrometry. Zinc finger protein A20, mercaptopyruvate sulfur transferase, apolipoprotein E precursor and carbamoyl-phosphate synthase mitochondrial precursor were identified as differentially expressed in differently exposed groups. Reverse transcriptase polymerase chain reaction and Western blot analysis validated that A20 was significantly up-regulated in the hepatocytes subjected to hypoxia and reperfusion. In addition, the expression of peroxisome proliferator-activated receptor α, an A20 target, was up-regulated in the hepatocytes subjected to hypoxia and reperfusion. Our results on A20 provide new insight into the mechanism underlying the adaptation of hepatocytes to hypoxia and reperfusion. Because of its role in the up-regulation of peroxisome proliferator-activated receptor α expression to protect hepatocytes from reperfusion-induced apoptosis, A20 is a potential target for the prevention and therapy of liver injury after ischemia reperfusion.

  9. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus

    PubMed Central

    Cao, Jing-Li; Zhang, Lu; Li, Jian; Tian, Shi; Lv, Xiao-Dan; Wang, Xue-Qin; Su, Xing; Li, Ying; Hu, Yi; Ma, Xu; Xia, Hong-Fei

    2016-01-01

    MiR-98 expression was up-regulated in kidney in response to early diabetic nephropathy in mouse and down-regulated in muscle in type 2 diabetes in human. However, the expression prolife and functional role of miR-98 in human gestational diabetes mellitus (GDM) remained unclear. Here, we investigated its expression and function in placental tissues from GDM patients and the possible molecular mechanisms. The results showed that miR-98 was up-regulated in placentas from GDM patients compared with normal placentas. MiR-98 over-expression increased global DNA methylational level and miR-98 knockdown reduced global DNA methylational level. Further investigation revealed that miR-98 could inhibit Mecp2 expression by binding the 3′-untranslated region (UTR) of methyl CpG binding protein 2 (Mecp2), and then led to the expression dysregulation of canonical transient receptor potential 3 (Trpc3), a glucose uptake related gene. More importantly, in vivo analysis found that the expression level of Mecp2 and Trpc3 in placental tissues from GDM patients, relative to the increase of miR-98, was diminished, especially for GDM patients over the age of 35 years. Collectively, up-regulation of miR-98 in the placental tissues of human GDM is linked to the global DNA methylation via targeting Mecp2, which may imply a novel regulatory mechanism in GDM. PMID:27573367

  10. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring.

    PubMed

    Ornellas, Fernanda; Souza-Mello, Vanessa; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2016-01-01

    We aimed to evaluate the effects of maternal and/or paternal obesity on offspring body mass, leptin signaling, appetite-regulating neurotransmitters and local inflammatory markers. C57BL/6 mice received standard chow (SC, lean groups) or high-fat diet (HF, obese groups) starting from one month of age. At three months, HF mice became obese relative to SC mice. They were then mated as follows: lean mother and lean father, lean mother and obese father, obese mother and lean father, and obese mother and obese father. The offspring received the SC diet from weaning until three months of age, when they were sacrificed. In the offspring, paternal obesity did not lead to changes in the Janus kinase (JAK)/signal transducer and activation of the transcription (STAT) pathway or feeding behavior but did induce hypothalamic inflammation. On the other hand, maternal obesity resulted in increased weight gain, hyperleptinemia, decreased leptin OBRb receptor expression, JAK/STAT pathway impairment, and increased SOCS3 signaling in the offspring. In addition, maternal obesity elevated inflammatory markers and altered NPY and POMC expression in the hypothalamus. Interestingly, combined parental obesity exacerbated the deleterious outcomes compared to single-parent obesity. In conclusion, while maternal obesity is known to program metabolic changes and obesity in offspring, the current study demonstrated that obese fathers induce hypothalamus inflammation in offspring, which may contribute to the development of metabolic syndromes in adulthood.

  11. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain

    PubMed Central

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G.; Guizzetti, Marina

    2014-01-01

    Aims: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Methods: Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Results: Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Conclusion: Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters’ expression and reducing brain cholesterol levels. PMID:25081040

  12. Dietary Polyphenols and Obesity

    PubMed Central

    Meydani, Mohsen; Hasan, Syeda T.

    2010-01-01

    The prevalence of overweight and obesity and their associated metabolic disorders are considered a major threat to the public’s health. While several diet and exercise programs are available for weight loss and prevention of weight regain, progress is often slow and disappointing. Recently, natural bioactive phytochemicals present in foods have been discovered for their potential health benefit effects on the prevention of chronic disorders such as cancer, cardiovascular disease, inflammatory and metabolic diseases including obesity. Polyphenols are a class of naturally-occurring phytochemicals, of which some such as catechins, anthocynines, resveratrol and curcumin have been shown to modulate physiological and molecular pathways that are involved in energy metabolism, adiposity, and obesity. The potential in vivo, beneficial effects of these polyphenols on adiposity and obesity as complementary agents in the up-regulation of energy expenditure have emerged by investigating these compounds in cell cultures, animal models of obesity and in some human clinical and epidemiological studies. In this brief review, the efficacy of the above-named polyphenols and their potential efficacy to modulate obesity and some associated disorders are discussed. PMID:22254051

  13. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones.

    PubMed

    Baker, Mark D

    2005-09-15

    The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. In conventional whole-cell recordings intracellular GTP-gamma-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19-36. The current amplitude was also up-regulated by 25 microM intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE(2) did not acutely up-regulate the current. Conversely, both PGE(2) and PKA activation up-regulated the major TTX-r Na(+) current, Na(V)1.8. Extracellular ATP up-regulated the persistent current with an average apparent K(d) near 13 microM, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na(+) current. PMID:16002450

  14. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  15. Mutations in BALB Mitochondrial DNA Induce CCL20 Up-regulation Promoting Tumorigenic Phenotypes

    PubMed Central

    Sligh, James; Janda, Jaroslav; Jandova, Jana

    2014-01-01

    mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF-κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20. PMID:25177208

  16. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.

    PubMed

    Dao, Vu Thao-Vi; Medini, Sawsan; Bisha, Marion; Balz, Vera; Suvorava, Tatsiana; Bas, Murat; Kojda, Georg

    2016-07-15

    Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity. PMID:27235748

  17. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  18. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner.

    PubMed

    Shang, Linshan; Zhou, Haibin; Xia, Yu; Wang, Hui; Gao, Guimin; Chen, Bingxi; Liu, Qiji; Shao, Changshun; Gong, Yaoqin

    2009-10-01

    SIRT1, a nicotinamide adenine dinucleotide (NAD(+))-dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53-dependent manner and requires the p53-binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53-binding element in the human SIRT1 promoter that might be required for the up-regulation of SIRT1 in response to nutritional stress. The p53-binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core-binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up-regulates human SIRT1 gene expression in a p53-dependent manner and that the p53-binding element in SIRT1 is required for the up-regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.

  19. Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers

    PubMed Central

    Brody, Arthur L; Mukhin, Alexey G; La Charite, Jaime; Ta, Karen; Farahi, Judah; Sugar, Catherine A.; Mamoun, Michael S.; Vellios, Evan; Archie, Meena; Kozman, Maggie; Phuong, Jonathan; Arlorio, Franca; Mandelkern, Mark A.

    2013-01-01

    One-third of smokers primarily use menthol cigarettes and usage of these cigarettes leads to elevated serum nicotine levels and more difficulty quitting in standard treatment programmes. Previous brain imaging studies demonstrate that smoking (without regard to cigarette type) leads to up-regulation of β2*-containing nicotinic acetylcholine receptors (nAChRs). We sought to determine if menthol cigarette usage results in greater nAChR up-regulation than non-menthol cigarette usage. Altogether, 114 participants (22 menthol cigarette smokers, 41 non-menthol cigarette smokers and 51 non-smokers) underwent positron emission tomography scanning using the α4β2* nAChR radioligand 2-[18F]fluoro-A-85380 (2-FA). In comparing menthol to non-menthol cigarette smokers, an overall test of 2-FA total volume of distribution values revealed a significant between-group difference, resulting from menthol smokers having 9–28% higher α4β2* nAChR densities than non-menthol smokers across regions. In comparing the entire group of smokers to non-smokers, an overall test revealed a significant between-group difference, resulting from smokers having higher α4β2* nAChR levels in all regions studied (36–42%) other than thalamus (3%). Study results demonstrate that menthol smokers have greater up-regulation of nAChRs than non-menthol smokers. This difference is presumably related to higher nicotine exposure in menthol smokers, although other mechanisms for menthol influencing receptor density are possible. These results provide additional information about the severity of menthol cigarette use and may help explain why these smokers have more trouble quitting in standard treatment programmes. PMID:23171716

  20. Up-regulation of gamma-glutamyl transpeptidase (GGT) activity in growth perturbed C6 astrocytes.

    PubMed

    Mares, V; Malík, R; Lisá, V; Sedo, A

    2005-05-20

    Activity of gamma-glutamyl transpeptidase (GGT) was studied in astrocyte-like C6 glial cells modulated in growth and maturation by different concentration of serum and dibutyryl cyclic AMP (Db-cAMP) supplement in culture medium. After reduction of serum concentration from 10% to 0.1%, the number of GGT positive cells determined histochemically increased 3.1 times and the GGT activity/mg protein in whole cell lysates was 5.1 times higher. In cultures with 0.1% serum + Db-cAMP, the histochemically and biochemically assayed GGT activity exceeded 5.1 and 7.9 times the values measured in control 10% serum cultures, respectively. The up-regulation of GGT was accompanied by an inhibition of proliferation, enhanced differentiation and hypertrophy of cells. In addition, the process of metabolic perturbation and/or cellular stress was revealed in these cultures by the (i) growth-support release followed by shrinkage and death of a small number of cells and (ii) higher oxidation of 2'7'dichlorofluorescein diacetate to its fluorescent form in the adherent/viable cells. The observed up-regulation of GGT is considered to primarily reflect increased metabolism of glutathione and/or the maintenance of the redox potential in cells stressed by sub-optimal concentration of serum and Db-cAMP supplement. The concomitant cellular hypertrophy and differentiation and their relationship to increased activity of GGT await further investigation. The study suggests that up-regulation of GGT can contribute to adaptation of astrocytic cells to metabolic and/or oxidative perturbances occurring under various pathological conditions, including radiation- and drug-induced toxicity. PMID:15893589

  1. Agonist- and antagonist-induced up-regulation of surface 5-HT3A receptors

    PubMed Central

    Morton, Russell A; Baptista-Hon, Daniel T; Hales, Tim G; Lovinger, David M

    2015-01-01

    Background and Purpose The 5-HT3 receptor is a member of the pentameric ligand-gated ion channel family and is pharmacologically targeted to treat irritable bowel syndrome and nausea/emesis. Furthermore, many antidepressants elevate extracellular concentrations of 5-HT. This study investigates the functional consequences of exposure of recombinant 5-HT3A receptors to agonists and antagonists. Experimental Approach We used HEK cells stably expressing recombinant 5-HT3A receptors and the ND7/23 (mouse neuroblastoma/dorsal root ganglion hybrid) cell line, which expresses endogenous 5-HT3 receptors. Surface expression of recombinant 5-HT3A receptors, modified to contain the bungarotoxin (BTX) binding sequence, was quantified using fluorescence microscopy to image BTX-conjugated fluorophores. Whole cell voltage-clamp electrophysiology was used to measure the density of current mediated by 5-HT3A receptors. Key Results 5-HT3A receptors were up-regulated by the prolonged presence of agonists (5-HT and m-chlorophenylbiguanide) and antagonists (MDL-72222 and morphine). The up-regulation of 5-HT3A receptors by 5-HT and MDL-72222 was time- and concentration-dependent but was independent of newly translated receptors. The phenomenon was observed for recombinant rodent and human 5-HT3A receptors and for endogenous 5-HT3 receptors in neuronal ND7/23 cells. Conclusions and Implications Up-regulation of 5-HT3A receptors, following exposure to either agonists or antagonists suggests that this phenomenon may occur in response to different therapeutic agents. Medications that elevate 5-HT levels, such as the antidepressant inhibitors of 5-HT reuptake and antiemetic inhibitors of 5-HT3 receptor function, may both raise receptor expression. However, this will require further investigation in vivo. PMID:25989383

  2. GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4

    PubMed Central

    LI, HONGXIA; ZUO, SHI; PASHA, ZEESHAN; YU, BIN; HE, ZHISONG; WANG, YIGANG; YANG, XIANGJUN; ASHRAF, MUHAMMAD; XU, MEIFENG

    2012-01-01

    Background aims GATA-4 is a cardiac transcription factor and plays an important role in cell lineage differentiation during development. We investigated whether overexpression of GATA-4 increases adult mesenchymal stromal cell (MSC) transdifferentiation into a cardiac phenotype in vitro. Methods MSC were harvested from rat bone marrow (BM) and transduced with GATA-4 (MSCGATA-4) using a murine stem cell virus (pMSCV) retroviral expression system. Gene expression in MSCGATA-4 was analyzed using quantitative reverse transcription–polymerase chain reaction (RT-PCR) and Western blotting. Native cardiomyocytes (CM) were isolated from ventricles of neonatal rats. Myocardial transdifferentiation of MSC was determined by immunostaining and electrophysiologic recording. The transdifferentiation rate was calculated directly from flow cytometery. Results The expression of cardiac genes, including brain natriuretic peptide (BNP), Islet-1 and α-sarcomeric actinin (α-SA), was up-regulated in MSCGATA-4 compared with control cells that were transfected with Green Fluorescent Protein (GFP) only (MSCNull). At the same time, insulin-like growth factor-binding protein (IGFBP)-4 was significantly up-regulated in MSCGATA-4. A synchronous beating of MSC with native CM was detected and an action potential was recorded. Some GFP + cells were positive for α-SA staining after MSC were co-cultured with native CM for 7 days. The transdifferentiation rate was significantly higher in MSCGATA-4. Functional studies indicated that the differentiation potential of MSCGATA-4 was decreased by knockdown of IGFBP-4. Conclusions Overexpression of GATA-4 significantly increases MSC differentiation into a myocardial phenotype, which might be associated with the up-regulation of IGFBP-4. PMID:21846294

  3. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness.

  4. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  5. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions.

    PubMed

    Rubio, Carlos A

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett's oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn's colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  6. Up-regulation of the adrenomedullin system mediates hypotension and hypoaldosteronism induced by simulated microgravity.

    PubMed

    Andreis, Paola G; Rossi, Gian Paolo; Bova, Sergio; Neri, Giuliano; Nussdorfer, Gastone G; Mazzocchi, Giuseppina

    2004-04-01

    We recently demonstrated that prolonged simulated microgravity (SMG) induced hypotension and hypoaldosteronism in rats, and gathered preliminary evidence for an involvement of circulating adrenomedullin (AM). Thus, we aimed to investigate whether short-term SMG elicits the same effects, and whether up-regulation of adrenal AM system plays a relevant role. Rats were exposed for 8 days to SMG in the form of hindlimb unweighting, and then, along with control animals, were given an intraperitoneal injection of AM22-52 and/or angiotensin-II (Ang-II) (100 nmoles/kg) or the saline vehicle. Systolic blood pressure (SBP) was measured by tail-cuff sphygmomanometry. The adrenal expression of AM was assayed by semiquantitative RT-PCR. The plasma concentrations of aldosterone (PAC) and AM, and adrenal AM content were measured by RIA. Short-term SMG induced significant decreases in SBP and PAC. Conversely, both the plasma and adrenal levels of AM, and adrenal AM mRNA were enhanced in SMG-exposed animals. The SMG-induced hypotension and hypoaldosteronism were reversed by AM22-52, an AM-receptor antagonist, thereby demonstrating a causal link between these effects and the up-regulation of AM system. SMG hampered SBP and PAC responses to Ang-II; the co-administration of AM22-52 restored these responses. These findings accord well with the known ability of AM to counteract the effects of Ang-II on both blood vessels and adrenocortical cells. Taken together, our findings allow us to conclude that up-regulation of the adrenal AM system i) occurs early and takes part in the adaptative changes occurring during SMG conditions; and ii) may account for both hypotension and hypoaldosteronism on returning to the normogravitational environment.

  7. Nicotine induces chromatin changes and c-Jun up-regulation in HL-60 leukemia cells.

    PubMed

    Landais, Emilie; El-Khoury, Victoria; Prevost, Alain; Dufer, Jean; Liautaud-Roger, Françoise

    2005-12-01

    Although nicotine has been implicated as a potential factor in the pathogenesis of human cancer, its mechanisms of action regarding cancer development remain largely unknown. HL-60 cells were used to investigate the effects of a short-term treatment with nicotine at concentrations found in the blood of smokers. The findings show that nicotine induces chromatin decondensation, histone H3 acetylation and up-regulation of the c-Jun transcription factor mRNA. This increase is inhibited by mecamylamine, a nicotinic receptor antagonist, suggesting that nicotine alters cellular function directly via nicotinic acetylcholine receptors and may then play a role in cell physiology and tumor promotion.

  8. Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study

    PubMed Central

    Rzehak, Peter; Saffery, Richard; Reischl, Eva; Covic, Marcela; Wahl, Simone; Grote, Veit; Xhonneux, Annick; Langhendries, Jean-Paul; Ferre, Natalia; Closa-Monasterolo, Ricardo; Verduci, Elvira; Riva, Enrica; Socha, Piotr; Gruszfeld, Dariusz; Koletzko, Berthold

    2016-01-01

    Mounting evidence links prenatal exposure to maternal tobacco smoking with disruption of DNA methylation (DNAm) profile in the blood of infants. However, data on the postnatal stability of such DNAm signatures in childhood, as assessed by Epigenome Wide Association Studies (EWAS), are scarce. Objectives of this study were to investigate DNAm signatures associated with in utero tobacco smoke exposure beyond the 12th week of gestation in whole blood of children at age 5.5 years, to replicate previous findings in young European and American children and to assess their biological role by exploring databases and enrichment analysis. DNA methylation was measured in blood of 366 children of the multicentre European Childhood Obesity Project Study using the Illumina Infinium HM450 Beadchip (HM450K). An EWAS was conducted using linear regression of methylation values at each CpG site against in utero smoke exposure, adjusted for study characteristics, biological and technical effects. Methylation levels at five HM450K probes in MYO1G (cg12803068, cg22132788, cg19089201), CNTNAP2 (cg25949550), and FRMD4A (cg11813497) showed differential methylation that reached epigenome-wide significance according to the false-discovery-rate (FDR) criteria (q-value<0.05). Whereas cg25949550 showed decreased methylation (-2% DNAm ß-value), increased methylation was observed for the other probes (9%: cg12803068; 5%: cg22132788; 4%: cg19089201 and 4%: cg11813497) in exposed relative to non-exposed subjects. This study thus replicates previous findings in children ages 3 to 5, 7 and 17 and confirms the postnatal stability of MYO1G, CNTNAP2 and FRMD4A differential methylation. The role of this differential methylation in mediating childhood phenotypes, previously associated with maternal smoking, requires further investigation. PMID:27171005

  9. Exploring the effects of maternal eating patterns on maternal feeding and child eating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research has demonstrated the importance of maternal feeding practices and children’s eating behavior in the development of childhood obesity. The purpose of this study was to examine the relations between maternal and child eating patterns, and to examine the degree to which these relationsh...

  10. Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    PubMed Central

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E.; Passananti, Claudio

    2007-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics. PMID:17712422

  11. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2013-01-01

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  12. Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals.

    PubMed

    Chung, Mi Ja; Kang, Ah-Young; Lee, Kyung Min; Oh, Eunji; Jun, Hee-Jin; Kim, Sang-Yeon; Auh, Joong Hyuck; Moon, Tae-Wha; Lee, Sung-Joon; Park, Kwan-Hwa

    2006-05-31

    Genistin has antioxidant activities; however, its insolubility in water often limits its biological availability in vivo. Using a novel transglycosylation process, the solubility of genistin glycosides was increased 1000 to 10000-fold, but it was not known whether these modified genistin glycosides maintained antioxidant activity. We found that both genistin and its glycosides similarly up-regulated the transcription of several metallothionein (MT) antioxidant genes (MT1A, MT2A, MT1E, and MT1X), as well as the glucose 6-phosphate dehydrogenase (G6PD) gene in HepG2 cells. This gene induction was mediated by the sequestration of zinc in the cytosol, which up-regulated the metal-responsive transcription factor-1 (MTF-1) that induced MT gene expression. Although not as effective as ascorbic acid, genistin glycosides possessed slightly greater reducing power than genistin. We concluded that genistin and genistin glycosides have a direct antioxidant effect and an indirect antioxidant effect, perhaps via induction of MT by activity of MTF-1.

  13. Tubular up-regulation of clusterin mRNA in murine lupus-like nephritis.

    PubMed Central

    Moll, S.; Menoud, P. A.; French, L.; Sappino, A. P.; Pastore, Y.; Schifferli, J. A.; Izui, S.

    1998-01-01

    Clusterin, a widely distributed glycoprotein, is detected in most tissues and in numerous physiological fluids. In the kidney, this protein is constitutively expressed in tubular epithelial cells, and its expression is enhanced following tubular injuries. In addition, clusterin has been detected in glomerular immune deposits of glomerulonephritis. The present study was designed to define the sites of clusterin mRNA accumulation in murine lupus-like nephritis in comparison with murine tubulopathies. In lupus-like nephritis, a significant increase of clusterin mRNA abundance was demonstrated. This up-regulation was localized exclusively in tubular epithelial cells exhibiting tubulointerstitial alterations, whereas no clusterin mRNA was detectable in diseased glomeruli, excluding an active synthesis of clusterin by glomerular cells. A similar tubular increase of clusterin mRNA abundance was observed in myeloma-like cast nephropathy induced by IgG3 monoclonal cryoglobulins and even in the absence of any detectable histological alterations in a model of septic shock induced by the injection of bacterial lipopolysaccharides. Our results suggest that tubular epithelial cells are the only sites of clusterin mRNA accumulation during the course of lupus-like nephritis and that the tubular up-regulation of clusterin gene expression may reflect the cellular response to various types of tubular injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 7 PMID:9546356

  14. Low-Dose Cancer Risk Modeling Must Recognize Up-Regulation Of Protection

    PubMed Central

    Feinendegen, Ludwig E.; Pollycove, Myron; Neumann, Ronald D.

    2009-01-01

    Ionizing radiation primarily perturbs the basic molecular level proportional to dose, with potential damage propagation to higher levels: cells, tissues, organs, and whole body. There are three types of defenses against damage propagation. These operate deterministically and below a certain impact threshold there is no propagation. Physical-static defenses precede metabolic-dynamic defenses acting immediately: scavenging of toxins; - molecular repair, especially of DNA; - removal of damaged cells either by apoptosis, necrosis, phagocytosis, cell differentiation-senescence, or by immune responses, - followed by replacement of lost elements. Another metabolic-dynamic defense arises delayed by up-regulating immediately operating defense mechanisms. Some of these adaptive protections may last beyond a year and all create temporary protection against renewed potentially toxic impacts also from non-radiogenic endogenous sources. Adaptive protections have a maximum after single tissue absorbed doses around 100 to 200 mSv and disappear with higher doses. Low dose rates initiate maximum protection likely at lower cell doses delivered repetitively at certain time intervals. Adaptive protection preventing only about 2 – 3 % of endogenous life-time cancer risk would fully balance a calculated induced cancer risk at about 100 mSv, in agreement with epidemiological data and concordant with an hormetic effect. Low-dose-risk modeling must recognize up-regulation of protection. PMID:20585440

  15. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    PubMed

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni

    2014-11-01

    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  16. Up-regulation of vitamin B1 homeostasis genes in breast cancer.

    PubMed

    Zastre, Jason A; Hanberry, Bradley S; Sweet, Rebecca L; McGinnis, A Cary; Venuti, Kristen R; Bartlett, Michael G; Govindarajan, Rajgopal

    2013-09-01

    An increased carbon flux and exploitation of metabolic pathways for the rapid generation of biosynthetic precursors is a common phenotype observed in breast cancer. To support this metabolic phenotype, cancer cells adaptively regulate the expression of glycolytic enzymes and nutrient transporters. However, activity of several enzymes involved in glucose metabolism requires an adequate supply of cofactors. In particular, vitamin B1 (thiamine) is utilized as an essential cofactor for metabolic enzymes that intersect at critical junctions within the glycolytic network. Intracellular availability of thiamine is facilitated by the activity of thiamine transporters and thiamine pyrophosphokinase-1 (TPK-1). Therefore, the objective of this study was to establish if the cellular determinants regulating thiamine homeostasis differ between breast cancer and normal breast epithelia. Employing cDNA arrays of breast cancer and normal breast epithelial tissues, SLC19A2, SLC25A19 and TPK-1 were found to be significantly up-regulated. Similarly, up-regulation was also observed in breast cancer cell lines compared to human mammary epithelial cells. Thiamine transport assays and quantitation of intracellular thiamine and thiamine pyrophosphate established a significantly greater extent of thiamine transport and free thiamine levels in breast cancer cell lines compared to human mammary epithelial cells. Overall, these findings demonstrate an adaptive response by breast cancer cells to increase cellular availability of thiamine.

  17. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  18. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  19. Up-regulation of NF45 correlates with Schwann cell proliferation after sciatic nerve crush.

    PubMed

    Wang, Youhua; Zhou, Shiran; Xu, Hua; Yan, Shixian; Xu, Dawei; Zhang, Yi

    2015-05-01

    Nuclear factor (NF)45 (also known as interleukin enhancer-binding factor (ILF)2), is a transcription factor that interacts with NF90 to regulate gene expression. It has long been implicated in the regulation of cell proliferation. However, the role of NF45 in the process of peripheral nervous system regeneration after injury remains poorly understood. Herein, we investigated the spatiotemporal expression of NF45 in a rat sciatic nerve crush model. We detected the up-regulated expression of NF45 in Schwann cell after sciatic nerve crush. What's more, the expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA) exhibited a similar tendency with that of NF45. In cell cultures, we observed increased expression of NF45 during the process of TNF-α-induced Schwann cell proliferation, whereas the protein level of p21 was down-regulated. Interference of NF45 led to enhanced expression of p21 and also impaired proliferation of Schwan cells. Taken together, our data implicated that NF45 was up-regulated in the sciatic nerve after crush, which was associated with proliferation of Schwann cell.

  20. Up-regulated expression of Ran reveals its potential role to deltamethrin stress in Kc cells.

    PubMed

    Liu, Wei; Xu, Qin; Chi, Qingping; Hu, Junli; Li, Fengliang; Cheng, Luogen

    2016-05-25

    The GTP-binding nuclear protein Ran has mostly been reported to be an essential player in nuclear transport, chromosome alignment, microtubule dynamics, centrosome duplication, kinetochore attachment of microtubules, nuclear-envelope dynamics, and phagocytosis. However, until now, there has been no report showing the involvement of Ran in DM stress. In this paper, two-dimensional electrophoresis analysis showed that the expression level of Ran in Kc cells in response to DM was higher than that in the control group. In addition, quantitative analysis using real-time PCR revealed that the expression of Ran was obviously up-regulated at various concentrations of DM. Western blot analysis showed that Ran was up-regulated 2.27-fold over the control at 48h. Because we still could not pinpoint whether Ran was actually involved in DM stress reaction, to further verify the role of Ran in stress reaction, RNA interference and cell transfection were utilized. Overexpression of Ran in cells conferred a degree of protection against DM after 72h. Furthermore, interference with Ran significantly decrease cell viability. All of the above findings strongly imply that Ran may participate in the development of stress reaction to DM. Therefore, investigating the possible role of Ran in DM stress will broaden our limited knowledge regarding DM stress inducible genes. PMID:26924245

  1. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  2. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    PubMed

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E; Passananti, Claudio

    2007-08-22

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  3. Celecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines

    PubMed Central

    Kalalinia, Fatemeh; Elahian, Fatemeh; Mosaffa, Fatemeh; Behravan, Javad

    2014-01-01

    Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines, could be modulated by celecoxib. The expression of the multidrug resistant gene (ABCG2) at mRNA and protein level was detected by real-time quantitative reverse transcription-polymerase chain reaction and flow cytometry analysis, respectively. Among three human breast cancer cell lines ABCG2 and COX-2 were highly expressed in MCF7-MX and MDA-MB-231 cells, respectively. The COX-2 inhibitor celecoxib up-regulated the expression of ABCG2 mRNA in MCF-7 and MCF7-MX cells, which was accompanied by increased ABCG2 protein expression. While celecoxib was able to block the 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated increase in COX-2 expression in MDA-MB-231 cells, it increased the expression of ABCG2 up to 4.27 times to the control level at mRNA level and with less intensity at protein level. Our findings provide evidence that celecoxib up-regulates ABCG2 expression in human breast cancer cells and proposed that ABCG2 is not involved in chemosensitizing effects of celecoxib. PMID:25587329

  4. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells.

    PubMed

    Wiren, K M; Zhang, X; Chang, C; Keenan, E; Orwoll, E S

    1997-06-01

    Androgen regulation of androgen receptor (AR) expression has been observed in a variety of tissues, generally as inhibition, and is thought to attenuate cellular responses to androgen. AR is expressed in osteoblasts, the bone-forming cell, suggesting direct actions of androgens on bone. Here we characterized the effect of androgen exposure on AR gene expression in human osteoblastic SaOS-2 and U-2 OS cells. Treatment of osteoblastic cells with the nonaromatizable androgen 5alpha-dihydrotestosterone increased AR steady state messenger RNA levels in a time- and dose-dependent fashion. Reporter assays with 2.3 kilobases of the proximal 5'-flanking region of the human AR promoter linked to the chloramphenicol acetyltransferase gene in transfected cultures showed that up-regulation of AR promoter activity by androgen was time and dose dependent. Treatment with other steroid hormones, including progesterone, 17beta-estradiol, and dexamethasone, was without effect. The antiandrogen hydroxyflutamide completely antagonized androgen up-regulation. Thus, in contrast to many other androgen target tissues, androgen exposure increases steady state AR messenger RNA levels in osteoblasts. This regulation occurs at least partially at the level of transcription, is mediated by the 5'-promoter region of the AR gene, and is dependent on functional AR. These results suggest that physiological concentrations of androgens have significant effects on AR expression in skeletal tissue. PMID:9165014

  5. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3

    PubMed Central

    Yen, Chia-Jui; Chen, Wen-Shu; Huang, Wei-Chien

    2016-01-01

    Poor prognosis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) involves HBV X protein (HBx)-induced tumor progression. HBx also contributes to chemo-resistance via inducing the expressions of anti-apoptosis and multiple drug resistance genes. However, the impact of HBx expression on the therapeutic efficacy of various receptor tyrosine kinase inhibitors remains unknown. In this study, our data showed that HBx overexpression did not alter the cellular sensitivity of HCC cell lines to sorafenib but unexpectedly enhanced the cell death induced by EGFR family inhibitors, including gefitinib, erlotinib, and lapatinib due to ErbB3 up-regulation. Mechanistically, HBx transcriptionally up-regulates ErbB3 expression in a NF-κB dependent manner. In addition, HBx also physically interacts with ErbB2 and ErbB3 proteins and enhances the formation of ErbB2/ErbB3 heterodimeric complex. The cell viability of HBx-overexpressing cells was decreased by silencing ErbB3 expression, further revealing the pivotal role of ErbB3 in HBx-mediated cell survival. Our data suggest that HBx shifts the oncogenic addiction of HCC cells to ErbB2/ErbB3 signaling pathway via inducing ErbB3 expression and thereby enhances their sensitivity to EGFR/ErbB2 inhibitors. PMID:26595522

  6. Up-regulated Smad5 mediates apoptosis of gastric epithelial cells induced by Helicobacter pylori infection.

    PubMed

    Nagasako, Tomokazu; Sugiyama, Toshiro; Mizushima, Takuji; Miura, Yosuke; Kato, Mototsugu; Asaka, Masahiro

    2003-02-14

    The gastric pathogen Helicobacter pylori activates epithelial cell signaling pathways, and its infection induces changes in the expression of several genes in infected human gastric tissues. Recent studies have indicated that the ability of H. pylori to regulate epithelial cell responses depends on the presence of an intact cag pathogenicity island (cagPAI). We investigated altered mRNA expression of gastric epithelial cells after infection with H. pylori, both cagPAI-positive and cagPAI-negative strains, by cDNA microarray, reverse transcription PCR, and Northern blot analysis. Our results indicated that cagPAI-positive H. pylori strains (ATCC 43504 and clinical isolated strains) significantly activated Smad5 mRNA expression of human gastric epithelial cells (AGS, KATOIII, MKN28, and MKN45). We further examined whether the up-regulated Smad5 was related to apoptosis of gastric epithelial cells induced by H. pylori. Smad5 RNA interference completely inhibited H. pylori-induced apoptosis. These results suggest that Smad5 is up-regulated in gastric epithelial cells through the presence of cagPAI of H. pylori and that Smad5 mediates apoptosis of gastric epithelial cells induced by H. pylori infection. PMID:12473652

  7. Tubular up-regulation of clusterin mRNA in murine lupus-like nephritis.

    PubMed

    Moll, S; Menoud, P A; French, L; Sappino, A P; Pastore, Y; Schifferli, J A; Izui, S

    1998-04-01

    Clusterin, a widely distributed glycoprotein, is detected in most tissues and in numerous physiological fluids. In the kidney, this protein is constitutively expressed in tubular epithelial cells, and its expression is enhanced following tubular injuries. In addition, clusterin has been detected in glomerular immune deposits of glomerulonephritis. The present study was designed to define the sites of clusterin mRNA accumulation in murine lupus-like nephritis in comparison with murine tubulopathies. In lupus-like nephritis, a significant increase of clusterin mRNA abundance was demonstrated. This up-regulation was localized exclusively in tubular epithelial cells exhibiting tubulointerstitial alterations, whereas no clusterin mRNA was detectable in diseased glomeruli, excluding an active synthesis of clusterin by glomerular cells. A similar tubular increase of clusterin mRNA abundance was observed in myeloma-like cast nephropathy induced by IgG3 monoclonal cryoglobulins and even in the absence of any detectable histological alterations in a model of septic shock induced by the injection of bacterial lipopolysaccharides. Our results suggest that tubular epithelial cells are the only sites of clusterin mRNA accumulation during the course of lupus-like nephritis and that the tubular up-regulation of clusterin gene expression may reflect the cellular response to various types of tubular injuries.

  8. Midazolam inhibits the hypoxia-induced up-regulation of erythropoietin in the central nervous system.

    PubMed

    Matsuyama, Tomonori; Tanaka, Tomoharu; Tatsumi, Kenichiro; Daijo, Hiroki; Kai, Shinichi; Harada, Hiroshi; Fukuda, Kazuhiko

    2015-08-15

    Erythropoietin (EPO), a regulator of red blood cell production, is endogenously expressed in the central nervous system. It is mainly produced by astrocytes under hypoxic conditions and has proven to have neuroprotective and neurotrophic effects. In the present study, we investigated the effect of midazolam on EPO expression in primary cultured astrocytes and the mouse brain. Midazolam was administered to 6-week-old BALB/c male mice under hypoxic conditions and pregnant C57BL/6N mice under normoxic conditions. Primary cultured astrocytes were also treated with midazolam under hypoxic conditions. The expression of EPO mRNA in mice brains and cultured astrocytes was studied. In addition, the expression of hypoxia-inducible factor (HIF), known as the main regulator of EPO, was evaluated. Midazolam significantly reduced the hypoxia-induced up-regulation of EPO in BALB/c mice brains and primary cultured astrocytes and suppressed EPO expression in the fetal brain. Midazolam did not affect the total amount of HIF proteins but significantly inhibited the nuclear expression of HIF-1α and HIF-2α proteins. These results demonstrated the suppressive effects of midazolam on the hypoxia-induced up-regulation of EPO both in vivo and in vitro. PMID:26001375

  9. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  10. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    PubMed

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on

  11. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival

    PubMed Central

    2013-01-01

    Background The genetic changes in gastric adenocarcinoma are extremely complex and reliable tumor markers have not yet been identified. There are also remarkable geographical differences in the distribution of this disease. Our aim was to identify the most differentially regulated genes in 20 gastric adenocarcinomas from a Norwegian selection, compared to matched normal mucosa, and we have related our findings to prognosis, survival and chronic Helicobacter pylori infection. Methods Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 20 patients immediately following surgical resection of the tumor. Whole genome, cDNA microarray analysis was performed on the RNA isolated from the sample pairs to compare the gene expression profiles between the tumor against matched mucosa. The samples were microscopically examined to classify gastritis. The presence of H. pylori was examined using microscopy and immunohistochemistry. Results 130 genes showed differential regulation above a predefined cut-off level. Interleukin-8 (IL-8) and Claudin-1 (CLDN1) were the most consistently up-regulated genes in the tumors. Very high CLDN1 expression in the tumor was identified as an independent and significant predictor gene of reduced post-operative survival. There were distinctly different expression profiles between the tumor group and the control mucosa group, and the histological subsets of mixed type, diffuse type and intestinal type cancer demonstrated further sub-clustering. Up-regulated genes were mapped to cell-adhesion, collagen-related processes and angiogenesis, whereas normal intestinal functions such as digestion and excretion were associated with down-regulated genes. We relate the current findings to our previous study on the gene response of gastric epithelial cells to H. pylori infection. Conclusions CLDN1 was highly up-regulated in gastric cancer, and CLDN1 expression was independently associated with a poor post

  12. To Assess the Effect of Maternal BMI on Obstetrical Outcome

    NASA Astrophysics Data System (ADS)

    Lakhanpal, Shuchi; Aggarwal, Asha; Kaur, Gurcharan

    2012-06-01

    AIMS: To assess the effect of maternal BMI on complications in pregnancy, mode of delivery, complications of labour and delivery.METHODS:A crossectional study was carried out in the Obst and Gynae department, Kasturba Hospital, Delhi. The study enrolled 100 pregnant women. They were divided into 2 groups based on their BMI, more than or equal to 30.0 kg/m2 were categorized as obese and less than 30 kg/m2 as non obese respectively. Maternal complications in both types of patients were studied.RESULTS:CONCLUSION: As the obstetrical outcome is significantly altered due to obesity, we can improve maternal outcome by overcoming obesity. As obesity is a modifiable risk factor, preconception counseling creating awareness regarding health risk associated with obesity should be encouraged and obstetrical complications reduced.

  13. Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a.

    PubMed

    Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Poly, Franck; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe

    2016-07-01

    Alnus glutinosa has been shown previously to synthesize, in response to nodulation by Frankia sp. ACN14a, an array of peptides called Alnus symbiotic up-regulated peptides (ASUPs). In a previous study one peptide (Ag5) was shown to bind to Frankia nitrogen-fixing vesicles and to modify their porosity. Here we analyse four other ASUPs, alongside Ag5, to determine whether they have different physiological effects on in vitro grown Frankia sp. ACN14a. The five studied peptides were shown to have different effects on nitrogen fixation, respiration, growth, the release of ions and amino acids, as well as on cell clumping and cell lysis. The mRNA abundance for all five peptides was quantified in symbiotic nodules and one (Ag11) was found to be more abundant in the meristem part of the nodule. These findings point to some peptides having complementary effects on Frankia cells. PMID:27082768

  14. Up-regulation of vimentin expression during regeneration in the adult fish brain.

    PubMed

    Clint, Sorcha C; Zupanc, Günther K H

    2002-03-01

    In contrast to mammals, the brains of teleost fish exhibit an enormous regenerative capacity following injury. Here, we have examined the potential role of vimentin in this wound healing. Fifteen days after application of a mechanical lesion to the corpus cerebelli in the teleost fish Apteronotus leptoryhnchus, the areal density of vimentin-positive fibres increased significantly at the lesion site and in the remaining ipsilateral molecular layer. This density remained elevated throughout the time period of up to 100 days examined. Based on this spatio-temporal pattern of vimentin up-regulation we propose that this intermediate filament protein is involved in the survival, differentiation, and/or dendritic growth of the new cells that replace damaged cells in the injury zone.

  15. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  16. Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, Meng-Meng; Wang, De-Hua

    2016-04-01

    To better understand how desert rodents adapt to water scarcity, we examined urine osmolality, renal distribution and expression of aquaporins (AQPs) in Mongolian gerbils (Meriones unguiculatus) during 7 days of water deprivation (WD). Urine osmolality of the gerbils during WD averaged 7503 mOsm kg(-1). Renal distributions of AQP1, AQP2, and AQP3 were similar to that described in other rodents. After the 7 day WD, renal AQP2 was up-regulated, while resting metabolic rate and total evaporative water loss decreased by 43% and 36%, respectively. Our data demonstrated that Mongolian gerbils showed high urine concentration, renal AQPs expression and body water conservation to cope with limited water availability, which may be critical for their survival during dry seasons in cold deserts. PMID:26806059

  17. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    PubMed

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity.

  18. A novel transcript is up-regulated by fasting in the hypothalamus and enhances insulin signaling

    PubMed Central

    Chai, Biaoxin; Li, Ji-Yao; Fritze, Danielle; Zhang, Weizhen; Xia, Zefeng; Mulholland, Michael W

    2015-01-01

    A transcript of unknown function, regulated by fasting and feeding, was identified by microarray analysis. The transcript is up-regulated in the fasting state. An 1168 base-pair cDNA was cloned from rat hypothalamus and sequenced. This sequence is consistent with adipogenesis downregulating transcript 3 (AGD3) (also known as human OCC-1) mRNA. A protein sequence identical to AGD3 was determined by mass spectrometry. In rat brain, AGD3 mRNA is distributed in arcuate nucleus, ventromedial hypothalamus, amygdaloid nuclei, paraventricular nucleus (PVN), hippocampus, and somatic cortex. Double in situ hybridization showed that AGD3 mRNA is co-localized with pro-opiomelanocortin and neuropeptide Y in arcuate nucleus neurons. AGD3 binds with insulin receptor substrate 4 and increases insulin-stimulated phospho-AKT and regulates AMPK and mTOR downstream target S6 kinase phosphorylation. PMID:22935015

  19. A novel transcript is up-regulated by fasting in the hypothalamus and enhances insulin signalling.

    PubMed

    Chai, B; Li, J-Y; Fritze, D; Zhang, W; Xia, Z; Mulholland, M W

    2013-03-01

    A transcript of unknown function, regulated by fasting and feeding, was identified by microarray analysis. The transcript is up-regulated in the fasting state. An 1168-bp cDNA was cloned from rat hypothalamus and sequenced. This sequence is consistent with adipogenesis down-regulating transcript 3 (AGD3) (also known as human OCC-1) mRNA. A protein sequence identical to AGD3 was determined by mass spectrometry. In the rat brain, AGD3 mRNA is distributed in the arcuate nucleus, ventromedial hypothalamus, amygdaloid nuclei, hippocampus, and somatic cortex. Double in situ hybridisation showed that AGD3 mRNA is co-localised with pro-opiomelanocortin and neuropeptide Y in arcuate nucleus neurones. AGD3 binds with insulin receptor substrate 4 and increases insulin-stimulated phospho-Akt and regulates AMP-activated protein kinase and mammalian target of rapamycin downstream target S6 kinase phosphorylation.

  20. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses

    PubMed Central

    Cappelli, Katia; Felicetti, Michela; Capomaccio, Stefano; Pieramati, Camillo; Silvestrelli, Maurizio; Verini-Supplizi, Andrea

    2009-01-01

    Background The stress response is a critical factor in the training of equine athletes; it is important for performance and for protection of the animal against physio-pathological disorders. In this study, the molecular mechanisms involved in the response to acute and strenuous exercise were investigated using peripheral blood mononuclear cells (PBMCs). Results Quantitative real-time PCR (qRT-PCR) was used to detect modifications in transcription levels of the genes for matrix metalloproteinase-1 (MMP-1) and interleukin 8 (IL-8), which were derived from previous genome-wide expression analysis. Significant up-regulation of these two genes was found in 10 horses that had completed a race of 90–120 km in a time-course experimental design. Conclusion These results suggest that MMP-1 and IL-8 are both involved in the exercise-induced stress response, and this represents a starting point from which to understand the adaptive responses to this phenomenon. PMID:19552796

  1. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    PubMed Central

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  2. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo

    PubMed Central

    Dorai, Thambi; Diouri, Janane; O'Shea, Orla; Doty, Stephen B.

    2014-01-01

    A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic

  3. Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells.

    PubMed

    Fu, Xiao Wen; Lindstrom, Jon; Spindel, Eliot R

    2009-07-01

    Prenatal nicotine exposure impairs normal lung development and leads to diminished pulmonary function after birth. Previous work from our laboratory has demonstrated that nicotine alters lung development by affecting a nonneuronal cholinergic autocrine loop that is expressed in lung. Bronchial epithelial cells (BECs) express choline acetyltransferase, the choline high-affinity transporter and nicotinic acetylcholine (ACh) receptor (nAChR) subunits. We now demonstrate through a combination of morphological and electrophysiological techniques that nicotine affects this autocrine loop by up-regulating and activating cholinergic signaling. RT-PCR showed the expression of alpha 3, alpha 4, alpha 7, alpha 9, alpha 10, beta2, and beta 4 nAChR mRNAs in rhesus monkey lung and cultured BECs. The expression of alpha 7, alpha 4, and beta2 nAChR was confirmed by immunofluorescence in the cultured BECs and lung. The electrophysiological characteristics of nAChR in BECs were determined using whole-cell patch-clamp on cultured BECs. Both ACh and nicotine evoked an inward current, with a rapid desensitizing current. Nicotine induced inward currents in a concentration-dependent manner, with an EC(50) of 26.7 microM. Nicotine-induced currents were reversibly blocked by the nicotinic antagonists, mecamylamine, dihydro-beta-erythroidine, and methyllcaconitine. Incubation of BECs with 1 microM nicotine for 48 hours enhanced nicotine-induced currents by roughly 26%. The protein tyrosine phosphorylation inhibitor, genistein, increased nicotine-induced currents by 58% and enhanced methyllcaconitine-sensitive currents (alpha 7 nAChR activities) 2.3-fold, whereas the protein tyrosine phosphatase inhibitor, pervanadate, decreased the effects of nicotine. These results demonstrate that chronic nicotine exposure up-regulates nAChR activity in developing lung, and that nAChR activity can be further modified by tyrosine phosphorylation.

  4. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo.

    PubMed

    Dorai, Thambi; Diouri, Janane; O'Shea, Orla; Doty, Stephen B

    2014-04-01

    A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic

  5. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    PubMed

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  6. Low-Level Laser Irradiation Stimulates Tenocyte Migration with Up-Regulation of Dynamin II Expression

    PubMed Central

    Tsai, Wen-Chung; Hsu, Chih-Chin; Pang, Jong-Hwei S.; Lin, Miao-Sui; Chen, Ying-Hsun; Liang, Fang-Chen

    2012-01-01

    Low-level laser therapy (LLLT) is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm2). Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA) and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR) and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore. PMID:22666495

  7. NOD1 receptor is up-regulated in diabetic human and murine myocardium.

    PubMed

    Prieto, Patricia; Vallejo-Cremades, María Teresa; Benito, Gemma; González-Peramato, Pilar; Francés, Daniel; Agra, Noelia; Terrón, Verónica; Gónzalez-Ramos, Silvia; Delgado, Carmen; Ruiz-Gayo, Mariano; Pacheco, Ivette; Velasco-Martín, Juan P; Regadera, Javier; Martín-Sanz, Paloma; López-Collazo, Eduardo; Boscá, Lisardo; Fernández-Velasco, María

    2014-12-01

    Type 2 diabetes has a complex pathology that involves a chronic inflammatory state. Emerging evidence suggests a link between the innate immune system receptor NOD1 (nucleotide-binding and oligomerization domain 1) and the pathogenesis of diabetes, in monocytes and hepatic and adipose tissues. The aim of the present study was to assess the role of NOD1 in the progression of diabetic cardiomyopathy. We have measured NOD1 protein in cardiac tissue from Type 2 diabetic (db) mice. Heart and isolated cardiomyocytes from db mice revealed a significant increase in NOD1, together with an up-regulation of nuclear factor κB (NF-κB) and increased apoptosis. Heart tissue also exhibited an enhanced expression of pro-inflammatory cytokines. Selective NOD1 activation with C12-γ-D-glutamyl-m-diaminopimelic acid (iEDAP) resulted in an increased NF-κB activation and apoptosis, demonstrating the involvement of NOD1 both in wild-type and db mice. Moreover, HL-1 cardiomyocytes exposed to elevated concentrations of glucose plus palmitate displayed an enhanced NF-κB activity and apoptotic profile, which was prevented by silencing of NOD1 expression. To address this issue in human pathology, NOD1 expression was evaluated in myocardium obtained from patients with Type 2 diabetes (T2DMH) and from normoglycaemic individuals without cardiovascular histories (NH). We have found that NOD1 was expressed in both NH and T2DMH; however, NOD1 expression was significantly pronounced in T2DMH. Furthermore, both the pro-inflammatory cytokine tumour necrosis factor α (TNF-α) and the apoptosis mediator caspase-3 were up-regulated in T2DMH samples. Taken together, our results define an active role for NOD1 in the heightened inflammatory environment associated with both experimental and human diabetic cardiac disease.

  8. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    PubMed

    Tsai, Wen-Chung; Hsu, Chih-Chin; Pang, Jong-Hwei S; Lin, Miao-Sui; Chen, Ying-Hsun; Liang, Fang-Chen

    2012-01-01

    Low-level laser therapy (LLLT) is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2)). Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA) and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR) and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  9. Perforin and granzyme B. Cytolytic proteins up-regulated during rejection of rat small intestine allografts.

    PubMed

    McDiarmid, S V; Farmer, D G; Kuniyoshi, J S; Robert, M; Khadavi, A; Shaked, A; Busuttil, R W

    1995-03-15

    Perforin and granzyme B are 2 cytolytic proteins specific to activated killer cells, particularly CTL. We have studied the mRNA expression of these 2 proteins by a reverse transcriptase polymerase chain reaction method in a unidirectional model of rat small intestine transplant rejection. The allograft group consisted of Lewis x Brown Norway F1 donors into Lewis recipients. The isograft controls were Lewis donors into Lewis recipients. Grafts were placed heterotopically and no immunosuppression was given. Five animals in each group were killed at postoperative days (POD) 3, 5, 7, 8, 9, 10, 12, and 14. mRNA was extracted and a semiquantitative reverse transcriptase polymerase chain reaction was performed. For the semiquantitative analysis, we compared scintillation counts from excised bands. Results were expressed as a percent activity compared with beta-actin. From the same tissue samples, a histologic evaluation was made and rejection was graded according to severity. The isograft controls showed no evidence of histologic rejection and a very low expression of mRNA for perforin and granzyme B from POD 3-14. In contrast, the allograft group began to show histologic evidence of mild rejection on POD 5. By day 7, rejection was moderately severe and associated with a significant up-regulation of perforin and granzyme B in the allografts compared with the controls (P < 0.01), which persisted through POD 14. Peak expression for perforin and granzyme B was on POD 10 and 8, respectively. We conclude that the up-regulation of perforin and granzyme B in rat small intestine transplant allografts is a useful marker of clinically important rejection. PMID:7886805

  10. Diabetes and obesity in pregnancy.

    PubMed

    Simmons, David

    2011-02-01

    An epidemic of obesity is affecting growing numbers of women in their childbearing years increasing their risk of obstetric complications including diabetes, hypertension, pre-eclampsia, some malformations, macrosomia and the need for obstetric intervention. There is growing evidence that maternal obesity may increase the risk of obesity and diabetes in the offspring. Obesity and diabetes in pregnancy have independent and additive effects on obstetric complications, and both require management during pregnancy. Management of obesity including weight loss and physical activity prior to pregnancy is likely to be beneficial for mother and baby, although the benefits of bariatric surgery remain unclear at this time. Limiting gestational weight gain to 5-9 kg among pregnant obese women is likely to improve obstetric outcomes, but how to achieve this remains an active area of research. If gestational diabetes develops, there is good evidence that clinical management reduces the risk of adverse pregnancy outcomes.

  11. Novel durum wheat genes up-regulated in response to a combination of heat and drought stress.

    PubMed

    Rampino, Patrizia; Mita, Giovanni; Fasano, Pasqua; Borrelli, Grazia Maria; Aprile, Alessio; Dalessandro, Giuseppe; De Bellis, Luigi; Perrotta, Carla

    2012-07-01

    We report the effect of heat, drought and combined stress on the expression of a group of genes that are up-regulated under these conditions in durum wheat (Triticum turgidum subsp. durum) plants. Modulation of gene expression was studied by cDNA-AFLP performed on RNAs extracted from flag leaves. By this approach, we identified several novel durum wheat genes whose expression is modulated under different stress conditions. We focused on a group of hitherto undescribed up-regulated genes in durum wheat, among these, 7 are up-regulated by heat, 8 by drought stress, 15 by combined heat and drought stress, 4 are up-regulated by both heat and combined stress, and 3 by both drought and combined stress. The functional characterization of these genes will provide new data that could help the developing of strategies aimed at improving durum wheat tolerance to field stress.

  12. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  13. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    PubMed

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  14. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  15. Factors associated with abdominal obesity in children

    PubMed Central

    Melzer, Matheus Ribeiro Theodósio Fernandes; Magrini, Isabella Mastrangi; Domene, Semíramis Martins Álvares; Martins, Paula Andrea

    2015-01-01

    Objective: To identify the association of dietary, socioeconomic factors, sedentary behaviors and maternal nutritional status with abdominal obesity in children. Methods: A cross-sectional study with household-based survey, in 36 randomly selected census tracts in the city of Santos, SP. 357 families were interviewed and questionnaires and anthropometric measurements were applied in mothers and their 3-10 years-old children. Assessment of abdominal obesity was made by maternal and child's waist circumference measurement; for classification used cut-off points proposed by World Health Organization (1998) and Taylor et al. (2000) were applied. The association between variables was performed by multiple logistic regression analysis. Results: 30.5% of children had abdominal obesity. Associations with children's and maternal nutritional status and high socioeconomic status were shown in the univariate analysis. In the regression model, children's body mass index for age (OR=93.7; 95%CI 39.3-223.3), female gender (OR=4.1; 95%CI 1.8-9.3) and maternal abdominal obesity (OR=2.7; 95%CI 1.2-6.0) were significantly associated with children's abdominal obesity, regardless of the socioeconomic status. Conclusions: Abdominal obesity in children seems to be associated with maternal nutritional status, other indicators of their own nutritional status and female gender. Intervention programs for control of childhood obesity and prevention of metabolic syndrome should consider the interaction of the nutritional status of mothers and their children. PMID:26298655

  16. Up-regulation of MicroRNA 146b is Associated with Myelofibrosis in Myeloproliferative Neoplasms.

    PubMed

    Ha, Jung-Sook; Jung, Hye-Ra

    2015-01-01

    In this study, our goal was to evaluate whether the expressions of microRNA (miR)-150, miR-146b, miR-31 and miR-95 demonstrate primary myelofibrosis (PMF) specificity, associations with fibrosis grade, hematologic phenotypes, or myeloproliferative neoplasm (MPN)-associated mutations. A total of 51 formalin-fixed and paraffin-embedded bone marrow MPN samples, including 15 polycythemia vera (PV), 26 essential thrombocythemia (ET), and 10 PMF, and 24 normal controls were included. The expression of microRNA (miRNA) was detected by quantitative real-time polymerase chain reaction using miRNA specific primers. RNU6-2 was analyzed for all samples as endogenous control for relative quantification. Information for fibrosis, hematologic parameters, Janus kinase 2 (JAK2) V617F, and calreticulin (CALR) mutations was obtained from medical records. Significant increment of miR-146b was detected in PMF compared to normal controls (P=0.008). Moreover, expression of miR-146b tended to increase according to increment of fibrosis grade, and patients with myelofibrosis (MF) grade 3 showed significantly higher expression than patients with MF 0 to 2 (P=0.022, 0.001 and 0.013, respectively) or normal controls (P<0.001). The expression of miR-31 also showed tendency to increase following fibrosis and miR-150 showed up-regulated expression in ET (P=0.015) compared to normal control. There was no relationship between miRNA expression and hematologic indices except miR-95 showed negative correlation with platelet count (P=0.024). There was no significant correlation between miRNA expression and JAK2 V617F or CALR mutation. Up-regulation of miR-146b could be used as a fibrosis-indicating marker and might be helpful in the study of fibrotic mechanism in MPN, as well as other fibrotic diseases. PMID:26116595

  17. G-protein Receptor Kinase 5 Regulates the Cannabinoid Receptor 2-induced Up-regulation of Serotonin 2A Receptors*

    PubMed Central

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2013-01-01

    We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure. PMID:23592773

  18. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast.

  19. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast. PMID:27118798

  20. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks

    PubMed Central

    Singer, Tania

    2015-01-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  1. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin.

    PubMed

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  2. Early up-regulation of chemokine expression in fulminant hepatic failure.

    PubMed

    Leifeld, Ludger; Dumoulin, Franz-Ludwig; Purr, Ingvill; Janberg, Katrin; Trautwein, Christian; Wolff, Martin; Manns, Michael Peter; Sauerbruch, Tilman; Spengler, Ulrich

    2003-03-01

    CC-chemokines recruit and activate macrophages and T lymphocytes, the major components of inflammatory infiltrates in fulminant hepatic failure (FHF). To analyse the role of CC-chemokines in the pathogenesis of FHF, this study examined serum levels and intrahepatic expression of MCP-1, MIP-1alpha, MIP-1beta, and RANTES in the livers and sera of patients with FHF and controls by ELISA, immunohistochemistry, and competitive RT-PCR. Serum levels and intrahepatic expression of all chemokines studied in FHF exceeded the levels in chronic liver diseases and normal controls. Distinct patterns of expression of each chemokine were noted on Kupffer cells, sinusoidal endothelial cells, hepatocytes, lymphocytes, and bile ducts. Intrahepatic chemokine expression correlated closely with the extent of infiltration by macrophages and T lymphocytes (r = 0.65-0.95, p < 0.001). The functional relationship between intrahepatic chemokine release and infiltration was confirmed in chemotaxis assays by inhibiting chemotaxis induced by homogenates of liver tissue obtained from FHF patients with neutralizing MCP-1, MIP-1alpha, MIP-1beta, and RANTES antibodies. The time course of CC-chemokine release was studied in the concanavalin A and the galactosamine/LPS mouse models of FHF. In both models, intrahepatic chemokine up-regulation occurred as an early event prior to hepatic infiltration and liver damage. The data indicate that an abundant intrahepatic release of CC-chemokines is an early and pivotal step in the pathogenesis of FHF.

  3. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis.

    PubMed

    de Oliveira, Joana T; Ribeiro, Cláudia; Barros, Rita; Gomes, Catarina; de Matos, Augusto J; Reis, Celso A; Rutteman, Gerard R; Gärtner, Fátima

    2015-01-01

    The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT), in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness. PMID:26222311

  4. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  5. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect.

  6. Functional inactivation of CXC chemokine receptor 4-mediated responses through SOCS3 up-regulation.

    PubMed

    Soriano, Silvia F; Hernanz-Falcón, Patricia; Rodríguez-Frade, José Miguel; De Ana, Ana Martín; Garzón, Ruth; Carvalho-Pinto, Carla; Vila-Coro, Antonio J; Zaballos, Angel; Balomenos, Dimitrios; Martínez-A, Carlos; Mellado, Mario

    2002-08-01

    Hematopoietic cell growth, differentiation, and chemotactic responses require coordinated action between cytokines and chemokines. Cytokines promote receptor oligomerization, followed by Janus kinase (JAK) kinase activation, signal transducers and transactivators of transcription (STAT) nuclear translocation, and transcription of cytokine-responsive genes. These include genes that encode a family of negative regulators of cytokine signaling, the suppressors of cytokine signaling (SOCS) proteins. After binding their specific receptors, chemokines trigger receptor dimerization and activate the JAK/STAT pathway. We show that SOCS3 overexpression or up-regulation, stimulated by a cytokine such as growth hormone, impairs the response to CXCL12, measured by Ca(2+) flux and chemotaxis in vitro and in vivo. This effect is mediated by SOCS3 binding to the CXC chemokine receptor 4 receptor, blocking JAK/STAT and Galpha(i) pathways, without interfering with cell surface chemokine receptor expression. The data provide clear evidence for signaling cross-talk between cytokine and chemokine responses in building a functional immune system.

  7. Centenarians, but not octogenarians, up-regulate the expression of microRNAs.

    PubMed

    Serna, Eva; Gambini, Juan; Borras, Consuelo; Abdelaziz, Kheira M; Mohammed, Kheira; Belenguer, Angel; Sanchis, Paula; Avellana, Juan A; Rodriguez-Mañas, Leocadio; Viña, Jose

    2012-01-01

    Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity.

  8. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  9. CUL4B promotes replication licensing by up-regulating the CDK2-CDC6 cascade.

    PubMed

    Zou, Yongxin; Mi, Jun; Wang, Wenxing; Lu, Juanjuan; Zhao, Wei; Liu, Zhaojian; Hu, Huili; Yang, Yang; Gao, Xiaoxing; Jiang, Baichun; Shao, Changshun; Gong, Yaoqin

    2013-03-18

    Cullin-RING ubiquitin ligases (CRLs) participate in the regulation of diverse cellular processes including cell cycle progression. Mutations in the X-linked CUL4B, a member of the cullin family, cause mental retardation and other developmental abnormalities in humans. Cells that are deficient in CUL4B are severely selected against in vivo in heterozygotes. Here we report a role of CUL4B in the regulation of replication licensing. Strikingly, CDC6, the licensing factor in replication, was positively regulated by CUL4B and contributed to the loading of MCM2 to chromatin. The positive regulation of CDC6 by CUL4B depends on CDK2, which phosphorylates CDC6, protecting it from APC(CDH1)-mediated degradation. Thus, aside being required for cell cycle reentry from quiescence, CDK2 also contributes to pre-replication complex assembly in G1 phase of cycling cells. Interestingly, the up-regulation of CDK2 by CUL4B is achieved via the repression of miR-372 and miR-373, which target CDK2. Our findings thus establish a CUL4B-CDK2-CDC6 cascade in the regulation of DNA replication licensing.

  10. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts.

    PubMed

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-19

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276-induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  11. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver

    PubMed Central

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. PMID:27226149

  12. Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells

    PubMed Central

    Lai, Ming-Chih; Chang, Chiao-May; Sun, H. Sunny

    2016-01-01

    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. PMID:27078027

  13. Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate Bone Formation.

    PubMed

    Laurenti, Marco; Al Subaie, Ahmed; Abdallah, Mohamed-Nur; Cortes, Arthur R G; Ackerman, Jerome L; Vali, Hojatollah; Basu, Kaustuv; Zhang, Yu Ling; Murshed, Monzur; Strandman, Satu; Zhu, Julian; Makhoul, Nicholas; Barralet, Jake E; Tamimi, Faleh

    2016-08-10

    Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration. PMID:27280476

  14. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    PubMed Central

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  15. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin

    PubMed Central

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  16. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase

    PubMed Central

    Henriques, Alexandre; Croixmarie, Vincent; Priestman, David A.; Rosenbohm, Angela; Dirrig-Grosch, Sylvie; D'Ambra, Eleonora; Huebecker, Mylene; Hussain, Ghulam; Boursier-Neyret, Claire; Echaniz-Laguna, Andoni; Ludolph, Albert C.; Platt, Frances M.; Walther, Bernard; Spedding, Michael; Loeffler, Jean-Philippe; Gonzalez De Aguilar, Jose-Luis

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets. PMID:26483191

  17. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis

    PubMed Central

    Barros, Rita; Gomes, Catarina; de Matos, Augusto J.; Reis, Celso A.; Rutteman, Gerard R.; Gärtner, Fátima

    2015-01-01

    The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT), in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness. PMID:26222311

  18. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

    PubMed

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. PMID:27226149

  19. Up-regulation of steroid biosynthesis by retinoid signaling: Implications for aging

    PubMed Central

    Manna, Pulak R.; Stetson, Cloyce L.; Daugherty, Carol; Shimizu, Ikue; Syapin, Peter J.; Garrel, Ghislaine; Cohen-Tannoudji, Joelle; Huhtaniemi, Ilpo; Slominski, Andrzej T.; Pruitt, Kevin; Stocco, Douglas M.

    2015-01-01

    Retinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter. Herein we demonstrate that retinoids are capable of enhancing StAR protein, P-StAR, and steroid production, in granulosa, adrenocortical, glial, and epidermal cells. Whereas transient expression of RARα and RXRα enhanced 9-cis RA-treated StAR gene transcription, silencing of RXRα with siRNA, decreased StAR and steroid levels. An oligonucleotide probe encompassing an LXR-RXR/RAR motif bound to adrenocortical and epidermal keratinocyte NEs in EMSAs. ChIP studies revealed association of RARα and RXRα with the StAR proximal promoter. Further studies demonstrated that StAR mRNA levels decreased in diseased and elderly men and women skin tissues and that atRA could restore steroidogenesis in epidermal keratinocytes of aged individuals. These findings provide novel insights into the relevance of retinoid signaling in the up-regulation of steroid biosynthesis in various target tissues, and indicate that retinoid therapy may have important implications in age-related complications and diseases. PMID:26303142

  20. Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef

    NASA Astrophysics Data System (ADS)

    Mörk, Erik; Sjöö, Gustaf Lilliesköld; Kautsky, Nils; McClanahan, Tim R.

    2009-09-01

    Top-down and bottom-up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity ( H') and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.

  1. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis.

    PubMed

    Meisgen, Florian; Xu, Ning; Wei, Tianling; Janson, Peter C; Obad, Susanna; Broom, Oliver; Nagy, Nikoletta; Kauppinen, Sakari; Kemény, Lajos; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2012-04-01

    MicroRNAs are short non-coding RNAs that regulate gene expression. Previously, in a genome-wide screen, we found deregulation of microRNA expression in psoriasis skin. MicroRNA-21 (miR-21) is one of the microRNAs significantly up-regulated in psoriasis skin lesions. To identify the cell type responsible for the increased miR-21 level, we compared expression of miR-21 in epidermal cells and dermal T cells between psoriasis and healthy skin and found elevated levels of miR-21 in psoriasis in both cell types. In cultured T cells, expression of miR-21 increased markedly upon activation. To explore the function of miR-21 in primary human T helper cells, we inhibited miR-21 using a tiny seed-targeting LNA-anti-miR. Specific inhibition of miR-21 increased the apoptosis rate of activated T cells. Our results suggest that miR-21 suppresses apoptosis in activated T cells, and thus, overexpression of miR-21 may contribute to T cell-derived psoriatic skin inflammation.

  2. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

    PubMed

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

  3. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation.

    PubMed

    Silva, Raquel M; Duarte, Iven C N; Paredes, João A; Lima-Costa, Tatiana; Perrot, Michel; Boucherie, Hélian; Goodfellow, Brian J; Gomes, Ana C; Mateus, Denisa D; Moura, Gabriela R; Santos, Manuel A S

    2009-01-01

    Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.

  4. HPV E1 up-regulates replication-related biochemistries of AAV Rep78.

    PubMed

    Bandyopadhyay, Sarmistha; Cao, Maohua; Liu, Yong; Hermonat, Paul L

    2010-06-20

    Human papillomavirus type 16 (HPV) E1 protein provides helper function for the adeno-associated virus type 2 (AAV) life cycle. E1 is the replication protein of HPV, analogous to AAV Rep78, but without the endonuclease/covalent attachment activity of Rep78. Previously we have shown that E1 and Rep78 interact in vitro. Here we investigated E1's effects on Rep78 interaction with AAV's inverted terminal repeat (ITR) DNA in vitro, using purified Rep78 and E1 proteins from bacteria. E1 enhanced Rep78-ITR binding, ATPase activity, Rep78-ITR-covalent linkage and Rep78-ITR-endonuclease activity (central to AAV replication). These enhancements occurred in a dose-dependent manner whenever assayed. However, overall Rep78-plus-E1 helicase activity was lower than Rep78's helicase activity. These data suggest that E1's broad-based helper function for the AAV life cycle (AAV DNA, mRNA, and protein levels are up-regulated by E1) is likely through its ability to enhance Rep78's critical replication-required biochemistries on ITR DNA.

  5. Bovine herpesvirus type 1 (BHV-1) up-regulates telomerase activity in MDBK cells.

    PubMed

    Pagnini, U; De Martino, L; Montagnaro, S; Diodato, A; Longo, M; Pacelli, F; Pisanelli, G; Iovane, G

    2006-03-31

    The proliferative capacity of mammalian cells is regulated by telomerase, an enzyme uniquely specialised for telomeric DNA synthesis. The critical role of telomerase activation in tumor progression and maintenance has been well established in studies of cancer and of oncogenic transformation in cell culture. Experimental data suggest that telomerase activation has an important role in normal somatic cells, and that failure to activate sufficient telomerase also promotes disease. Evidence regarding the role of telomerase in the pathogenesis of several viruses including human immunodeficiency virus has led to an increased interest in the role of telomerase activity in other virus infections. In this research we evaluated the telomerase modulating activity of Bovine herpesvirus 1 (BHV-1) in MDBK cells. MDBK cells were infected at different multiplicity of infection with BHV-1 Cooper strain and telomerase activity at different times post-infection was measured by the TRAP assay. Our data indicate that BHV-1 significantly up-regulates telomerase activity at 3 and 6h post-infection decreasing after the 24h post-infection. Our data, showed that the effect was mediated by an immediate-early or early viral gene, and use of the protein translation inhibitor cycloheximide confirmed that an immediate early gene is primarily responsible.

  6. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

    PubMed

    Fey, Theres; Schubert, Kai Michael; Schneider, Holger; Fein, Evelyn; Kleinert, Eike; Pohl, Ulrich; Dendorfer, Andreas

    2016-08-01

    Podosomes are dynamic cytoskeletal membrane structures with local adhesive and proteolytic activity. They are critically involved in angiogenesis and vascular adaptive growth. Here, we studied in HUVECs and murine small vessels whether shear stress controls podosome assembly and local proteolytic activity. Podosomes were characterized by immunohistochemistry, and their proteolytic activity was assessed as degradation imprints in fluorescent gelatin that was used as growth substrate. Compared with controls (10 dyn/cm(2)), the number of podosomes formed per time was doubled when cells were exposed to low shear stress (0.3 dyn/cm(2)) or even increased 5-fold under static conditions. This was a result of an enhanced expression of VEGF after reduction of shear stress. Consequently, enhanced podosome formation could be prevented by a VEGF receptor antagonist as well by interruption of VEGF signaling via inhibition of PI3K, Src, or p38. Increase of podosome assembly went along with significantly augmented cell motility. In vivo experiments in mouse arteries confirmed increased endothelial podosome numbers when shear stress was abolished by vessel occlusion. We conclude that shear stress, by reducing VEGF release, inhibits podosome assembly. Hence, endothelial cell-mediated matrix proteolysis and migratory activity are inhibited, thereby stabilizing the structure of the vessel wall.-Fey, T., Schubert, K. M., Schneider, H., Fein, E., Kleinert, E., Pohl, U., Dendorfer, A. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

  7. Anesthetic management of maternal Mirror syndrome.

    PubMed

    Tayler, E; DeSimone, C

    2014-11-01

    Mirror syndrome (Ballantyne syndrome, triple edema, maternal hydrops, pseudotoxemia) is a rarely diagnosed condition associated with pregnancy that can be life-threatening for both the mother and fetus. There is limited literature on its pathogenesis and anesthetic management, making prevention and treatment complex. The duration of pregnancy and severity of maternal or fetal presentation often determines outcome. We describe the anesthetic considerations of a morbidly obese parturient with Mirror syndrome. PMID:25066819

  8. Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function.

    PubMed

    Connor, K L; Vickers, M H; Beltrand, J; Meaney, M J; Sloboda, D M

    2012-05-01

    We have previously reported that offspring of mothers fed a high fat (HF) diet during pregnancy and lactation enter puberty early and are hyperleptinaemic, hyperinsulinaemic and obese as adults. Poor maternal care and bonding can also impact offspring development and disease risk.We therefore hypothesized that prenatal nutrition would affect maternal care and that an interaction may exist between a maternal HF diet and maternal care, subsequently impacting on offspring phenotype.Wistar rats were mated and randomized to control dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Maternal care was assessed by observing maternal licking and grooming of pups between postnatal day (P)3 and P8. Postweaning (P22), offspring were fed a control (–con) or HF (–hf) diet. From P27, pubertal onset was assessed. At ∼P105 oestrous cyclicity was investigated. Maternal HF diet reduced maternal care; HF-fed mothers licked and groomed pups less than CON dams.Maternal fat:lean ratio was higher in HF dams at weaning and was associated with higher maternal plasma leptin and insulin concentrations, but there was no effect of maternal care on fat:lean ratio or maternal hormone levels. Both female and male offspring of HF dams were lighter from birth to P11 than offspring of CON dams, but by P19, HF offspring were heavier than controls. Prepubertal retroperitoneal fat mass was greater in pups from HF-fed dams compared to CON and was associated with elevated circulating leptin concentrations in females only, but there was neither an effect of maternal care, nor an interaction between maternal diet and care on prepubertal fat mass. Pups from HF-fed dams went into puberty early and this effect was exacerbated by a postweaning HF diet.Maternal and postweaning HF diets independently altered oestrous cyclicity in females: female offspring of HF-fed mothers were more likely to have prolonged or persistent oestrus, whilst female offspring fed

  9. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.

    PubMed

    Chang, Miwha; Kang, Chang-Min; Park, Yong-Sung; Yun, Cheol-Won

    2014-02-21

    Previously, we reported that Rck1 regulates Hog1 and Slt2 activities and affects MAP kinase activity in Saccharomyces cerevisiae. Recently, we found that Rck1 up-regulates phospho-Kss1 and phospho-Fus3. Kss1 has been known as a component in the pseudohyphal growth pathway, and we attempted to identify the function of Rck1 in pseudohyphal growth. Rck1 up-regulated Ras2 at the protein level, not the transcriptional level. Additionally, FLO11 transcription was up-regulated by RCK1 over-expression. RCK1 expression was up-regulated during growth on SLAD+1% butanol medium. On nitrogen starvation agar plates, RCK1 over-expression induced pseudohyphal growth of colonies, and cells over-expressing RCK1 showed a filamentous morphology when grown in SLAD medium. Furthermore, 1-butanol greatly induced filamentous growth when RCK1 was over-expressed. Moreover, invasive growth was activated in haploid cells when RCK1 was over-expressed. The growth defect of cells observed on 1-butanol medium was recovered when RCK1 was over-expressed. Interestingly, Ras2 and phospho-Kss1 were up-regulated by Rck1 independently. Together, these results suggest that Rck1 promotes pseudohyphal growth by activating Ras2 and Kss1 via independent pathways in S. cerevisiae. PMID:24491552

  10. Maternal immunization

    PubMed Central

    Moniz, Michelle H; Beigi, Richard H

    2014-01-01

    Maternal immunization holds tremendous promise to improve maternal and neonatal health for a number of infectious conditions. The unique susceptibilities of pregnant women to infectious conditions, as well as the ability of maternally-derived antibody to offer vital neonatal protection (via placental transfer), together have produced the recent increased attention on maternal immunization. The Advisory Committee on Immunization Practices (ACIP) currently recommends 2 immunizations for all pregnant women lacking contraindication, inactivated Influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap). Given ongoing research the number of vaccines recommended during pregnancy is likely to increase. Thus, achieving high vaccination coverage of pregnant women for all recommended immunizations is a key public health enterprise. This review will focus on the present state of vaccine acceptance in pregnancy, with attention to currently identified barriers and determinants of vaccine acceptance. Additionally, opportunities for improvement will be considered. PMID:25483490

  11. Maternal Employment and Adolescent Development

    PubMed Central

    Ruhm, Christopher J.

    2009-01-01

    This study investigates how maternal employment is related to the cognitive development and body weight of 10 and 11 year olds, controlling for a wide variety of child, mother and family characteristics. The results suggest that limited market work benefits youths who are relatively “disadvantaged” and even long hours, which occur infrequently, are unlikely to leave them much worse off. By contrast, maternal labor supply is estimated to have more uniformly harmful consequences for “advantaged” adolescents. The negative cognitive effects for these youths probably partly occur because maternal labor supply reduces the time spent in enriching home environments. Some of the growth in obesity may be related to determinants of excess weight common to the child and mother. PMID:19830269

  12. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    PubMed

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  13. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.

  14. Up-regulation of IL-12 in monocytes: a fundamental defect in common variable immunodeficiency.

    PubMed

    Cambronero, R; Sewell, W A; North, M E; Webster, A D; Farrant, J

    2000-01-01

    We show that LPS-stimulated circulating CD14-positive monocytes from patients with common variable immunodeficiency (CVID) express a higher proportion of intracellular IL-12-positive cells than monocytes from patients with X-linked agammaglobulinemia or normal subjects. We used four-color flow cytometry and measured IL-12 with an Ab to the p40 subunit following stimulation with LPS. The raised IL-12 is associated with an increased frequency of IFN-gamma-positive T cells, but not of IFN-gamma-positive CD56+ NK cells. These increases in frequency of cytokine-positive cells are due to a decrease in the absolute numbers of circulating monocytes and T cells that are negative for IL-12 and IFN-gamma, respectively. The increased frequency of IL-12-positive monocytes appears to be selective because TNF-alpha was not increased, and is thus unlikely to reflect a general activation. Chronic infection is also unlikely to explain our data since cells from X-linked agammaglobulinemia patients with a similar Ig deficiency do not show these changes. Our data suggest a fundamental abnormality in the IL-12/IFN-gamma circuit in CVID, with up-regulation of IL-12 being the "primary" factor. This imbalance is likely to skew the immune response away from Ab production and also explains the failure of CVID T cells to make Ag-specific memory cells and the chronic inflammatory and granulomatous complications that are a feature of CVID. This disease appears to be a rare example of a polarized Th1-type response and may in part be due to a genetic defect in the control of IL-12 production.

  15. Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells

    PubMed Central

    Xu, Hong; Xian, Jian; Vire, Emmanuelle; McKinney, Steven; Wong, Jason; Wei, Vivien; Tong, Rebecca; Kouzarides, Tony; Caldas, Carlos; Aparicio, Samuel

    2016-01-01

    BRCA2 mutations are significantly associated with early onset breast cancer, and the tumour suppressing function of BRCA2 has been attributed to its involvement in homologous recombination [1]-mediated DNA repair. In order to identify additional functions of BRCA2, we generated BRCA2-knockout HCT116 human colorectal carcinoma cells. Using genome-wide microarray analyses, we have discovered a link between the loss of BRCA2 and the up-regulation of a subset of interferon (IFN)-related genes, including APOBEC3F and APOBEC3G. The over-expression of IFN-related genes was confirmed in different human BRCA2−/− and mouse Brca2−/− tumour cell lines, and was independent of either senescence or apoptosis. In isogenic wild type BRCA2 cells, we observed over-expression of IFN-related genes after treatment with DNA-damaging agents, and following ionizing radiation. Cells with endogenous DNA damage because of defective BRCA1 or RAD51 also exhibited over-expression of IFN-related genes. Transcriptional activity of the IFN-stimulated response element (ISRE) was increased in BRCA2 knockout cells, and the expression of BRCA2 greatly decreased IFN-α stimulated ISRE reporter activity, suggesting that BRCA2 directly represses the expression of IFN-related genes through the ISRE. Finally, the colony forming capacity of BRCA2 knockout cells was significantly reduced in the presence of either IFN-β or IFN-γ, suggesting that IFNs may have potential as therapeutic agents in cancer cells with BRCA2 mutations. PMID:25043256

  16. Up-regulation of niacinamide in intervertebral disc aggrecan in vitro.

    PubMed

    Xiong, Xiaoqian; Yang, Shuhua; Shao, Zengwu; Liu, Xin; Zhan, Zirui; Duan, Deyu

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8% as compared with control group (P < 0 01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3% as compared with control group (P < 0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P < 0.01) and untreated group (P < 0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1beta was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1beta-induced degenerated IVDS was increased with the increase of Nia concentrations. It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1beta-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  17. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2.

    PubMed

    Xuan, Xaioyan; Li, Shanshan; Lou, Xi; Zheng, Xianzhao; Li, Yunyun; Wang, Feng; Gao, Yuan; Zhang, Hongyan; He, Hongliu; Zeng, Qingru

    2015-05-01

    Stat3 alters the expression of its downstream genes and is associated with tumor invasion and metastasis in several human cancers. Its role in esophageal squamous cell carcinoma (ESCC) has not been well characterized. We examined the tumor sections of 100 cases of ESCC by immunohistochemistry and observed significant overexpression of Stat3 in the cytoplasm of 89% of ESCC cells and of phosphorylated Stat3 (p-Stat3) in the nuclei of 71% of ESCC when compare with normal esophageal mucosa (72%, p = 0.02; and 31%, p = 0.001). Overexpression of Stat3 and p-Stat3 positively correlated with that of matrix metalloproteinase-2 (MMP2), a known regulator for cell migration, in 65% of ESCC while only 26% shown in benign esophageal mucosa. To further investigate the association of Stat3 with tumor metastasis in vitro, invasion of EC-1 cells (a human ESCC cell line) were investigated with Boyden chambers. The results showed that transfection of Stat3 not only promoted invasion of EC-1 cells but also significantly induced MMP2 expression in a dose-dependent manner. In contrast, suppressing expression of endogenous Stat3 mRNA and protein by Stat3 siRNA significantly reduced EC-1 cell invasion and MMP2 expression. A high-affinity Stat3-binding element was localized to the positions of 648-641 bp (TTCTCGAA) in the MMP2 promoter with electrophoretic mobility shift assay. Our results suggest that Stat3, p-Stat3, and MMP2 were overexpressed in ESCC and associated with invasion of ESCC; and Stat3 up-regulated expression of MMP2 in ESCC through directly binding to the MMP2 promoter.

  18. Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings.

    PubMed

    Liao, Jo-Chien; Hsieh, Wei-Yu; Tseng, Ching-Chih; Hsieh, Ming-Hsiun

    2016-02-01

    Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.

  19. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    PubMed

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  20. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14

    PubMed Central

    Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC. PMID:27494117

  1. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  2. Cathepsin D is up-regulated in inflammatory bowel disease macrophages

    PubMed Central

    HAUSMANN, M; OBERMEIER, F; SCHREITER, K; SPOTTL, T; FALK, W; SCHÖLMERICH, J; HERFARTH, H; SAFTIG, P; ROGLER, G

    2004-01-01

    Down-regulation of receptors involved in the recognition or transmission of inflammatory signals and a reduced responsiveness support the concept that macrophages are ‘desensitized’ during their differentiation in the intestinal mucosa. During inflammatory bowel disease (IBD) intestinal macrophages (IMACs) change to a reactive or ‘aggressive’ type. After having established a method of isolation and purification of IMACs, message for cathepsin D was one of the mRNAs we found to be up-regulated in a subtractive hybridization of Crohn's disease (CD) macrophages versus IMACs from control mucosa. The expression of cathepsin D in intestinal mucosa was analysed by immunohistochemistry in biopsies from IBD and control patients and in a mouse model of dextran sulphate sodium (DSS)-induced acute and chronic colitis. IMACs were isolated and purified from normal and inflamed mucosa by immunomagnetic beads armed with a CD33 antibody. RT-PCR was performed for cathepsin D mRNA. Results were confirmed by Northern blot and flow cytometrical analysis. Immunohistochemistry revealed a significant increase in the cathepsin D protein expression in inflamed intestinal mucosa from IBD patients compared to non-inflamed mucosa. No cathepsin D polymerase chain reaction (PCR) product could be obtained with mRNA from CD33-positive IMACs from normal mucosa. Reverse transcription (RT)-PCR showed an induction of mRNA for cathepsin D in purified IMACs from IBD patients. Northern blot and flow cytometry analysis confirmed these results. Cathepsin D protein was also found in intestinal mucosa in acute and chronic DSS-colitis but was absent in normal mucosa. This study shows that expression of cathepsin D is induced in inflammation-associated IMACs. The presence of cathepsin D might contribute to the mucosal damage in IBD. PMID:15030527

  3. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  4. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro*

    PubMed Central

    Spatz, Jordan M.; Wein, Marc N.; Gooi, Jonathan H.; Qu, Yili; Garr, Jenna L.; Liu, Shawn; Barry, Kevin J.; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M.; Babij, Philip; Pajevic, Paola Divieti

    2015-01-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  5. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  6. HGF/MET signaling promotes glioma growth via up-regulation of Cox-2 expression and PGE2 production

    PubMed Central

    Zhao, Yan; Sun, Ying; Zhang, Haiyan; Liu, Xing; Du, Wenzong; Li, Yongli; Zhang, Junhe; Chen, Lingchao; Jiang, Chuanlu

    2015-01-01

    Cyclooxygenase2 (Cox-2) is well known for glioma growth through up-regulation of prostaglandin E2 (PGE2) levels. MET, a hepatocyte growth factor (HGF) receptor, is also frequently high expressed in glioma, which promotes glioma growth and invasion. Here, we demonstrate that HGF/MET signaling can promote PGE2 production in glioma cells via Cox-2 up-regulation. RNA inhibition of MET suggested that MET signaling is essential for Cox-2 up-regulation. Moreover, HGF could enhance Cox-2 expression and PGE2 release. Knockdown of Cox-2 inhibited growth-promoting effects of HGF, suggesting that HGF/MET functioned via Cox-2/PGE2 pathway. Therefore, our work reveals a critical relationship of Cox-2/PGE2 and HGF/MET signaling in promoting glioma cells proliferation. Further, targeting MET and Cox-2 may represent an attractive target therapy for glioma. PMID:26097553

  7. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC).

    PubMed

    Xu, Weijin; Huang, Huixing; Yu, Long; Cao, Lihuan

    2015-04-01

    Hepatocellular carcinoma (HCC) is among the commonest kind of malignant tumors, which accounts for more than 500,000 cases of newly diagnosed cancer annually. Many microarray studies for identifying differentially expressed genes (DEGs) in HCC have been conducted, but results have varied across different studies. Here, we performed a meta-analysis of publicly available microarray Gene Expression Omnibus datasets, which covers five independent studies, containing 753 HCC samples and 638 non-tumor liver samples. We identified 192 DEGs that were consistently up-regulated in HCC vs. normal liver tissue. For the 192 up-regulated genes, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our surprise, besides several cell growth-related pathways, spliceosome pathway was also up-regulated in HCC. For further exploring the relationship between spliceosome pathway and HCC, we investigated the expression data of spliceosome pathway genes in 15 independent studies in Nextbio database ( https://www.nextbio.com/b/nextbioCorp.nb ). It was found that many genes of spliceosome pathway such as HSPA1A, SNRPE, SF3B2, SF3B4 and TRA2A genes which we identified to be up-regulated in our meta-analysis were generally overexpressed in HCC. At last, using real-time PCR, we also found that BUD31, SF3B2, SF3B4, SNRPE, SPINK1, TPA2A and HSPA1A genes are significantly up-regulated in clinical HCC samples when compared to the corresponding non-tumorous liver tissues. Our study for the first time indicates that many genes of spliceosome pathway are up-regulated in HCC. This finding might put new insights for people's understanding about the relationship of spliceosome pathway and HCC.

  8. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent.

    PubMed

    Jiang, Hong; Song, Ning; Xu, Huamin; Zhang, Shuzhen; Wang, Jun; Xie, Junxia

    2010-03-01

    Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMT1+IRE), but not DMT1 without IRE (DMT1-IRE), was up-regulated, suggesting that increased DMT1+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMT1+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-induced DMT1+IRE up-regulation. Pretreatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-induced oxidative stress. Increased DMT1+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMT1+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in aggravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression. PMID:20125122

  9. Dietary iron-deficiency up-regulates hephaestin mRNA level in small intestine of rats.

    PubMed

    Sakakibara, Shoji; Aoyama, Yoritaka

    2002-05-17

    Hephaestin is a protein, recently found from the study of sla (sex-linked anemia) mouse. Hephaestin is suggested to transport iron from intestinal enterocytes into the circulation. Iron is essential for living and for humans to maintain a constant total iron concentration in whole body. In this study, it was found that dietary iron-deficiency up-regulated hephaestin mRNA level in the proximal small intestine of rats. Therefore, it is suggested that in dietary iron-deficiency, hephaestin gene expression in proximal small intestine is up-regulated to absorb more iron from diet.

  10. Maternal overweight programs insulin and adiponectin signaling in the offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gestational exposure to maternal overweight (OW) influences the risk of obesity in adult-life. Male offspring from OW dams gain greater body weight, fat mass and develop insulin resistance when fed high fat diets (45 percent fat). In this report we identify molecular targets of maternal OW-induced p...

  11. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    PubMed Central

    Lewis, Joshua B.; Milner, Dallin C.; Lewis, Adam L.; Dunaway, Todd M.; Egbert, Kaleb M.; Albright, Scott C.; Merrell, Brigham J.; Monson, Troy D.; Broberg, Dallin S.; Gassman, Jason R.; Thomas, Daniel B.; Arroyo, Juan A.; Reynolds, Paul R.

    2016-01-01

    It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating

  12. Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer

    PubMed Central

    He, Xiang-Jun; Zhang, Qi; Ma, Li-Ping; Li, Na; Chang, Xiao-Hong; Zhang, Yu-Jun

    2016-01-01

    RNAs and is responsible for survivin up-regulation. PMID:27174320

  13. The influence of maternal psychosocial characteristics on infant feeding styles.

    PubMed

    Barrett, Katherine J; Thompson, Amanda L; Bentley, Margaret E

    2016-08-01

    Maternal feeding styles in infancy and early childhood are associated with children's later risk for overweight and obesity. Maternal psychosocial factors that influence feeding styles during the complementary feeding period, the time during which infants transition from a milk-based diet to one that includes solid foods and other non-milk products, have received less attention. The present study explores how maternal psychosocial factors-specifically self-esteem, parenting self-efficacy, parenting satisfaction, and depression symptoms-influence mothers' infant feeding styles at nine months of age, a time during which solid foods eating habits are being established. Participants included 160 low-income, African-American mother-infant pairs in central North Carolina who were enrolled in the Infant Care and Risk of Obesity Study. Regression models tested for associations between maternal psychosocial characteristics and pressuring and restrictive feeding styles. Models were first adjusted for maternal age, education, marital status and obesity status. To account for infant characteristics, models were then adjusted for infant weight-for-length, distress to limitations and activity level scores. Maternal self-esteem was negatively associated with pressuring to soothe. Maternal parenting self-efficacy was positively associated with restriction-diet quality. Maternal parenting satisfaction and depression symptoms were not associated with feeding styles in the final models. Focusing on strengthening maternal self-esteem and parenting self-efficacy may help to prevent the development of less desirable infant feeding styles. PMID:27174251

  14. The influence of maternal psychosocial characteristics on infant feeding styles.

    PubMed

    Barrett, Katherine J; Thompson, Amanda L; Bentley, Margaret E

    2016-08-01

    Maternal feeding styles in infancy and early childhood are associated with children's later risk for overweight and obesity. Maternal psychosocial factors that influence feeding styles during the complementary feeding period, the time during which infants transition from a milk-based diet to one that includes solid foods and other non-milk products, have received less attention. The present study explores how maternal psychosocial factors-specifically self-esteem, parenting self-efficacy, parenting satisfaction, and depression symptoms-influence mothers' infant feeding styles at nine months of age, a time during which solid foods eating habits are being established. Participants included 160 low-income, African-American mother-infant pairs in central North Carolina who were enrolled in the Infant Care and Risk of Obesity Study. Regression models tested for associations between maternal psychosocial characteristics and pressuring and restrictive feeding styles. Models were first adjusted for maternal age, education, marital status and obesity status. To account for infant characteristics, models were then adjusted for infant weight-for-length, distress to limitations and activity level scores. Maternal self-esteem was negatively associated with pressuring to soothe. Maternal parenting self-efficacy was positively associated with restriction-diet quality. Maternal parenting satisfaction and depression symptoms were not associated with feeding styles in the final models. Focusing on strengthening maternal self-esteem and parenting self-efficacy may help to prevent the development of less desirable infant feeding styles.

  15. Developmental origins of obesity-related hypertension.

    PubMed

    Henry, Sarah L; Barzel, Benjamin; Wood-Bradley, Ryan J; Burke, Sandra L; Head, Geoffrey A; Armitage, James A

    2012-09-01

    1. In the past 30 years the prevalence of obesity and overweight have doubled. It is now estimated that globally over 500 million adults are obese and a further billion adults are overweight. Obesity is a cardiovascular risk factor and some studies suggest that up to 70% of cases of essential hypertension may be attributable, in part, to obesity. Increasingly, evidence supports a view that obesity-related hypertension may be driven by altered hypothalamic signalling, which results in inappropriately high appetite and sympathetic nerve activity to the kidney. 2. In addition to the adult risk factors for obesity and hypertension, the environment encountered in early life may 'programme' the development of obesity, hypertension and cardiovascular disease. In particular, maternal obesity or high dietary fat intake in pregnancy may induce changes in fetal growth trajectories and predispose individuals to develop obesity and related sequelae. 3. The mechanisms underlying the programming of obesity-related hypertension are becoming better understood. However, several issues require clarification, particularly with regard to the role of the placenta in transferring fatty acid to the fetal compartment, the impact of placental inflammation and cytokine production in obesity. 4. By understanding which factors are most associated with the development of obesity and hypertension in the offspring, we can focus therapeutic and behavioural interventions to most efficiently reduce the intergenerational propagation of the obesity cycle.

  16. Antagonism between MyD88- and TRIF-dependent signals in B7RP-1 up-regulation.

    PubMed

    Zhou, Zuping; Hoebe, Kasper; Du, Xin; Jiang, Zhengfan; Shamel, Louis; Beutler, Bruce

    2005-06-01

    Type I interferons (IFN) play a critical role in the Toll-like receptor (TLR)-mediated expression of B7 costimulatory family members. For example, LPS-induced up-regulation of CD80 (B7.1) and CD86 (B7.2) is abrogated in antigen-presenting cells (APC) deficient in TRIF or TRAM, two adaptors that are responsible for TLR4-mediated production of Type I IFN. In this report, we demonstrate that LPS-induced up-regulation of B7-related protein 1 (B7RP-1), a ligand for ICOS, is dependent primarily upon the MyD88-dependent signaling pathway. Signaling via the TRIF pathway sharply limits MyD88-dependent B7RP-1 up-regulation. Hence, LPS induces significantly higher B7RP-1 expression on TRIF- or TRAM-deficient mouse peritoneal macrophages and on TRIF-deficient mouse splenic B cells as compared to wild-type cells. Further studies reveal that Type I IFN are general suppressors of TLR-mediated up-regulation of B7RP-1. These data indicate that Type I IFN play a dual role in the TLR-mediated expression of B7 costimulatory family members and suggest that they may act to limit B7RP-1 expression and thus limit signals derived from B7RP-1-ICOS interaction.

  17. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  18. Cotton Benzoquinon Reductase: Up-Regulation During Early Fiber Development and Heterologous Expresson and Characterization in Pichia Pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR) is an enzyme which catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage. These proteins were excis...

  19. Up-Regulation of Nerve Growth Factor in Cholestatic Livers and Its Hepatoprotective Role against Oxidative Stress

    PubMed Central

    Tsai, Ming-Shian; Lin, Yu-Chun; Sun, Cheuk-Kwan; Huang, Shih-Che; Lee, Po-Huang; Kao, Ying-Hsien

    2014-01-01

    The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases. PMID:25397406

  20. Exploring the effects of maternal eating patterns on maternal feeding and child eating.

    PubMed

    Morrison, Halley; Power, Thomas G; Nicklas, Theresa; Hughes, Sheryl O

    2013-04-01

    Recent research has demonstrated the importance of maternal feeding practices and children's eating behavior in the development of childhood obesity. The purpose of this study was to examine the relations between maternal and child eating patterns, and to examine the degree to which these relationships were mediated through maternal feeding practices. Two hundred and twenty-two low-income mothers and their preschool children participated. About half of the families were African American and half were Latino. Mothers completed questionnaires assessing maternal eating patterns, maternal feeding practices, and children's eating patterns. Maternal external eating (eating in response to outside stimuli, not internal hunger/thirst cues) was positively correlated with two child eating scores: picky eating and desire to eat. Mediational analyses showed that external eating in mothers was related to picky eating in children through high maternal control in feeding; the relationship between mothers' external eating and desire to eat in children was not mediated through maternal control. Picky eating and desire to eat in children were related to emotional eating in mothers as well. The implications of these results for understanding the development of childhood obesity are considered.

  1. Up-regulation of blood-brain barrier short-form leptin receptor gene products in rats fed a high fat diet.

    PubMed

    Boado, R J; Golden, P L; Levin, N; Pardridge, W M

    1998-10-01

    Leptin is a 16-kDa protein synthesized in adipose tissue that produces a satiety effect in the CNS. Leptin may gain access to the brain via receptor-mediated transport through the blood-brain barrier (BBB), and the BBB leptin receptor (OBR) may regulate the availability of circulating leptin to brain cells. The aim of the present study was twofold: first, to identify the OBR isoform expressed at the BBB, i.e., short, or "a," and long, or "b," form; and second, to compare the abundance of the BBB OBR mRNA and protein between control and high fat-fed rats. RT-PCR with isoform-specific primers showed that OBRa is the most abundant isoform at the BBB. BBB OBRa transcript content was markedly increased in high fat-fed rats compared with controls (11-fold), and no changes were observed in the expression of the internal standard control actin. The high fat feeding induction of OBR mRNA was correlated with an increase in the immunoreactive BBB OBR determined by immunocytochemistry using an all-isoform reactive antibody in high fat-fed obese rats. This investigation demonstrates (a) the OBRa is the principal leptin receptor expressed at the BBB and (b) this BBB OBR isoform is up-regulated by a high fat diet.

  2. Understanding the Effect of Obesity on Fertility Among Reproductive-Age Women.

    PubMed

    Mitchell, Allison; Fantasia, Heidi Collins

    2016-01-01

    Obesity is a major public health concern, and obesity among women of childbearing age can have a negative impact on fertility. The mechanism of action between obesity and infertility is complex and includes hormonal factors, alterations in ovulation, and changes in the menstrual cycle. Maternal obesity has also been linked to spontaneous abortion and poorer maternal and fetal health outcomes. Many interventions exist to help childbearing women achieve a lower body mass index. These include lifestyle modifications (diet/physical activity) and surgical and pharmacologic interventions. This article reviews the pathophysiology of the relationship between obesity and infertility and discusses evidence-based interventions for improving fertility among obese childbearing women. PMID:27520601

  3. Prepregnancy obesity: a complex risk factor for selected birth defects.

    PubMed

    Carmichael, Suzan L; Rasmussen, Sonja A; Shaw, Gary M

    2010-10-01

    Obesity is associated with increased risk of many adverse health conditions. During pregnancy, obesity presents particularly important challenges for both mother and baby. Over the last 20 years, studies have emerged indicating an association between prepregnancy weight and risks of birth defects. However, few studies have examined the mechanisms through which this association occurs. Understanding the underlying mechanisms may provide clues to public health strategies for the prevention of birth defects associated with maternal obesity. This article briefly reviews existing literature on the association between maternal obesity and birth defects, discusses potential underlying mechanisms, and suggests research needed to improve our understanding of this important association.

  4. Maternal Employment

    ERIC Educational Resources Information Center

    Clark, Sam

    1975-01-01

    The overwhelming evidence from years of research is that maternal employment, by itself, has little influence on the behaviors of children. More relevant issues are: mother's reasons for working, family's acceptance of mother's employment, quality of substitute child care, family's social and emotional health, and economic conditions. (Author/AJ)

  5. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.

    PubMed

    Arumugam, Sridhar; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-01

    Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link

  6. Socioeconomic differences in obesity among Mexican adolescents

    PubMed Central

    ULLMANN, S. HEIDI; BUTTENHEIM, ALISON M.; GOLDMAN, NOREEN; PEBLEY, ANNE R.; WONG, REBECA

    2012-01-01

    Objective We investigate socioeconomic disparities in adolescent obesity in Mexico. Three questions are addressed. First, what is the social patterning of obesity among Mexican adolescents? Second, what are the separate and joint associations of maternal and paternal education with adolescent obesity net of household wealth? Third, are there differences in socioeconomic status (SES) gradients among Mexican boys and girls, rural residents and non-rural residents? Methods Using data from the Mexican National Health Survey 2000 we examined the slope and direction of the association between SES and adolescent obesity. We also estimated models for sub-populations to examine differences in the social gradients in obesity by sex and non-rural residence. Results We find that household economic status (asset ownership and housing quality) is positively associated with adolescent obesity. High paternal education is related to lower obesity risk, whereas the association between maternal education and obesity is positive, but not always significant. Conclusion The household wealth components of SES appear to predispose Mexican adolescents to higher obesity risk. The effects of parental education are more complex. These findings have important policy implications in Mexico and the United States. PMID:20883181

  7. Obesity Epidemiology

    PubMed Central

    Haidar, Yarah M.; Cosman, Bard C.

    2011-01-01

    Obesity has progressed in a few decades from a public health footnote in developed countries to a top-priority international issue. Because obesity implies increased morbidity and mortality from chronic, debilitating disorders, it is a major burden on individuals and health systems in both developing and developed countries. Obesity is a complex disorder unequally affecting all age groups and socioeconomic classes. Of special concern is increasing childhood obesity. This review presents the extent of the obesity epidemic and its impact worldwide by way of introduction to a discussion of colon and rectal surgery in the obese patient. PMID:23204935

  8. Early markers of adult obesity: a review.

    PubMed

    Brisbois, T D; Farmer, A P; McCargar, L J

    2012-04-01

    The purpose of this review was to evaluate factors in early childhood (≤5 years of age) that are the most significant predictors of the development of obesity in adulthood. Factors of interest included exposures/insults in the prenatal period, infancy and early childhood, as well as other socio-demographic variables such as socioeconomic status (SES) or birth place that could impact all three time periods. An extensive electronic and systematic search initially resulted in 8,880 citations, after duplicates were removed. Specific inclusion and exclusion criteria were set, and following two screening processes, 135 studies were retained for detailed abstraction and analysis. A total of 42 variables were associated with obesity in adulthood; however, of these, only seven variables may be considered as potential early markers of obesity based on the reported associations. Possible early markers of obesity included maternal smoking and maternal weight gain during pregnancy. Probable early markers of obesity included maternal body mass index, childhood growth patterns (early rapid growth and early adiposity rebound), childhood obesity and father's employment (a proxy measure for SES in many studies). Health promotion programmes/agencies should consider these factors as reasonable targets to reduce the risk of adult obesity.

  9. [Low dose benzo(a)pyrene up-regulated the transcription of HSP70 and HSP90 in Eisenia fetida].

    PubMed

    Zheng, Sen-Lin; Sun, Tie-Heng; Xiao, Hong; Qiu, Xiao-Yan; Song, Yu-Fang

    2008-02-01

    To search for the molecular biomarkers of sub-lethal polycyclic aromatic hydrocarbons (PAHs)-contamination of soil, the subtractive cDNA libraries of earthworm Eisenia fetida exposed to benzo(a)pyrene (BaP) in artificial soil were constructed by suppression subtractive hybridization. After sequencing and analyzing with basic local alignment search tool (BLAST), two clones matching heat shock protein 70 k Da (HSP70) and one clone matching heat shock protein 90 k Da (HSP90) were isolated from the up-regulated library, and subsequently, the up-regulation of HSP70 and HSP90 was verified by real-time PCR in E. fetida exposed to 0.1 mg x kg(-1) and 1.0 mg x kg(-1) BaP. It was indicated that these two newly identified HSPs in E. fetida were the potential molecular biomarkers for soil contamination monitoring.

  10. {beta}-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells

    SciTech Connect

    Takao, Yukinari; Yokota, Takashi; Koide, Hiroshi . E-mail: hkoide@med.kanazawa-u.ac.jp

    2007-02-16

    It is well known that mouse embryonic stem (ES) cells can be maintained by the presence of leukemia inhibitory factor (LIF). Recent studies have revealed that Wnt also exhibits activity similar to LIF. The molecular mechanism behind the maintenance of ES cells by these factors, however, is not fully understood. In this study, we found that LIF enhances level of nuclear {beta}-catenin, a component of the Wnt signaling pathway. Expression of an activated mutant of {beta}-catenin led to the long-term proliferation of ES cells, even in the absence of LIF. Furthermore, it was found that {beta}-catenin up-regulates Nanog in an Oct-3/4-dependent manner and that {beta}-catenin physically associates with Oct-3/4. These results suggest that up-regulating Nanog through interaction with Oct-3/4 involves {beta}-catenin in the LIF- and Wnt-mediated maintenance of ES cell self-renewal.

  11. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  12. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    PubMed

    Stypula-Cyrus, Yolanda; Damania, Dhwanil; Kunte, Dhananjay P; Cruz, Mart Dela; Subramanian, Hariharan; Roy, Hemant K; Backman, Vadim

    2013-01-01

    Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC) family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC). However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs) interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA) targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS) to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  13. Up-regulation of stomatin expression by hypoxia and glucocorticoid stabilizes membrane-associated actin in alveolar epithelial cells

    PubMed Central

    Chen, Ji-Cheng; Cai, Hao-Yu; Wang, Yan; Ma, Yuan-Yuan; Song, Liang-Nian; Yin, Li-Juan; Cao, Dong-Mei; Diao, Fei; Li, Yi-Dong; Lu, Jian

    2013-01-01

    Stomatin is an important lipid raft-associated protein which interacts with membrane proteins and plays a role in the membrane organization. However, it is unknown whether it is involved in the response to hypoxia and glucocorticoid (GC) in alveolar epithelial cells (AEC). In this study we found that hypoxia and dexamethasone (dex), a synthetic GC not only up-regulated the expression of stomatin alone, but also imposed additive effect on the expression of stomatin in A549 cells, primary AEC and lung of rats. Then we investigated whether hypoxia and dex transcriptionally up-regulated the expression of stomatin by reporter gene assay, and found that dex, but not hypoxia could increase the activity of a stomatin promoter-driven reporter gene. Further deletion and mutational studies demonstrated that a GC response element (GRE) within the promoter region mainly contributed to the induction of stomatin by dex. Moreover, we found that hypoxia exposure did not affect membrane-associated actin, but decreased actin in cytoplasm in A549 cells. Inhibiting stomatin expression by stomatin siRNA significantly decreased dense of peripheral actin ring in hypoxia or dex treated A549 cells. Taken all together, these data indicated that dex and/or hypoxia significantly up-regulated the expression of stomatin in vivo and in vitro, which could stabilize membrane-associated actin in AEC. We suppose that the up-regulation of stomatin by hypoxia and dex may enhance the barrier function of alveolar epithelia and mediate the adaptive role of GC to hypoxia. PMID:23672602

  14. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; Oarada, Motoko; Kishi, Kyoichi; Nikawa, Takeshi

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  15. Thrombin-mediated IL-10 up-regulation involves protease-activated receptor (PAR)-1 expression in human mononuclear leukocytes.

    PubMed

    Naldini, Antonella; Bernini, Claudia; Pucci, Annalisa; Carraro, Fabio

    2005-09-01

    Thrombin, the key enzyme of the coagulation cascade, exerts cellular effects through activation of the protease-activated receptors (PARs). Interleukin (IL)-10, besides its anti-inflammatory properties, is considered a major denominator of the immunosuppressive effect during human endotoxemia. We have recently shown that thrombin inhibits IL-12 production in human mononuclear cells and that such inhibition is accompanied by IL-10 up-regulation. To our knowledge, there are no data available to show that thrombin mediates IL-10 production by its interactions with PAR-1. We here report that human alpha-thrombin enhances IL-10 expression in human peripheral blood mononuclear cells and in established monocytic cell lines and that this up-regulation requires PAR-1 expression. The use of proteolytically inactive thrombin reveals that such enhancement requires thrombin proteolytic activity. Addition of PAR-1 agonist peptides, such as SFLLRN, results in a significant increase of IL-10 production. PAR-1 expression is required for thrombin-induced IL-10 production, as shown by experiments performed with antisense or sense PAR-1 oligonucleotides. Treatment with thrombin or SFLLRN of monocytic cell lines, such as U937 and Mono Mac-6, results in an increased IL-10 production. This suggests that the observed IL-10 up-regulation may be the result of a direct interaction with monocytes. The observation that thrombin-mediated up-regulation of IL-10 may require the expression of the PAR-1 receptor identifies a new, functional link between inflammation and coagulation. Our results may also contribute to better design therapeutic strategies to treat several disorders, characterized by the presence of inflammatory as well as coagulant responses. PMID:15961578

  16. Antitumor Effects of a Sirtuin Inhibitor, Tenovin-6, against Gastric Cancer Cells via Death Receptor 5 Up-Regulation

    PubMed Central

    Hirai, Sachiko; Endo, Shinji; Saito, Rie; Hirose, Mitsuaki; Ueno, Takunori; Suzuki, Hideo; Yamato, Kenji; Abei, Masato; Hyodo, Ichinosuke

    2014-01-01

    Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors. PMID:25033286

  17. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    PubMed

    Hirai, Sachiko; Endo, Shinji; Saito, Rie; Hirose, Mitsuaki; Ueno, Takunori; Suzuki, Hideo; Yamato, Kenji; Abei, Masato; Hyodo, Ichinosuke

    2014-01-01

    Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors. PMID:25033286

  18. Up-regulated uridine kinase gene identified by RLCS in the ventral horn after crush injury to rat sciatic nerves.

    PubMed

    Yuh, I; Yaoi, T; Watanabe, S; Okajima, S; Hirasawa, Y; Fushiki, S

    1999-12-01

    Rat sciatic nerve crush injury is one of the models commonly employed for studying the mechanisms of nerve regeneration. In this study, we analyzed the temporal change of gene expression after injury in this model, to elucidate the molecular mechanisms involved in nerve regeneration. First, a cDNA analysis method, Restriction Landmark cDNA Scanning (RLCS), was applied to cells in the ventral horn of the spinal cord during a 7-day period after the crush injury. A total of 1991 cDNA species were detected as spots on gels, and 37 of these were shown to change after the injury. Temporally changed patterns were classified into three categories: the continuously up-regulated type (10 species), the transiently up-regulated type (22 species), and the down-regulated type (5 species). These complex patterns of gene expression demonstrated after the injury suggest that precise regulation in molecular pathways is required for accomplishing nerve regeneration. Secondly, the rat homologue of uridine kinase gene was identified as one of the up-regulated genes. Northern blot analysis on rat ventral horn tissue and brain revealed that the UK gene had three transcripts with different sizes (4.3, 1. 4, and 1.35 kb, respectively). All of the transcripts, especially the 4.3 kb one, were up-regulated mainly in a bimodal fashion during the 28-day period after the injury. The RLCS method that we employed in the present study shows promise as a means to fully analyze molecular changes in nerve regeneration in detail. PMID:10581173

  19. Offspring insulin and adiponectin signaling are targets of in utero programming following exposure to maternal overweight during gestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adult-life is subject to programming during gestation. To examine whether in utero exposure to maternal overweight (OW) increases the risk of obesity in the offspring, we developed an overfeeding-based model of maternal OW in rats utilizing intragastric feeding of diets via to...

  20. Obesity rates in two generations of Swedish women entering pregnancy, and associated obesity risk among adult daughters.

    PubMed

    Derraik, José G B; Ahlsson, Fredrik; Diderholm, Barbro; Lundgren, Maria

    2015-11-13

    We examined changes in obesity rates in two generations of Swedish women entering pregnancy, and assessed the effects of maternal body mass index (BMI) on the risk of overweight or obesity among adult daughters. This study covered an intergenerational retrospective cohort of 26,561 Swedish mothers and their 26,561 first-born daughters. There was a 4-fold increase in obesity rates, which rose from 3.1% among women entering pregnancy in 1982-1988 to 12.3% among their daughters in 2000-2008 (p < 0.0001) when entering pregnancy. The greater the maternal BMI, the greater the odds of overweight and/or obesity among daughters. Underweight mothers had half the odds of having an overweight or obese daughter in comparison to mothers of normal BMI (p < 0.0001). In contrast, the odds ratio of obese mothers having obese daughters was 3.94 (p < 0.0001). This study showed a strong association between maternal obesity and the risk of obesity among their first-born daughters. In addition, we observed a considerable increase in obesity rates across generations in mother-daughter pairs of Swedish women entering pregnancy. Thus, it is important to have preventative strategies in place to halt the worsening intergenerational cycle of obesity.

  1. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells

    SciTech Connect

    Salmina, Kristine; Jankevics, Eriks; Huna, Anda; Perminov, Dmitry; Radovica, Ilze; Klymenko, Tetyana; Ivanov, Andrey; Jascenko, Elina; Scherthan, Harry; Cragg, Mark; Erenpreisa, Jekaterina

    2010-08-01

    We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.

  2. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  3. Acetylation of p53 Protein at Lysine 120 Up-regulates Apaf-1 Protein and Sensitizes the Mitochondrial Apoptotic Pathway.

    PubMed

    Yun, Tao; Yu, Kaiwen; Yang, ShuangShuang; Cui, Yifan; Wang, Zixi; Ren, Huiyu; Chen, She; Li, Lin; Liu, Xiaoyun; Fang, Min; Jiang, Xuejun

    2016-04-01

    The p53 tumor suppressor controls cell growth, metabolism, and death by regulating the transcription of various target genes. The target-specific transcriptional activity of p53 is highly regulated. Here we demonstrate that acetylation of p53 at Lys-120 up-regulates its transcriptional activity toward Apaf-1, a core component in the mitochondrial apoptotic pathway, and thus sensitizes caspase activation and apoptosis. We found that histone deacetylase (HDAC) inhibitors, including butyrate, augment Lys-120 acetylation of p53 and thus Apaf-1 expression by inhibiting HDAC1. In p53-null cells, transfection of wild-type but not K120R mutant p53 can restore the p53-dependent sensitivity to butyrate. Strikingly, transfection of acetylation-mimicking K120Q mutant p53 is sufficient to up-regulates Apaf-1 in a manner independent of butyrate treatment. Therefore, HDAC inhibitors can induce p53 acetylation at lysine 120, which in turn enhances mitochondrion-mediated apoptosis through transcriptional up-regulation of Apaf-1. PMID:26851285

  4. Protracted treatment with MDMA induces heteromeric nicotinic receptor up-regulation in the rat brain: an autoradiography study.

    PubMed

    Ciudad-Roberts, Andrés; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2014-08-01

    Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce a heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated male Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and sacrificed them the day after to perform [(125)I]Epibatidine binding autoradiograms on serial coronal slices. MDMA induced significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory, motor, auditory and retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 34% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The heteromeric nAChR up-regulation in certain areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term consumption of MDMA.

  5. Isoform-Specific Up-Regulation of Plasma Membrane Ca2+ATPase Expression During Colon and Gastric Cancer Cell Differentiation

    PubMed Central

    Ribiczey, Polett; Tordai, Attila; Andrikovics, Hajnalka; Filoteo, Adelaida G.; Penniston, John T.; Enouf, Jocelyne; Enyedi, Ágnes; Papp, Béla; Kovács, Tünde

    2007-01-01

    Summary In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype. PMID:17433436

  6. Pregnancy-associated plasma protein A up-regulated by progesterone promotes adhesion and proliferation of trophoblastic cells.

    PubMed

    Wang, Jiao; Liu, Shuai; Qin, Hua-Min; Zhao, Yue; Wang, Xiao-Qi; Yan, Qiu

    2014-01-01

    Embryo implantation and development is a complex biological process for the establishment of the successful pregnancy. Progesterone is a critical factor in the regulation of embryo adhesion to uterine endometrium and proliferation. Although it has been reported that pregnancy-associated plasma protein A (PAPPA) is increased in pregnant women, the relationship between progesterone and PAPPA, and the effects of PAPPA on embryo adhesion and proliferation are still not clear. The present results showed that the serum level of progesterone and PAPPA was closely correlated by ELISA assay (p<0.01). PAPPA was detected in the villi of early embryo by RT-PCR, Western blot, immunohistochemistry and immunofluorescent staining. Moreover, PAPPA was significantly up-regulated by progesterone in trophoblastic (JAR) cells by Real-time PCR and ELISA assay (p<0.01); while the expression was decreased by the progesterone receptor inhibitor RU486. The down-regulation of PAPPA by siRNA transfection or up-regulation of PAPPA by progesterone treatment significantly decreased or increased the adhesion rate of trophoblastic cells to human uterine epithelial cell lines (RL95-2 and HEC-1A), respectively (p<0.01), as well as the proliferation of trophoblastic cells. In conclusion, PAPPA is up-regulated by progesterone, which promotes the adhesion and proliferation potential of trophoblastic cells. PMID:24817938

  7. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation

    SciTech Connect

    Vu, Hoang Anh; Xinh, Phan Thi; Kano, Yasuhiko; Tokunaga, Katsushi; Sato, Yuko

    2009-06-05

    We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.

  8. Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor.

    PubMed

    Chen, Zu-Lin; Yu, Huaxu; Yu, Wei-Ming; Pawlak, Robert; Strickland, Sidney

    2008-12-29

    Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamgamma1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamgamma1 KO mice. KA1 levels in tissue plasminogen activator (tPA)-KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamgamma1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.

  9. Up-regulation of Fas (CD95) and induction of apoptosis in intestinal epithelial cells by nematode-derived molecules.

    PubMed

    Kuroda, Akio; Uchikawa, Ryuichi; Matsuda, Shinji; Yamada, Minoru; Tegoshi, Tatsuya; Arizono, Naoki

    2002-08-01

    Infection by the intestinal nematode Nippostrongylus brasiliensis induces acceleration of apoptosis in the small intestinal villus epithelial cells in vivo. In the present study, we examined whether worm extract or excretory-secretory product induces apoptosis in the rat intestinal epithelial cell line IEC-6 in vitro. In the presence of worm extract or excretory-secretory product (> or =6 microg/ml), IEC-6 cell growth was significantly suppressed, and there was a concomitant increase in the number of detached cells in culture dishes. Detached cells showed nuclear fragmentation, activation of caspase-3, and specific cleavage of poly(ADP-ribose) polymerase, suggesting that apoptosis was induced in these cells. Semiquantitative reverse transcription-PCR showed that expression of Fas (CD95) mRNA was up-regulated as early as 6 h after addition of excretory-secretory product, while Fas ligand expression and p53 expression were not up-regulated. Fluorescence-activated cell sorter analyses revealed a significant increase in Fas expression and a slight increase in FasL expression in IEC-6 cells cultured in the presence of excretory-secretory product, while control IEC-6 cells expressed neither Fas or FasL. These results indicated that N. brasiliensis worms produce and secrete biologically active molecules that trigger apoptosis in intestinal epithelial cells together with up-regulation of Fas expression, although the mechanism of induction of apoptosis remains to be elucidated. PMID:12117905

  10. Childhood Obesity

    ERIC Educational Resources Information Center

    Yuca, Sevil Ari, Ed.

    2012-01-01

    This book aims to provide readers with a general as well as an advanced overview of the key trends in childhood obesity. Obesity is an illness that occurs due to a combination of genetic, environmental, psychosocial, metabolic and hormonal factors. The prevalence of obesity has shown a great rise both in adults and children in the last 30 years.…

  11. Obesity management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rates of obesity in the United States have increased dramatically over the past 30 years. Approximately 35% of children and 66% of adults are currently considered overweight or obese. Although obesity is seen in all ethnicities and economic classes, ethnic minorities and those of lower socioeconomic...

  12. Early and persistent up-regulation of hypothalamic orexigenic peptides in rat offspring born to dams fed a high-carbohydrate supplement during gestation.

    PubMed

    Beck, Bernard; Richy, Sébastien; Archer, Zoe A; Mercer, Julian G

    2012-10-01

    Maternal diet ingested during gestation can profoundly alter production and action of hypothalamic neuropeptides involved in feeding and body weight regulation. In this study, we set out to simulate, in a rat model, modifications to feeding habit often observed in pregnant women. Gestating dams were fed a restricted normal diet with the opportunity to complete their energy requirements with either a high-fat (HF) or a high-carbohydrate (HC) diet. Growth and hypothalamic feeding peptides were measured in the offspring at 3 (weaning) and 20 weeks of age. At weaning, body weight was lower in HC pups than in HF pups or control (Ca) pups born to dams fed control diet ad libitum. Expression of neuropeptide Y (NPY) and AgRP mRNA in the arcuate nucleus were increased in HC pups vs Ca and HF pups. By 20 weeks of age, body weight differentials had disappeared, and there was no differences in NPY and AgRP gene expression, although POMC expression was lower in HC rats than in HF rats. NPY and orexin peptide concentrations in the paraventricular nucleus at this age were higher in HC rats than in Ca and HF rats. In HC rats, there was also a greater positive gradient of peptide concentration between the zone of release and the zone of synthesis for NPY and orexin. The early up-regulation of orexigenic peptides in HC rats may be a compensatory adjustment to low body weight. This persisting overactive orexigenic drive might have deleterious metabolic effects in an obesogenic environment at adulthood. PMID:22922128

  13. Early and persistent up-regulation of hypothalamic orexigenic peptides in rat offspring born to dams fed a high-carbohydrate supplement during gestation.

    PubMed

    Beck, Bernard; Richy, Sébastien; Archer, Zoe A; Mercer, Julian G

    2012-10-01

    Maternal diet ingested during gestation can profoundly alter production and action of hypothalamic neuropeptides involved in feeding and body weight regulation. In this study, we set out to simulate, in a rat model, modifications to feeding habit often observed in pregnant women. Gestating dams were fed a restricted normal diet with the opportunity to complete their energy requirements with either a high-fat (HF) or a high-carbohydrate (HC) diet. Growth and hypothalamic feeding peptides were measured in the offspring at 3 (weaning) and 20 weeks of age. At weaning, body weight was lower in HC pups than in HF pups or control (Ca) pups born to dams fed control diet ad libitum. Expression of neuropeptide Y (NPY) and AgRP mRNA in the arcuate nucleus were increased in HC pups vs Ca and HF pups. By 20 weeks of age, body weight differentials had disappeared, and there was no differences in NPY and AgRP gene expression, although POMC expression was lower in HC rats than in HF rats. NPY and orexin peptide concentrations in the paraventricular nucleus at this age were higher in HC rats than in Ca and HF rats. In HC rats, there was also a greater positive gradient of peptide concentration between the zone of release and the zone of synthesis for NPY and orexin. The early up-regulation of orexigenic peptides in HC rats may be a compensatory adjustment to low body weight. This persisting overactive orexigenic drive might have deleterious metabolic effects in an obesogenic environment at adulthood.

  14. Childhood obesity: are genetic differences involved?

    PubMed

    Bouchard, Claude

    2009-05-01

    This brief review focuses on the genetic contribution to childhood obesity. Evidence for a genetic component to excess body weight during growth is presented from the perspective of genetic epidemiology studies. Parental obesity is a predictor of childhood excess weight. The familial risk ratio for childhood obesity when a parent is obese reaches >2.5. Birth weight is characterized by a genetic heritability component on the order of 30%, with significant maternal and paternal effects in addition to the newborn genes. About 5% of childhood obesity cases are caused by a defect that impairs function in a gene, and >/=5 of these genes have been uncovered. However, the common forms of childhood obesity seem to result from a predisposition that primarily favors obesogenic behaviors in an obesogenic environment. Candidate gene and genomewide association studies reveal that these obesogenic genes have small effect sizes but that the risk alleles for obesity are quite common in populations. The latter may translate into a highly significant population-attributable risk of obesity. Gene-environment interaction studies suggest that the effects of predisposing genes can be enhanced or diminished by exposure to relevant behaviors. It is possible that the prevalence of childhood obesity is increasing across generations as a result of positive assortative mating with obese husbands and wives contributing more obese offspring than normal-weight parents.

  15. Childhood obesity.

    PubMed

    Dean, Erin

    2016-08-31

    Essential facts Nearly one third of children aged 2-15 in England are overweight or obese. Younger generations are becoming obese at earlier ages and staying so for longer. Reducing obesity levels is a major public health challenge as the condition doubles the risk of dying prematurely. Obese adults are more likely to develop health conditions such as heart disease, type 2 diabetes and depression. Treating conditions related to obesity is a major financial burden on the NHS, costing more than £5 billion a year. PMID:27577286

  16. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation.

    PubMed Central

    Philips, M R; Buyon, J P; Winchester, R; Weissmann, G; Abramson, S B

    1988-01-01

    The iC3b receptor (CR3) is required for neutrophil adhesive functions, including homotypic aggregation. Because stimuli that enhance neutrophil adhesion also induce up-regulation of surface CR3, it is widely held that these two responses are causally related. We have dissociated CR3 display (immunofluorescence) from CR3 function (aggregation). Neutrophils isolated at 4 degrees C and rewarmed to 37 degrees C up-regulated surface CR3 twofold, but did not aggregate. The kinetics of FMLP-induced CR3 up-regulation were discordant with those of aggregation. In the absence of extracellular divalent cations, CR3 expression increased twofold after exposure to FMLP, but neutrophils did not aggregate. FMLP elicited 3.5-fold more aggregation than the ionophore A23187, yet less than one-half as much CR3 up-regulation. 3 mM sodium salicylate inhibited aggregation 55 +/- 4%, but had no effect on CR3 up-regulation. Conversely, 1 mM tetracaine completely inhibited CR3 up-regulation, while significantly enhancing aggregation. Neutroplasts expressed CR3, but did not up-regulate the receptor; in contrast, FMLP induced CR3-dependent aggregation of neutroplasts. We conclude that, although constitutive surface CR3 is required for neutrophil aggregation, the up-regulation of CR3 is neither necessary nor sufficient to promote cell-cell adhesion. Images PMID:2841354

  17. Methyl donor supplementation prevents transgenerational amplification of obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The obesity epidemic, recognized in developed nations for decades, is now a worldwide phenomenon. All age groups are affected, including women of childbearing age, fueling concern that maternal obesity before and during pregnancy and lactation impairs developmental establishment of body weight regul...

  18. Maternal behavior.

    PubMed

    Crowell-Davis, S L; Houpt, K A

    1986-12-01

    Parturition in mares is rapid and is followed by a brief period of sensitivity to imprinting on a foal. There is large individual variation in normal maternal style, but normal mothers actively defend their foal, remain near the foal when it is sleeping, tolerate or assist nursing, and do not injure their own foal. Disturbance of a mare and foal during the early imprinting period can predispose a mare to rejection of her foal; therefore, it should be avoided. There are a variety of forms of foal rejection and numerous etiologies. Therefore, each case should be evaluated individually. PMID:3492245

  19. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats.

    PubMed

    Li, Xiaoyu; Zhao, Huanxin; Wu, Ye; Zhang, Suli; Zhao, Xiaoqin; Zhang, Yan; Wang, Jin; Wang, Jie; Liu, Huirong

    2014-02-01

    Hyperlipidemia is an independent risk factor in the development of ischemic heart disease, which can increase myocardial susceptibility to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (PostC) has now been demonstrated as a novel strategy to harness nature's protection against myocardial I/R injury in normal conditions. However, the effect of PostC on hyperlipidemic animals remains elusive. It has been shown in our previous study that PostC reduces the myocardial I/R injury, and hypoxia-inducible factor-1α (HIF-1α) may play an important role in the cardioprotective mechanisms of PostC on normal rats. Here, we tested the hypothesis that the cardioprotection of PostC on hyperlipidemic rats is associated with the up-regulated HIF-1α expression. Male Wistar rats were fed with a high-fat diet for 8 weeks, and then randomly divided into five groups: sham, I/R, dimethyloxalylglycine (DMOG) + I/R, PostC, and DMOG + PostC group. The detrimental indices induced by I/R injury included infarct size, plasma creatine kinase (CK) activity and caspase-3 activity. The results showed that PostC could reduce the infarct size, when compared with the I/R group, which was consistent with the significant lower levels of plasma CK activity and caspase-3 activity, and that it increased the expression of HIF-1α in hyperlipidemic rats. When DMOG was given before PostC to up-regulate HIF-1α protein level, the degree of I/R injury was attenuated. In conclusion, these data suggested that the up-regulation of HIF-1α may be one of the cardioprotective mechanisms of PostC against I/R injury in hyperlipidemic rats.

  20. Involvement of the Up-regulated FoxO1 Expression in Follicular Granulosa Cell Apoptosis Induced by Oxidative Stress*

    PubMed Central

    Shen, Ming; Lin, Fei; Zhang, Jiaqing; Tang, Yiting; Chen, Wei-Kang; Liu, Honglin

    2012-01-01

    Follicular atresia is common in female mammalian ovaries, where most follicles undergo degeneration at any stage of growth and development. Oxidative stress gives rise to triggering granulosa cell apoptosis, which has been suggested as a major cause of follicular atresia. However, the underlying mechanism by which the oxidative stress induces follicular atresia remains unclear. FoxO transcription factors are known as critical mediators in the regulation of oxidative stress and apoptosis. In this study, the involvement of FoxO1 in oxidative stress-induced apoptosis of mouse follicular granulosa cells (MGCs) was investigated in vivo and in vitro. It was observed that increased apoptotic signals correlated with elevated expression of FoxO1 in MGCs when mice were treated with the oxidant. Correspondingly, the expressions of FoxO1 target genes, such as proapoptotic genes and antioxidative genes, were also up-regulated. In primary cultured MGCs, treatment with H2O2 led to FoxO1 nuclear translocation. Further studies with overexpression and knockdown of FoxO1 demonstrated the critical role of FoxO1 in the induction of MGC apoptosis by oxidative stress. Finally, inactivation of FoxO1 by insulin treatment confirmed that FoxO1 induced by oxidative stress played a pivotal role in up-regulating the expression of downstream apoptosis-related genes in MGCs. Our results suggest that up-regulation of FoxO1 by oxidative stress leads to apoptosis of granulosa cells, which eventually results in follicular atresia in mice. PMID:22669940

  1. Galectin-9 Protein Is Up-regulated in Astrocytes by Tumor Necrosis Factor and Promotes Encephalitogenic T-cell Apoptosis*

    PubMed Central

    Steelman, Andrew J.; Smith, Roger; Welsh, C. Jane; Li, Jianrong

    2013-01-01

    Demyelination and axonal damage in multiple sclerosis (MS) are thought to be a consequence of inflammatory processes that are perpetuated by activated glia and infiltrating leukocytes. Galectin-9 is a β-galactoside binding lectin capable of modulating immune responses and appears to be up-regulated in MS. However, its role in the pathogenesis of MS has yet to be determined. Here, we report that proinflammatory cytokines induce galectin-9 (Gal-9) expression in primary astrocytes and the mechanism by which TNF up-regulates Gal-9. Astrocytes did not express Gal-9 under basal conditions nor did IL-6, IL-10, or IL-13 trigger Gal-9 expression. In contrast, IL-1β, IFN-γ, and particularly TNF up-regulated Gal-9 in astrocytes. TNF-induced Gal-9 expression was dependent on TNF receptor 1 (TNFR1) as TNF failed to induce Gal-9 in TNFR1−/− astrocytes. Blockade of the JNK MAP kinase pathway with the JNK inhibitor SP600125 abrogated TNF-induced Gal-9, whereas p38 and MEK inhibitors had minimal effects. Furthermore, specific knockdown of c-Jun via siRNA in astrocytes before TNF treatment greatly suppressed Gal-9 transcription, suggesting that TNF induces astroglial Gal-9 through the TNF/TNFR1/JNK/cJun signaling pathway. Finally, utilizing astrocytes from Lgals9 mutant (Gal-9−/−) mice as well as a myelin basic protein-specific Tim-3+ encephalitogenic T-cell clone (LCN-8), we found that conditioned medium from TNF-stimulated Gal-9+/+ but not Gal-9−/− astrocytes increased the percentage of apoptotic encephalitogenic T-cells. Together, our results suggest that Gal-9 is induced in astrocytes by TNF via the JNK/c-Jun pathway and that astrocyte-derived Gal-9 may function as an immunoregulatory protein in response to ongoing neuroinflammation. PMID:23836896

  2. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-07-01

    Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.

  3. Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells.

    PubMed

    Allison, Simon J; Jiang, Ming; Milner, Jo

    2009-03-02

    Senescence is blocked in human cervical keratinocytes infected with high risk human papillomavirus (e.g. HPV type16). Viral oncoproteins HPV E6 and HPV E7 access the cell cycle via cellular p53 and retinoblastoma proteins respectively. Previously we have shown that HPV E7, not HPV E6, is also responsible for cervical cancer cell survival (SiHa cells; HPV type16). We now present evidence that SIRT1, an aging-related NAD-dependent deacetylase, mediates HPV E7 survival function in SiHa cervical cancer cells. Moreover, HPV E7 up-regulates SIRT1 protein when expressed in primary human keratinocytes. Conversely, SIRT1 levels decrease following RNAi-mediated silencing of HPV E7 in SiHa cells. Silencing HPV E6 has no effect on SIRT1 but, as expected, causes marked accumulation of p53 protein accompanied by p53-mediated up-regulation of p21. However, p53 acetylation (K382Ac) was barely detectable. Since p53 is a known SIRT1 substrate we propose that elevated SIRT1 levels (induced by HPV E7) attenuate p53 pro-apoptotic capacity via its de-acetylation. Our discovery that HPV E7 up-regulates SIRT1 links a clinically important oncogenic virus with the multi-functional SIRT1 protein. This link may open the way for a more in-depth understanding of the process of HPV-induced malignant transformation and also of the inter-relationships between aging and cancer.

  4. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    SciTech Connect

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-05-15

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R{sup -/-} mice (control) or caveolin-1{sup -/-}/LDL-R{sup -/-} mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1{sup -/-}/LDL-R{sup -/-} mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor {alpha}-naphthoflavone ({alpha}-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  5. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes.

    PubMed

    Strübing, Uta; Lucius, Richard; Hoerauf, Achim; Pfarr, Kenneth M

    2010-08-15

    The filarial nematodes Brugia malayi, Wuchereria bancrofti and Onchocerca volvulus cause elephantiasis or dermatitis and blindness resulting in severe morbidity. Annually, 1.3 billion people are at risk of infection. Targeting the essential Wolbachia endobacteria of filarial nematodes with doxycycline has proven to be an effective therapy resulting in a block in embryogenesis, worm development and macrofilaricidal effects. However, doxycycline is contraindicated for a large portion of the at risk population. To identify new targets for anti-wolbachial therapy, understanding the molecular basis of the Wolbachia-filaria symbiosis is required. Using the B. malayi microarray we identified differentially expressed genes in the rodent filaria Litomosoides sigmodontis after depletion of Wolbachia which might have a role in symbiosis. The microarray data were filtered for regulated genes with a false discovery rate <5% and a > or = 2-fold-change. Most of the genes were differentially expressed at day 36 of tetracycline treatment, when 99.8% of Wolbachia were depleted. Several classes of genes were affected, including genes for translation, transcription, folding/sorting of proteins, motility, structure and metabolic and signalling pathways. Quantitative PCR validated 60% of the genes found to be regulated in the microarray. A nuclear encoded heme-binding protein of the globin family was up-regulated upon loss of Wolbachia. Interestingly, mitochondrial encoded subunits of respiratory chain complexes containing heme and riboflavin were also up-regulated. No change in the expression of these genes was seen in tetracycline treated Wolbachia-free Acanthocheilonema viteae. As Wolbachia synthesise heme and filaria do not, we hypothesise that without the endosymbionts no functional heme-containing enzymes can be formed, leading to loss of energy metabolism which then results in up-regulation of the mitochondrial encoded subunits in an attempt to correct the deviation from

  6. A peptide that ameliorates lupus up-regulates the diminished expression of early growth response factors 2 and 3.

    PubMed

    Sela, Uri; Dayan, Molly; Hershkoviz, Rami; Lider, Ofer; Mozes, Edna

    2008-02-01

    Expansion of autoreactive T cells and their resistance to anergy was demonstrated in systemic lupus erythematosus (SLE). A pair of transcription factors, early growth response 2 (Egr-2) and 3 (Egr-3), are negative regulators of T cell activation that were shown to be important in anergy. A peptide (designated hCDR1 for human CDR1) based on the CDR-1 of an anti-DNA Ab ameliorated SLE in both induced and spontaneous lupus models. Our objectives were to determine the expression levels of Egr-2 and Egr-3 in autoreactive T cells following immunization with the lupus-inducing anti-DNA Ab that bears a common Id designated 16/6Id and also in a full-blown SLE and to determine the effect of hCDR1 on these transcription factors. We demonstrated diminished expression levels of Egr-2 and Egr-3 mRNA both early after immunization with the 16/6Id and in SLE-afflicted (NZB x NZW)F1 (New Zealand Black and New Zealand White) mice. Furthermore, by down-regulating Akt phosphorylation and up-regulating TGFbeta secretion, treatment with hCDR1 significantly up-regulated Egr-2 and Egr-3 expression. This was associated with an increased expression of the E3 ligase Cbl-b. Inhibition of Akt in T cells of immunized mice decreased, whereas silencing of the Egr-2 and Egr-3 in T cells of hCDR1-treated mice increased IFN-gamma secretion. Thus, hCDR1 down-regulates Akt phosphorylation, which leads to up-regulated expression of T cell Egr-2 and Egr-3, resulting in the inhibition of IFN-gamma secretion that is required for the maintenance of SLE. PMID:18209054

  7. Signal pathways in up-regulation of chemokines by tyrosine kinase MER/NYK in prostate cancer cells.

    PubMed

    Wu, Yi-Mi; Robinson, Dan R; Kung, Hsing-Jien

    2004-10-15

    The AXL/UFO family of tyrosine kinases is characterized by a common N-CAM (neural adhesion molecule)-related extracellular domain and a common ligand, GAS6 (growth arrest-specific protein 6). Family members are prone to transcriptional regulation and carry out diverse functions including the regulation of cell adhesion, migration, phagocytosis, and survival. In this report, we describe a new role of MER/N-CAM-related kinase (NYK), a member of the AXL family of kinases, in the up-regulation of chemokines in prostate cancer cells. We show that NYK has elevated expression in a subset of tumor specimens and prostate cancer cell lines. Activation of NYK in the prostate cancer cell line DU145 does not cause a mitogenic effect; instead, it causes a differentiation phenotype. Microarray analysis revealed that NYK is a strong inducer of endocrine factors including interleukin (IL)-8 and several other angiogenic CXC chemokines as well as bone morphogenic factors. The dramatic increase of IL-8 expression is seen at both transcriptional and posttranscriptional levels. The downstream signals engaged by NYK were characterized, and those responsible for the up-regulation of IL-8 transcription were defined. In contrast to IL-1alpha, NYK-induced up-regulation of IL-8 in DU145 depends on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase/Jun/Fos pathway, but not phosphoinositide 3'-kinase/nuclear factor-kappaB. These data define a new function of the AXL family of kinases and suggest a potential role of NYK in prostate cancer progression. PMID:15492251

  8. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation

    PubMed Central

    Kim, Ji Hye; Yoon, Sei Mee; Song, Sun U.; Park, Sang Gyu; Kim, Won-Serk; Park, In Guk; Lee, Jinu; Sung, Jong-Hyuk

    2016-01-01

    Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O2) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation. PMID:27563882

  9. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium).

    PubMed

    Bao, Ying; Hu, Guanjing; Flagel, Lex E; Salmon, Armel; Bezanilla, Magdalena; Paterson, Andrew H; Wang, Zining; Wendel, Jonathan F

    2011-12-27

    Cotton is remarkable among our major crops in that four species were independently domesticated, two allopolyploids and two diploids. In each case thousands of years of human selection transformed sparsely flowering, perennial shrubs into highly productive crops with seeds bearing the vastly elongated and abundant single-celled hairs that comprise modern cotton fiber. The genetic underpinnings of these transformations are largely unknown, but comparative gene expression profiling experiments have demonstrated up-regulation of profilin accompanying domestication in all three species for which wild forms are known. Profilins are actin monomer binding proteins that are important in cytoskeletal dynamics and in cotton fiber elongation. We show that Gossypium diploids contain six profilin genes (GPRF1-GPRF6), located on four different chromosomes (eight chromosomes in the allopolyploid). All but one profilin (GPRF6) are expressed during cotton fiber development, and both homeologs of GPRF1-GPRF5 are expressed in fibers of the allopolyploids. Remarkably, quantitative RT-PCR and RNAseq data demonstrate that GPRF1-GPRF5 are all up-regulated, in parallel, in the three independently domesticated cottons in comparison with their wild counterparts. This result was additionally supported by iTRAQ proteomic data. In the allopolyploids, there This usage of novel should be fine, since it refers to a novel evolutionary process, not a novel discovery has been novel recruitment of the sixth profilin gene (GPRF6) as a result of domestication. This parallel up-regulation of an entire gene family in multiple species in response to strong directional selection is without precedent and suggests unwitting selection on one or more upstream transcription factors or other proteins that coordinately exercise control over profilin expression. PMID:22160709

  10. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium.

    PubMed

    Pohóczky, Krisztina; Kun, József; Szalontai, Bálint; Szőke, Éva; Sághy, Éva; Payrits, Maja; Kajtár, Béla; Kovács, Krisztina; Környei, József László; Garai, János; Garami, András; Perkecz, Anikó; Czeglédi, Levente; Helyes, Zsuzsanna

    2016-02-01

    Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17β-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up-regulation

  11. Up regulated expression of tumour necrosis factor α converting enzyme in peripheral monocytes of patients with early systemic sclerosis

    PubMed Central

    Bohgaki, T; Amasaki, Y; Nishimura, N; Bohgaki, M; Yamashita, Y; Nishio, M; Sawada, K; Jodo, S; Atsumi, T; Koike, T

    2005-01-01

    Background: Systemic sclerosis (SSc) is accompanied by abnormalities in humoral and cellular immune systems. Objective: To determine the genes specifically expressed in the immune system in SSc by analysis of the gene expression profile of peripheral blood mononuclear cells (PBMC) from patients with SSc, including those treated with haematopoietic stem cell transplantation (HSCT). Additionally, to investigate the clinical significance of the up regulation of tumour necrosis factor α (TNFα) converting enzyme (TACE). Methods: PBMC from patients with SSc (n = 23) and other autoimmune diseases (systemic lupus erythematosus (SLE, n = 16), rheumatoid arthritis (RA, n = 29)), and from disease-free controls (n = 36) were examined. Complementary DNA arrays were used to evaluate gene expression of PBMC, in combination with real time quantitative polymerase chain reactions. TACE protein expression in PBMC was examined by fluorescence activated cell sorter (FACS). Results: In patients with SSc 118 genes were down regulated after HSCT. Subsequent comparative analysis of SSc without HSCT and healthy controls indicated SSc-specific up regulation for three genes: monocyte chemoattractant protein-3 (p = 0.0015), macrophage inflammatory protein 3α (p = 0.0339), and TACE (p = 0.0251). In the FACS analysis, TACE protein was mainly expressed on CD14+ monocytes both in patients with SSc and controls. TACE expression on CD14+ cells was significantly increased in patients with early SSc (p = 0.0096), but not in those with chronic SSc, SLE, or RA. TACE protein levels in SSc monocytes correlated with the intracellular CD68 levels (p = 0.0016). Conclusions: Up regulation of TACE expression was a unique profile in early SSc, and may affect the function of TNFα and other immunoregulatory molecules. PMID:16014681

  12. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  13. 3'5'-cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells.

    PubMed

    Sasseville, Maxime; Côté, Nancy; Vigneault, Christian; Guillemette, Christine; Richard, François J

    2007-04-01

    The means by which cumulus cells react to gonadotropin stimulation and regulate the subsequent production and degradation of cAMP are largely unknown. In this article, we report that cyclic nucleotide phosphodiesterase (PDE) type 3A (Pde3a) is transcriptionally regulated in porcine cumulus cells by a cAMP-dependent pathway during in vitro maturation (IVM). cAMP-PDE activity was increased in the cumulus-oocyte complex (COC) after 10 h of IVM, and 78% of this increase was sensitive to a Pde3-specific inhibitor, cilostamide. Although no variation was observed in the oocyte, cilostamide-sensitive cAMP-PDE activity increased in the cumulus cells after IVM. This was supported by Western blotting, which showed that the intensity of a 135-kDa anti-Pde3a immunoreactive band was increased in COC after IVM. The Pde3a mRNA level was up-regulated 28-fold in the COC after 4 h of IVM and remained high up to 12 h. The mRNA up-regulation and increased activity were inhibited by an RNA synthesis inhibitor, alpha-amanitin. The cilostamide-sensitive increase in PDE activity was inhibited by a protein synthesis inhibitor, cycloheximide. Pregnant mare serum gonadotropin (PMSG) caused dose-dependent activation of Pde3. The PMSG-dependent increase in Pde3 activity and Pde3a mRNA were mimicked by the adenylyl cyclase activator forskolin or prostaglandin E2. PMSG-dependent Pde3 activation was inhibited by the protein kinase A-specific inhibitor H89. Collectively, our results show for the first time that degradation of the intracellular cyclic nucleotide by Pde3a is transcriptionally up-regulated via a cAMP-dependent pathway in cumulus cells, suggesting that it has a functional role during the ovulatory gonadotropin surge.

  14. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation.

    PubMed

    Kim, Ji Hye; Yoon, Sei Mee; Song, Sun U; Park, Sang Gyu; Kim, Won-Serk; Park, In Guk; Lee, Jinu; Sung, Jong-Hyuk

    2016-01-01

    Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O₂) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation. PMID:27563882

  15. Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina

    PubMed Central

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Background Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A2A receptor (A2AR) regulates retinal waves and whether A2AR regulation of retinal waves acts via presynaptic SACs. Methodology/Principal Findings We showed that A2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A2AR decreased the frequency of spontaneous Ca2+ transients, suggesting that endogenous A2AR may up-regulate wave frequency. To investigate whether A2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca2+ transient frequency was increased by expressing wild-type A2AR (A2AR-WT) in SACs, suggesting that A2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A2AR mutant (A2AR-ΔC) in SACs, the wave frequency was reduced compared to the A2AR-WT, but was similar to the control, suggesting that the full-length A2AR in SACs is required for A2AR up-regulation of retinal waves. Conclusions/Significance A2AR up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full

  16. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  17. Obesity during pregnancy impairs fetal iron status: Is hepcidin the link?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over half of reproductive age women in the developed world are overweight or obese. Obesity during pregnancy has serious consequences for maternal and child health which we are just beginning to understand. Obesity is characterized by chronic inflammation, which upregulates hepcidin, a peptide hormo...

  18. Obesity impairs cell-mediated immunity during the second trimester of pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with impaired immunity. In obese pregnancy, both mother and fetus are susceptible to the short- and long-term deleterious effects of infectious illness. The objective of the study was to determine the impact of obesity on maternal blood immune cell subsets, intracellular and s...

  19. Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep.

    PubMed

    Carey Satterfield, M; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2012-10-01

    The global incidence of human obesity has more than doubled over the past three decades. An ovine model of obesity was developed to determine effects of maternal obesity and arginine supplementation on maternal, placental, and fetal parameters of growth, health, and well being. One-hundred-twenty days prior to embryo transfer, ewes were fed either ad libitum (n = 10) to induce obesity or 100% National Research Council-recommended nutrient requirements (n = 10) as controls. Embryos from superovulated ewes with normal body condition were transferred to the uterus of control-fed and obese ewes on day 5.5 post-estrus to generate genetically similar singleton pregnancies. Beginning on day 100 of gestation, obese ewes received intravenous administration of saline or L-arginine-HCl three times daily (81 mg arginine/kg body weight/day) to day 125, whereas control-fed ewes received saline. Fetal growth was assessed at necropsy on day 125. Maternal obesity increased (1) percentages of maternal and fetal carcass lipids and (2) concentrations of leptin, insulin, glucose, glutamate, leucine, lysine and threonine in maternal plasma while reducing (1) concentrations of progesterone, glycine and serine in maternal plasma and (2) amniotic and allantoic fluid volumes. Administration of L-arginine to obese ewes increased arginine and ornithine concentrations in maternal and fetal plasma, amniotic fluid volume, protein content in maternal carcass, and fetal brown adipose tissue (+60%), while reducing maternal lipid content and circulating leptin levels. Fetal or placental weight did not differ among treatments. Results indicate that arginine treatment beneficially reduces maternal adiposity and enhances fetal brown adipose tissue development in obese ewes.

  20. Up-Regulation of microRNA-210 is Associated with Spermatogenesis by Targeting IGF2 in Male Infertility

    PubMed Central

    Tang, Dongdong; Huang, Yuanyuan; Liu, Weiqun; Zhang, Xiansheng

    2016-01-01

    Background MicroRNAs (miRNAs) play pivotal roles in spermatogenesis. MicroRNA-210 (miR-210) expression was up-regulated in the testes of sterile men with non-obstructive azoospermia (NOA). However, the underlying mechanisms of miR-210 involved in the spermatogenesis in patients with NOA are unknown. Material/Methods Expression of miR-210 and insulin-like growth factor II (IGF2) in the testes of NOA cases (only including maturation arrest and hypospermatogenesis) were detected in this study. We carried out in vitro experiments to determine if IGF2 was directly targeted by miR-210 in NT2 cells. Results Compared with obstructive azoospermia (OA) as normal control, our results suggest that miR-210 was significantly up-regulated in testis of patients with NOA (P<0.05), and IGF2 was down-regulated, but without a significant difference. The results also indicated that IGF2 was directly targeted by miR-210 in NT2 cells. Conclusions The results showed that miR-210 was involved in spermatogenesis by targeting IGF2 in male infertility. PMID:27535712

  1. Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers.

    PubMed

    Valpuesta, V; Lange, N E; Guerrero, C; Reid, M S

    1995-06-01

    The flowers of daylily (Hemerocallis x hybrida cv. Cradle Song) open at midnight, start to senesce 12 h later, and are completely senescent by the following midnight. Differential screening of a cDNA library constructed from tepals of flowers showing incipient senescence revealed 25 clones that were strongly up-regulated in senescent tepals. Re-screening and interactive Southern analysis of these clones revealed 3 families of up-regulated clones. Transcripts of one clone, SEN10, were not detectable at midnight, but increased dramatically as senescence proceeded. The derived amino acid sequence of the full-length cDNA (SEN102) has strong homology with cysteine proteases that have been reported from other plant tissues. The sequence contains a secretory signal peptide and a probable prosequence upstream of the mature protein. Amino acids critical to the active site and structure of cysteine proteases are conserved, and the C-terminus of the polypeptide has a unique putative endoplasmic reticulum retention signal -RDEL. PMID:7632925

  2. Axotomy does not up-regulate expression of sodium channel Na(v)1.8 in Purkinje cells.

    PubMed

    Black, J A; Dusart, I; Sotelo, C; Waxman, S G

    2002-05-30

    Aberrant expression of the sensory neuron specific (SNS) sodium channel Na(v)1.8 has been demonstrated in cerebellar Purkinje cells in experimental models of multiple sclerosis (MS) and in human MS. The aberrant expression of Na(v)1.8, which is normally present in primary sensory neurons but not in the CNS, may perturb cerebellar function, but the mechanisms that trigger it are not understood. Because axotomy can provoke changes in Na(v)1.8 expression in dorsal root ganglion (DRG) neurons, we tested the hypothesis that axotomy can provoke an up-regulation of Na(v)1.8 expression in Purkinje cells, using a surgical model that transects axons of Purkinje cells in lobules IIIb-VII in the rat. In situ hybridization and immunocytochemistry did not reveal an up-regulation of Na(v)1.8 mRNA or protein in axotomized Purkinje cells. Hybridization and immunostaining signals for the sodium channel Na(v)1.6 were clearly present, demonstrating that sodium channel transcripts and protein were present in experimental cerebella. These results demonstrate that axotomy does not trigger the expression of Na(v)1.8 in Purkinje cells. PMID:12007840

  3. Nitrogen mustard up-regulates Bcl-2 and GSH and increases NTP and PCr in HT-29 colon cancer cells.

    PubMed Central

    Boddie, A. W.; Constantinou, A.; Williams, C.; Reed, A.

    1998-01-01

    We hypothesized that unexplained increases in nucleoside triphosphates (NTP) observed by 31P magnetic resonance spectroscopy (MRS) after treatment of tumours by DNA-damaging agents were related to chemotherapy-induced up-regulation of the bcl-2 gene and DNA damage prevention and repair processes. To test this hypothesis, we treated HT-29 cells with 10(-4) M nitrogen mustard (HN2) and performed sequential perchloric acid extractions in replicate over 0-18 h. By reference to an internal standard (methylene diphosphonic acid), absolute changes in 31P-detectable high-energy phosphates in these extracts were determined and correlated with changes in bcl-2 protein levels, cell viability, cell cycle, apoptosis and total cellular glutathione (GSH) (an important defence against DNA damage from alkylating agents). After HN2 administration, bcl-2 protein levels in the HT-29 cell line rose at 2 h. Cell viability declined to 25% within 18 h, but apoptosis measured using fluorescence techniques remained in the 1-4% range. Increased cell division was noted at 4 h. Two high-energy interconvertible phosphates, NTP (P < or = 0.006) and phosphocreatine (PCr) (P < or = 0.0002), increased at 2 h concurrently with increased levels of bcl-2 protein and glutathione. This study demonstrates that bcl-2 and glutathione are up-regulated by HN2 and links this to a previously unexplained 31P MRS phenomenon: increased NTP after chemotherapy. Images Figure 6 PMID:9652754

  4. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice.

    PubMed

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H

    2015-02-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number of structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/- mice, as were the structural anomalies of the cerebellum seen in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype. PMID:25511459

  5. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s.

    PubMed

    Zhu, Fang; Moural, Timothy W; Nelson, David R; Palli, Subba R

    2016-01-01

    The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals. PMID:26861263

  6. Fibrinogen up-regulates the expression of monocyte chemoattractant protein 1 in human saphenous vein endothelial cells.

    PubMed Central

    Harley, S L; Powell, J T

    1999-01-01

    High concentrations of fibrinogen in plasma have been associated with an increased risk of saphenous vein graft pathology. We have investigated the ability of fibrinogen to up-regulate the expression of monocyte chemoattractant protein 1 (MCP-1) in cultured human saphenous vein endothelial cells (HSVEC) isolated from saphenous vein. Increasing concentrations of fibrinogen (0-4 microM) stimulated a 20-fold increase in MCP-1 secretion within 4 h. Incubation of HSVEC with 2 microM fibrinogen for 4 h also caused a 2-fold increase in the MCP-1-to-glyceraldehyde-3-phosphate dehydrogenase mRNA ratio. The fibrinogen-mediated MCP-1 secretion fell to basal levels after preincubation of HSVEC with the complex of fibrinogen fragments D and E but remained unchanged after preincubation of HSVEC with either fibrinogen fragment E, s-ICAM-1 or the pentapeptide GRGDV. In contrast, fibrinogen fragment D acted as a potent inhibitor of fibrinogen-mediated MCP-1 secretion. Labelled fibrinogen fragment D bound to HSVEC with a K(d) of 6.5 microM. These findings indicate that fibrinogen, at physiological concentrations, uses an epitope on the fibrinogen D domain to bind to a receptor on HSVEC to up-regulate MCP-1 expression and secretion. This receptor seems to be distinct from intercellular adhesion molecule 1 and the integrins previously recognized as fibrinogen receptors. PMID:10417339

  7. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons.

    PubMed

    Nakamura, Tomoe Y; Jeromin, Andreas; Smith, George; Kurushima, Hideaki; Koga, Hitoshi; Nakabeppu, Yusaku; Wakabayashi, Shigeo; Nabekura, Junichi

    2006-03-27

    A molecular basis of survival from neuronal injury is essential for the development of therapeutic strategy to remedy neurodegenerative disorders. In this study, we demonstrate that an EF-hand Ca2+-binding protein neuronal Ca2+ sensor-1 (NCS-1), one of the key proteins for various neuronal functions, also acts as an important survival factor. Overexpression of NCS-1 rendered cultured neurons more tolerant to cell death caused by several kinds of stressors, whereas the dominant-negative mutant (E120Q) accelerated it. In addition, NCS-1 proteins increased upon treatment with glial cell line-derived neurotrophic factor (GDNF) and mediated GDNF survival signal in an Akt (but not MAPK)-dependent manner. Furthermore, NCS-1 is significantly up-regulated in response to axotomy-induced injury in the dorsal motor nucleus of the vagus neurons of adult rats in vivo, and adenoviral overexpression of E120Q resulted in a significant loss of surviving neurons, suggesting that NCS-1 is involved in an antiapoptotic mechanism in adult motor neurons. We propose that NCS-1 is a novel survival-promoting factor up-regulated in injured neurons that mediates the GDNF survival signal via the phosphatidylinositol 3-kinase-Akt pathway.

  8. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas.

    PubMed

    Kim, Bora; Lee, Jae-Ho; Park, Jong Wook; Kwon, Taeg Kyu; Baek, Seong Kyu; Hwang, Ilseon; Kim, Shin

    2014-08-01

    MicroRNAs (miRNAs) regulate gene expression through degradation and/or translational repression of target mRNAs. Dysregulations in the miRNA machinery may be involved in carcinogenesis of colorectal cancer (CRC). The purpose of the current study was to evaluate the DiGeorge syndrome critical region gene 8 (DGCR8) and argonaute 2 (AGO2) mRNA expression in CRC and to evaluate the value of clinical parameters on their expression. We investigated the mRNA expressions of DGCR8 and AGO2 in 60 CRC tissues and adjacent histologically non-neoplastic tissues by using quantitative real-time PCR. Our study revealed that the mRNA expression level of DGCR8 is up-regulated in CRC. However, AGO2 mRNA expression was not significantly altered in CRC tissues. Neither DGCR8 nor AGO2 mRNA expression level was not associated with any clinical parameters, including age, tumor stage, CEA titer, and BMI in CRC cases. However, the mRNA expression levels of DGCR8 and AGO2 were positively correlated to each other. This study demonstrated for the first time that the DGCR8 mRNA expression level was up-regulated in CRC, suggesting its important role in pathobiology of colorectal carcinogenesis.

  9. Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines.

    PubMed

    Olsson, Magnus G; Allhorn, Maria; Olofsson, Tor; Akerström, Bo

    2007-03-15

    alpha(1)-Microglobulin is a 26-kDa glycoprotein synthesized in the liver, secreted to the blood, and rapidly distributed to the extravascular compartment of all tissues. Recent results show that alpha(1)-microglobulin has heme-binding and heme-degrading properties and it has been suggested that the protein is involved in the defense against oxidation by heme and reactive oxygen species. In the present study the influence of hemoglobin and reactive oxygen species (ROS) on the cellular expression of alpha(1)-microglobulin was investigated. Oxy- and methemoglobin, free heme, and Fenton reaction-induced hydroxyl radicals induced a dose-dependent up-regulation of alpha(1)-microglobulin on both mRNA and protein levels in hepatoma cells and an increased secretion of alpha(1)-microglobulin. The up-regulation was reversed by the addition of catalase and ascorbate, and by reacting hemoglobin with cyanide which prevents redox reactions. Furthermore, the blood cell lines U937 and K562 expressed alpha(1)-microglobulin at low levels, and this expression increased up to 11-fold by the addition of hemoglobin. These results suggest that alpha(1)-microglobulin expression is induced by ROS, arising from redox reactions of hemoglobin or from other sources and are consistent with the hypothesis that alpha(1)-microglobulin participates in the defense against oxidation by hemoglobin, heme, and reactive oxygen species.

  10. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  11. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    PubMed

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  12. Uncoupling Protein-2 is an Antioxidant that is Up-Regulated in the Enamel Organ of Fluoride-Treated Rats*

    PubMed Central

    Suzuki, Maiko; Sierant, Megan L.; Antone, Jerry V.; Everett, Eric T.; Whitford, Gary M.; Bartlett, John D.

    2014-01-01

    Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F−) exposure generates reactive oxygen species (ROS) that can cause ER-stress. We therefore screened oxidative stress arrays to identify genes regulated by F− exposure. Vitamin E is an antioxidant so we asked if a diet high in vitamin E would attenuate dental fluorosis. Maturation stage incisor enamel organs (EO) were harvested from F− treated rats and mice were assessed to determine if vitamin E ameliorates dental fluorosis. Uncoupling protein-2 (Ucp2) was significantly up-regulated by F− (~1.5 & 2.0 fold for the 50 or 100 ppm F− treatment groups respectively). Immunohistochemical results on maturation stage rat incisors demonstrated that UCP2 protein levels increased with F− treatment. UCP2 down-regulates mitochondrial production of ROS, which decreases ATP production. Thus, in addition to reduced protein translation caused by ER-stress, a reduction in ATP production by UCP2 may contribute to the inability of ameloblasts to remove protein from the hardening enamel. Fluoride treated mouse enamel had significantly higher quantitative fluorescence (QF) than the untreated controls. No significant QF difference was observed between control and vitamin E enriched diets within a given F− treatment group. Therefore, a diet rich in vitamin E did not attenuate dental fluorosis. We have identified a novel oxidative stress response gene that is up-regulated in vivo by F− and activation of this gene may adversely affect ameloblast function. PMID:25158175

  13. TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21.

    PubMed

    Liu, Ying; Li, Yue; Li, Ning; Teng, Wen; Wang, Min; Zhang, Yingbo; Xiao, Zhibo

    2016-01-01

    TGF-β1, upregulated in keloid tissue, promotes the proliferation, collagen formation and differentiation of dermal fibroblasts. miR-21 is one of microRNAs first found in human genome. The aim of our study is to explore the mechanisms of miR-21 in TGF-β1-induced scar fibroblasts proliferation and transdifferentiation. In the present study, first we found that TGF-β1 promoted scar fibroblasts proliferation and transdifferentiation via up-regulating miR-21 expression, which could be attenuated when miR-21 was inhibited. Overexpression of miR-21 had similar effect as TGF-β1 on proliferation and transdifferentiation. Additionally, TGF-β1 increased the expressions and activities of MMP2 and MMP9 in keloid fibroblasts, which was suppressed by miR-21 inhibition. Finally, the results demonstrated that PTEN/AKT signaling pathway played important role in TGF-β1-induced transdifferentiation. In conclusion, our study suggests that TGF-β1 promotes keloid fibroblasts proliferation and transdifferentiation via up-regulation of miR-21 and PTEN/AKT signalling pathway plays important role in this process, which provides a potential theoretical basis for clinical treatment of skin scars. PMID:27554193

  14. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines.

    PubMed Central

    Kawa, S.; Nikaido, T.; Aoki, Y.; Zhai, Y.; Kumagai, T.; Furihata, K.; Fujii, S.; Kiyosawa, K.

    1997-01-01

    To obtain information regarding the growth-inhibitory effect of 1,25-dihydroxyvitamin D3 and its non-calcaemic analogue 22-oxa-1,25-dihydroxyvitamin D3 on pancreatic cancer cell lines, differences in the effects of G1-phase cell cycle-regulating factors were studied in vitamin D-responsive and non-responsive cell lines. Levels of expression of cyclins (D1, E and A), cyclin-dependent kinases (2 and 4) and cyclin-dependent kinase inhibitors (p21 and p27) were analysed by Western blotting after treatment with these compounds. In the responsive cells (BxPC-3, Hs 700T and SUP-1), our observations were: (1) marked up-regulation of p21 and p27 after 24 h treatment with 10(-7) mol l(-1) 1,25-dihydroxyvitamin D3 and 22-oxa-1,25-dihydroxyvitamin D3; and (2) marked down-regulation of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors after 7 days' treatment. In non-responsive cells (Hs 766T and Capan-1), no such changes were observed. In conclusion, vitamin D analogues up-regulate p21 and p27 as an early event, which in turn could block the G1/S transition and induce growth inhibition in responsive cells. Images Figure 3 Figure 5 Figure 6 PMID:9328147

  15. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s

    PubMed Central

    Zhu, Fang; Moural, Timothy W.; Nelson, David R.; Palli, Subba R.

    2016-01-01

    The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals. PMID:26861263

  16. Carboxypeptidase E protects hippocampal neurons during stress in male mice by up-regulating prosurvival BCL2 protein expression.

    PubMed

    Murthy, S R K; Thouennon, E; Li, W-S; Cheng, Y; Bhupatkar, J; Cawley, N X; Lane, M; Merchenthaler, I; Loh, Y P

    2013-09-01

    Prolonged chronic stress causing elevated plasma glucocorticoids leads to neurodegeneration. Adaptation to stress (allostasis) through neuroprotective mechanisms can delay this process. Studies on hippocampal neurons have identified carboxypeptidase E (CPE) as a novel neuroprotective protein that acts extracellularly, independent of its enzymatic activity, although the mechanism of action is unclear. Here, we aim to determine if CPE plays a neuroprotective role in allostasis in mouse hippocampus during chronic restraint stress (CRS), and the molecular mechanisms involved. Quantitative RT-PCR/in situ hybridization and Western blots were used to assay for mRNA and protein. After mild CRS (1 h/d for 7 d), CPE protein and mRNA were significantly elevated in the hippocampal CA3 region, compared to naïve littermates. In addition, luciferase reporter assays identified a functional glucocorticoid regulatory element within the cpe promoter that mediated the up-regulation of CPE expression in primary hippocampal neurons following dexamethasone treatment, suggesting that circulating plasma glucocorticoids could evoke a similar effect on CPE in the hippocampus in vivo. Overexpression of CPE in hippocampal neurons, or CRS in mice, resulted in elevated prosurvival BCL2 protein/mRNA and p-AKT levels in the hippocampus; however, CPE(-/-) mice showed a decrease. Thus, during mild CRS, CPE expression is up-regulated, possibly contributed by glucocorticoids, to mediate neuroprotection of the hippocampus by enhancing BCL2 expression through AKT signaling, and thereby maintaining allostasis.

  17. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells.

    PubMed

    Renna, María Sol; Figueredo, Carlos Mauricio; Rodríguez-Galán, María Cecilia; Icely, Paula Alejandra; Cejas, Hugo; Cano, Roxana; Correa, Silvia Graciela; Sotomayor, Claudia Elena

    2015-11-01

    After Candida albicans arrival to the liver, the local production of proinflammatory cytokines and the expanded intrahepatic lymphocytes (IHL) can be either beneficial or detrimental to the host. Herein we explored the balance between protective inflammatory reaction and liver damage, focusing our study on the contribution of TNF-α and Fas-Fas-L pathways in the hepatocellular apoptosis associated to C. albicans infection. A robust tissue reaction and a progressive increase of IL-1β, IL-6 and TNF-α were observed in infected animals. Blocking the biological activity of TNF-α did not modify the number of apoptotic cells observed in C. albicans infected animals. Fas-L molecule was up regulated on purified hepatic mononuclear cells and its expression progressed with the infection. In the IHL compartment, the absolute number of Fas-L+ NK and NKT cells increased on days 1 and 3 of the infection. C. albicans was also able to up regulate Fas-L expression in normal liver NK and NKT cells after in vitro contact. The innate receptor TLR2 was involved in this phenomenon. In the interplay between host factors and evasion strategies exploited by pathogens, the mechanism supported here could represent an additional way that allows this fungus to circumvent protective immune responses in the liver.

  18. TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21

    PubMed Central

    Liu, Ying; Li, Yue; Li, Ning; Teng, Wen; Wang, Min; Zhang, Yingbo; Xiao, Zhibo

    2016-01-01

    TGF-β1, upregulated in keloid tissue, promotes the proliferation, collagen formation and differentiation of dermal fibroblasts. miR-21 is one of microRNAs first found in human genome. The aim of our study is to explore the mechanisms of miR-21 in TGF-β1-induced scar fibroblasts proliferation and transdifferentiation. In the present study, first we found that TGF-β1 promoted scar fibroblasts proliferation and transdifferentiation via up-regulating miR-21 expression, which could be attenuated when miR-21 was inhibited. Overexpression of miR-21 had similar effect as TGF-β1 on proliferation and transdifferentiation. Additionally, TGF-β1 increased the expressions and activities of MMP2 and MMP9 in keloid fibroblasts, which was suppressed by miR-21 inhibition. Finally, the results demonstrated that PTEN/AKT signaling pathway played important role in TGF-β1-induced transdifferentiation. In conclusion, our study suggests that TGF-β1 promotes keloid fibroblasts proliferation and transdifferentiation via up-regulation of miR-21 and PTEN/AKT signalling pathway plays important role in this process, which provides a potential theoretical basis for clinical treatment of skin scars. PMID:27554193

  19. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice

    PubMed Central

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H.

    2014-01-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/− mice, as were structural anomalies of the cerebellum in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype. PMID:25511459

  20. Obesity and diabetes: A recipe for obstetric complications.

    PubMed

    Rosenn, Barak

    2008-03-01

    The prevalence of obesity has been increasing worldwide and has reached epidemic proportions in the United States, where well over 20% of the population have a body mass index (BMI) within the obese range. Obesity is associated with a wide spectrum of obstetric and perinatal complications, including increased risks of fetal mortality and morbidity, congenital malformations, maternal hypertensive disorders, gestational diabetes, excessive fetal growth and cesarean delivery. The odds ratios for these risks increase in direct correlation with the severity of obesity, and are significant even among women who are overweight without meeting criteria for obesity. Although obesity is closely associated with diabetes which, in itself, is associated with similar perinatal complications, diabetes and obesity are independent risk factors for adverse pregnancy outcome. Moreover, improving glycemic control in the pregnant woman with diabetes may mitigate the additive adverse effects of diabetes and obesity on pregnancy outcome.

  1. Obesity vaccines.

    PubMed

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  2. The clinical approach to obesity in pregnancy.

    PubMed

    Overcash, Rachael T; Lacoursiere, D Yvette

    2014-09-01

    Over one third of reproductive age women are obese, and this marked prevalence is impacting pregnancy. Obese women face many challenges from preconception to postpartum. They are at increased risk for both maternal and fetal complications including gestational diabetes, hypertension, preeclampsia, congenital anomalies, stillbirth, fetal macrosomia, cesarean delivery, venous thromboembolism, wound complications, breast-feeding difficulty, postpartum depression, postpartum weight retention, and neonatal death. This discussion is designed to help clinicians understand how obesity affects pregnancy, how to counsel patients regarding gestational weight gain, and how to implement management strategies during pregnancy to optimize health outcomes for these patients. PMID:25022997

  3. The effect of maternal Inflammation on foetal programming of metabolic disease.

    PubMed

    Ingvorsen, C; Brix, S; Ozanne, S E; Hellgren, L I

    2015-08-01

    Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and rela