Science.gov

Sample records for maternal obesity up-regulates

  1. Maternal obesity is associated with ovarian inflammation and up-regulation of early growth response factor 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a pro-inflammatory gene signature and up-regulation of Egr-1 protein in ovaries from obese (OB, n=7) compared to lean (LN, n=10) ...

  2. Maternal Dietary Restriction During the Periconceptional Period in Normal-Weight or Obese Ewes Results in Adrenocortical Hypertrophy, an Up-Regulation of the JAK/STAT and Down-Regulation of the IGF1R Signaling Pathways in the Adrenal of the Postnatal Lamb

    PubMed Central

    Zhang, Song; Morrison, Janna L.; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M.; Kleemann, David; Walker, Simon K.

    2013-01-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth. PMID:24108072

  3. Maternal obesity and prenatal programming.

    PubMed

    Elshenawy, Summer; Simmons, Rebecca

    2016-11-05

    Obesity is a significant and increasing public health concern in the United States and worldwide. Clinical and epidemiological evidence clearly shows that genetic and environmental factors contribute to the increased susceptibility of humans to obesity and its associated comorbidities; the interplay of these factors is explained by the concept of epigenetics. The impact of maternal obesity goes beyond the newborn period; fetal programming during the critical window of pregnancy, can have long term detrimental effects on the offspring as well as future generations. Emerging evidence is uncovering a link between the clinical and molecular findings in the offspring with epigenetic changes in the setting of maternal obesity. Research targeted towards reducing the transgenerational propagation and developmental programming of obesity is vital in reducing the increasing rates of disease.

  4. Fetal and perinatal consequences of maternal obesity.

    PubMed

    Vasudevan, Chakrapani; Renfrew, Mary; McGuire, William

    2011-09-01

    In many industrialised countries, one in five women booking for antenatal care is obese. As well as affecting maternal health, maternal obesity may have important adverse consequences for fetal, neonatal and long-term health and well-being. Maternal obesity is associated with a higher risk of stillbirth, elective preterm birth and perinatal mortality. The incidence of severe birth defects, particularly neural tube and structural cardiac defects, appears to be higher in infants of obese mothers. Fetal macrosomia associated with maternal obesity and gestational diabetes predisposes infants to birth injuries, perinatal asphyxia and transitional problems such as neonatal respiratory distress and metabolic instability. Maternal obesity may also result in long-term health problems for offspring secondary to perinatal problems and to intrauterine and postnatal programming effects. Currently, the available interventions to prevent and treat maternal obesity are of limited proven utility and further research is needed to define the effects of maternal weight management interventions on fetal and neonatal outcomes.

  5. Maternal Obesity and Neck Circumference.

    PubMed

    Anglim, B; O'Higgins, A; Daly, N; Farren, M; Turner, M J

    2015-06-01

    Obese women are more likely to require general anaesthesia for an obstetric intervention than non-obese. Difficult tracheal intubation and oxygen desaturation is more common in pregnancy. Failed tracheal intubation has been associated with an increase in neck circumference (NC). We studied the relationship between maternal obesity and NC as pregnancy advanced in women attending a standard antenatal clinic. Of the 96 women recruited, 13.5% were obese. The mean NC was 36.8cm (SD 1.9) in the obese women compared with 31.5cm (SD 1.6) in women with a normal BMI (p < 0.001) at 18-22 weeks gestation. In the obese women it increased on average by 1.5cm by 36-40 weeks compared with an increase of 1.6 cm in women with a normal BMI. The antenatal measurement of NC is a simple, inexpensive tool that is potentially useful for screening obese women who may benefit from an antenatal anaesthetic assessment.

  6. Up-regulation of CD81 inhibits cytotrophoblast invasion and mediates maternal endothelial cell dysfunction in preeclampsia

    PubMed Central

    Shen, Li; Diao, Zhenyu; Sun, Hai-Xiang; Yan, Gui-Jun; Wang, Zhiqun; Li, Ruo-Tian; Dai, Yimin; Wang, Jingmei; Li, Jie; Ding, Hailing; Zhao, Guangfeng; Zheng, Mingming; Xue, Pingping; Liu, Mo; Zhou, Yan; Hu, Yali

    2017-01-01

    Preeclampsia (PE) is initiated by abnormal placentation in the early stages of pregnancy, followed by systemic activation of endothelial cells of the maternal small arterioles in the late second or third trimester (TM) of pregnancy. During normal pregnancy, placental cytotrophoblasts (CTBs) invade the maternal uterine wall and spiral arteries, whereas this process is interrupted in PE. However, it is not known how the malformed placenta triggers maternal endothelial crisis and the associated manifestations. Here, we have focused on the association of CD81 with PE. CD81, a member of the tetraspanin superfamily, plays significant roles in cell growth, adhesion, and motility. The function of CD81 in human placentation and its association with pregnancy complications are currently unknown. In the present study, we have demonstrated that CD81 was preferentially expressed in normal first TM placentas and progressively down-regulated with gestation advance. In patients with early-onset severe PE (sPE), CD81 expression was significantly up-regulated in syncytiotrophoblasts (STBs), CTBs and the cells in the villous core. In addition, high levels of CD81 were observed in the maternal sera of patients with sPE. Overexpressing CD81 in CTBs significantly decreased CTB invasion, and culturing primary human umbilical vein endothelial cells (HUVECs) in the presence of a high dose of exogenous CD81 resulted in interrupted angiogenesis and endothelial cell activation in vitro. Importantly, the phenotype of human PE was mimicked in the CD81-induced rat model. PMID:28167787

  7. Interrupting Intergenerational Cycles of Maternal Obesity.

    PubMed

    Gillman, Matthew W

    2016-01-01

    Factors operating in the preconception and prenatal periods, such as maternal obesity, excessive gestational weight gain and gestational diabetes, predict a substantial fraction of childhood obesity as well as lifelong adverse health consequences in the mother. These periods may lend themselves to successful intervention to reduce such risk factors because parents may be especially willing to change behavior if it confers health advantages to their children. If effective interventions started before or during pregnancy can be maintained after birth, they have the potential to lower the risk of both maternal obesity in the next pregnancy and obesity in the growing child, thus helping to interrupt maternal and child intergenerational vicious cycles of obesity, diabetes and related cardiometabolic health consequences. While this paradigm is appealing, challenges include determining the magnitude, causality and modifiability of these risk factors, and quantifying any adverse consequences of intervention.

  8. Maternal obesity, inflammation, and developmental programming.

    PubMed

    Segovia, Stephanie A; Vickers, Mark H; Gray, Clint; Reynolds, Clare M

    2014-01-01

    The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.

  9. Impact of maternal obesity on perinatal and childhood outcomes.

    PubMed

    Santangeli, Louise; Sattar, Naveed; Huda, Shahzya S

    2015-04-01

    Maternal obesity is of major consequence, affecting every aspect of maternity care including both short- and long-term effects on the health of the offspring. Obese mothers are at a higher risk of developing gestational diabetes and pre-eclampsia, potentially exposing the foetus to an adverse intrauterine environment. Maternal obesity is linked to foetal macrosomia, resulting in increased neonatal and maternal morbidity. Foetal macrosomia is a result of a change in body composition in the neonate with an increase in both percentage fat and fat mass. Maternal obesity and gestational weight gain are associated with childhood obesity, and this effect extends into adulthood. Childhood obesity in turn increases chances of later life obesity, thus type 2 diabetes, and cardiovascular disease in the offspring. Further clinical trials of lifestyle and, potentially, pharmacological interventions in obese pregnant women are required to determine whether short- and long-term adverse effects for the mother and child can be reduced.

  10. Maternal Obesity in Pregnancy Developmentally Programs Adipose Tissue Inflammation in Young, Lean Male Mice Offspring

    PubMed Central

    Alfaradhi, Maria Z.; Fernandez-Twinn, Denise S.; Pantaleão, Lucas C.; Carr, Sarah K.; Ferland-McCollough, David; Yeo, Giles S. H.; Bushell, Martin; Ozanne, Susan E.

    2016-01-01

    Obesity during pregnancy has a long-term effect on the health of the offspring including risk of developing the metabolic syndrome. Using a mouse model of maternal diet-induced obesity, we employed a genome-wide approach to investigate the microRNA (miRNA) and miRNA transcription profile in adipose tissue to understand mechanisms through which this occurs. Male offspring of diet-induced obese mothers, fed a control diet from weaning, showed no differences in body weight or adiposity at 8 weeks of age. However, offspring from the obese dams had up-regulated cytokine (Tnfα; P < .05) and chemokine (Ccl2 and Ccl7; P < .05) signaling in their adipose tissue. This was accompanied by reduced expression of miR-706, which we showed can directly regulate translation of the inflammatory proteins IL-33 (41% up-regulated; P < .05) and calcium/calmodulin-dependent protein kinase 1D (30% up-regulated; P < .01). We conclude that exposure to obesity during development primes an inflammatory environment in adipose tissue that is independent of offspring adiposity. Programming of adipose tissue miRNAs that regulate expression of inflammatory signaling molecules may be a contributing mechanism. PMID:27583789

  11. The Effect of Maternal Obesity on the Offspring

    PubMed Central

    Williams, Christine B.; Mackenzie, Kusaynyonon C.; Gahagan, Sheila

    2016-01-01

    Maternal obesity is inextricably linked to adverse health outcomes for the mother and her children. The peripartum period is a critical period of risk. In this chapter, we examine the importance of maternal pre-pregnancy weight status, gestational weight gain, breastfeeding, and postpartum weight loss in relation to subsequent risk for maternal obesity and obesity in the offspring. Promoting optimal maternal weight during the preconception, pregnancy and postpartum periods will provide lifelong benefits for maternal health and the health of her progeny. PMID:24936914

  12. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet.

    PubMed

    Takanabe, Rieko; Ono, Koh; Abe, Yukiko; Takaya, Tomohide; Horie, Takahiro; Wada, Hiromichi; Kita, Toru; Satoh, Noriko; Shimatsu, Akira; Hasegawa, Koji

    2008-11-28

    MicroRNAs (miRNAs) are short non-coding RNA that post-transcriptionally regulates gene expression. miR-143 has been proposed to play a role in the differentiation of adipocytes in culture. However, the mechanism regulating the expression of miR-143 in adult adipose tissue during the development of obesity in vivo is unknown. Here in, we showed that the expression of miR-143 in the mesenteric fat was up-regulated in mice fed a high-fat diet. Increased miR-143 expression was associated with an elevated body weight and mesenteric fat weight. Furthermore, miR-143 levels were closely correlated with expression levels of adipocyte differentiation markers such as PPARgamma and aP2 as well as plasma levels of leptin, one of the important adipocytokines involved in insulin resistance. These findings provide the first evidence for the up-regulated expression of miR-143 in the mesenteric fat of high-fat diet-induced obese mice, which might contribute to the regulated expression of adipocyte genes involved in the pathophysiology of obesity.

  13. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    SciTech Connect

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  14. Maternal obesity is associated with a lipotoxic placental environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity is associated with placental lipotoxicity, oxidative stress, and inflammation, where MAPK activity may play a central role. Accordingly, we have previously shown that placenta from obese women have increased activation of MAPK-JNK. Here, we performed RNA-sequencing on term placenta ...

  15. Piperine’s mitigation of obesity and diabetes can be explained by its up-regulation of the metabolic rate of resting muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies. PMID:27799519

  16. The impact of maternal obesity during pregnancy on offspring immunity

    PubMed Central

    Wilson, Randall; Messaoudi, Ilhem

    2015-01-01

    In the United States, approximately 64% of women of childbearing age are either overweight or obese. Maternal obesity during pregnancy is associated with a greater risk for adverse maternal-fetal outcomes. Adverse health outcomes for the offspring can persist into adulthood, increasing the incidence of several chronic conditions including cardiovascular disease, diabetes, and asthma. Since these diseases have a significant inflammatory component, these observations are indicative of perturbation of the normal development and maturation of the immune system of the offspring in utero. This hypothesis is strongly supported by data from several rodent studies. Although the mechanisms of these perturbations are not fully understood, it is thought that increased placental inflammation due to obesity may directly affect neonatal development through alterations in nutrient transport. In this review we examine the impact of maternal obesity on the neonatal immune system, and potential mechanisms for the changes observed. PMID:26232506

  17. Intergenerational impact of maternal obesity and postnatal feeding practices on pediatric obesity

    PubMed Central

    Thompson, Amanda L.

    2014-01-01

    The postnatal feeding practices of obese and overweight mothers may place their children at particular risk for the development of obesity through shared biology and family environments. This paper reviews the feeding practices of obese mothers, describes potential mechanisms linking maternal feeding behaviors to child obesity risk, and highlights potential avenues for intervention. This review documents that supporting breastfeeding, improving the food choices of obese women, and encouraging the development of feeding styles that are responsive to hunger and satiety cues are important for improving the quality of the eating environment and preventing the intergenerational transmission of obesity. PMID:24147925

  18. Maternal obesity and inflammatory mediators: A controversial association.

    PubMed

    Pendeloski, Karen Priscilla Tezotto; Ono, Erika; Torloni, Maria Regina; Mattar, Rosiane; Daher, Silvia

    2017-03-22

    The link between maternal obesity and inflammatory mediators is still unclear. Our aim was to summarize the main findings of recently published studies on this topic. We performed a search in Medline for studies published in the last years on obesity, human pregnancy, and inflammatory mediators. We report the findings of 30 studies. The characteristics and number of participants, study design, gestational age at sample collection, and type of sample varied widely. Approximately two-thirds of them investigated more than one mediator, and 50% included participants in only one trimester of pregnancy. The most frequently investigated mediators were leptin, tumour necrosis factor-alpha (TNF-α), and interleukin (IL)-6. Almost all studies reported an association between maternal obesity, leptin, and C-reactive protein (CRP) serum levels but not with IL-1β and IL-10. The association of IL-6, TNF-α, monocyte chemo-attractant protein-1 (MCP-1), adiponectin, and resistin with maternal obesity is still controversial. To clarify the physiopathological link between maternal obesity and inflammation, more high-quality studies are needed.

  19. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status

    PubMed Central

    Jones, Andrew D.; Zhao, Gengli; Jiang, Ya-ping; Zhou, Min; Xu, Guobin; Kaciroti, Niko; Zhang, Zhixiang; Lozoff, Betsy

    2015-01-01

    Background/Objectives Obesity among pregnant women may adversely affect both maternal iron status throughout pregnancy and placental transfer of iron. The objective of this study was to determine the association of maternal body mass index (BMI) with 1) maternal iron status and inflammation in mid and late pregnancy, 2) the change in maternal iron status throughout pregnancy, and 3) neonatal iron status. Subjects/Methods We examined longitudinal data from 1,613 participants in a pregnancy iron supplementation trial in rural China. Women with uncomplicated singleton pregnancies were enrolled in the early second trimester of pregnancy and followed through parturition. Maternal blood samples obtained at enrollment and in the third trimester, and cord blood samples were analyzed for a range of hematological and iron biomarkers. Results There was a negative association between maternal BMI and iron status at enrollment (transferrin receptor (sTfR): r=0.20, P<0.001; body iron (BI): r=−0.05; P=0.03). This association was markedly stronger among obese women. Maternal BMI was positively associated with maternal inflammation (C-reactive protein: r=0.33, P<0.001). In multiple linear regression models, maternal BMI was negatively associated with neonatal iron status (cord serum ferritin: −0.01, P=0.008; BI: −0.06, P=0.006) and associated with a lower decrease in iron status throughout pregnancy (sTfR: −4.6, P<0.001; BI: 1.1, P=0.004). Conclusions Maternal obesity during pregnancy may adversely affect both maternal and neonatal iron status, potentially through inflammatory pathways. PMID:26813939

  20. Maternal obesity in Africa: a systematic review and meta-analysis

    PubMed Central

    Onubi, Ojochenemi J.; Marais, Debbi; Aucott, Lorna; Okonofua, Friday; Poobalan, Amudha S.

    2016-01-01

    Background Maternal obesity is emerging as a public health problem, recently highlighted together with maternal under-nutrition as a ‘double burden’, especially in African countries undergoing social and economic transition. This systematic review was conducted to investigate the current evidence on maternal obesity in Africa. Methods MEDLINE, EMBASE, Scopus, CINAHL and PsycINFO were searched (up to August 2014) and identified 29 studies. Prevalence, associations with socio-demographic factors, labour, child and maternal consequences of maternal obesity were assessed. Pooled risk ratios comparing obese and non-obese groups were calculated. Results Prevalence of maternal obesity across Africa ranged from 6.5 to 50.7%, with older and multiparous mothers more likely to be obese. Obese mothers had increased risks of adverse labour, child and maternal outcomes. However, non-obese mothers were more likely to have low-birthweight babies. The differences in measurement and timing of assessment of maternal obesity were found across studies. No studies were identified either on the knowledge or attitudes of pregnant women towards maternal obesity; or on interventions for obese pregnant women. Conclusions These results show that Africa's levels of maternal obesity are already having significant adverse effects. Culturally adaptable/sensitive interventions should be developed while monitoring to avoid undesired side effects. PMID:26487702

  1. Maternal obesity impairs specific regulatory pathways in human myometrial arteries.

    PubMed

    Hayward, Christina E; Cowley, Elizabeth J; Mills, Tracey A; Sibley, Colin P; Wareing, Mark

    2014-03-01

    Obese women (body mass index ≥30 kg/m(2)) are at greater risk than normal weight women of pregnancy complications associated with maternal and infant morbidity, particularly the development of cardiovascular disease and metabolic disorders in later life; why this occurs is unknown. Nonpregnant, obese individuals exhibit systemic vascular endothelial dysfunction. We tested the hypothesis that obese pregnant women have altered myometrial arterial function compared to pregnant women of normal (18-24 kg/m(2)) and overweight (25-29 kg/m(2)) body mass index. Responses to vasoconstrictors, U46619 (thromboxane mimetic) and arginine vasopressin, and vasodilators, bradykinin and the nitric oxide donor sodium nitroprusside, were assessed by wire myography in myometrial arteries from normal weight (n = 18), overweight (n = 18), and obese (n = 20) women with uncomplicated pregnancies. Thromboxane-prostanoid receptor expression was assessed using immunostaining in myometrial arteries of normal weight and obese women. Vasoconstriction and vasodilatation were impaired in myometrial arteries from obese women with otherwise uncomplicated pregnancies. Disparate agonist responses suggest that vascular function in obese women is not globally dysregulated but may be specific to thromboxane and nitric oxide pathways. Because obesity rates are escalating, it is important to identify the mechanisms underlying impaired vascular function and establish why some obese women compensate for vascular dysfunction and some do not. Future studies are needed to determine whether central adiposity results in an altered endocrine milieu that may promote vascular dysfunction by altering the function of perivascular adipose tissue.

  2. Maternal Obesity and its Short- and Long-Term Maternal and Infantile Effects

    PubMed Central

    Korkmaz, Levent; Baştuğ, Osman; Kurtoğlu, Selim

    2016-01-01

    Obesity, in childhood or in adulthood, remains to be a global health problem. The worldwide prevalence of obesity has increased in the last few decades, and consequently, the women of our time suffer more gestational problems than women in the past. The prevalence of obesity is greater in older women than in younger ones and in women with low educational level than in their counterparts with a higher level of education. Maternal obesity during pregnancy may increase congenital malformations and neonatal morbidity and mortality. Maternal obesity is associated with a decreased intention to breastfeed, decreased initiation of breastfeeding, and decreased duration of breastfeeding. We discuss the current epidemiological evidence for the association of maternal obesity with congenital structural neural tube and cardiac defects, fetal macrosomia that predisposes infants to birth injuries and to problems with physiological and metabolic transition, as well as potential for long-term complications secondary to prenatal and neonatal programming effects compounded by a reduction in sustained breastfeeding. PMID:26758575

  3. Early Maternal Employment and Childhood Obesity among Economically Disadvantaged Families in the USA

    ERIC Educational Resources Information Center

    Coley, Rebekah Levine; Lombardi, Caitlin McPherran

    2012-01-01

    Research indicates a link between maternal employment and children's risk of obesity, but little prior work has addressed maternal employment during children's infancy. This study examined the timing and intensity of early maternal employment and associations with children's later overweight and obesity in a sample of low-income families in…

  4. Maternal obesity - a risk factor for metabolic syndrome in children

    PubMed Central

    MOREA, MELINDA; MIU, NICOLAE; MOREA, VICENŢIU FLORIN; CORNEAN, RODICA

    2013-01-01

    Objective To determine the association between the metabolic syndrome in children (MS) and the pre-pregnancy nutritional status of the mother. Design and methods A total number of 180 children aged between 6–19 years were examined. Self reported data about parents and their children were collected. The children underwent physical examination; weight, height, waist circumference, blood pressure (BP) were measured. The nutritional status of the children was assessed by body mass index (BMI) and laboratory tests needed to diagnose MS were performed. IDF criteria for MS were used in children 10 years and older, and age and gender specific cut-off points in children younger than 10 years. The mothers were classified in the normal weight, overweight and obese categories according to the pre-pregnancy BMI. The statistical analysis of the data was descriptive and inferential analysis. In the bivariate analysis of the association between qualitative variables, we used the Chi-Square test and the exact Fisher test. The statistical analysis was performed with SPSS v 13.0. Results 73 (40.55%) children were normal weight, 54 (30%) were overweight and 53 (29.44%) were obese. None of the normal weight children, 16 (29.60%) of the overweight and 23 (43.40%) of the obese ones had MS; 125 (69.44%) of the mothers were normal weight, 44 (24.44%) were overweight and 11 (6.11%) were obese. Pre-pregnancy maternal BMI was significantly associated with offspring MS in both genders, obese children and in the 10–16 age group. Conclusions Pre-pregnancy maternal overweight/obesity represents a risk factor for offspring MS. The results are very difficult to compare between studies because of different cut-off values and definition of MS in children. If prevention is the goal rather than treatment, the perinatal period may be an important focus for future research. PMID:26527958

  5. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2

    PubMed Central

    Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring’s learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition. PMID:27536989

  6. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    PubMed

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults.

  7. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed bo...

  8. Association between Maternal Obesity and Autism Spectrum Disorder in Offspring: A Meta-Analysis

    ERIC Educational Resources Information Center

    Li, Ya-Min; Ou, Jian-Jun; Liu, Li; Zhang, Dan; Zhao, Jing-Ping; Tang, Si-Yuan

    2016-01-01

    As the link between maternal obesity and risk of autism among offspring is unclear, the present study assessed this association. A systematic search of an electronic database was performed to identify observational studies that examined the association between maternal obesity and autism. The outcome measures were odds ratios comparing offspring…

  9. Influence of maternal obesity on the long-term health of offspring.

    PubMed

    Godfrey, Keith M; Reynolds, Rebecca M; Prescott, Susan L; Nyirenda, Moffat; Jaddoe, Vincent W V; Eriksson, Johan G; Broekman, Birit F P

    2017-01-01

    In addition to immediate implications for pregnancy complications, increasing evidence implicates maternal obesity as a major determinant of offspring health during childhood and later adult life. Observational studies provide evidence for effects of maternal obesity on her offspring's risks of obesity, coronary heart disease, stroke, type 2 diabetes, and asthma. Maternal obesity could also lead to poorer cognitive performance and increased risk of neurodevelopmental disorders, including cerebral palsy. Preliminary evidence suggests potential implications for immune and infectious-disease-related outcomes. Insights from experimental studies support causal effects of maternal obesity on offspring outcomes, which are mediated at least partly through changes in epigenetic processes, such as alterations in DNA methylation, and perhaps through alterations in the gut microbiome. Although the offspring of obese women who lose weight before pregnancy have a reduced risk of obesity, few controlled intervention studies have been done in which maternal obesity is reversed and the consequences for offspring have been examined. Because the long-term effects of maternal obesity could have profound public health implications, there is an urgent need for studies on causality, underlying mechanisms, and effective interventions to reverse the epidemic of obesity in women of childbearing age and to mitigate consequences for offspring.

  10. Maternal Obesity in Early Pregnancy and Risk of Adverse Outcomes

    PubMed Central

    Bautista-Castaño, Inmaculada; Henriquez-Sanchez, Patricia; Alemán-Perez, Nestor; Garcia-Salvador, Jose J.; Gonzalez-Quesada, Alicia; García-Hernández, Jose A.; Serra-Majem, Luis

    2013-01-01

    Objectives To assess the role of the health consequences of maternal overweight and obesity at the start of pregnancy on gestational pathologies, delivery and newborn characteristics. Methods A cohort of pregnant women (n = 6.558) having delivered at the Maternal & Child University Hospital of Gran Canaria (HUMIGC) in 2008 has been studied. Outcomes were compared using multivariate analyses controlling for confounding variables. Results Compared to normoweight, overweight and obese women have greater risks of gestational diabetes mellitus (RR = 2.13 (95% CI: 1.52–2.98) and (RR = 2.85 (95% CI: 2.01–4.04), gestational hypertension (RR = 2.01 (95% CI: 1.27–3.19) and (RR = 4.79 (95% CI: 3.13–7.32) and preeclampsia (RR = 3.16 (95% CI: 1.12–8.91) and (RR = 8.80 (95% CI: 3.46–22.40). Obese women have also more frequently oligodramnios (RR = 2.02 (95% CI: 1.25–3.27), polyhydramnios. (RR = 1.76 (95% CI: 1.03–2.99), tearing (RR = 1.24 (95% CI: 1.05–1.46) and a lower risk of induced deliveries (RR = 0.83 (95% CI: 0.72–0.95). Both groups have more frequently caesarean section (RR = 1.36 (95% CI: 1.14–1.63) and (RR = 1.84 (95% CI: 1.53–2.22) and manual placenta extraction (RR = 1.65 (95% CI: 1.28–2.11) and (RR = 1.77 (95% CI: 1.35–2.33). Newborns from overweight and obese women have higher weight (p<0.001) and a greater risk of being macrosomic (RR = 2.00 (95% CI: 1.56–2.56) and (RR = 2.74 (95% CI: 2.12–3.54). Finally, neonates from obese mother have a higher risk of being admitted to special care units (RR = 1.34 (95% CI: 1.01–1.77). Apgar 1 min was significantly higher in newborns from normoweight mothers: 8.65 (95% CI: 8.62–8.69) than from overweight: 8.56 (95% CI: 8.50–8.61) or obese mothers: 8.48 (95% CI: 8.41–8.54). Conclusion Obesity and overweight status at the beginning of pregnancy increase the adverse outcomes of the pregnancy. It is important to promote

  11. Maternal work and children's diet, activity, and obesity.

    PubMed

    Datar, Ashlesha; Nicosia, Nancy; Shier, Victoria

    2014-04-01

    Mothers' work hours are likely to affect their time allocation towards activities related to children's diet, activity and well-being. For example, mothers who work more may be more reliant on processed foods, foods prepared away from home and school meal programs for their children's meals. A greater number of work hours may also lead to more unsupervised time for children that may, in turn, allow for an increase in unhealthy behaviors among their children such as snacking and sedentary activities such as TV watching. Using data on a national cohort of children, we examine the relationship between mothers' average weekly work hours during their children's school years on children's dietary and activity behaviors, BMI and obesity in 5th and 8th grade. Our results are consistent with findings from the literature that maternal work hours are positively associated with children's BMI and obesity especially among children with higher socioeconomic status. Unlike previous papers, our detailed data on children's behaviors allow us to speak directly to affected behaviors that may contribute to the increased BMI. We show that children whose mothers work more consume more unhealthy foods (e.g. soda, fast food) and less healthy foods (e.g. fruits, vegetables, milk) and watch more television. Although they report being slightly more physically active, likely due to organized physical activities, the BMI and obesity results suggest that the deterioration in diet and increase in sedentary behaviors dominate.

  12. Do Maternal Caregiver Perceptions of Childhood Obesity Risk Factors and Obesity Complications Predict Support for Prevention Initiatives Among African Americans?

    PubMed

    Alexander, Dayna S; Alfonso, Moya L; Cao, Chunhua; Wright, Alesha R

    2017-01-28

    Objectives African American maternal caregiver support for prevention of childhood obesity may be a factor in implementing, monitoring, and sustaining children's positive health behaviors. However, little is known about how perceptions of childhood obesity risk factors and health complications influence caregivers' support of childhood obesity prevention strategies. The objective of this study was to determine if childhood obesity risk factors and health complications were associated with maternal caregivers' support for prevention initiatives. Methods A convenience sample of maternal caregivers (N = 129, ages 22-65 years) completed the childhood obesity perceptions (COP) survey. A linear regression was conducted to determine whether perceptions about childhood obesity risk factors and subsequent health complications influenced caregivers' support for prevention strategies. Results Caregivers' perceptions of childhood obesity risk factors were moderate (M = 3.4; SD = 0.64), as were their perceptions of obesity-related health complications (M = 3.3; SD = 0.75); however, they perceived a high level of support for prevention strategies (M = 4.2; SD = 0.74). In the regression model, only health complications were significantly associated with caregiver support (β = 0.348; p < 0.004). Conclusions Childhood obesity prevention efforts should emphasize health complications by providing education and strategies that promote self-efficacy and outcome expectations among maternal caregivers.

  13. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet

    PubMed Central

    Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia

    2017-01-01

    Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809

  14. Maternal obesity leads to an inflammatory response and insulin resistance in ovarian tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity during the pre-conception period may influence ovarian functions and affect embryo development. Lean and obese (OB) Sprague-Dawley dams were examined during the preimplantation period at dpc 4.5. Obesity was induced by controlled overfeeding (40% excess calories for 28 d) via total ...

  15. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyper-responsive to high fat diets, gaining greater body weight, fat mass and additional metabolic sequelae compared to lean controls. ...

  16. Maternal and grandmaternal obesity and environmental factors as determinants of daughter's obesity

    PubMed Central

    Shin, Mi Na; Lee, Kyung Hea; Lee, Hye Sang; Sasaki, Satoshi; Oh, Hea Young; Lyu, Eun Soon

    2013-01-01

    Obesity may be the consequence of various environmental or genetic factors, which may be highly correlated with each other. We aimed to examine whether grandmaternal and maternal obesity and environmental risk factors are related to obesity in daughters. Daughters (n = 182) recruited from female students, their mothers (n = 147) and their grandmothers (n = 67) were included in this study. Multivariable logistic regression was used to analyze the association between the daughter's obesity and maternal, grandmaternal, and environmental factors. Maternal heights of 161-175cm (OD: 8.48, 95% CI: 3.61-19.93) and 156-160 cm (2.37, 1.14-4.91) showed positive associations with a higher height of daughter, compared to those of 149-155 cm. Mothers receiving a university or a higher education had a significant OR (3.82, 1.27-11.50) for a higher height of daughter compared to those having a low education (elementary school). Mother having the heaviest weight at current time (59-80 kg, 3.78, 1.73-8.28) and the heaviest weight at 20 years of age (51-65 kg, 3.17, 1.53-6.55) had significant associations with a higher height of daughters, compared to those having the lightest weight at the same times. There was no association between the height, weight, and BMI of daughters and the characteristics and education of her grandmothers. In conclusion, although genetic factors appear to influence the daughter's height more than environmental factors, the daughter's weight appears to be more strongly associated with individual factors than the genetic factors. PMID:24133620

  17. Does maternal psychopathology increase the risk of pre-schooler obesity? A systematic review.

    PubMed

    Benton, Pree M; Skouteris, Helen; Hayden, Melissa

    2015-04-01

    The preschool years may be a critical period for child obesity onset; however, literature examining obesity risk factors to date has largely focused on school-aged children. Several links have been made between maternal depression and childhood obesity risks; however, other types of maternal psychopathology have been widely neglected. The aim of the present review was to systematically identify articles that examined relationships between maternal psychopathology variables, including depressive and anxiety symptoms, self-esteem and body dissatisfaction, and risks for pre-schooler obesity, including weight outcomes, physical activity and sedentary behaviour levels, and nutrition/diet variables. Twenty articles meeting review criteria were identified. Results showed positive associations between maternal depressive symptoms and increased risks for pre-schooler obesity in the majority of studies. Results were inconsistent depending on the time at which depression was measured (i.e., antenatal, postnatal, in isolation or longitudinally). Anxiety and body dissatisfaction were only measured in single studies; however, both were linked to pre-schooler obesity risks; self-esteem was not measured by any studies. We concluded that maternal depressive symptoms are important to consider when assessing risks for obesity in preschool-aged children; however, more research is needed examining the impact of other facets of maternal psychopathology on obesity risk in pre-schoolers.

  18. Effects of maternal obesity on fetal growth and body composition: implications for programming and future health.

    PubMed

    Freeman, Dilys J

    2010-04-01

    Since the hypothesis linking low birth weight and poor fetal growth with future risk of cardiovascular disease was first proposed, there has been much interest in the early origins of disease. As rates of obesity increase and as maternal obesity has become common, interest has been directed towards the early origins of obesity. It is likely that a complex interaction of inherited gene effects and in-utero environment may interact in the developing fetus to programme pathways leading to future obesity. It is clear that maternal metabolism is disturbed in pregnancy in obese women, and that offspring of obese mothers have a higher percentage of body fat and are insulin resistant. This review discusses the ideas contributing to the current working concept of obesity programming, and discusses several potential mechanisms that may underlie obesity programming and susceptibility to future metabolic and vascular disease.

  19. Teratology Public Affairs Committee position paper: maternal obesity and pregnancy.

    PubMed

    Scialli, Anthony R

    2006-02-01

    Compared to normal-weight women, obese women have an increased risk of infertility and pregnancy complications. The most consistently described pregnancy complications are hypertensive disorders, gestational diabetes mellitus, thromboembolic events, and cesarean section. Fetal and neonatal complications may include congenital malformations, macrosomia, and shoulder dystocia. The literature suggests that women with a body mass index (BMI) >or=30 have approximately double the risk of having a child with a neural tube defect (NTD) compared to normal-weight women, and the increased risk associated with higher maternal body weight does not appear to be modified by folic acid supplementation. The Public Affairs Committee of the Teratology Society supports the public health initiatives identified by the U.S. Food and Drug Administration in 2004 and the research initiatives identified by the National Institutes of Health in 2004. The Public Affairs Committee recommends that clinicians counsel women about appropriate caloric intake and exercise and that health-care providers educate parents about appropriate childhood nutrition. Breast-feeding should be encouraged based on evidence of a protective effect against childhood obesity, as well as other health advantages.

  20. Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers

    PubMed Central

    Galley, Jeffrey D.; Bailey, Michael; Kamp Dush, Claire; Schoppe-Sullivan, Sarah; Christian, Lisa M.

    2014-01-01

    Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully delineated. A novel possible pathway linking maternal and child weight is the transmission of obesogenic microbes from mother to child. The current study examined whether maternal obesity was associated with differences in the composition of the gut microbiome in children in early life. Fecal samples from children 18–27 months of age (n = 77) were analyzed by pyro-tag 16S sequencing. Significant effects of maternal obesity on the composition of the gut microbiome of offspring were observed among dyads of higher socioeconomic status (SES). In the higher SES group (n = 47), children of obese (BMI≥30) versus non-obese mothers clustered on a principle coordinate analysis (PCoA) and exhibited greater homogeneity in the composition of their gut microbiomes as well as greater alpha diversity as indicated by the Shannon Diversity Index, and measures of richness and evenness. Also in the higher SES group, children born to obese versus non-obese mothers had differences in abundances of Faecalibacterium spp., Eubacterium spp., Oscillibacter spp., and Blautia spp. Prior studies have linked some of these bacterial groups to differences in weight and diet. This study provides novel evidence that maternal obesity is associated with differences in the gut microbiome in children in early life, particularly among those of higher SES. Among obese adults, the relative contribution of genetic versus behavioral factors may differ based on SES. Consequently, the extent to which maternal obesity confers measureable changes to the gut microbiome of offspring may differ based on the etiology of maternal obesity. Continued research is needed to examine this question as well as the relevance of the observed differences in gut microbiome composition for weight trajectory over the life course. PMID:25409177

  1. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  2. Maternal Obesity and Vitamin D Sufficiency Are Associated with Cord Blood Vitamin D Insufficiency

    PubMed Central

    Feinglass, Joseph; Rademaker, Alfred W.; Metzger, Boyd E.; Zeiss, Dinah M.; Price, Heather E.; Langman, Craig B.

    2013-01-01

    Context: An inverse relationship between total serum 25-hydroxyvitamin D (25-OH D) and increased adiposity has been established in children, adolescents, and adults. However, the relationship between neonatal adiposity and vitamin D status has not been reported. Both maternal obesity and vitamin D deficiency in pregnancy are common and are associated with adverse pregnancy outcomes. Objective: The aim of the study was to determine the relationship between vitamin D levels in mothers and newborns, as influenced by maternal obesity, and evaluate these associations with neonatal adiposity. Design, Setting, and Patients: Sixty-one maternal-neonatal pairs participated in this cross-sectional study at an academic medical center. Mothers had a prepregnancy body mass index that was normal or obese. Outcome Measures: Maternal and cord blood sera were assayed for 25-OH D, and neonatal body composition was measured by air displacement plethysmography. Results: Mothers had similar and sufficient levels of 25-OH D when measured at 36–38 wk gestation, irrespective of body mass index category (normal weight, 46.05, vs. obese, 49.84 ng/ml; P = not significant). However, cord blood 25-OH D was higher in neonates of normal-weight mothers compared to neonates of obese mothers (27.45 vs. 20.81 ng/ml; P = 0.02). The variance in cord blood 25-OH D was explained by four factors: maternal 25-OH D level, the presence of maternal obesity, maternal age, and neonatal adiposity (r2 = 0.66). Conclusion: Obese women transfer less 25-OH D to offspring than normal-weight women, despite similar serum levels. Cord blood 25-OH D levels directly correlate to neonatal percentage body fat. These novel findings underscore the evolving relationships between maternal obesity, vitamin D nutritional status, and adiposity in the neonatal period that may influence subsequent childhood and adulthood vitamin D-dependent processes. PMID:23144468

  3. Maternal obesity is a risk factor for orofacial clefts: a meta-analysis.

    PubMed

    Blanco, R; Colombo, A; Suazo, J

    2015-10-01

    Orofacial clefts are the most prevalent birth defects that affect craniofacial structures and implicate genetic and environmental factors in their aetiology. Maternal metabolic state and nutrition have been related to these and other structural malformations, and studies of maternal obesity before pregnancy have shown controversial results about its association with the risk of orofacial clefts in their offspring. Our aim was to assess the combined effect of several single studies of maternal obesity on the risk of orofacial clefts using meta-analysis. We searched for these reports in the PubMed database, and selected 8 studies that met our criteria for eligibility. As a result of this analysis, and using maternal normal weight as a reference, we found that maternal obesity does increase the risk of orofacial clefts in their offspring (OR 1.18, 95% CI 1.11 to 1.26). When these clefts are considered separately, maternal obesity is associated with cleft lip with or without cleft palate (OR 1.13, 95% CI 1.04 to 1.23), and with cleft palate alone (OR 1.22, 95% CI 1.09 to 1.35). Our results support the relation between maternal obesity and orofacial clefts, and confirm two previous meta-analyses that considered fewer studies. However, the molecular mechanisms underlying this statistical evidence have not been fully elucidated.

  4. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is strongly influenced by maternal body composition. Here we examined the hypothesis that maternal obesity influences white adipose tissue (WAT) transcriptome and increases propensity for adipogenesis in the offspring, prior to the development of obesity, using an es...

  5. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  6. Childhood consequences of maternal obesity and excessive weight gain during pregnancy.

    PubMed

    Gaillard, Romy; Felix, Janine F; Duijts, Liesbeth; Jaddoe, Vincent W V

    2014-11-01

    Obesity is a major public health concern. In western countries, the prevalence of obesity in pregnant women has strongly increased, with reported prevalence rates reaching 30%. Also, up to 40% of women gain an excessive amount of weight during pregnancy. Recent observational studies and meta-analyses strongly suggest long-term impact of maternal obesity and excessive weight gain during pregnancy on adiposity, cardiovascular and respiratory related health outcomes in their children. These observations suggest that maternal adiposity during pregnancy may program common health problems in the offspring. Currently, it remains unclear whether the observed associations are causal, or just reflect confounding by family-based sociodemographic or lifestyle-related factors. Parent-offspring studies, sibling comparison studies, Mendelian randomization studies and randomized trials can help to explore the causality and underlying mechanisms. Also, the potential for prevention of common diseases in future generations by reducing maternal obesity and excessive weight gain during pregnancy needs to be explored.

  7. Maternal Obesity During Pregnancy Associates With Premature Mortality and Major Cardiovascular Events in Later Life.

    PubMed

    Lee, Kuan Ken; Raja, Edwin A; Lee, Amanda J; Bhattacharya, Sohinee; Bhattacharya, Siladitya; Norman, Jane E; Reynolds, Rebecca M

    2015-11-01

    One in 5 pregnant women is obese but the impact on later health is unknown. We aimed to determine whether maternal obesity during pregnancy associates with increased premature mortality and later life major cardiovascular events. Maternity records of women who gave birth to their first child between 1950 and 1976 (n=18 873) from the Aberdeen Maternity and Neonatal databank were linked to the National Register of Deaths, Scotland and Scottish Morbidity Record. The effect of maternal obesity at first antenatal visit on death and hospital admissions for cardiovascular events was tested using time-to-event analysis with Cox proportional hazard regression to compare outcomes of mothers in underweight, overweight, or obese body mass index (BMI) categories compared with normal BMI. Median follow-up was at 73 years. All-cause mortality was increased in women who were obese during pregnancy (BMI>30 kg/m(2)) versus normal BMI after adjustment for socioeconomic status, smoking, gestation at BMI measurement, preeclampsia, and low birth weight (hazard ratio, 1.35; 95% confidence interval, 1.02-1.77). In adjusted models, overweight and obese mothers had increased risk of hospital admission for a cardiovascular event (1.16; 1.06-1.27 and 1.26; 1.01-1.57) compared with normal BMI mothers. Adjustment for parity largely unchanged the hazard ratios (mortality: 1.43, 1.09-1.88; cardiovascular events overweight: 1.17, 1.07-1.29; and obese: 1.30, 1.04-1.62). In conclusion, maternal obesity is associated with increased risk of premature death and cardiovascular disease. Pregnancy and early postpartum could represent an opportunity for interventions to identify obesity and reduce its adverse consequences.

  8. Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome

    PubMed Central

    Segura, Maria Teresa; Esteban, Francisco J.; Bartel, Sabine; Brandi, Pilar; Irmler, Martin; Beckers, Johannes; Demmelmair, Hans; López-Sabater, Carmen; Koletzko, Berthold; Krauss-Etschmann, Susanne; Campoy, Cristina

    2017-01-01

    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta’s whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome. PMID:28125591

  9. Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome.

    PubMed

    Altmäe, Signe; Segura, Maria Teresa; Esteban, Francisco J; Bartel, Sabine; Brandi, Pilar; Irmler, Martin; Beckers, Johannes; Demmelmair, Hans; López-Sabater, Carmen; Koletzko, Berthold; Krauss-Etschmann, Susanne; Campoy, Cristina

    2017-01-01

    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta's whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome.

  10. Update on Prepregnancy Maternal Obesity: Birth Defects and Childhood Outcomes

    PubMed Central

    Iessa, Noha; Bérard, Anick

    2015-01-01

    Obesity is a growing global health epidemic. It is estimated that more than 20% of pregnancies are complicated by obesity. Prepregnancy obesity has been associated with birth defects such as neural tube defects, macrosomia, fetal death, and long-term effects such as asthma on the offspring. We provide a summary of the most recent studies and meta-analyses on obesity and birth outcome. Possible mechanisms of actions are explored and recommendations for further research are highlighted. PMID:27617118

  11. The role of maternal obesity in the risk of neuropsychiatric disorders

    PubMed Central

    Rivera, Heidi M.; Christiansen, Kelly J.; Sullivan, Elinor L.

    2015-01-01

    Recent evidence indicates that perinatal exposure to maternal obesity, metabolic disease, including diabetes and hypertension, and unhealthy maternal diet has a long-term impact on offspring behavior and physiology. During the past three decades, the prevalence of both obesity and neuropsychiatric disorders has rapidly increased. Epidemiologic studies provide evidence that maternal obesity and metabolic complications increase the risk of attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, anxiety, depression, schizophrenia, eating disorders (food addiction, anorexia nervosa, and bulimia nervosa), and impairments in cognition in offspring. Animal models of maternal high-fat diet (HFD) induced obesity also document persistent changes in offspring behavior and impairments in critical neural circuitry. Animals exposed to maternal obesity and HFD consumption display hyperactivity, impairments in social behavior, increased anxiety-like and depressive-like behaviors, substance addiction, food addiction, and diminished cognition. During development, these offspring are exposed to elevated levels of nutrients (fatty acids, glucose), hormones (leptin, insulin), and inflammatory factors (C-reactive protein, interleukin, and tumor necrosis factor). Such factors appear to permanently change neuroendocrine regulation and brain development in offspring. In addition, inflammation of the offspring brain during gestation impairs the development of neural pathways critical in the regulation of behavior, such as serotoninergic, dopaminergic, and melanocortinergic systems. Dysregulation of these circuits increases the risk of mental health disorders. Given the high rates of obesity in most developed nations, it is critical that the mechanisms by which maternal obesity programs offspring behavior are thoroughly characterized. Such knowledge will be critical in the development of preventative strategies and therapeutic interventions. PMID:26150767

  12. The role of maternal obesity in the risk of neuropsychiatric disorders.

    PubMed

    Rivera, Heidi M; Christiansen, Kelly J; Sullivan, Elinor L

    2015-01-01

    Recent evidence indicates that perinatal exposure to maternal obesity, metabolic disease, including diabetes and hypertension, and unhealthy maternal diet has a long-term impact on offspring behavior and physiology. During the past three decades, the prevalence of both obesity and neuropsychiatric disorders has rapidly increased. Epidemiologic studies provide evidence that maternal obesity and metabolic complications increase the risk of attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, anxiety, depression, schizophrenia, eating disorders (food addiction, anorexia nervosa, and bulimia nervosa), and impairments in cognition in offspring. Animal models of maternal high-fat diet (HFD) induced obesity also document persistent changes in offspring behavior and impairments in critical neural circuitry. Animals exposed to maternal obesity and HFD consumption display hyperactivity, impairments in social behavior, increased anxiety-like and depressive-like behaviors, substance addiction, food addiction, and diminished cognition. During development, these offspring are exposed to elevated levels of nutrients (fatty acids, glucose), hormones (leptin, insulin), and inflammatory factors (C-reactive protein, interleukin, and tumor necrosis factor). Such factors appear to permanently change neuroendocrine regulation and brain development in offspring. In addition, inflammation of the offspring brain during gestation impairs the development of neural pathways critical in the regulation of behavior, such as serotoninergic, dopaminergic, and melanocortinergic systems. Dysregulation of these circuits increases the risk of mental health disorders. Given the high rates of obesity in most developed nations, it is critical that the mechanisms by which maternal obesity programs offspring behavior are thoroughly characterized. Such knowledge will be critical in the development of preventative strategies and therapeutic interventions.

  13. Maternal obesity and the developmental programming of hypertension: a role for leptin.

    PubMed

    Taylor, P D; Samuelsson, A-M; Poston, L

    2014-03-01

    Mother-child cohort studies have established that both pre-pregnancy body mass index (BMI) and gestational weight gain are independently associated with cardio-metabolic risk factors in young adult offspring, including systolic and diastolic blood pressure. Animal models in sheep and non-human primates provide further evidence for the influence of maternal obesity on offspring cardiovascular function, whilst recent studies in rodents suggest that perinatal exposure to the metabolic milieu of maternal obesity may permanently change the central regulatory pathways involved in blood pressure regulation. Leptin plays an important role in the central control of appetite, is also involved in activation of efferent sympathetic pathways to both thermogenic and non-thermogenic tissues, such as the kidney, and is therefore implicated in obesity-related hypertension. Leptin is also thought to have a neurotrophic role in the development of the hypothalamus, and altered neonatal leptin profiles secondary to maternal obesity are associated with permanently altered hypothalamic structure and function. In rodent studies, maternal obesity confers persistent sympathoexcitatory hyper-responsiveness and hypertension acquired in the early stages of development. Experimental neonatal hyperleptinaemia in naive rat pups provides further evidence of heightened sympathetic tone and proof of principle that hyperleptinaemia during a critical window of hypothalamic development may directly lead to adulthood hypertension. Insight from these animal models raises the possibility that early-life exposure to leptin in humans may lead to early onset essential hypertension. Ongoing mother-child cohort and intervention studies in obese pregnant women provide a unique opportunity to address associations between maternal obesity and offspring cardiovascular function. The goal of the review is to highlight the potential importance of leptin in the developmental programming of hypertension in obese

  14. Maternal inflammation during late pregnancy is lower in physically active compared with inactive obese women.

    PubMed

    Tinius, Rachel A; Cahill, Alison G; Strand, Eric A; Cade, W Todd

    2016-02-01

    The primary purpose of this study was to compare maternal plasma inflammation between physically active and inactive obese women during late pregnancy. The secondary purpose was to examine the relationships between maternal plasma inflammation and lipid metabolism and maternal and neonatal metabolic health in these women. A cross-sectional, observational study design was performed in 16 obese-inactive (OBI; means ± SD; age, 25.0 ± 4.8 years; prepregnancy body mass index (BMI), 36.3 ± 4.3 kg/m(2); body fat percentage in late gestation, 37.7% ± 3.5%) and 16 obese-active (OBA; age, 28.9 ± 4.8 years; prepregnancy BMI, 34.0 ± 3.7 kg/m(2); body fat in late gestation, 36.6% ± 3.8%) women during the third trimester of pregnancy. Maternal plasma inflammation (C -reactive protein (CRP)) and insulin resistance (Homeostatic Model Assessment-Insulin Resistance) were measured at rest. Plasma lipid concentration and metabolism (lipid oxidation and lipolysis) were measured at rest, during a 30-min bout of low-intensity (40% peak oxygen uptake) exercise, and during a resting recovery period using indirect calorimetry. Umbilical cord blood was collected for measurement of neonatal plasma insulin resistance, inflammation, and lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Maternal plasma CRP concentration was significantly higher in OBI compared with OBA women (9.1 ± 4.0 mg/L vs. 6.3 ± 2.5 mg/L, p = 0.02). Maternal plasma CRP concentration was significantly associated with maternal lipolysis (r = 0.43, p = 0.02), baseline lipid oxidation rate (r = 0.39, p = 0.03), and baseline plasma free fatty acid concentration (r = 0.36, p = 0.04). In conclusion, maternal physical activity may reduce inflammation during pregnancy in obese women. Maternal lipid metabolism is related to systemic inflammation.

  15. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development. PMID:27699222

  16. Maternal obesity programs mitochondrial and lipid metabolism gene expression in infant umbilical vein endothelial cells

    PubMed Central

    Ramos Costa, Suzana Maria; Isganaitis, Elvira; Matthews, Tucker; Hughes, Katelyn; Daher, Grace; Dreyfuss, Jonathan M.; Pontes da Silva, Giselia Alves; Patti, Mary-Elizabeth

    2016-01-01

    Background/Objectives Maternal obesity increases risk for childhood obesity, but molecular mechanisms are not well understood. We hypothesized that primary umbilical vein endothelial cells (HUVEC) from infants of overweight and obese mothers would harbor transcriptional patterns reflecting offspring obesity risk. Subjects/Methods In this observational cohort study, we recruited 13 lean (pre-pregnancy BMI <25.0 kg/m2) and 24 overweight-obese (‘ov-ob’, BMI ≥25.0 kg/m2) women. We isolated primary HUVEC, and analyzed both gene expression (Primeview, Affymetrix) and cord blood levels of hormones and adipokines. Results 142 transcripts were differentially expressed in HUVEC from infants of overweight-obese mothers (false discovery rate, FDR <0.05). Pathway analysis revealed that genes involved in mitochondrial and lipid metabolism were negatively correlated with maternal BMI (FDR <0.05). To test whether these transcriptomic patterns were associated with distinct nutrient exposures in the setting of maternal obesity, we analyzed the cord blood lipidome and noted significant increases in levels of total free fatty acids (lean: 95.5 ± 37.1 ug/ml, ov-ob: 124.1 ± 46.0 ug/ml, P=0.049), palmitate (lean: 34.5 ± 12.7 ug/ml, ov-ob: 46.3 ± 18.4 ug/ml, P=0.03) and stearate (lean: 20.8 ± 8.2 ug/ml, ov-ob: 29.7 ± 17.2 ug/ml, P=0.04), in infants of overweight-obese mothers. Conclusion Prenatal exposure to maternal obesity alters HUVEC expression of genes involved in mitochondrial and lipid metabolism, potentially reflecting developmentally-programmed differences in oxidative and lipid metabolism. PMID:27531045

  17. Maternal Exposure to Synthetic Chemicals and Obesity in the Offspring: Recent Findings.

    PubMed

    Liu, Yun; Peterson, Karen E

    2015-12-01

    Experimental studies suggest perinatal exposures to synthetic chemicals may be associated with early onset obesity, although this hypothesis has not been extensively examined in humans. This article summarizes the evidence relating maternal perinatal exposure to common persistent organic compounds (polychlorinated biphenyl, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, hexachlorobenzene, hexachlorocyclohexane), perfluoroalkyls, perfluorooctane sulfonate, polybrominated diphenyl ethers and tributyltin, and nonpersistent compounds (phthalates, bisphenol A) on child obesity during sensitive developmental periods. Twenty-two epidemiologic studies published from 2011 to 2015 offer inconsistent support for the obesogenic effects of most substances and are limited by relatively small sample sizes and indirect measures of adiposity. The clearest findings suggest an influence of maternal dichlorodiphenyldichloroethylene exposure on offspring overweight and obesity. Recommendations for future epidemiological research include longer follow-up of effects of pre- and postnatal exposures in large samples; utilization of direct measures of adiposity; and consideration of effect modification by sex, birth weight, dietary fat, and maternal weight status.

  18. Maternal obesity induces fibrosis in fetal myocardium of sheep

    PubMed Central

    Huang, Yan; Yan, Xu; Zhao, Jun X.; Zhu, Mei J.; McCormick, Richard J.; Ford, Stephen P.; Nathanielsz, Peter W.; Ren, Jun

    2010-01-01

    Maternal obesity (MO) has harmful effects on both fetal development and subsequent offspring health. The impact of MO on fetal myocardium development has received little attention. Fibrogenesis is regulated by the transforming growth factor-β (TGF-β)/p38 signaling pathway. Using the well-established model of MO in pregnant sheep, we evaluated the effect of MO on TGF-β/p38 and collagen accumulation in fetal myocardium. Nonpregnant ewes were assigned to a control diet [Con, fed 100% of National Research Council (NRC) nutrient recommendations] or obesogenic diet (OB, fed 150% of NRC recommendations) from 60 days before conception. Fetal ventricular muscle was sampled at 75 and 135 days of gestation (dG). At 75 dG, the expression of precursor TGF-β was 39.9 ± 9.9% higher (P < 0.05) in OB than Con fetal myocardium, consistent with the higher content of phosphorylated Smad3 in OB myocardium. The phosphorylation of p38 tended to be higher in OB myocardium (P = 0.08). In addition, enhanced Smad complexes were bound to Smad-binding elements in 75 dG OB fetal myocardium measured by DNA mobility shift assay (130.2 ± 26.0% higher, P < 0.05). Similar elevation of TGF-β signaling was observed in OB fetal myocardium at 135 dG. Total collagen concentration in OB was greater than Con fetal myocardium (2.42 ± 0.16 vs. 1.87 ± 0.04%, P < 0.05). Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 were higher in the Con group compared with OB sheep (43.86 ± 16.01 and 37.23 ± 7.97% respectively, P < 0.05). In summary, MO results in greater fetal heart connective tissue accumulation associated with an upregulated TGF-β/p38 signaling pathway at late gestation; such changes would be expected to negatively impact offspring heart function. PMID:20876759

  19. Interventions designed to prevent adverse programming outcomes resulting from exposure to maternal obesity during development

    PubMed Central

    Nathanielsz, PW; Ford, SP; Long, NM; Vega, CC; Reyes-Castro, LA; Zambrano, E

    2013-01-01

    Maternal obesity is a global epidemic affecting the developed and developing world. Human and animal studies indicate that maternal obesity programs development predisposing offspring to later-life chronic diseases. Several mechanisms act together to produce these adverse health problems. There is a need for effective interventions that prevent these outcomes and guide management in human pregnancy. We report here dietary and exercise intervention studies in both altricial and precocial species, rats and sheep, designed to prevent adverse offspring outcomes. Both interventions present exciting opportunities to at least in part prevent adverse metabolic and other outcomes in mother and offspring. PMID:24147928

  20. Maternal obesity has little effect on the immediate offspring but impacts on the next generation.

    PubMed

    King, Vicky; Dakin, Rachel S; Liu, Lincoln; Hadoke, Patrick W F; Walker, Brian R; Seckl, Jonathan R; Norman, Jane E; Drake, Amanda J

    2013-07-01

    Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected.

  1. Maternal and Fetal Lipid and Adipokine Profiles and Their Association with Obesity

    PubMed Central

    Solis-Paredes, Mario; Espino y Sosa, Salvador; Estrada-Gutierrez, Guadalupe; Nava-Salazar, Sonia; Ortega-Castillo, Veronica; Rodriguez-Bosch, Mario; Bravo-Flores, Eyerahi; Espejel-Nuñez, Aurora; Tolentino-Dolores, Maricruz; Gaona-Estudillo, Rubí; Martinez-Bautista, Nancy; Perichart-Perera, Otilia

    2016-01-01

    Background. Maternal metabolic changes impact fetal metabolism resulting in a higher risk for developing chronic diseases later in life. The aim of this study was to assess the association between maternal and fetal adipokine and lipid profiles, as well as the influence of maternal weight on this association. Methods. Healthy pregnant women at term who delivered by C-section were enrolled. Maternal and fetal glucose, lipid profile, adiponectin, leptin, and resistin levels were analyzed by obesity and maternal weight gain. Statistics included descriptives, correlations, and mean differences (SPSS v20.0). Results. Adiponectin and resistin concentrations were higher in fetal blood, while leptin was lower (p < 0.05). A significant inverse association between maternal resistin and fetal LDL-cholesterol (LDL-C) (r = −0.327; p = 0.022) was observed. A positive correlation was found between maternal and fetal resistin (r = 0.358; p = 0.013). Women with excessive weight gain had higher leptin levels and their fetuses showed higher LDL-C levels (p < 0.05). Conclusions. Maternal resistin showed an inverse association with fetal LDL-C, suggesting that maternal adiposity status may play an active role in the regulation of fetal lipid profile and consequently, in fetal programming. Excessive maternal weight gain during pregnancy may exert an effect over metabolic mediators in both mother and newborn. PMID:27190514

  2. The independent effects of maternal obesity and gestational diabetes on the pregnancy outcomes

    PubMed Central

    2014-01-01

    Background Obesity and gestational diabetes (GDM) in pregnancy are recognized risk factors for adverse outcomes, including cesarean section (CS), macrosomia and preeclampsia. The aim of this study was to investigate the independent effect of GDM and obesity on the adverse pregnancy outcomes at term. Methods A retrospective cohort of postpartum women, in King Khalid University Hospital, were stratified according to body mass index (obese ≥30 kg/m2, non-obese <30 kg/m2) and the results of GDM screening into the following groups, women with no obesity and no GDM (reference group), women with no obesity but with GDM, women with obesity but no GDM and women with both GDM and obesity. Adverse pregnancy outcomes included high birth weight, macrosomia, CS delivery and preeclampsia. Multiple logistic regression used to examine independent associations of GDM and obesity with macrosomia and CS. Results 2701 women were included, 44% of them were obese and 15% had GDM. 63% of the women with GDM were obese. There was significant increase in the percentage of macrosomia, P < 0.001, high birth weight, P < 0.001, CS, P < 0.001 and preeclampsia, P < 0.001 in women with GDM and obesity compared to the reference group. Obesity increased the estimated risk of CS delivery, odds ratio (OR) 2.16, confidence intervals (CI) 1.74-2.67. The combination of GDM and obesity increased the risk of macrosomia OR 3.45, CI 2.05-5.81 and the risk of CS delivery OR 2.26, CI 1.65-3.11. Conclusion Maternal obesity and GDM were independently associated with adverse pregnancy outcomes. The combination of both conditions further increase the risk. PMID:24923207

  3. Maternal obesity modulates intracellular lipid turnover in the human term placenta

    PubMed Central

    Hirschmugl, B; Desoye, G; Catalano, P; Klymiuk, I; Scharnagl, H; Payr, S; Kitzinger, E; Schliefsteiner, C; Lang, U; Wadsack, C; Hauguel-de Mouzon, S

    2017-01-01

    Background: Obesity before pregnancy is associated with impaired metabolic status of the mother and the offspring later in life. These adverse effects have been attributed to epigenetic changes in utero, but little is known about the role of placental metabolism and its contribution to fetal development. Objectives: We examined the impact of maternal pre-pregnancy obesity on the expression of genes involved in placental lipid metabolism in lean and obese women. Subjects/Methods: Seventy-three lean and obese women with healthy pregnancy were recruited at term elective cesarean delivery. Metabolic parameters were measured on maternal venous blood samples. Expression of 88 genes involved in lipid metabolism was measured in whole placenta tissue. Proteins of genes differently expressed in response to maternal obesity were quantified, correlated with maternal parameters and immunolocalized in placenta sections. Isolated primary trophoblasts were used for in vitro assays. Results: Triglyceride (TG) content was increased in placental tissue of obese (1.10, CI 1.04–1.24 mg g−1, P<0.05) vs lean (0.84, CI 0.72–1.02 mg g−1) women. Among target genes examined, six showed positive correlation (P<0.05) with maternal pre-pregnancy BMI, namely ATGL (PNPLA2), FATP1 (SLC27A1), FATP3 (SLC27A3), PLIN2, PPARG and CGI-58 (ABHD5). CGI-58 protein abundance was twofold higher (P<0.001) in placentas of obese vs lean women. CGI-58 protein levels correlated positively with maternal insulin levels and pre-pregnancy body mass index (R=0.63, P<0.001 and R=0.64, P<0.001, respectively). CGI-58 and PLIN2 were primarily located in the syncytiotrophoblast and, were upregulated (1.38- and 500-fold, respectively) upon oleic acid and insulin treatment of cultured trophoblast cells. Conclusion: Pre-gravid obesity significantly modifies the expression of placental genes related to transport and storage of neutral lipids. We propose that the upregulation of CGI-58, a master regulator of TG

  4. A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue.

    PubMed

    de Almeida Faria, Juliana; Duque-Guimarães, Daniella; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E

    2017-03-24

    Previous studies have shown that maternal diet-induced obesity leads to increased risk of type 2 diabetes in offspring. The current study investigated if weaning onto an obesogenic diet exaggerated the detrimental effects of maternal diet-induced obesity in adipose tissue. Maternal obesity and offspring obesity led to reduced expression of key insulin signalling proteins, including insulin receptor substrate-1 (IRS-1). The effects of maternal obesity and offspring obesity were, generally, independent and additive. Irs1 mRNA levels were similar between all four groups of offspring, suggesting that in both cases post-transcriptional regulation was involved. Maternal diet-induced obesity increased miR-126 expression however levels of this miR were not influenced by a post-weaning obesogenic diet. In contrast, a post-weaning obesogenic diet was associated with increased levels of suppressor of cytokine signaling-1, implicating increased degradation of IRS-1 as an underlying mechanism. Our results suggest that whilst programmed reductions in IRS-1 are associated with increased levels of miR-126 and consequently reduced translation of Irs1 mRNA, the effects of a post-weaning obesogenic diet on IRS-1 are mediated by miR-126 independent mechanisms, including increased IRS-1 protein degradation. These divergent mechanisms explain why the combination of maternal obesity and offspring obesity leads to the most pronounced effects on offspring metabolism.

  5. A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue

    PubMed Central

    de Almeida Faria, Juliana; Duque-Guimarães, Daniella; Carpenter, Asha A. M.; Loche, Elena; Ozanne, Susan E.

    2017-01-01

    Previous studies have shown that maternal diet-induced obesity leads to increased risk of type 2 diabetes in offspring. The current study investigated if weaning onto an obesogenic diet exaggerated the detrimental effects of maternal diet-induced obesity in adipose tissue. Maternal obesity and offspring obesity led to reduced expression of key insulin signalling proteins, including insulin receptor substrate-1 (IRS-1). The effects of maternal obesity and offspring obesity were, generally, independent and additive. Irs1 mRNA levels were similar between all four groups of offspring, suggesting that in both cases post-transcriptional regulation was involved. Maternal diet-induced obesity increased miR-126 expression however levels of this miR were not influenced by a post-weaning obesogenic diet. In contrast, a post-weaning obesogenic diet was associated with increased levels of suppressor of cytokine signaling-1, implicating increased degradation of IRS-1 as an underlying mechanism. Our results suggest that whilst programmed reductions in IRS-1 are associated with increased levels of miR-126 and consequently reduced translation of Irs1 mRNA, the effects of a post-weaning obesogenic diet on IRS-1 are mediated by miR-126 independent mechanisms, including increased IRS-1 protein degradation. These divergent mechanisms explain why the combination of maternal obesity and offspring obesity leads to the most pronounced effects on offspring metabolism. PMID:28338072

  6. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

  7. Enhanced Adipogenic and Lipogenic Signatures in White Adipose Tissue of Offspring Exposed to Maternal Obesity In Utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity throughout life is subject to programming beginning early in development. Exposure to maternal obesity (MO) at conception and during gestation increases the risk of obesity in adult-life. MO was induced in female Sprague Dawley rats via overfeeding of liquid diets (30% excess cal...

  8. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers

  9. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    PubMed Central

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  10. Maternal Obesity and Occurrence of Fetal Macrosomia: A Systematic Review and Meta-Analysis

    PubMed Central

    Gaudet, Laura; Ferraro, Zachary M.; Walker, Mark

    2014-01-01

    Objective. To determine a precise estimate for the contribution of maternal obesity to macrosomia. Data Sources. The search strategy included database searches in 2011 of PubMed, Medline (In-Process & Other Non-Indexed Citations and Ovid Medline, 1950–2011), and EMBASE Classic + EMBASE. Appropriate search terms were used for each database. Reference lists of retrieved articles and review articles were cross-referenced. Methods of Study Selection. All studies that examined the relationship between maternal obesity (BMI ≥30 kg/m2) (pregravid or at 1st prenatal visit) and fetal macrosomia (birth weight ≥4000 g, ≥4500 g, or ≥90th percentile) were considered for inclusion. Tabulation, Integration, and Results. Data regarding the outcomes of interest and study quality were independently extracted by two reviewers. Results from the meta-analysis showed that maternal obesity is associated with fetal overgrowth, defined as birth weight ≥ 4000 g (OR 2.17, 95% CI 1.92, 2.45), birth weight ≥4500 g (OR 2.77,95% CI 2.22, 3.45), and birth weight ≥90% ile for gestational age (OR 2.42, 95% CI 2.16, 2.72). Conclusion. Maternal obesity appears to play a significant role in the development of fetal overgrowth. There is a critical need for effective personal and public health initiatives designed to decrease prepregnancy weight and optimize gestational weight gain. PMID:25544943

  11. Effect of maternal obesity on fetal bone development in the rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...

  12. Effect of diet-induced maternal obesity on fetal skeletal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maternal environment, in particular nutritional status and diet composition during pregnancy, can alter the developmental trajectory of the fetus and change the risk for chronic disease processes such as cardiovascular disease, obesity, diabetes and cancer in the offspring. This knowledge suppor...

  13. Maternal obesity programs senescence signaling and glucose metabolism in osteo-progenitors from rat and human

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases, presumably via epigenetic mechanisms. However, evidence on the impact of gestational events on regulation of embryonic bone cell fate is sparse. We investigated the effects of maternal obesity on fe...

  14. Maternal gestational diabetes mellitus and overweight and obesity in offspring: a study in Chinese children.

    PubMed

    Zhao, Y L; Ma, R M; Lao, T T; Chen, Z; Du, M Y; Liang, K; Huang, Y K; Zhang, L; Yang, M H; Sun, Y H; Li, H; Ding, Z B

    2015-12-01

    The purpose of this study was to investigate the effects of maternal gestational diabetes mellitus (GDM) and breast feeding on childhood overweight and obesity in a mainland Chinese population. The incidence of and factors associated with overweight and obesity were compared between children of mothers with (n=1068) and without (n=1756) GDM. The independent roles of the associated factors were examined by multiple logistic regression analysis. The incidence of overweight was higher (16.6 v. 12.6%, P=0.002) in the GDM group, but that of obesity was not different (10.7 v. 12.0%, P=0.315). At age 1-2 and 2-5 years, no difference in overweight (11.0 v. 12.0%, P=0.917, and 15.7 v. 14.6%, P=0.693, respectively) was found, while obesity (8.0 v. 13.6%, P=0.019, and 8.4 v. 13.4%, P=0.014, respectively) was less frequent in the GDM offspring. At age 5-10 years, increased overweight (22.2 v. 12.1%, P<0.001) and obesity (15.9 v. 9.0%, P=0.001) were found in the GDM group, which was associated with maternal obesity, being born large-for-gestational age, male gender and formula feeding. After adjusting for confounding factors, GDM remained an independent determinant of offspring overweight and obesity (aOR 2.28, 95% CI 1.61-3.22), suggesting that the effects of GDM were independent of breast feeding, as well as of maternal obesity and birth size.

  15. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies.

    PubMed

    Wankhade, Umesh D; Thakali, Keshari M; Shankar, Kartik

    2016-11-05

    The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed both caloric excess and manipulation of macronutrients (especially high-fat) to mimic hypercaloric intake present in obesity. Findings from these studies show transmission of susceptibility to obesity, metabolic dysfunction, alterations in glucose homeostasis, hepatic steatosis, skeletal muscle metabolism and neuroendocrine changes in the offspring. This review summarizes the essential literature in this area in both experimental and clinical domains and focuses on the translatable aspects of these experimental studies. Moreover this review highlights emerging mechanisms broadly explaining maternal obesity-associated developmental programming. The roles of early developmental alterations and placental adaptations are also reviewed. Increasing evidence also points to changes in the epigenome and other emerging mechanisms such as alterations in the microbiome that may contribute to persistent changes in the offspring. Finally, we examine potential interventions that have been employed in clinical cohorts.

  16. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner.

  17. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study.

    PubMed

    Gaillard, Romy; Steegers, Eric A P; Duijts, Liesbeth; Felix, Janine F; Hofman, Albert; Franco, Oscar H; Jaddoe, Vincent W V

    2014-04-01

    Maternal prepregnancy obesity is associated with impaired cardiometabolic health in offspring. Whether these associations reflect direct intrauterine causal mechanisms remains unclear. In a population-based prospective cohort study among 4871 mothers, fathers, and their children, we examined the associations of both maternal and paternal prepregnancy body mass index (BMI) with childhood body fat distribution and cardiometabolic outcomes and explored whether any association was explained by pregnancy, birth, and childhood factors. We measured childhood BMI, total body and abdominal fat distribution, blood pressure, and blood levels of lipids, insulin, and C-peptide at the age of 6 years. We observed that higher maternal and paternal prepregnancy BMI were associated with higher childhood BMI, total body and abdominal fat mass measures, systolic blood pressure, and insulin levels and lower high-density lipoprotein cholesterol levels (P<0.05). Stronger associations were present for maternal than paternal BMI, with statistical support for heterogeneity between these associations. The associations for childhood fat mass and cardiometabolic outcomes attenuated after adjustment for childhood current BMI. Compared with children from normal-weight mothers, those from obese mothers had increased risks of childhood overweight (odds ratio, 3.84 [95% confidence interval, 3.01-4.90]) and clustering of cardiometabolic risk factors (odds ratio, 3.00 [95% confidence interval, 2.09-4.34]). Smaller effect estimates for these outcomes were observed for paternal obesity. In conclusion, higher maternal and paternal prepregnancy BMI were associated with an adverse cardiometabolic profile in offspring, with stronger associations present for maternal prepregnancy BMI. These findings suggest that maternal prepregnancy BMI may influence the cardiometabolic health of offspring through direct intrauterine mechanisms.

  18. Maternal inflammation during late pregnancy is lower in physically active compared to inactive obese women

    PubMed Central

    Tinius, Rachel A.; Cahill, Alison G.; Strand, Eric A.; Todd Cade, W.

    2016-01-01

    Purpose The primary purpose of this study was to compare maternal plasma inflammation between physically active and inactive obese women during late pregnancy. The secondary purpose was to examine the relationships between maternal plasma inflammation and lipid metabolism and maternal and neonatal metabolic health in these women. Methods A cross-sectional, observational study design was performed in 16 obese-inactive ((OBI) age: 25.0 ± 4.8 years, pre-pregnancy BMI: 36.3 ± 4.3kg/m2, body fat percentage in late gestation: 37.7 ± 3.5%) and 16 obese-active ((OBA) age: 28.9 ± 4.8 years, pre-pregnancy BMI: 34.0±3.7kg/m2, body fat in late gestation: 36.6 ± 3.8%) women during the third trimester of pregnancy. Maternal plasma inflammation (C -reactive protein (CRP)) and insulin resistance (Homeostatic Model Assessment-Insulin Resistance (HOMA-IR)) were measured at rest. Plasma lipid concentration and metabolism (lipid oxidation and lipolysis) were measured at rest, during a 30-minute bout of low-intensity (40% VO2peak) exercise, and during a resting recovery period using indirect calorimetry. Umbilical cord blood was collected for measurement of neonatal plasma insulin resistance, inflammation, and lipid concentration. Neonatal body composition was measured via air displacement plethysmography. Results Maternal plasma CRP concentration was significantly higher in OBI compared to OBA women (9.1 ± 4.0 mg/L versus 6.3 ±2.5mg/L, p=0.02). Maternal plasma CRP concentration was significantly associated with maternal lipolysis (r=0.43, p=0.02), baseline lipid oxidation rate (r=0.39, p=0.03), and baseline plasma free fatty acid concentration (r=0.36, p=0.04). Conclusions Maternal physical activity may reduce inflammation during pregnancy in obese women. Maternal lipid metabolism is related to systemic inflammation. PMID:26799789

  19. Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development.

    PubMed

    Muhlhausler, Beverly S; Gugusheff, Jessica R; Ong, Zhi Yi; Vithayathil, Mini A

    2013-09-01

    A substantial body of literature has demonstrated that the nutritional environment an individual experiences before birth or in early infancy is a key determinant of their health outcomes across the life course. This concept, the developmental origins of health and disease (DOHaD) hypothesis, was initially focused on the adverse consequences of exposure to a suboptimal nutrient supply and provided evidence that maternal undernutrition, fetal growth restriction, and low birth weight were associated with heightened risk of central adiposity, insulin resistance, and cardiovascular disease. More recently, the epidemic rise in the incidence of maternal obesity has seen the attention of the DOHaD field turn toward identifying the impact on the offspring of exposure to an excess nutrient supply in early life. The association between maternal obesity and increased risk of obesity in the offspring has been documented in human populations worldwide, and animal models have provided critical insights into the biological mechanisms that drive this relationship. This review will discuss the important roles that programming of the adipocyte and programming of the central neural networks which control appetite and reward play in the early life programming of metabolic disease by maternal overnutrition. It will also highlight the important research gaps and challenges that remain to be addressed and provide a personal perspective on where the field should be heading in the coming 5-10 years.

  20. Toddlers' bias to look at average versus obese figures relates to maternal anti-fat prejudice.

    PubMed

    Ruffman, Ted; O'Brien, Kerry S; Taumoepeau, Mele; Latner, Janet D; Hunter, John A

    2016-02-01

    Anti-fat prejudice (weight bias, obesity stigma) is strong, prevalent, and increasing in adults and is associated with negative outcomes for those with obesity. However, it is unknown how early in life this prejudice forms and the reasons for its development. We examined whether infants and toddlers might display an anti-fat bias and, if so, whether it was influenced by maternal anti-fat attitudes through a process of social learning. Mother-child dyads (N=70) split into four age groups participated in a preferential looking paradigm whereby children were presented with 10 pairs of average and obese human figures in random order, and their viewing times (preferential looking) for the figures were measured. Mothers' anti-fat prejudice and education were measured along with mothers' and fathers' body mass index (BMI) and children's television viewing time. We found that older infants (M=11months) had a bias for looking at the obese figures, whereas older toddlers (M=32months) instead preferred looking at the average-sized figures. Furthermore, older toddlers' preferential looking was correlated significantly with maternal anti-fat attitudes. Parental BMI, education, and children's television viewing time were unrelated to preferential looking. Looking times might signal a precursor to explicit fat prejudice socialized via maternal anti-fat attitudes.

  1. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth

    PubMed Central

    Aye, Irving L. M. H.; Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2015-01-01

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity. PMID:26417088

  2. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth.

    PubMed

    Aye, Irving L M H; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-10-13

    Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity.

  3. From fatalism to mitigation: a conceptual framework for mitigating fetal programming of chronic disease by maternal obesity

    PubMed Central

    Boone-Heinonen, Janne; Messer, Lynne C.; Fortmann, Stephen P.; Wallack, Lawrence; Thornburg, Kent L.

    2015-01-01

    Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci – diet and physical activity – in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children. PMID:26522092

  4. From fatalism to mitigation: A conceptual framework for mitigating fetal programming of chronic disease by maternal obesity.

    PubMed

    Boone-Heinonen, Janne; Messer, Lynne C; Fortmann, Stephen P; Wallack, Lawrence; Thornburg, Kent L

    2015-12-01

    Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci - diet and physical activity - in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children.

  5. Central role for melanocortin-4 receptors in offspring hypertension arising from maternal obesity

    PubMed Central

    Samuelsson, Anne-Maj S.; Mullier, Amandine; Maicas, Nuria; Oosterhuis, Nynke R.; Eun Bae, Sung; Novoselova, Tatiana V.; Chan, Li F.; Pombo, Joaquim M.; Taylor, Paul D.; Joles, Jaap A.; Coen, Clive W.; Balthasar, Nina; Poston, Lucilla

    2016-01-01

    Melanocortin-4 receptor (Mc4r)–expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health. PMID:27791019

  6. Effects of Maternal Linseed Oil Supplementation on Metabolic Parameters in Cafeteria Diet-induced Obese Rats.

    PubMed

    Benaissa, Nawel; Merzouk, Hafida; Merzouk, Sid Ahmed; Narce, Michel

    2015-04-01

    Because linseed oil may influence maternal and fetal metabolisms, we investigated its role in the modulation of lipid metabolism in cafeteria diet-induced obese rats and their offspring. Female Wistar rats were fed control or cafeteria food, which were either supplemented or not supplemented with linseed oil (5%) for 1 month before and during gestation. At parturition, serum and tissue lipids and enzyme activities were analyzed. Cafeteria diet induced adverse metabolic alterations in both mothers and offspring. Linseed oil improved metabolic status. In conclusion, linseed oil displayed health benefits by modulating tissue enzyme activities in both obese mothers and their newborns.

  7. A systems approach to reducing maternal obesity: The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative.

    PubMed

    Skouteris, Helen; Huang, Terry; Millar, Lynne; Kuhlberg, Jill; Dodd, Jodie; Callaway, Leonie; Forster, Della; Collins, Clare; Hills, Andrew; Harrison, Paul; Nagle, Cate; Moodie, Marj; Teede, Helena

    2015-08-01

    Obesity in our childbearing population has increased to epidemic proportions in developed countries; efforts to address this issue need to focus on prevention. The Health in Preconception, Pregnancy and Postbirth (HIPPP) Collaborative - a group of researchers, practitioners, policymakers and end-users - was formed to take up the challenge to address this issue as a partnership. Application of systems thinking, participatory systems modelling and group model building was used to establish research questions aiming to optimise periconception lifestyle, weight and health. Our goal was to reduce the burden of maternal obesity through systems change.

  8. Maternal ratings of child health and child obesity, variations by mother's race/ethnicity and nativity.

    PubMed

    Baker, Elizabeth H; Altman, Claire E

    2015-05-01

    We examined whether indicators of child health, focusing on obesity, are associated with maternal ratings of child health (MRCH) and its variation by mother's ethnicity/nativity, focusing on Hispanics. The early childhood longitudinal study, kindergarten cohort kindergarten-eighth grade waves (n = 48,814) and nested general linear mixed modeling are used to examine excellent MRCH. The only indicator of child health that varies by mother's ethnicity/nativity for MRCH is child obesity. Child obesity did not influence MRCH for foreign-born Hispanic mothers, especially among less acculturated mothers, though significant differences among immigrants by acculturation were not found. However, among native-born white, black, and Hispanic mothers child obesity was associated with a lower likelihood of excellent MRCH even after controls for socioeconomic characteristics, family characteristics, and other indicators of child health are included. MRCH reflect not only child's actual health, but also the mother's perception of what contributes to poor child health. Our findings suggest that less acculturated foreign-born Hispanic mothers are less likely to associate child obesity with poor child health. Cultural orientations that prefer heavier children or are unlikely to associate child obesity with poor child health may contribute to the higher levels of obesity found among their children.

  9. Maternal BMI and migration status as predictors of childhood obesity in Mexico

    PubMed Central

    Jiménez-Cruz, A.; Wojcicki, J. M.; Bacardí-Gascón, M.; Castellón-Zaragoza, A.; García-Gallardo, J. L.; Schwartz, N.; Heyman, M. B.

    2011-01-01

    Objective To assess the association of maternal migration to Baja California, body mass index (BMI) status, children’s perceived food insecurity, and childhood lifestyle behaviors with overweight (BMI > 85% ile), obesity (BMI > 95% ile) and abdominal obesity (Waist Circumference > 90% ile). Methods Convenience sampling methods were used to recruit a cross-sectional sample of 4th, 5th and 6th grade children and their parents at Tijuana and Tecate Public Schools. Children‘s and parents’ weights and heights were measured. Children were considered to have migrant parents if parents were not born in Baja California. Results One hundred and twenty-two children and their parents were recruited. The mean age of the children was 10.1 ± 1.0 years. Forty nine per cent of children were overweight or obese. Children with obese parents (BMI > 30) had greater odds of being obese, Odds Ratio (OR) 4.9 (95% Confidence Interval (CI), 1.2–19, p = 0.03). Children with migrant parents had greater odds of being obese, OR= 3.7 (95% CI, 1.6–8.3), p = 0.01) and of having abdominal obesity, OR = 3.2 (95% CI, 1.4–7.1, p = 0.01). Children from migrant parents have greater risk of higher consumption of potato chips, OR = 8.0 (95% CI, 2.1–29.1, p = 0.01). Children from non-migrant parents had greater odds of being at risk of hunger. Conclusions Parental obesity and migration are associated with increased risk of obesity among Mexican children. Children whose parents were born in Baja California have greater odds of being at risk of hunger. Further studies should evaluate the role of migration on risk for childhood obesity. PMID:21519746

  10. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction In animal models, maternal obesity (OB) leads to augmented risk of offspring OB. While placental function is influenced by maternal habitus, the effect of maternal obesity on the interacting zones of the placenta [the labyrinth (LZ), junctional (JZ) and metrial gland (MG)] remains unkno...

  11. Effect of breastfeeding on obesity of schoolchildren: influence of maternal education

    PubMed Central

    Pudla, Katia Jakovljevic; Gonzaléz-Chica, David Alejandro; de Vasconcelos, Francisco de Assis Guedes

    2015-01-01

    Abstract Objective: To evaluate the association between duration of breastfeeding (BF) and obesity in schoolchildren of Florianópolis (SC), and the role of possible effect modifiers. Methods: Cross-sectional study with a random sample of 2826 schoolchildren (7-14 years). Weight and height were measured according to standardized procedures. Data concerning BF and sociodemographic variables were obtained from a questionnaire sent to parents/guardians. Children's nutritional status was evaluated by BMI-for-age z-score for gender (WHO reference curves). Adjusted analyses were performed through logistic regression, considering a possible interaction among variables. Results: Prevalence of obesity was 8.6% (95% CI: 7.6-9.7%) and 55.7% (95% CI: 53.8-57.6%) received breastmilk for ≥6 months. BF was not associated with obesity, even in the adjusted analysis. Stratified analysis according to maternal schooling showed that, in children aged 7-10 years and children whose mothers had 0-8 years of schooling, the chance of obesity was lower among those breastfeed for >1 month, especially among those who received breastmilk for 1-5 months (OR=0.22; 95% CI 0.08-0.62). Among children of women with higher schooling (>8 years), the chance of obesity was 44% lower in those who were breastfed for >12 months (p-value for interaction <0.01). This interaction was not found in older children (11-14 years). Conclusions: Among children of women with lower schooling, BF for any period longer than 1 month is protective against obesity; however, for a higher maternal schooling, BF for less than 12 months increases the odds of obesity. PMID:26100592

  12. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile

    PubMed Central

    Cinelli, Giulia; Fabrizi, Marta; Ravà, Lucilla; Ciofi degli Atti, Marta; Vernocchi, Pamela; Vallone, Cristina; Pietrantoni, Emanuela; Lanciotti, Rosalba; Signore, Fabrizio; Manco, Melania

    2016-01-01

    Fatty acids (FAs) are fundamental for a foetus’s growth, serving as an energy source, structural constituents of cellular membranes and precursors of bioactive molecules, as well as being essential for cell signalling. Long-chain polyunsaturated FAs (LC-PUFAs) are pivotal in brain and visual development. It is of interest to investigate whether and how specific pregnancy conditions, which alter fatty acid metabolism (excessive pre-pregnancy body mass index (BMI) or gestational weight gain (GWG)), affect lipid supply to the foetus. For this purpose, we evaluated the erythrocyte FAs of mothers and offspring (cord-blood) at birth, in relation to pre-pregnancy BMI and GWG. A total of 435 mothers and their offspring (237 males, 51%) were included in the study. Distribution of linoleic acid (LA) and α-linolenic acid (ALA), and their metabolites, arachidonic acid, dihomogamma linoleic (DGLA) and ecosapentanoic acid, was significantly different in maternal and foetal erythrocytes. Pre-pregnancy BMI was significantly associated with maternal percentage of MUFAs (Coeff: −0.112; p = 0.021), LA (Coeff: −0.033; p = 0.044) and DHA (Coeff. = 0.055; p = 0.0016); inadequate GWG with DPA (Coeff: 0.637; p = 0.001); excessive GWG with docosaexahenoic acid (DHA) (Coeff. = −0.714; p = 0.004). Moreover, pre-pregnancy BMI was associated with foetus percentage of PUFAs (Coeff: −0.172; p = 0.009), omega 6 (Coeff: −0.098; p = 0.015) and DHA (Coeff: −0.0285; p = 0.036), even after adjusting for maternal lipids. Our findings show that maternal GWG affects maternal but not foetal lipid profile, differently from pre-pregnancy BMI, which influences both. PMID:27314385

  13. Maternal pregravid obesity changes gene expression profiles toward greater inflammation and reduced insulin sensitivity in umbilical cord

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods: UCs from 12 lean (pre-gravid BMI < 24.9) and 10 overweight/obese (OW/OB, pre-gravid BMI =25) women without gestationa...

  14. Maternal obesity influences hepatic gene expression and genome-wide DNA methylation in offspring liver at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring from obese rat dams gain greater body weight and fat mass when fed HFD. Here we examine hepatic gene expression related to systemic energy expenditure and alterations in genome-wide DNA methylation. Maternal obesity was produced in rats prior to conception via overfeeding of diets. At PND2...

  15. Obesity and Endocrine Dysfunction Programmed by Maternal Smoking in Pregnancy and Lactation

    PubMed Central

    Lisboa, Patricia Cristina; de Oliveira, Elaine; de Moura, Egberto Gaspar

    2012-01-01

    Obesity is a global epidemic, and maternal smoking has been shown to be associated with the development of childhood obesity. Overall, approximately 40% of children worldwide are exposed to tobacco smoke at home. It is well known that environmental changes within a critical window of development, such as gestation or lactation, can initiate permanent alterations in metabolism that lead to diseases in adulthood, a phenomenon called programming. It is known that programming is based on epigenetic alterations (changes in DNA methylation, histone acetylation, or small interfering RNA expression) that change the expression pattern of several genes. However, little is known concerning the mechanisms by which smoke exposure in neonatal life programs the adipose tissue and endocrine function. Here, we review several epidemiological and experimental studies that confirm the association between maternal nicotine or tobacco exposure during gestation or lactation and the development of obesity and endocrine dysfunction. For example, a positive correlation was demonstrated in rodents between increased serum leptin in the neonatal period and exposure of the mothers to nicotine during lactation, and the further development of leptin and insulin resistance, and thyroid and adrenal dysfunction, in adulthood in the same offspring. Thus, a smoke-free environment during the lactation period is essential to improving health outcomes in adulthood and reducing the risk for future diseases. An understanding of the pathophysiological mechanisms underlying the effects of smoking on programming can provide new insights into therapeutic strategies for obesity. PMID:23181022

  16. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols?

    PubMed

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; Masella, Roberta

    2014-01-01

    Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account.

  17. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight

    PubMed Central

    Tyrrell, Jessica; Richmond, Rebecca C.; Palmer, Tom M.; Feenstra, Bjarke; Rangarajan, Janani; Metrustry, Sarah; Cavadino, Alana; Paternoster, Lavinia; Armstrong, Loren L.; De Silva, N. Maneka G.; Wood, Andrew R.; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Bradfield, Jonathan P.; Kreiner-Møller, Eskil; Huikari, Ville; Painter, Jodie N.; Hottenga, Jouke-Jan; Allard, Catherine; Berry, Diane J.; Bouchard, Luigi; Das, Shikta; Evans, David M.; Hakonarson, Hakon; Hayes, M. Geoffrey; Heikkinen, Jani; Hofman, Albert; Knight, Bridget; Lind, Penelope A.; McCarthy, Mark I.; McMahon, George; Medland, Sarah E.; Melbye, Mads; Morris, Andrew P.; Nodzenski, Michael; Reichetzeder, Christoph; Ring, Susan M.; Sebert, Sylvain; Sengpiel, Verena; Sørensen, Thorkild I.A.; Willemsen, Gonneke; de Geus, Eco J. C.; Martin, Nicholas G.; Spector, Tim D.; Power, Christine; Järvelin, Marjo-Riitta; Bisgaard, Hans; Grant, Struan F.A.; Nohr, Ellen A.; Jaddoe, Vincent W.; Jacobsson, Bo; Murray, Jeffrey C.; Hocher, Berthold; Hattersley, Andrew T.; Scholtens, Denise M.; Smith, George Davey; Hivert, Marie-France; Felix, Janine F.; Hyppönen, Elina; Lowe, William L.; Frayling, Timothy M.; Lawlor, Debbie A.; Freathy, Rachel M.

    2016-01-01

    Structured abstract Importance Neonates born to overweight/obese women are larger and at higher risk of birth complications. Many maternal obesity-related traits are observationally associated with birth weight, but the causal nature of these associations is uncertain. Objective To test for genetic evidence of causal associations of maternal body mass index (BMI) and related traits with birth weight. Design, Setting and Participants We used Mendelian randomization to test whether maternal BMI and obesity-related traits are causally related to offspring birth weight. Mendelian randomization makes use of the fact that genotypes are randomly determined at conception and are thus not confounded by non-genetic factors. Data were analysed on 30,487 women from 18 studies. Participants were of European ancestry from population- or community-based studies located in Europe, North America or Australia and participating in the Early Growth Genetics (EGG) Consortium. Live, term, singleton offspring born between 1929 and 2013 were included. We tested associations between a genetic score of 30 BMI-associated single nucleotide polymorphisms (SNPs) and (i) maternal BMI and (ii) birth weight, to estimate the causal relationship between BMI and birth weight. Analyses were repeated for other obesity-related traits. Exposures Genetic scores for BMI, fasting glucose level, type 2 diabetes, systolic blood pressure (SBP), triglyceride level, HDL-cholesterol level, vitamin D status and adiponectin level. Main Outcome(s) and Measure(s) Offspring birth weight measured by trained study personnel (n=2 studies), from medical records (n= 10 studies) or from maternal report (n=6 studies). Results Among the 30,487 newborns the mean birth weight in the various cohorts ranged from 3325 g to 3679 g. The genetic score for BMI was associated with a 2g (95%CI: 0, 3g) higher offspring birth weight per maternal BMI-raising allele (P=0.008). The maternal genetic scores for fasting glucose and SBP were

  18. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-03-23

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.

  19. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation.

    PubMed

    Tang, Xinyu; Cleves, Mario A; Nick, Todd G; Li, Ming; MacLeod, Stewart L; Erickson, Stephen W; Li, Jingyun; Shaw, Gary M; Mosley, Bridget S; Hobbs, Charlotte A

    2015-06-01

    Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity.

  20. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance.

    PubMed

    Remacle, Claude; Bieswal, Florence; Bol, Vanesa; Reusens, Brigitte

    2011-12-01

    Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.

  1. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity.

    PubMed

    Alfaradhi, Maria Z; Fernandez-Twinn, Denise S; Martin-Gronert, Malgorzata S; Musial, Barbara; Fowden, Abigail; Ozanne, Susan E

    2014-07-01

    Changes in the maternal nutritional environment during fetal development can influence offspring's metabolic risk in later life. Animal models have demonstrated that offspring of diet-induced obese dams develop metabolic complications, including nonalcoholic fatty liver disease. In this study we investigated the mechanisms in young offspring that lead to the development of nonalcoholic fatty liver disease (NAFLD). Female offspring of C57BL/6J dams fed either a control or obesogenic diet were studied at 8 wk of age. We investigated the roles of oxidative stress and lipid metabolism in contributing to fatty liver in offspring. There were no differences in body weight or adiposity at 8 wk of age; however, offspring of obese dams were hyperinsulinemic. Oxidative damage markers were significantly increased in their livers, with reduced levels of the antioxidant enzyme glutathione peroxidase-1. Mitochondrial complex I and II activities were elevated, while levels of mitochondrial cytochrome c were significantly reduced and glutamate dehydrogenase was significantly increased, suggesting mitochondrial dysfunction. Offspring of obese dams also had significantly greater hepatic lipid content, associated with increased levels of PPARγ and reduced triglyceride lipase. Liver glycogen and protein content were concomitantly reduced in offspring of obese dams. In conclusion, offspring of diet-induced obese dams have disrupted liver metabolism and develop NAFLD prior to any differences in body weight or body composition. Oxidative stress may play a mechanistic role in the progression of fatty liver in these offspring.

  2. Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring.

    PubMed

    Saad, M I; Abdelkhalek, T M; Haiba, M M; Saleh, M M; Hanafi, M Y; Tawfik, S H; Kamel, M A

    2016-06-01

    The effect of in-utero environment on fetal health and survival is long-lasting, and this is known as the fetal origin hypothesis. The oxidative stress state during gestation could play a pivotal role in fetal programming and development of diseases such as diabetes. In this study, we investigated the effect of intra-uterine obesity and malnutrition on oxidative stress markers in pancreatic and peripheral tissues of F1 offspring both prenatally and postnatally. Furthermore, the effect of postnatal diet on oxidative stress profile was evaluated. The results indicated that intra-uterine obesity and malnourishment significantly increased oxidative stress in F1 offspring. Moreover, the programming effect of obesity was more pronounced and protracted than malnutrition. The obesity-induced programming of offspring tissues was independent of high-caloric environment that the offspring endured; however, high-caloric diet potentiated its effect. In addition, pancreas and liver were the most affected tissues by fetal reprogramming both prenatally and postnatally. In conclusion, maternal obesity and malnutrition-induced oxidative stress could predispose offspring to insulin resistance and diabetes.

  3. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  4. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta.

    PubMed

    Dubé, Evemie; Gravel, Ariane; Martin, Coralie; Desparois, Guillaume; Moussa, Issa; Ethier-Chiasson, Maude; Forest, Jean-Claude; Giguère, Yves; Masse, André; Lafond, Julie

    2012-07-01

    Knowledge of the consequences of maternal obesity in human placental fatty acids (FA) transport and metabolism is limited. Animal studies suggest that placental uptake of maternal FA is altered by maternal overnutrition. We hypothesized that high maternal body mass index (BMI) affects human placental FA transport by modifying expression of key transporters. Full-term placentas were obtained by vaginal delivery from normal weight (BMI, 18.5-24.9 kg/m(2)) and obese (BMI > 30 kg/m(2)) women. Blood samples were collected from the mother at each trimester and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Lipoprotein lipase (LPL) activity was evaluated using enzyme fluorescence. In vitro linoleic acid transport was studied with isolated trophoblasts. Our results demonstrated that maternal obesity is associated with increased placental weight, decreased gestational age, decreased maternal high-density lipoprotein (HDL) levels during the first and third trimesters, increased maternal triglyceride levels during the second and third trimesters, and increased maternal T3 levels during all trimesters, and decreased maternal cholesterol (CHOL) and low-density lipoprotein (LDL) levels during the third trimester; and increased newborn CHOL, LDL, apolipoprotein B100, and T3 levels. Increases in placental CD36 mRNA and protein expression levels, decreased SLC27A4 and FABP1 mRNA and protein and FABP3 protein expression, and increased LPL activity and decreased villus cytotrophoblast linoleic acid transport were also observed. No changes were seen in expression of PPARA, PPARD, or PPARG mRNA and protein. Overall this study demonstrated that maternal obesity impacts placental FA uptake without affecting fetal growth. These changes, however, could modify the fetus metabolism and its predisposition to develop diseases later in life.

  5. Maternal obesity and congenital heart defects: a population-based study123

    PubMed Central

    Mills, James L; Troendle, James; Conley, Mary R; Carter, Tonia; Druschel, Charlotte M

    2010-01-01

    Background: Obesity affects almost one-third of pregnant women and causes many complications, including neural tube defects. It is not clear whether the risk of congenital heart defects, the most common malformations, is also increased. Objective: This study was conducted to determine whether obesity is associated with an increased risk of congenital heart defects. Design: A population-based, nested, case-control study was conducted in infants born with congenital heart defects and unaffected controls from the cohort of all births (n = 1,536,828) between 1993 and 2003 in New York State, excluding New York City. The type of congenital heart defect, maternal body mass index (BMI; in kg/m2), and other risk factors were obtained from the Congenital Malformations Registry and vital records. Mothers of 7392 congenital heart defect cases and 56,304 unaffected controls were studied. Results: All obese women (BMI ≥ 30) were significantly more likely than normal-weight women (BMI: 19–24.9) to have children with a congenital heart defect [odds ratio (OR): 1.15; 95% CI: 1.07, 1.23; P < 0.0001]. Overweight women were not at increased risk (OR: 1.00; 95% CI: 0.94, 1.06). The risk in morbidly obese women (BMI ≥ 40) was higher (OR: 1.33; 95% CI: 1.15, 1.54; P = 0.0001) than that in obese women with a BMI of 30–39.9 (OR: 1.11; 95% CI: 1.04, 1.20; P = 0.004). There was a highly significant trend of increasing OR for congenital heart defects with increasing maternal obesity (P < 0.0001). The offspring of obese women had significantly higher ORs for atrial septal defects, hypoplastic left heart syndrome, aortic stenosis, pulmonic stenosis, and tetralogy of Fallot. Conclusions: Obese, but not overweight, women are at significantly increased risk of bearing children with a range of congenital heart defects, and the risk increases with increasing BMI. Weight reduction as a way to reduce risk should be investigated. PMID:20375192

  6. Maternal obesity and breast-feeding practices among white and black women.

    PubMed

    Liu, Jihong; Smith, Michael G; Dobre, Mirela A; Ferguson, James E

    2010-01-01

    Despite the increase in obesity among women of reproductive ages, few studies have considered maternal obesity as a risk factor for breast-feeding success. We tested the hypothesis that women who are obese (BMI = 30-34.9) and very obese (BMI >or=35) before pregnancy are less likely to initiate and maintain breast-feeding than are their normal-weight counterparts (BMI = 18.5-24.9) among white and black women. Data from 2000 to 2005 South Carolina Pregnancy Risk Assessment Monitoring System (PRAMS) were used. The overall response rate was 71.0%; there were 3,517 white and 2,846 black respondents. Black women were less likely to initiate breast-feeding and breast-fed their babies for a shorter duration than white women. Compared to normal-weight white women, very obese white women were less likely to initiate breast-feeding (odds ratio: 0.63; 95% confidence interval (CI) = 0.42, 0.94) and more likely to discontinue breast-feeding within the first 6 months (hazard ratio (HR) = 1.89; 95% CI: 1.39, 2.58). Among black women, prepregnancy BMI was neither associated with breast-feeding initiation nor with breast-feeding continuation within the first 6 months. Because very obese white women are less likely to initiate or continue breast-feeding than other white women, health professionals should be aware that very obese white women need additional breast-feeding support. Lower rates of breast-feeding among black women suggest that they should continue to be the focus of the programs and policies aimed at breast-feeding promotion in the United States.

  7. CELL BIOLOGY SYMPOSIUM: Impacts of maternal obesity on placental and gut inflammation and health.

    PubMed

    Zhu, M J; Du, M; Ford, S P

    2014-05-01

    Obesity in pregnant women is a growing public health concern that negatively affects fetal development and has long-term impacts on offspring health. The placenta plays an essential role in nutrient transport to the fetus and supports fetal growth and development. Maternal obesity (MO) induces an exacerbated proinflammatory milieu in the placenta providing an inflammatory environment for fetuses. The gut is one of the largest immune organs and mainly develops during the fetal stage. Maternal obesity and the corresponding inflammatory uteroplacental environment affect gut development, incurring inflammatory responses in the fetal intestine that further prime or program the offspring gut to enhance inflammation and impair intestinal barrier integrity. This review summarizes the impact of MO on inflammatory responses in placenta and fetal intestine and the long-term effects on offspring intestinal health. Because "leaky gut" is one of the main etiological factors for a number of common diseases, including inflammatory bowel diseases, type I diabetes, and related autoimmune diseases, the adverse effect of MO on the overall health of progeny is further discussed.

  8. Influence of Maternal Obesity on Insulin Sensitivity and Secretion in Offspring

    PubMed Central

    Mingrone, Geltrude; Manco, Melania; Valera Mora, Maria Elena; Guidone, Caterina; Iaconelli, Amerigo; Gniuli, Donatella; Leccesi, Laura; Chiellini, Chiara; Ghirlanda, Giovanni

    2008-01-01

    OBJECTIVE—The purpose of this study was to clarify the effects of maternal obesity on insulin sensitivity and secretion in offspring. RESEARCH DESIGN AND METHODS—Fifty-one offspring of both sexes of obese (Ob group) and 15 offspring of normal-weight (control group) mothers were studied. Plasma glucose, insulin, and C-peptide were measured during an oral glucose tolerance test (OGTT). Insulin sensitivity was calculated using the oral glucose insulin sensitivity index, and insulin secretion and β-cell glucose sensitivity were computed by a mathematical model. Fasting leptin and adiponectin were also measured. Body composition was assessed by dual-X-ray absorptiometry. RESULTS—No birth weight statistical difference was observed in the two groups. Of the Ob group, 69% were obese and 19% were overweight. The Ob group were more insulin resistant than the control group (398.58 ± 79.32 vs. 513.81 ± 70.70 ml−1 · min−1 · m−2 in women, P < 0.0001; 416.42 ± 76.17 vs. 484.242 ± 45.76 ml−1 · min−1 · m−2 in men, P < 0.05). Insulin secretion after OGTT was higher in Ob group than in control group men (63.94 ± 21.20 vs. 35.71 ± 10.02 nmol · m−2, P < 0.01) but did not differ significantly in women. β-Cell glucose sensitivity was not statistically different between groups. A multivariate analysis of variance showed that maternal obesity and offspring sex concurred together with BMI and β-cell glucose sensitivity to determine the differences in insulin sensitivity and secretion observed in offspring. CONCLUSIONS—Obese mothers can give birth to normal birth weight babies who later develop obesity and insulin resistance. The maternal genetic/epigenetic transmission shows a clear sexual dimorphism, with male offspring having a higher value of insulin sensitivity (although not statistically significant) associated with significantly higher insulin secretion than female offspring. PMID:18535193

  9. Influences of Gestational Obesity on Associations between Genotypes and Gene Expression Levels in Offspring following Maternal Gastrointestinal Bypass Surgery for Obesity

    PubMed Central

    Guénard, Frédéric; Lamontagne, Maxime; Bossé, Yohan; Deshaies, Yves; Cianflone, Katherine; Kral, John G.; Marceau, Picard; Vohl, Marie-Claude

    2015-01-01

    Maternal obesity and excess gestational weight gain with compromised metabolic fitness predispose offspring to lifelong obesity and its comorbidities. We demonstrated that compared to offspring born before maternal gastrointestinal bypass surgery (BMS) those born after (AMS) were less obese, with less cardiometabolic risk reflected in the expression and methylation of diabetes, immune and inflammatory pathway genes. Here we examine relationships between gestational obesity and offspring gene variations on expression levels. Methods Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. Results Significant interactions (p ≤ 1.22x10-12) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. Conclusion We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism. PMID:25603303

  10. Association between maternal obesity and offspring Apgar score or cord pH: a systematic review and meta-analysis.

    PubMed

    Zhu, Tingting; Tang, Jun; Zhao, Fengyan; Qu, Yi; Mu, Dezhi

    2015-12-22

    Previous results are inconsistent regarding the association between maternal obesity and Apgar score or cord pH in humans. The aim of this study was to investigate the association between maternal pre-pregnancy and pregnancy body mass index (BMI) and infant Apgar score or cord pH. We conducted a systematic review of studies published in English before 20 August 2015 using PubMed, EMBASE, and Cochrane Library. Eleven cohort studies with a total of 2,586,265 participants finally met our inclusion criteria. Pooled results revealed the following factors associated with Apgar score <7 at 5 minutes: overweight (odds ratio [OR] 1.13; 95% confidence interval [CI], 1.08-1.20), obese (OR 1.40; 95% CI, 1.27-1.54), and very obese (OR 1.71; 95% CI, 1.55-1.89). The pooled analysis also revealed that maternal overweight or obesity increased the risk for Apgar score <7 at 1 minute. There was no association between maternal BMI and neonatal cord pH. Thus, this study suggests that maternal overweight and obesity affect baby's condition immediately after birth in general. More studies are needed to confirm these results and detect the influence of variables across studies.

  11. Association between maternal obesity and offspring Apgar score or cord pH: a systematic review and meta-analysis

    PubMed Central

    Zhu, Tingting; Tang, Jun; Zhao, Fengyan; Qu, Yi; Mu, Dezhi

    2015-01-01

    Previous results are inconsistent regarding the association between maternal obesity and Apgar score or cord pH in humans. The aim of this study was to investigate the association between maternal pre-pregnancy and pregnancy body mass index (BMI) and infant Apgar score or cord pH. We conducted a systematic review of studies published in English before 20 August 2015 using PubMed, EMBASE, and Cochrane Library. Eleven cohort studies with a total of 2,586,265 participants finally met our inclusion criteria. Pooled results revealed the following factors associated with Apgar score <7 at 5 minutes: overweight (odds ratio [OR] 1.13; 95% confidence interval [CI], 1.08–1.20), obese (OR 1.40; 95% CI, 1.27–1.54), and very obese (OR 1.71; 95% CI, 1.55–1.89). The pooled analysis also revealed that maternal overweight or obesity increased the risk for Apgar score <7 at 1 minute. There was no association between maternal BMI and neonatal cord pH. Thus, this study suggests that maternal overweight and obesity affect baby’s condition immediately after birth in general. More studies are needed to confirm these results and detect the influence of variables across studies. PMID:26692415

  12. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    SciTech Connect

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  13. Association of Childhood Obesity With Maternal Exposure to Ambient Air Polycyclic Aromatic Hydrocarbons During Pregnancy

    PubMed Central

    Rundle, Andrew; Hoepner, Lori; Hassoun, Abeer; Oberfield, Sharon; Freyer, Greg; Holmes, Darrell; Reyes, Marilyn; Quinn, James; Camann, David; Perera, Frederica; Whyatt, Robin

    2012-01-01

    There are concerns that prenatal exposure to endocrine-disrupting chemicals increases children’s risk of obesity. African-American and Hispanic children born in the Bronx or Northern Manhattan, New York (1998–2006), whose mothers underwent personal air monitoring for polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy, were followed up to ages 5 (n = 422) and 7 (n = 341) years. At age 5 years, 21% of the children were obese, as were 25% of those followed to age 7 years. After adjustment for child’s sex, age at measurement, ethnicity, and birth weight and maternal receipt of public assistance and prepregnancy obesity, higher prenatal PAH exposures were significantly associated with higher childhood body size. In adjusted analyses, compared with children of mothers in the lowest tertile of PAH exposure, children of mothers in the highest exposure tertile had a 0.39-unit higher body mass index z score (95% confidence interval (CI): 0.08, 0.70) and a relative risk of 1.79 (95% CI: 1.09, 2.96) for obesity at age 5 years, and they had a 0.30-unit higher body mass index z score (95% CI: 0.01, 0.59), a 1.93-unit higher percentage of body fat (95% CI: 0.33, 3.54), and a relative risk of 2.26 (95% CI: 1.28, 4.00) for obesity at age 7 years. The data indicate that prenatal exposure to PAHs is associated with obesity in childhood. PMID:22505764

  14. Placental microRNA Expression Is Not Altered by Maternal Obesity and Fetal Overgrowth

    PubMed Central

    Ghaffari, Neda; Parry, Samuel; Elovitz, Michal A.; Durnwald, Celeste P.

    2016-01-01

    Objective The epigenetic mechanisms underlying fetal metabolic programming are poorly understood. We studied whether obesity is associated with alterations in placental miRNA expression. Study Design A cross-sectional study was performed, including (1) normal-weight women (BMI 20–24.9 kg/m2) and normal-birth-weight (BW) infants (2,700–3,500 g) (n = 20), (2) normal-weight and macrosomic infants (BW ≥ 4,000 g) (n = 10), (3) obese (BMI ≥ 35 kg/m2) and normal BW infants (n = 16), and (4) obese and macrosomic infants (n = 10). All had term deliveries (37–41 weeks) and normal glucose tolerance (1 hour GCT < 7.2 mmol/L [130 mg/dL]). The expression of 5,639 placental miRNAs was assessed using miRNA microarray. Differential miRNA expression was determined using two-way ANOVA and pairwise contrasts, with the Benjamini-Hochberg (BH) correction. MiRNAs with Z-scores ≥ 2 and false discovery rate (FDR) < 20% were considered significant. Results Principal components analysis demonstrated similar global miRNA expression profiles among groups. Of 5,639 miRNAs, only 5 were significantly different between obese and controls, which were not validated by quantitative polymerase reaction. Conclusion There was no difference in placental miRNA expression associated with obesity or overgrowth. Aberrant placental miRNA expression is an unlikely mechanism underlying fetal metabolic programming related to maternal obesity. PMID:28050331

  15. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy.

    PubMed

    Rundle, Andrew; Hoepner, Lori; Hassoun, Abeer; Oberfield, Sharon; Freyer, Greg; Holmes, Darrell; Reyes, Marilyn; Quinn, James; Camann, David; Perera, Frederica; Whyatt, Robin

    2012-06-01

    There are concerns that prenatal exposure to endocrine-disrupting chemicals increases children's risk of obesity. African-American and Hispanic children born in the Bronx or Northern Manhattan, New York (1998-2006), whose mothers underwent personal air monitoring for polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy, were followed up to ages 5 (n = 422) and 7 (n = 341) years. At age 5 years, 21% of the children were obese, as were 25% of those followed to age 7 years. After adjustment for child's sex, age at measurement, ethnicity, and birth weight and maternal receipt of public assistance and prepregnancy obesity, higher prenatal PAH exposures were significantly associated with higher childhood body size. In adjusted analyses, compared with children of mothers in the lowest tertile of PAH exposure, children of mothers in the highest exposure tertile had a 0.39-unit higher body mass index z score (95% confidence interval (CI): 0.08, 0.70) and a relative risk of 1.79 (95% CI: 1.09, 2.96) for obesity at age 5 years, and they had a 0.30-unit higher body mass index z score (95% CI: 0.01, 0.59), a 1.93-unit higher percentage of body fat (95% CI: 0.33, 3.54), and a relative risk of 2.26 (95% CI: 1.28, 4.00) for obesity at age 7 years. The data indicate that prenatal exposure to PAHs is associated with obesity in childhood.

  16. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity?

    PubMed

    Sáez, Pablo J; Villalobos-Labra, Roberto; Westermeier, Francisco; Sobrevia, Luis; Farías-Jofré, Marcelo

    2014-01-01

    Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress pathway, which initiates the unfolded protein response (UPR), to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader-follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca(2+), which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca(2+) signaling or Ca(2+) levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO during

  17. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of obese women who become pregnant continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are matern...

  18. Higher Maternal Protectiveness Is Associated with Higher Odds of Child Overweight and Obesity: A Longitudinal Australian Study

    PubMed Central

    Hancock, Kirsten J.; Lawrence, David; Zubrick, Stephen R.

    2014-01-01

    In recent years there has been an increasing interest in overprotective parenting and the potential role it plays in child development. While some have argued that a trend towards increased parental fear and reduced opportunity for independent mobility may be linked to increasing rates of child overweight and obesity, there is limited empirical information available to support this claim. Using data from the Longitudinal Study of Australian Children, this study aimed to examine the longitudinal relationships between maternal protectiveness and child overweight and obesity. A cohort of 4–5 year old children was followed up at 6–7, 8–9 and 10–11 years of age (n  =  2596). Measures included a protective parenting scale administered when children were 6–7 and 8–9 years of age, child body mass index (BMI), family characteristics including household income, neighbourhood disadvantage, child's position amongst siblings, and maternal BMI, education, employment, mental health and age at first birth. International Obesity Taskforce age- and sex-specific BMI cut points were used to determine if children were in the normal, overweight or obese BMI range. There was no association between maternal protectiveness and the odds of children being overweight or obese at age 4–5, 6–7 or 8–9 years. However at age 10–11 years, a 1 standard deviation increase in maternal protectiveness was associated with a 13% increase in the odds of children being overweight or obese. The results provide evidence of a relationship between maternal protectiveness and child overweight and obesity, however further research is required to understand the mechanism(s) that links the two concepts. PMID:24955586

  19. Higher maternal protectiveness is associated with higher odds of child overweight and obesity: a longitudinal Australian study.

    PubMed

    Hancock, Kirsten J; Lawrence, David; Zubrick, Stephen R

    2014-01-01

    In recent years there has been an increasing interest in overprotective parenting and the potential role it plays in child development. While some have argued that a trend towards increased parental fear and reduced opportunity for independent mobility may be linked to increasing rates of child overweight and obesity, there is limited empirical information available to support this claim. Using data from the Longitudinal Study of Australian Children, this study aimed to examine the longitudinal relationships between maternal protectiveness and child overweight and obesity. A cohort of 4-5 year old children was followed up at 6-7, 8-9 and 10-11 years of age (n  =  2596). Measures included a protective parenting scale administered when children were 6-7 and 8-9 years of age, child body mass index (BMI), family characteristics including household income, neighbourhood disadvantage, child's position amongst siblings, and maternal BMI, education, employment, mental health and age at first birth. International Obesity Taskforce age- and sex-specific BMI cut points were used to determine if children were in the normal, overweight or obese BMI range. There was no association between maternal protectiveness and the odds of children being overweight or obese at age 4-5, 6-7 or 8-9 years. However at age 10-11 years, a 1 standard deviation increase in maternal protectiveness was associated with a 13% increase in the odds of children being overweight or obese. The results provide evidence of a relationship between maternal protectiveness and child overweight and obesity, however further research is required to understand the mechanism(s) that links the two concepts.

  20. The sex of the foetus affects maternal blood glucose concentrations in overweight and obese pregnant women.

    PubMed

    Seneviratne, Sumudu N; Derraik, José G B; Jiang, Yannan; McCowan, Lesley M E; Gusso, Silmara; Cutfield, Wayne S; Hofman, Paul L

    2016-12-26

    There is increasing evidence that the sex of the foetus may alter the maternal metabolic milieu during pregnancy. Following a randomized controlled trial of exercise in overweight and obese pregnant women, we assessed whether the sex of the foetus was associated with changes in maternal metabolism. Data were analysed on 74 randomized participants who completed the trial, including 38 mothers carrying males and 36 mothers carrying females. At 19 weeks of gestation, mothers carrying boys had higher blood glucose concentrations than those carrying girls (5.4 vs 4.9 mmol/l; p = .046). At 36 weeks of gestation, differences were more marked, with blood glucose concentrations 15% higher in mothers carrying females (5.7 vs 5.0 mmol/l; p = .004). In addition, mothers carrying girls had higher concentrations of hs-CRP across pregnancy (5.0 vs 3.6 mg/l; p = .029). Our findings provide further evidence that the sex of the foetus appears to influence maternal metabolism.

  1. The childhood obesity epidemic as a result of nongenetic evolution: the maternal resources hypothesis.

    PubMed

    Archer, Edward

    2015-01-01

    Over the past century, socioenvironmental evolution (eg, reduced pathogenic load, decreased physical activity, and improved nutrition) led to cumulative increments in maternal energy resources (ie, body mass and adiposity) and decrements in energy expenditure and metabolic control. These decrements reduced the competition between maternal and fetal energy demands and increased the availability of energy substrates to the intrauterine milieu. This perturbation of mother-conceptus energy partitioning stimulated fetal pancreatic β-cell and adipocyte hyperplasia, thereby inducing an enduring competitive dominance of adipocytes over other tissues in the acquisition and sequestering of nutrient energy via intensified insulin secretion and hyperplastic adiposity. At menarche, the competitive dominance of adipocytes was further amplified via hormone-induced adipocyte hyperplasia and weight-induced decrements in physical activity. These metabolic and behavioral effects were propagated progressively when obese, inactive, metabolically compromised women produced progressively larger, more inactive, metabolically compromised children. Consequently, the evolution of human energy metabolism was markedly altered. This phenotypic evolution was exacerbated by increments in the use of cesarean sections, which allowed both the larger fetuses and the metabolically compromised mothers who produced them to survive and reproduce. Thus, natural selection was iatrogenically rendered artificial selection, and the frequency of obese, inactive, metabolically compromised phenotypes increased in the global population. By the late 20th century, a metabolic tipping point was reached at which the postprandial insulin response was so intense, the relative number of adipocytes so large, and inactivity so pervasive that the competitive dominance of adipocytes in the sequestering of nutrient energy was inevitable and obesity was unavoidable.

  2. Maternal Obesity Caused by Overnutrition Exposure Leads to Reversal Learning Deficits and Striatal Disturbance in Rats

    PubMed Central

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  3. A methyl-seq analyses of rat offspring liver reveals maternal obesity-induced alterations in dna methylation status at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to maternal obesity (MO) increases the risk of obesity in adult-life. MO was induced in rats by overfeeding via total enteral nutrition. Male offspring from obese rats gain greater body weight, fat mass and develop insulin resistance when fed high fat diets. However the mechanisms underlyin...

  4. Gestational exposure to maternal obesity decreases mitochondrial SIRT3 and components of oxidative phosphorylation in offspring liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to maternal overweight (OW) during development influences the risk of obesity in adult-life. We reported that by postnatal day (PND) 120 male offspring from OW rat dams have greater body weight and fat mass (p<0.005), and develop insulin resistance when fed high-fat diets (HFD, 45% fat). OW...

  5. Maternal Obesity, Uterine Activity, and the Risk of Spontaneous Preterm Birth

    PubMed Central

    Ehrenberg, Hugh M.; Iams, Jay D.; Goldenberg, Robert L.; Newman, Roger B.; Weiner, Steven J.; Sibai, Baha M.; Caritis, Steve N.; Miodovnik, Menachem; Dombrowski, Mitchell P.

    2009-01-01

    OBJECTIVE To assess the associations between maternal obesity, uterine contraction frequency, and spontaneous preterm birth in at-risk women. METHODS In a secondary analysis, we analyzed data from 253 at-risk women (prior spontaneous preterm birth, vaginal bleeding) enrolled in a multi-center observational study of home uterine activity monitoring at 11 centers. All women wore a uterine activity monitor twice daily from 22 through 34 weeks of gestation. Mean and maximal contractions/hour at 22-24, 25-26, 27-28, 29-30, 31-32, and at or after 33 weeks of gestation were compared between overweight/obese women (a BMI at 22-24 weeks greater than 25 kg/m2) and normal/underweight women (a BMI of at least 25 kg/m2) at each gestational age interval. Multivariable analysis evaluated the influences of BMI, contractions, fetal fibronectin and transvaginal cervical length on spontaneous preterm birth before 35 weeks. RESULTS Obese/overweight women (n=156) were significantly less likely to experience spontaneous preterm birth before 35 weeks (8.3 vs 21.7%, p<0.01). For each gestational age interval before 32 weeks, obese/overweight women had fewer mean contractions/hour (P<0.01 for each) and maximal contractions/hour (p<0.01 for each) than normal/underweight women, although their mean cervical lengths (34.3 vs 33.1 mm, p=0.25), and fetal fibronectin levels (7.1% vs. 7.2% ≥50 ng/mL, p=0.97) were similar at study enrollment. Obese/overweight status was associated with a lower risk of spontaneous preterm birth before 35 weeks after controlling for contraction frequency and other factors evaluated at 22-24 and 31-32 weeks, but not at later time periods. CONCLUSION Obese/overweight women at risk for spontaneous preterm birth exhibit less uterine activity and less frequent spontaneous preterm birth before 35 weeks of gestation than normal/underweight women. PMID:19104359

  6. Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring.

    PubMed

    Sharkey, Don; Gardner, David S; Symonds, Michael E; Budge, Helen

    2009-11-01

    Obesity is an independent risk factor for developing chronic kidney disease. Toll-like receptor 4 (TLR4), interleukin (IL)-18, and uncoupling protein 2 (UCP2) are important components of the innate immune system mediating inflammatory renal damage. Early to midgestation maternal nutrient restriction appears to protect the kidney from the deleterious effects of early onset obesity, although the mechanisms remain unclear. We examined the combined effects of gestational maternal nutrient restriction during early fetal kidney development and early onset obesity on the renal innate immune response in offspring. Pregnant sheep were randomly assigned to a normal (control, 100%) or nutrient-restricted (NR, 50%) diet from days 30 to 80 gestation and 100% thereafter. Offspring were killed humanely at 7 days or, following rearing in an obesogenic environment, at 1 yr of age, and renal tissues were collected. IL-18 and TLR4 expression were strongly correlated irrespective of intervention. Seven-day NR offspring had significantly lower relative renal mass and IL-18 mRNA expression. At 1 yr of age, obesity resulted in increased mRNA abundance of TLR4, IL-18, and UCP2, coupled with tubular atrophy and greater immunohistological staining of glomerular IL-6 and medullary tumor necrosis factor (TNF)-alpha. NR obese offspring had a marked reduction of TLR4 abundance and renal IL-6 staining. In conclusion, maternal nutrient restriction during early fetal kidney development attenuates the effects of early onset obesity-related nephropathy, in part, through the downregulation of the innate inflammatory response. A better understanding of maternal nutrition and the in utero nutritional environment may offer therapeutic strategies aimed at reducing the burden of later kidney disease.

  7. Maternal obesity: implications for pregnancy outcome and long-term risks-a link to maternal nutrition.

    PubMed

    Aviram, Amir; Hod, Moshe; Yogev, Yariv

    2011-11-01

    As obesity becomes a worldwide epidemic, its prevalence during reproductive age is also increased. Alarming reports state that two-thirds of adults in the USA are overweight or obese, with half of them in the latter category, and the rate of obese pregnant women is estimated at 18-38%. These women are of major concern to women's health providers because they encounter numerous pregnancy-related complications. Obesity-related reproductive health complications range from infertility to a wide spectrum of diseases such as hypertensive disorders, coagulopathies, gestational diabetes mellitus, respiratory complications, and fetal complications such as large-for-gestational-age infants, congenital malformations, stillbirth, and shoulder dystocia. Recent reports suggest that obesity during pregnancy can be a risk factor for developing obesity, diabetes, and cardiovascular diseases in the newborn later in life. This review will address the implication of obesity on pregnancy and child health, and explore recent literature on obesity during pregnancy.

  8. Maternal obesity and offspring body composition by indirect methods: a systematic review and meta-analysis.

    PubMed

    Castillo-Laura, Helen; Santos, Iná S; Quadros, Lenice C M; Matijasevich, Alicia

    2015-10-01

    This study reviewed the evidence that assessed the association between maternal pre-pregnancy body mass index (BMI) and/or gestational weight gain and offspring body composition in childhood. A systematic review was conducted. Cohort studies, case-control studies and randomized controlled trials measuring offspring body composition by indirect methods were included. Meta-analyses of the effect of pre-pregnancy BMI on offspring fat-free mass, body fat percent, and fat mass were conducted through random-effects models. 20 studies were included, most of which reported a positive association of pre-pregnancy BMI with offspring body fat. Standardized mean differences in body fat percent, fat mass and fat-free mass between infants of women with normal pre-pregnancy BMI and those of overweight/obese women were 0.31 percent points (95%CI: 0.19; 0.42), 0.38 kg (95%CI: 0.26; 0.50), and 0.18 kg (95%CI: -0.07; 0.42), respectively. Evidence so far suggests that pre-pregnancy maternal overweight is associated with higher offspring adiposity.

  9. Longitudinal association of maternal attempt to lose weight during the postpartum period and child obesity at age 3 years.

    PubMed

    Sonneville, Kendrin R; Rifas-Shiman, Sheryl L; Oken, Emily; Peterson, Karen E; Gortmaker, Steven L; Gillman, Matthew W; Taveras, Elsie M

    2011-10-01

    The effect of maternal attempt to lose weight during the postpartum period on later child weight has not been explored. Among 1,044 mother-infant pairs in Project Viva, we estimated longitudinal associations of maternal attempt to lose weight during the postpartum period with child weight and adiposity at age 3 years and examined differences in associations by type of weight loss strategy used. Using covariate-adjusted linear and logistic regression models, we estimated associations before and after adjusting for maternal weight-related variables including prepregnancy BMI. At 6 months postpartum, 53% mothers were trying to lose weight. At age 3 years, mean (s.d.) child BMI z-score was 0.44 (1.01) and 8.9% of children were obese. Children whose mothers were trying to lose weight at 6 months postpartum had higher BMI z-scores (0.30 (95% confidence interval (CI) 0.18, 0.42)) and were more likely to be obese (3.0 (95% CI 1.6, 5.8)) at 3 years of age. Addition of maternal prepregnancy BMI to the models attenuated but did not eliminate the associations seen for BMI z-score (0.24 (95% CI 0.12, 0.36) and obesity (2.4 (95% CI 1.2, 4.7)). Attempting to lose weight by exercising alone was the only weight loss strategy that consistently predicted higher child BMI z-score (0.36 (95% CI 0.14, 0.58)) and odds of obesity (6.0 (95% CI 2.2, 16.5)) at age 3 years. In conclusion, we observed an association between maternal attempt to lose weight at 6 months postpartum, particularly through exercise alone, measured using a single item and child adiposity at age 3 years. This association should be thoroughly examined in future studies.

  10. [Impact of maternal overnutrition on the periconceptional period].

    PubMed

    Velázquez, Miguel Abraham

    2015-05-01

    Overnutrition may lead to obesity. Maternal obesity may affect fertility not only via anovulation, but also through direct effects on oocytes and preimplantation embryos, indicating that the periconceptional period is sensitive to conditions of overnutrition. The periconceptional period includes from folliculogenesis to implantation. Animal model studies suggest that oocytes derived from obese females usually have a small size and mitochondrial abnormalities. These disruptions are probably induced by changes in the components of the ovarian follicular fluid. Experimental evidence also suggests that obesity may affect the microenvironment in oviducts and uterus, resulting in development of preimplantation embryos with reduced cell numbers and up-regulation of proinflammatory genes. However, further research is needed for in-depth characterization of the effects of maternal obesity during the periconceptional period.

  11. Maternal Obesity Management Using Mobile Technology: A Feasibility Study to Evaluate a Text Messaging Based Complex Intervention during Pregnancy

    PubMed Central

    Soltani, Hora; Duxbury, Alexandra M. S.; Arden, Madelynne A.; Dearden, Andy; Furness, Penny J.; Garland, Carolyn

    2015-01-01

    Background. Maternal obesity and excessive gestational weight gain (GWG) are on the rise with negative impact on pregnancy and birth outcomes. Research into managing GWG using accessible technology is limited. The maternal obesity management using mobile technology (MOMTech) study aimed at evaluating the feasibility of text messaging based complex intervention designed to support obese women (BMI ≥ 30) with healthier lifestyles and limit GWG. Methods. Participants received two daily text messages, supported by four appointments with healthy lifestyle midwife, diet and activity goal setting, and self-monitoring diaries. The comparison group were obese mothers who declined to participate but consented for their routinely collected data to be used for comparison. Postnatal interviews and focus groups with participants and the comparison group explored the intervention's acceptability and suggested improvements. Results. Fourteen women completed the study which did not allow statistical analyses. However, participants had lower mean GWG than the comparison group (6.65 kg versus 9.74 kg) and few (28% versus 50%) exceeded the Institute of Medicine's upper limit of 9 kg GWG for obese women. Conclusions. MOMTech was feasible within clinical setting and acceptable intervention to support women to limit GWG. Before further trials, slight modifications are planned to recruitment, text messages, and the logistics of consultation visits. PMID:25960889

  12. Increased risk of orofacial clefts associated with maternal obesity: case–control study and Monte Carlo-based bias analysis

    PubMed Central

    Stott-Miller, Marni; Heike, Carrie L.; Kratz, Mario; Starr, Jacqueline R.

    2010-01-01

    Summary Our objective was to evaluate whether infants born to obese or diabetic women are at higher risk of non-syndromic orofacial clefting. We conducted a population-based case–control study using Washington State birth certificate and hospitalisation data for the years 1987–2005. Cases were infants born with orofacial clefts (n = 2153) and controls infants without orofacial clefts (n = 18 070). The primary exposures were maternal obesity (body mass index ≥30) and diabetes (either pre-existing or gestational). We estimated adjusted odds ratios (ORs) to compare, for mothers of cases and controls, the proportions of obese vs. normal-weight women and diabetic vs. non-diabetic women. We additionally performed Monte Carlo-based simulation analysis to explore possible influences of biases. Obese women had a small increased risk of isolated orofacial clefts in their offspring compared with normal-body mass index women [adjusted OR 1.26; 95% confidence interval 1.03, 1.55]. Results were similar regardless of type of cleft. Bias analyses suggest that estimates may represent underlying ORs of stronger magnitude. Results for diabetic women were highly imprecise and inconsistent. We and others have observed weak associations of similar magnitude between maternal obesity and risk of nonsyndromic orofacial clefts. These results could be due to bias or residual confounding. However, it is also possible that these results represent a stronger underlying association. More precise exposure measurement could help distinguish between these two possibilities. PMID:20670231

  13. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth.

    PubMed

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-01-01

    Fetal overgrowth is common in obese women and is associated with perinatal complications and increased risk for the child to develop metabolic syndrome later in life. Placental nutrient transport capacity has been reported to be increased in obese women giving birth to large infants; however, the underlying mechanisms are not well established. Obesity in pregnancy is characterized by elevated maternal serum insulin and leptin, hormones that stimulate placental amino acid transporters in vitro. We hypothesized that maternal obesity activates placental insulin/IGF-I/mTOR and leptin signaling pathways. We tested this hypothesis in a mouse model of obesity in pregnancy that is associated with fetal overgrowth. C57BL/6J female mice were fed a control (C) or a high-fat/high-sugar (HF/HS) pelleted diet supplemented by ad libitum access to sucrose (20%) solution. Placentas were collected at embryonic day 18.5. Using Western blot analysis, placental mTOR activity was determined along with energy, inflammatory, leptin, and insulin signaling pathways (upstream modulators of mTOR). Phosphorylation of S6 ribosomal protein (S-235/236), 4E-BP1 (T-37/46), Insulin receptor substrate 1 (Y-608), Akt (T-308), and STAT-3 (Y-705) was increased in obese dams. In contrast, expression of placental caspase-1, IкBα, IL-1β, and phosphorylated-JNK(p46/54-T183/Y185) was unaltered. Fetal amino acid availability is a key determinant of fetal growth. We propose that activation of placental insulin/IGF-I/mTOR and leptin signaling pathways in obese mice stimulates placental amino acid transport and contributes to increased fetal growth.

  14. Maternal nutrient restriction between early-to-mid gestation and its impact upon appetite regulation following juvenile obesity

    PubMed Central

    Sébert, S.P.; Hyatt, M.A.; Chan, L.L.Y.; Patel, N.; Bell, R. C.; Keisler, D.; Stephenson, T.; Budge, H.; Symonds, M.E.; Gardner, D.S.

    2009-01-01

    The impact of maternal nutrient restriction during early-to-mid gestation, a period coinciding with early fetal brain development, on appetite regulation and energy balance in the offspring following juvenile obesity was examined. Pregnant sheep were either fed to fully meet their nutritional requirements throughout gestation or 50% of this amount between 30-80 days gestation. Following weaning, offspring were either made obese through exposure to a sedentary obesogenic environment or remained lean. Maternal nutrient restriction had no effect on birth weight or subsequent growth. At one week of age, only, gene expression for neuropeptide Y in the hypothalamus was reduced in nutrient restricted offspring. By 1 year of age, all obese animals had raised plasma leptin, non-esterified fatty acids and insulin, with the latter effect amplified in nutrient restricted offspring. Fasting plasma glucose, triglycerides and cortisol were unaffected by obesity. The entrained reduction in physical activity that led to obesity persisted when all animals were maintained within individual pens. Obese nutrient restricted offspring, however, exhibited reduced daily food intake and were, therefore, no longer in positive “energy balance”. This adaptation was accompanied by elevated hypothalamic gene expression for the melanocortin-4 and insulin receptors, AMP-activated kinase and acetyl CoA carboxylase α. In conclusion, nutrient restriction specifically targeted over the period of early fetal brain development, contributes to a profoundly different adaptation in energy balance following juvenile obesity. The extent to which this adaptive response may benefit the offspring or result in an exacerbated risk for type II diabetes remains to be established. PMID:18818297

  15. Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity.

    PubMed

    Zambrano, Elena; Sosa-Larios, Tonantzin; Calzada, Lizbeth; Ibáñez, Carlos A; Mendoza-Rodríguez, Carmen A; Morales, Angélica; Morimoto, Sumiko

    2016-10-01

    Maternal obesity (MO) is a deleterious condition that enhances susceptibility of adult offspring to metabolic diseases such as type 2 diabetes. The objective is to study the effect of MO on in vitro insulin secretion and pancreatic cellular population in offspring. We hypothesize that a harmful antenatal metabolic environment due to MO diminishes the basal glucose-responsive secretory function of pancreatic beta cells in offspring. Mothers were fed a control (C) or high-fat diet from weaning through pregnancy (120 days) and lactation. At postnatal days (PNDs) 36 and 110, pups were killed, peripheral blood was collected and pancreatic islets were isolated. Basal insulin secretion was measured in vitro in islets for 60 min. It was found that blood insulin, glucose and homeostasis model assessment (HOMA) index were unaffected by maternal diet and age in females. However, male MO offspring at PND 110 showed hyperinsulinemia and insulin resistance compared with C. Body weight was not modified by MO, but fat content was higher in MO pups compared with C pups. Triglycerides and leptin concentrations were higher in MO than in C offspring in all groups except in females at PND 36. Pancreatic islet cytoarchitecture was unaffected by MO. At PND 36, islets of male and female C and MO offspring responded similarly to glucose, but at PND 110, male and female MO offspring islets showed a 50% decrease in insulin secretion. It was concluded that MO impairs basal insulin secretion of offspring with a greater impact on males than females, and this effect mainly manifests in adulthood.

  16. A DRD4 Gene by Maternal Sensitivity Interaction Predicts Risk for Overweight or Obesity in Two Independent Cohorts of Preschool Children

    ERIC Educational Resources Information Center

    Levitan, Robert D.; Jansen, Pauline; Wendland, Barbara; Tiemeier, Henning; Jaddoe, Vincent W.; Silveira, Patricia P.; Kennedy, James L.; Atkinson, Leslie; Fleming, Alison; Sokolowski, Marla; Gaudreau, Helene; Steiner, Meir; Dubé, Laurette; Hamilton, Jill; Moss, Ellen; Wazana, Ashley; Meaney, Michael

    2017-01-01

    Background: Recent evidence suggests that early exposure to low maternal sensitivity is a risk factor for obesity in children and adolescents. A separate line of study shows that the seven-repeat (7R) allele of the dopamine-4 receptor gene (DRD4) increases susceptibility to environmental factors including maternal sensitivity. The current study…

  17. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity

    PubMed Central

    Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A.; Nathanielsz, Peter W.; Myatt, Leslie; Nijland, Mark J.

    2013-01-01

    Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD. PMID:23922128

  18. Maternal obesity in the agouti viable yellow (Avy) mouse produces defective secretory activation that is associated with mammary inflammation and activation of adrenocorticosteroid-dependent gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity is known to interfere with normal lactation in women, rodents, and dairy animals. Obesity is also correlated with profound changes in an array of endocrine factors and is causally linked with inflammation and insulin resistance. Recent work suggests that elevated aldosterone actin...

  19. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight.

    PubMed

    Blackmore, Heather L; Niu, Youguo; Fernandez-Twinn, Denise S; Tarry-Adkins, Jane L; Giussani, Dino A; Ozanne, Susan E

    2014-10-01

    Obese pregnancies are not only associated with adverse consequences for the mother but also the long-term health of her child. Human studies have shown that individuals from obese mothers are at increased risk of premature death from cardiovascular disease (CVD), but are unable to define causality. This study aimed to determine causality using a mouse model of maternal diet-induced obesity. Obesity was induced in female C57BL/6 mice by feeding a diet rich in simple sugars and saturated fat 6 weeks prior to pregnancy and throughout pregnancy and lactation. Control females were fed laboratory chow. Male offspring from both groups were weaned onto chow and studied at 3, 5, 8, and 12 weeks of age for gross cardiac morphometry using stereology, cardiomyocyte cell area by histology, and cardiac fetal gene expression using qRT-PCR. Cardiac function was assessed by isolated Langendorff technology at 12 weeks of age and hearts were analyzed at the protein level for the expression of the β1 adrenergic receptor, muscarinic type-2 acetylcholine receptor, and proteins involved in cardiac contraction. Offspring from obese mothers develop pathologic cardiac hypertrophy associated with re-expression of cardiac fetal genes. By young adulthood these offspring developed severe systolic and diastolic dysfunction and cardiac sympathetic dominance. Importantly, cardiac dysfunction occurred in the absence of any change in corresponding body weight and despite the offspring eating a healthy low-fat diet. These findings provide a causal link to explain human observations relating maternal obesity with premature death from CVD in her offspring.

  20. Maternal obesity mediated predisposition to respiratory complications at birth and in later life: understanding the implications of the obesogenic intrauterine environment.

    PubMed

    McGillick, Erin V; Lock, Mitchell C; Orgeig, Sandra; Morrison, Janna L

    2017-01-01

    More women than not are entering pregnancy either overweight or obese. This presents a significant health care burden with respect to maternal morbidities and offspring complications at birth and in later life. In recent years it has also become clear that maternal obesity is an even greater global health problem than anticipated, because the effects are not limited to the mother but are also programmed in the fetus, known as the 'intergenerational cycle of obestiy'. Despite a large body of epidemiological evidence reporting outcomes of obese pregnancies, including offspring respiratory complications, much less is known about the molecular effects of maternal obesity on fetal lung development. This review focuses on the influence of altered substrate supply associated with the obesogenic intrauterine environment on fetal lung development. Understanding the molecular mechanisms contributing to altered fetal lung development will lead to improved respiratory outcomes for offspring at birth and in later life.

  1. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet

    PubMed Central

    Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel

    2017-01-01

    Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071

  2. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature1234

    PubMed Central

    2016-01-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  3. Early growth response protein-1 mediates lipotoxicity-associated placental inflammation: Role in maternal obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with low-grade chronic inflammation, which contributes to cellular dysfunction promoting metabolic disease. Obesity during pregnancy leads to a pro-inflammatory milieu in the placenta; however, the underlying causes for obesity-induced placental inflammation remain unclear. H...

  4. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of obesity and metabolic syndrome has been increasing at an alarming rate in both children and adults. Obesity is associated with increased risk for development of metabolic syndrome and chronic diseases. Obesity is a leading cause of preventable death so there is an urgent need for u...

  5. Maternal depression, stress and feeding styles: towards a framework for theory and research in child obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Against the background of rising rates of obesity in children and adults in the USA, and modest effect sizes for obesity interventions, the aim of the present narrative review paper is to extend the UNICEF care model to focus on childhood obesity and its associated risks with an emphasis on the emot...

  6. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring.

    PubMed

    Borengasser, Sarah J; Faske, Jennifer; Kang, Ping; Blackburn, Michael L; Badger, Thomas M; Shankar, Kartik

    2014-12-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life.

  7. Maternal obesity in females born small: Pregnancy complications and offspring disease risk.

    PubMed

    Mahizir, Dayana; Briffa, Jessica F; Hryciw, Deanne H; Wadley, Glenn D; Moritz, Karen M; Wlodek, Mary E

    2016-01-01

    Obesity is a major public health crisis, with 1.6 billion adults worldwide being classified as overweight or obese in 2014. Therefore, it is not surprising that the number of women who are overweight or obese at the time of conception is increasing. Obesity during pregnancy is associated with the development of gestational diabetes and preeclampsia. The developmental origins of health and disease hypothesis proposes that perturbations during critical stages of development can result in adverse fetal changes that leads to an increased risk of developing diseases in adulthood. Of particular concern, children born to obese mothers are at a greater risk of developing cardiometabolic disease. One subset of the population who are predisposed to developing obesity are children born small for gestational age, which occurs in 10% of pregnancies worldwide. Epidemiological studies report that these growth-restricted children have an increased susceptibility to type 2 diabetes, obesity, and hypertension. Importantly during pregnancy, growth-restricted females have a higher risk of developing cardiometabolic disease, indicating that they may have an exacerbated phenotype if they are also overweight or obese. Thus, the development of early pregnancy interventions targeted to obese mothers may prevent their children from developing cardiometabolic disease in adulthood.

  8. Maternal Malnutrition and Offspring Sex Determine Juvenile Obesity and Metabolic Disorders in a Swine Model of Leptin Resistance

    PubMed Central

    Barbero, Alicia; Astiz, Susana; Lopez-Bote, Clemente J.; Perez-Solana, Maria L.; Ayuso, Miriam; Garcia-Real, Isabel; Gonzalez-Bulnes, Antonio

    2013-01-01

    The present study aimed to determine, in a swine model of leptin resistance, the effects of type and timing of maternal malnutrition on growth patterns, adiposity and metabolic features of the progeny when exposed to an obesogenic diet during their juvenile development and possible concomitant effects of the offspring sex. Thus, four groups were considered. A CONTROL group involved pigs born from sows fed with a diet fulfilling their daily maintenance requirements for pregnancy. The treated groups involved the progeny of females fed with the same diet but fulfilling either 160% or 50% of pregnancy requirements during the entire gestation (OVERFED and UNDERFED, respectively) or 100% of requirements until Day 35 of pregnancy and 50% of such amount from Day 36 onwards (LATE-UNDERFED). OVERFED and UNDERFED offspring were more prone to higher corpulence and fat deposition from early postnatal stages, during breast-feeding; adiposity increased significantly when exposed to obesogenic diets, especially in females. The effects of sex were even more remarkable in LATE-UNDERFED offspring, which had similar corpulence to CONTROL piglets; however, females showed a clear predisposition to obesity. Furthermore, the three groups of pigs with maternal malnutrition showed evidences of metabolic syndrome and, in the case of individuals born from OVERFED sows, even of insulin resistance and the prodrome of type-2 diabetes. These findings support the main role of early nutritional programming in the current rise of obesity and associated diseases in ethnics with leptin resistance. PMID:24205230

  9. Impact of Restricted Maternal Weight Gain on Fetal Growth and Perinatal Morbidity in Obese Women With Type 2 Diabetes

    PubMed Central

    Ásbjörnsdóttir, Björg; Rasmussen, Signe S.; Kelstrup, Louise; Damm, Peter; Mathiesen, Elisabeth R.

    2013-01-01

    OBJECTIVE Since January 2008, obese women with type 2 diabetes were advised to gain 0–5 kg during pregnancy. The aim with this study was to evaluate fetal growth and perinatal morbidity in relation to gestational weight gain in these women. RESEARCH DESIGN AND METHODS A retrospective cohort comprised the records of 58 singleton pregnancies in obese women (BMI ≥30 kg/m2) with type 2 diabetes giving birth between 2008 and 2011. Birth weight was evaluated by SD z score to adjust for gestational age and sex. RESULTS Seventeen women (29%) gained ≤5 kg, and the remaining 41 gained >5 kg. The median (range) gestational weight gains were 3.7 kg (−4.7 to 5 kg) and 12.1 kg (5.5–25.5 kg), respectively. Prepregnancy BMI was 33.5 kg/m2 (30–53 kg/m2) vs. 36.8 kg/m2 (30–48 kg/m2), P = 0.037, and median HbA1c was 6.7% at first visit in both groups and decreased to 5.7 and 6.0%, P = 0.620, in late pregnancy, respectively. Gestational weight gain ≤5 kg was associated with lower birth weight z score (P = 0.008), lower rates of large-for-gestational-age (LGA) infants (12 vs. 39%, P = 0.041), delivery closer to term (268 vs. 262 days, P = 0.039), and less perinatal morbidity (35 vs. 71%, P = 0.024) compared with pregnancies with maternal weight gain >5 kg. CONCLUSIONS In this pilot study in obese women with type 2 diabetes, maternal gestational weight gain ≤5 kg was associated with a more proportionate birth weight and less perinatal morbidity. PMID:23248191

  10. Growth and obesity through the first 7 y of life in association with levels of maternal glycemia during pregnancy: a prospective cohort study12

    PubMed Central

    Zhu, Yeyi; Olsen, Sjurdur F; Mendola, Pauline; Yeung, Edwina H; Vaag, Allan; Bowers, Katherine; Liu, Aiyi; Bao, Wei; Li, Shanshan; Madsen, Camilla; Grunnet, Louise G; Granström, Charlotta; Hansen, Susanne; Martin, Kelly; Chavarro, Jorge E; Hu, Frank B; Langhoff-Roos, Jens; Damm, Peter; Zhang, Cuilin

    2016-01-01

    Background: Given the long-term adverse sequelae of childhood obesity, identification of early life factors related to fetal growth and childhood obesity is warranted. Investigation on growth and obesity in early life in association with intrauterine exposure to maternal hyperglycemia, a common metabolic pregnancy complication, is of public health significance and clinical implications. Objective: We investigated the association of fasting plasma glucose (FPG) concentrations during pregnancy with offspring growth and risk of overweight/obesity through age 7 y, after adjustment for confounders, including maternal prepregnancy obesity status. Design: FPG concentrations at 28 gestational weeks (IQR: 22–32 wk) were extracted from medical records for 661 pregnancies complicated by gestational diabetes mellitus in the Danish National Birth Cohort (1996–2002). Offspring’s ponderal index was derived from birth weight and length; age- and sex-specific body mass index (BMI) z scores at 5 mo, 12 mo, and 7 y were calculated based on WHO reference data. Relations between FPG and offspring growth and obesity were assessed by linear and Poisson regression with robust standard errors, adjusting for maternal prepregnancy BMI and sociodemographic and perinatal factors. Results: At birth, maternal FPG during pregnancy was significantly associated with offspring ponderal index (β = 0.46; 95% CI: 0.14, 0.78 per 1-mmol/L increase) and risk of macrosomia (birth weight >4000 g) (RR = 1.21; 95% CI: 1.07, 1.38 per 1-mmol/L increase). At 7 y, higher maternal FPG concentrations were significantly associated with increased BMI z scores (β = 0.20; 95% CI: 0.04, 0.36) and elevated risk of overweight/obesity (RR = 1.21; 95% CI: 1.01, 1.50). Additional adjustment for birth weight and childhood lifestyle factors did not appreciably alter results. No associations were observed at 5 or 12 mo. Conclusion: Among women with gestational diabetes mellitus, maternal FPG concentrations during

  11. Maternal depression, stress and feeding styles: towards a framework for theory and research in child obesity.

    PubMed

    El-Behadli, Ana F; Sharp, Carla; Hughes, Sheryl O; Obasi, Ezemenari M; Nicklas, Theresa A

    2015-01-01

    Against the background of rising rates of obesity in children and adults in the USA, and modest effect sizes for obesity interventions, the aim of the present narrative review paper is to extend the UNICEF care model to focus on childhood obesity and its associated risks with an emphasis on the emotional climate of the parent-child relationship within the family. Specifically, we extended the UNICEF model by applying the systems approach to childhood obesity and by combining previously unintegrated sets of literature across multiple disciplines including developmental psychology, clinical psychology and nutrition. Specifically, we modified the extended care model by explicitly integrating new linkages (i.e. parental feeding styles, stress, depression and mother's own eating behaviour) that have been found to be associated with the development of children's eating behaviours and risk of childhood obesity. These new linkages are based on studies that were not incorporated into the original UNICEF model, but suggest important implications for childhood obesity. In all, this narrative review offers important advancements to the scientific understanding of familial influences on children's eating behaviours and childhood obesity.

  12. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life.

    PubMed

    Stachowiak, Ewa K; Srinivasan, Malathi; Stachowiak, Michal K; Patel, Mulchand S

    2013-12-01

    Fetal development in an obese maternal intrauterine environment has been shown to predispose the offspring for a number of metabolic disorders in later life. The observation that a large percentage of women of child-bearing age in the US are overweight/obese during pregnancy is therefore a source of concern. A high fat (HF) diet-induced obesity in female rats has been used as a model for maternal obesity. The objective of this study was to determine cellular development in brains of term fetuses of obese rats fed a HF diet from the time of weaning. Fetal brains were dissected out on gestational day 21 and processed for immunohistochemical analysis in the hypothalamic as well as extra-hypothalamic regions. The major observation of this study is that fetal development in the obese HF female rat induced several alterations in the HF fetal brain. Marked increases were observed in orexigenic signaling and a significant decrease was observed for anorexigenic signaling in the vicinity of the 3rd ventricle in HF brains. Additionally, our results indicated diminished migration and maturation of stem-like cells in the 3rd ventricular region as well as in the brain cortex. The results from the present study indicate developmental alterations in the hypothalamic and extra-hypothalamic regions in the HF fetal brain suggestive of a predisposition for the development of obesity and possibly neurodevelopmental abnormalities in the offspring.

  13. Insatiable insecurity: maternal obesity as a risk factor for mother-child attachment and child weight.

    PubMed

    Keitel-Korndörfer, Anja; Sierau, Susan; Klein, Annette M; Bergmann, Sarah; Grube, Matthias; von Klitzing, Kai

    2015-01-01

    Childhood obesity has become a rising health problem, and because parental obesity is a basic risk factor for childhood obesity, biological factors have been especially considered in the complex etiology. Aspects of the family interaction, e.g., mother-child attachment, have not been the main focus. Our study tried to fill this gap by investigating whether there is a difference between children of obese and normal weight mothers in terms of mother-child attachment, and whether mother-child attachment predicts child's weight, in a sample of 31 obese and 31 normal weight mothers with children aged 19 to 58 months. Mother-child attachment was measured with the Attachment Q-Set. We found that (1) children of obese mothers showed a lower quality of mother-child attachment than children of normal weight mothers, which indicates that they are less likely to use their mothers as a secure base; (2) the attachment quality predicted child`s BMI percentile; and (3) the mother-child attachment adds incremental validity to the prediction of child's BMI beyond biological parameters (child's BMI birth percentile, BMI of the parents) and mother's relationship status. Implications of our findings are discussed.

  14. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    PubMed

    Heerwagen, Margaret J R; Stewart, Michael S; de la Houssaye, Becky A; Janssen, Rachel C; Friedman, Jacob E

    2013-01-01

    Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that

  15. Effects of an antenatal dietary intervention on maternal anthropometric measures in pregnant women with obesity

    PubMed Central

    Kannieappan, Lavern M.; Grivell, Rosalie M.; Deussen, Andrea R.; Moran, Lisa J.; Yelland, Lisa N.; Owens, Julie A.

    2015-01-01

    Objective The effect of providing antenatal dietary and lifestyle advice on secondary measures of maternal anthropometry was evaluated and their correlation with both gestational weight gain and infant birth weight was assessed. Methods In a multicenter, randomized controlled trial, pregnant women with BMI of ≥25 kg/m2 received either Lifestyle Advice or Standard Care. Maternal anthropometric outcomes included arm circumference, biceps, triceps, and subscapular skinfold thickness measurements (SFTM), percentage body fat (BF), gestational weight gain, and infant birth weight. The intention to treat principles were utilized by the analyses. Results The measurements were obtained from 807 (74.7%) women in the Lifestyle Advice Group and 775 (72.3%) women in the Standard Care Group. There were no statistically significant differences identified between the treatment groups with regards to arm circumference, biceps, triceps, and subscapular SFTM, or percentage BF at 36‐week gestation. Maternal anthropometric measurements were not significantly correlated with either gestational weight gain or infant birth weight. Conclusions Among pregnant women with a BMI of ≥25 kg/m2, maternal SFTM were not modified by an antenatal dietary and lifestyle intervention. Furthermore, maternal SFTM correlate poorly with both gestational weight gain and infant birth weight. PMID:26175260

  16. Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection.

    PubMed

    Correia-Branco, Ana; Keating, Elisa; Martel, Fátima

    2015-02-01

    An adequate maternal nutrition during pregnancy is crucial for the health outcome of offspring in adulthood. Maternal undernutrition during critical periods of fetal development can program the fetus for metabolic syndrome (MetS) later in life, especially when postnatally challenged with a hypernutritive diet. Adipogenesis, which begins in utero and accelerates in neonatal life, is a major candidate for developmental programming. During fetal development, the hypothalamic-pituitary-adrenal (HPA) axis is extremely susceptible to programming, and the HPA tone is increased throughout life in undernourished conditions. As a consequence, an alteration in the expression and function of glucocorticoid (GC) receptors and of the major GC regulatory enzymes (11β-hydroxysteroid dehydrogenase 1 and -2) occurs. In this review, we will give insights into the role of maternoplacental adverse interactions under the specific context of maternal undernutrition, for later-in-life MetS development, with a special emphasis on the role of GCs.

  17. Maternal obesity in Europe: where do we stand and how to move forward?: A scientific paper commissioned by the European Board and College of Obstetrics and Gynaecology (EBCOG).

    PubMed

    Devlieger, Roland; Benhalima, Katrien; Damm, Peter; Van Assche, André; Mathieu, Chantal; Mahmood, Tahir; Dunne, Fidelma; Bogaerts, Annick

    2016-06-01

    Paralleling the global epidemic of obesity figures in the general population, the incidence of maternal obesity (BMI>30kg/m(2) at the start of pregnancy) has been rising over the last world. While most European countries do not systematically report obesity figures in their pregnant population, the prevalence of maternal obesity varies from 7 to 25% and seems strongly related to social and educational inequalities. Obesity during pregnancy represents an important preventable risk factor for adverse pregnancy outcomes and is associated with negative long-term health outcomes for both mothers and offspring. These effects are often aggravated by the high incidence of abnormal glucose tolerance and excessive gestational weight gain found in this group. The main controversies around the management of the obese pregnant women are related to (1) the value of repeated weighing during pregnancy, (2) the optimal gestational weight gain to advise and the lifestyle messages to deliver in order to achieve this, (3) the optimal strategy and timing of screening for gestational diabetes (GDM) and (4) the optimal timing and mode of delivery. These controversies are reviewed in this review, with the exception of screening for gestational diabetes that is discussed extensively elsewhere in this issue (Benhalima et al.). An agenda for research is proposed with the hope that it will catch the attention of policy-makers and funders and ultimately lead to the development of European-wide evidence-based guidelines for clinicians.

  18. Obesity

    MedlinePlus

    Obesity means having too much body fat. It is different from being overweight, which means weighing too ... what's considered healthy for his or her height. Obesity occurs over time when you eat more calories ...

  19. Differences in Obesity Rates Among Minority and White Women: The Latent Role of Maternal Stress.

    PubMed

    Patchen, Loral; Rebok, George; Astone, Nan M

    2016-07-01

    White and minority women experience different rates of obesity in the United States. Yet our understanding of the dynamics that give rise to this gap remains limited. This article presents a conceptual framework that considers pathways leading to these different rates. It draws upon the life-course perspective, allostatic load, and the weathering hypothesis to identify pathways linking childbearing, stress, and obesity. This conceptual framework extends prior work by identifying age at first birth as an important parameter that influences these pathways. Empirical evidence to test these pathways is needed.

  20. Maternal Pre-Pregnancy Obesity and Risk for Inattention and Negative Emotionality in Children

    ERIC Educational Resources Information Center

    Rodriguez, Alina

    2010-01-01

    Objective: This study aimed to replicate and extend previous work showing an association between maternal pre-pregnancy adiposity and risk for attention deficit hyperactivity disorder (ADHD) symptoms in children. Methods: A Swedish population-based prospective pregnancy-offspring cohort was followed up when children were 5 years old (N = 1,714).…

  1. Women's and Midwives' Perspectives on the Design of a Text Messaging Support for Maternal Obesity Services: An Exploratory Study

    PubMed Central

    Soltani, H.; Furness, P. J.; Arden, M. A.; McSeveny, K.; Garland, C.; Sustar, H.; Dearden, A.

    2012-01-01

    This study was aimed to explore women's and midwives' views on the use of mobile technology in supporting obese pregnant women with healthy lifestyle choices. A purposive sample of 14 women and midwives participated in four focus groups in Doncaster, UK. A content analysis of the transcripts from the first focus group led to the emergence of three main constructs with associated subcategories including Benefits (“modernising,” “motivating,” “reminding,” and “reducing” the sense of isolation), Risks and Limitations (possibility of “being offensive,” “creating pressure or guilt,” and “being influenced by mood”), and Service Delivery (making it “available to all pregnant women,” giving attention to the “message tone” and development of “message content”). They also suggested the use of other modalities such as web-based services for weight management during pregnancy. Based on the above results a text messaging service was developed and presented to the 2nd focus group participants who confirmed the positive views from the first focus group on the use of the text messaging as being supportive and informative. The participants also welcomed “women's engagement and choice” in deciding the content, timing and frequency of messages. The results informed the development of a text messaging service to support maternal obesity management. The implementation and acceptability of this service requires further investigation. PMID:22900153

  2. Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice.

    PubMed

    Yang, Qi-Yuan; Liang, Jun-Fang; Rogers, Carl J; Zhao, Jun-Xing; Zhu, Mei-Jun; Du, Min

    2013-11-01

    Maternal obesity (MO) predisposes offspring to obesity and type 2 diabetes despite poorly defined mechanisms. Zfp423 is the key transcription factor committing cells to the adipogenic lineage, with exceptionally dense CpG sites in its promoter. We hypothesized that MO enhances adipogenic differentiation during fetal development through inducing epigenetic changes in the Zfp423 promoter and elevating its expression. Female mice were subjected to a control (Con) or obesogenic (OB) diet for 2 months, mated, and maintained on their diets during pregnancy. Fetal tissue was harvested at embryonic day 14.5 (E14.5), when the early adipogenic commitment is initiated. The Zfp423 expression was 3.6-fold higher and DNA methylation in the Zfp423 promoter was lower in OB compared with Con. Correspondingly, repressive histone methylation (H3K27me3) was lower in the Zfp423 promoter of OB fetal tissue, accompanied by reduced binding of enhancer of zeste 2 (EZH2). Gain- and loss-of-function analysis showed that Zfp423 regulates early adipogenic differentiation in fetal progenitor cells. In summary, MO enhanced Zfp423 expression and adipogenic differentiation during fetal development, at least partially through reducing DNA methylation in the Zfp423 promoter, which is expected to durably elevate adipogenic differentiation of progenitor cells in adult tissue, programming adiposity and metabolic dysfunction later in life.

  3. Maternal Environmental Contribution to Adult Sensitivity and Resistance to Obesity in Long Evans Rats

    PubMed Central

    Schroeder, Mariana; Shbiro, Liat; Moran, Timothy H.; Weller, Aron

    2010-01-01

    Background The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity. Methodology On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored. Principal Findings During the suckling period, the pups' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term. Conclusions The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the

  4. Diet-Induced Maternal Obesity Alters Insulin Signalling in Male Mice Offspring Rechallenged with a High-Fat Diet in Adulthood

    PubMed Central

    de Fante, Thaís; Simino, Laís Angélica; Reginato, Andressa; Payolla, Tanyara Baliani; Vitoréli, Débora Cristina Gustavo; de Souza, Monique; Torsoni, Márcio Alberto; Milanski, Marciane; Torsoni, Adriana Souza

    2016-01-01

    Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metabolism. However, it is important to assess whether maternal consumption of a HFD during critical periods of development can lead to metabolic changes in the offspring metabolism. This study evaluated the potential effects of metabolic programming on the impairment of insulin signalling in recently weaned offspring from obese dams. Additionally, we investigated if early exposure to an obesogenic environment could exacerbate the impairment of glucose metabolism in adult life in response to a HFD. Swiss female mice were fed with Standard Chow (SC) or a HFD during gestation and lactation and tissues from male offspring were analysed at d28 and d82. Offspring from obese dams had greater weight gain and higher adiposity and food intake than offspring from control dams. Furthermore, they showed impairment in insulin signalling in central and peripheral tissues, which was associated with the activation of inflammatory pathways. Adipose tissue was ultimately the most affected in adult offspring after HFD rechallenge; this may have contributed to the metabolic deregulation observed. Overall, our results suggest that diet-induced maternal obesity leads to increased susceptibility to obesity and impairment of insulin signalling in offspring in early and late life that cannot be reversed by SC consumption, but can be aggravated by HFD re-exposure. PMID:27479001

  5. Maternal Characteristics and Incidence of Overweight/Obesity in Children: A 13-Year Follow-up Study in an Eastern Mediterranean Population.

    PubMed

    Jalali-Farahani, Sara; Amiri, Parisa; Abbasi, Behnood; Karimi, Mehrdad; Cheraghi, Leila; Daneshpour, Maryam Sadat; Azizi, Fereidoun

    2017-01-19

    Objectives To investigate clustering of parental sociobehavioral factors and their relationship with the incidence of overweight and obesity in Iranian children. Methods Demographics, body weight, and certain medical characteristics of the parents of 2999 children were used to categorize parents by cluster; children's weights were assessed for each cluster. Specifically, survival analysis and Cox regression models were used to test the effect of parental clustering on the incidence of childhood overweight and obesity. Results Maternal metabolic syndrome, education level, age, body weight status, and paternal age had important roles in distinguishing clusters with low, moderate, and high risk. Crude incidence rates (per 10,000 person-years) of overweight and obesity were 416.8 (95% confidence interval (CI) 388.2-447.5) and 114.7 (95% CI 101.2-129.9), respectively. Children of parents with certain constellations of demographic and medical characteristics were 37.0 and 41.0% more likely to become overweight and obese, respectively. Conclusions for Practice The current study demonstrated the vital role of maternal characteristics in distinguishing familial clusters, which could be used to predict the incidence of overweight and obesity in children.

  6. Interventions to prevent maternal obesity before conception, during pregnancy, and post partum.

    PubMed

    Hanson, Mark; Barker, Mary; Dodd, Jodie M; Kumanyika, Shiriki; Norris, Shane; Steegers, Eric; Stephenson, Judith; Thangaratinam, Shakila; Yang, Huixia

    2017-01-01

    Prevention of obesity in women of reproductive age is widely recognised to be important both for their health and for that of their offspring. Weight-control interventions, including drug treatment, in pregnant women who are obese or overweight have not had sufficient impact on pregnancy and birth outcomes, which suggests that the focus for intervention should include preconception or post-partum periods. Further research is needed into the long-term effects of nutritional and lifestyle interventions before conception. To improve preconception health, an integrated approach, including pregnancy prevention, planning, and preparation is needed, involving more than the primary health-care sector and adopting an ecological approach to risk reduction that addresses personal, societal, and cultural influences. Raising awareness of the importance of good health in the period before pregnancy will require a new social movement: combining bottom-up mobilisation of individuals and communities with a top-down approach from policy initiatives. Interventions to reduce or prevent obesity before conception and during pregnancy could contribute substantially to achievement of the global Sustainable Development Goals, in terms of health, wellbeing, productivity, and equity in current and future generations.

  7. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity

    PubMed Central

    Capobianco, Valentina; Caterino, Marianna; Iaffaldano, Laura; Nardelli, Carmela; Sirico, Angelo; Del Vecchio, Luigi; Martinelli, Pasquale; Pastore, Lucio; Pucci, Pietro; Sacchetti, Lucia

    2016-01-01

    Maternal obesity increases the risk of obesity and/or obesity-related diseases in the offspring of animal models. The aim of this study was to identify metabolic dysfunctions that could represent an enhanced risk for human obesity or obesity-related diseases in newborn or in adult life, similar to what occurs in animal models. To this aim, we studied the proteome of 12 obese (Ob-) and 6 non-obese (Co-) human amniotic mesenchymal stem cells (hA-MSCs) obtained from women at delivery by cesarean section (pre-pregnancy body mass index [mean ± SD]: 42.7 ± 7.7 and 21.3 ± 3.3 kg/m2, respectively). The proteome, investigated by two-dimensional fluorescence difference gel electrophoresis/mass spectrometry, revealed 62 differently expressed proteins in Ob- vs Co-hA-MSCs (P < 0.05), nine of which were confirmed by western blotting. Bioinformatics analysis showed that these 62 proteins are involved in several statistically significant pathways (P < 0.05), including the stress response, cytoskeleton and metabolic pathways. Oxidative stress was shown to be an early triggering factor of tissue fat accumulation and obesity-related disorders in the offspring of obese animal models. Our finding of a reduced stress response in Ob-hA-MSCs suggests that a similar mechanism could occur also in humans. Long-term follow-up studies of newborns of obese mothers are required to verify this hypothesis. PMID:27125468

  8. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity.

    PubMed

    Capobianco, Valentina; Caterino, Marianna; Iaffaldano, Laura; Nardelli, Carmela; Sirico, Angelo; Del Vecchio, Luigi; Martinelli, Pasquale; Pastore, Lucio; Pucci, Pietro; Sacchetti, Lucia

    2016-04-29

    Maternal obesity increases the risk of obesity and/or obesity-related diseases in the offspring of animal models. The aim of this study was to identify metabolic dysfunctions that could represent an enhanced risk for human obesity or obesity-related diseases in newborn or in adult life, similar to what occurs in animal models. To this aim, we studied the proteome of 12 obese (Ob-) and 6 non-obese (Co-) human amniotic mesenchymal stem cells (hA-MSCs) obtained from women at delivery by cesarean section (pre-pregnancy body mass index [mean ± SD]: 42.7 ± 7.7 and 21.3 ± 3.3 kg/m(2), respectively). The proteome, investigated by two-dimensional fluorescence difference gel electrophoresis/mass spectrometry, revealed 62 differently expressed proteins in Ob- vs Co-hA-MSCs (P < 0.05), nine of which were confirmed by western blotting. Bioinformatics analysis showed that these 62 proteins are involved in several statistically significant pathways (P < 0.05), including the stress response, cytoskeleton and metabolic pathways. Oxidative stress was shown to be an early triggering factor of tissue fat accumulation and obesity-related disorders in the offspring of obese animal models. Our finding of a reduced stress response in Ob-hA-MSCs suggests that a similar mechanism could occur also in humans. Long-term follow-up studies of newborns of obese mothers are required to verify this hypothesis.

  9. IFPA meeting 2015 workshop report IV: placenta and obesity; stem cells of the feto-maternal interface; placental immunobiology and infection.

    PubMed

    Abumaree, M H; Almutairi, A; Cash, S; Boeuf, P; Chamley, L W; Gamage, T; James, J L; Kalionis, B; Khong, T Y; Kolahi, K S; Lim, R; Liong, S; Morgan, T K; Motomura, K; Peiris, H N; Pelekanos, R A; Pelzer, E; Shafiee, A; Lash, G E; Natale, D

    2016-12-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At the 2015 IFPA annual meeting there were 12 themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology and collectively covered areas of obesity and the placenta, stem cells of the feto-maternal interface, and placental immunobiology and infection.

  10. Overweight is more prevalent than stunting and is associated with socioeconomic status, maternal obesity, and a snacking dietary pattern in school children from Bogota, Colombia.

    PubMed

    McDonald, Christine M; Baylin, Ana; Arsenault, Joanne E; Mora-Plazas, Mercedes; Villamor, Eduardo

    2009-02-01

    The objectives of this study were to estimate the prevalence of overweight in school-aged children from Bogotá, Colombia and to examine its associations with sociodemographic characteristics, dietary patterns, and indicators of physical activity. We measured height and weight in 3075 children between 5 and 12 y of age who attended public primary schools in 2006 and we obtained information on maternal sociodemographic and anthropometric characteristics. The survey was representative of children from low and middle socioeconomic backgrounds. The prevalences of child overweight (including obesity) and obesity according to the International Obesity Task Force criteria were 11.1 and 1.8%, respectively. The prevalence of stunting was 9.8%. In multivariate analysis, child overweight was positively associated with indicators of higher socioeconomic status (SES), including low maternal parity and ownership of household assets. The prevalence of overweight was 3.6 times greater in children whose mothers were obese compared with children whose mothers had an adequate BMI (adjusted prevalence ratio = 3.61; 95% CI = 2.64, 4.93). Child overweight was positively associated with adherence to a "snacking" dietary pattern (P-trend = 0.06) and to frequent intake of hamburgers or hot dogs (adjusted prevalence ratio for at least once per week vs. never = 1.93; 95% CI = 1.03, 3.62), independent of total energy intake and other potential confounders. Time spent viewing television or playing outside the household were not significantly related to the prevalence of child overweight. In conclusion, child overweight in Bogotá is more common than stunting and is associated with higher SES, maternal obesity, and a snacking dietary pattern.

  11. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia.

    PubMed

    Ornoy, Asher

    2011-09-01

    Pregestational (PGDM) and gestational (GDM) diabetes may be associated with a variety of fetal effects including increased rate of spontaneous abortions, intrauterine fetal death, congenital anomalies, neurodevelopmental problems and increased risk of perinatal complications. Additional problems of concern are fetal growth disturbances causing increased or decreased birth weight. Optimal control of maternal blood glucose is known to reduce these changes. Among the long lasting effects of these phenomena are a high rate of overweight and obesity at childhood and a high tendency to develop the "metabolic syndrome" characterized by hypertension, cardio-vascular complications and type 2 diabetes. Similarly, maternal overweight and obesity during pregnancy or excessive weight gain are also associated with increased obesity and complications in the offspring. Although there are different causes for fetal growth restriction (FGR) or for fetal excessive growth (macrosomis), paradoxically both are associated with the "metabolic syndrome" and its long term consequences. The exact mechanism(s) underlying these long term effects on growth are not fully elucidated, but they involve insulin resistance, fetal hyperleptinemia, hypothalamic changes and most probably epigenetic changes. Preventive measures to avoid the metabolic syndrome and its complications seem to be a tight dietary control and physical activity in the children born to obese or diabetic mothers or who had antenatal growth disturbances for other known or unknown reasons.

  12. Obesity

    MedlinePlus

    ... In some cases, weight-loss surgery, also called bariatric surgery, is an option. Weight-loss surgery limits the ... et al. Treatment of obesity: The impact of bariatric surgery. In: Current Diagnosis & Treatment: Gastroenterology, Hepatology, & Endoscopy. 2nd ...

  13. Association between Maternal Fish Consumption and Gestational Weight Gain: Influence of Molecular Genetic Predisposition to Obesity

    PubMed Central

    Larsen, Sofus C.; Ängquist, Lars; Laurin, Charles; Morgen, Camilla S.; Jakobsen, Marianne U.; Paternoster, Lavinia; Smith, George Davey; Olsen, Sjurdur F.; Sørensen, Thorkild I. A.; Nohr, Ellen A.

    2016-01-01

    Background Studies suggest that fish consumption can restrict weight gain. However, little is known about how fish consumption affects gestational weight gain (GWG), and whether this relationship depends on genetic makeup. Objective To examine the association between fish consumption and GWG, and whether this relationship is dependent on molecular genetic predisposition to obesity. Design A nested case-cohort study based on the Danish National Birth Cohort (DNBC) sampling the most obese women (n = 990) and a random sample of the remaining participants (n = 1,128). Replication of statistically significant findings was attempted in the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 4,841). We included 32 body mass index (BMI) associated single nucleotide polymorphisms (SNPs) and 5 SNPs found associated with GWG. BMI associated SNPs were combined in a genetic risk score (GRS). Associations between consumption of fish, GRS or individual variants and GWG were analysed, and interactions between fish and the GRS or individual variants were examined. Results In the DNBC, each portion/week (150 g) of fatty fish was associated with a higher GWG of 0.58 kg (95% CI: 0.16, 0.99, P<0.01). For total fish and lean fish, similar patterns were observed, but these associations were not statistically significant. We found no association between GRS and GWG, and no interactions between GRS and dietary fish on GWG. However, we found an interaction between the PPARG Pro12Ala variant and dietary fish. Each additional Pro12Ala G-allele was associated with a GWG of -0.83 kg (95% CI: -1.29, -0.37, P<0.01) per portion/week of dietary fish, with the same pattern for both lean and fatty fish. In ALSPAC, we were unable to replicate these findings. Conclusion We found no consistent evidence of association between fish consumption and GWG, and our results indicate that the association between dietary fish and GWG has little or no dependency on GRS or individual SNPs. PMID:26930408

  14. Price and maternal obesity influence purchasing of low- and high-energy-dense foods2

    PubMed Central

    Epstein, Leonard H; Dearing, Kelly K; Paluch, Rocco A; Roemmich, James N; Cho, David

    2007-01-01

    Background Price can influence food purchases, which can influence consumption. Limited laboratory research has assessed the effect of price changes on food purchases, and no research on individual differences that may interact with price to influence purchases exists. Objective We aimed to assess the influence of price changes of low-energy-density (LED) and high-energy-density (HED) foods on mother’s food purchases in a laboratory food-purchasing analogue. Design Mothers were randomly assigned to price conditions in which the price of either LED or HED foods was manipulated from 75% to 125% of the reference purchase price, whereas the price of the alternative foods was kept at the reference value. Mothers completed purchases for 2 income levels ($15 or $30 per family member). Results Purchases were reduced when prices of LED (P < 0.01) and HED (P < 0.001) foods were increased. Maternal BMI interacted with price to influence purchases of HED foods when the price of HED foods increased (P = 0.016) and interacted with price to influence purchases of LED foods when the price of HED foods increased (P = 0.008). Conclusion These results show the relevance of considering price change as a way to influence food purchases of LED compared with HED foods and the possibility that individual differences may influence the own-price elasticity of HED foods and substitution of LED for HED foods. PMID:17921365

  15. The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry.

    PubMed

    Oliva, Karen; Barker, Gillian; Riley, Clyde; Bailey, Mark J; Permezel, Michael; Rice, Gregory E; Lappas, Martha

    2012-04-01

    Our aim was to study the protein expression profiles of placenta obtained from lean and obese pregnant women with normal glucose tolerance at the time of term Caesarean section. We used two-dimensional difference gel electrophoresis (2D-DIGE), utilising narrow-range immobilised pH gradient strips that encompassed the broad pH range of 4-5 and 5-6, followed by MALDI-TOF mass spectrometry of selected protein spots. Western blot and quantitative RT-PCR (qRT-PCR) analyses were performed to validate representative findings from the 2D-DIGE analysis. Eight proteins were altered (six down-regulated and two up-regulated on obese placentas). Annexin A5 (ANXA5), ATP synthase subunit beta, mitochondria (ATPB), brain acid soluble protein 1 (BASP1), ferritin light chain (FTL), heterogeneous nuclear ribonucleoprotein C (HNRPC) and vimentin (VIME) were all lower in obese patients. Alpha-1-antitrypsin (A1AT) and stress-70 protein, mitochondrial (GRP75) were higher in obese patients. Western blot analysis of ANXA5, ATPB, FTL, VIME, A1AT and GRP75 confirmed the findings from the 2D-DIGE analysis. For brain acid soluble protein 1 and HNRPC, qRT-PCR analysis also confirmed the findings from the 2D-DIGE analysis. Immunohistochemical analysis was also used to determine the localisation of the proteins in human placenta. In conclusion, proteomic analysis of placenta reveals differential expression of several proteins in patients with pre-existing obesity. These proteins are implicated in a variety of cellular functions such as regulation of growth, cytoskeletal structure, oxidative stress, inflammation, coagulation and apoptosis. These disturbances may have significant implications for fetal growth and development.

  16. Dog ownership during pregnancy, maternal activity, and obesity: a cross-sectional study.

    PubMed

    Westgarth, Carri; Liu, Jihong; Heron, Jon; Ness, Andrew R; Bundred, Peter; Gaskell, Rosalind M; German, Alexander J; McCune, Sandra; Dawson, Susan

    2012-01-01

    The Avon Longitudinal Study of Parents and Children (ALSPAC) is an observational study of 14,273 UK pregnant singleton mothers in 1990/1991. We examined outcomes of self report of strenuous activity (hours per week) at 18 and 32 weeks of gestation, hours spent in leisure-time physical activities and types, and pre-pregnancy body mass index (BMI); overweight status was defined as pre-pregnancy BMI≥25 and obesity BMI≥30. Pet ownership and activity data were reported for 11,466 mothers. Twenty-five percent of mothers owned at least one dog. There was a positive relationship between participation in activity at least once a week and dog ownership (at 18 weeks, Odds ratio 1.27, 95% confidence interval 1.11-1.44, P<0.001). Dog owners were 50% more likely to achieve the recommended 3 hours activity per week, equivalent to 30 minutes per day, most days of the week (1.53, 1.35-1.72, P<0.001). Dog owners were also more likely to participate in brisk walking activity than those who did not have a dog (compared to no brisk walking 2-6 hrs per week 1.43, 1.23 to 1.67, P<0.001; 7+ hrs per week 1.80, 1.43 to 2.27, P<0.001). However, no association was found with any other types of activities and there was no association between dog ownership and weight status. During the time period studied, pregnant women who had dogs were more active, through walking, than those who did not own dogs. As walking is a low-risk exercise, participation of pregnant women in dog walking activities may be a useful context to investigate as part of a broader strategy to improve activity levels in pregnant women.

  17. The Impact of Maternal Obesity and Excessive Gestational Weight Gain on Maternal and Infant Outcomes in Maine: Analysis of Pregnancy Risk Assessment Monitoring System Results from 2000 to 2010

    PubMed Central

    Sarton, Cheryl; Lichter, Erika

    2016-01-01

    The objective of this study is to understand the relationships between prepregnancy obesity and excessive gestational weight gain (GWG) and adverse maternal and fetal outcomes. Pregnancy risk assessment monitoring system (PRAMS) data from Maine for 2000–2010 were used to determine associations between demographic, socioeconomic, and health behavioral variables and maternal and infant outcomes. Multivariate logistic regression analysis was performed on the independent variables of age, race, smoking, previous live births, marital status, education, BMI, income, rurality, alcohol use, and GWG. Dependent variables included maternal hypertension, premature birth, birth weight, infant admission to the intensive care unit (ICU), and length of hospital stay of the infant. Excessive prepregnancy BMI and excessive GWG independently predicted maternal hypertension. A high prepregnancy BMI increased the risk of the infant being born prematurely, having a longer hospital stay, and having an excessive birth weight. Excessive GWG predicted a longer infant hospital stay and excessive birth weight. A low pregnancy BMI and a lower than recommended GWG were also associated with poor outcomes: prematurity, low birth weight, and an increased risk of the infant admitted to ICU. These findings support the importance of preconception care that promotes achievement of a healthy weight to enhance optimal reproductive outcomes. PMID:27747104

  18. A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring.

    PubMed

    Bayol, Stéphanie A; Farrington, Samantha J; Stickland, Neil C

    2007-10-01

    Obesity is generally associated with high intake of junk foods rich in energy, fat, sugar and salt combined with a dysfunctional control of appetite and lack of exercise. There is some evidence to suggest that appetite and body mass can be influenced by maternal food intake during the fetal and suckling life of an individual. However, the influence of a maternal junk food diet during pregnancy and lactation on the feeding behaviour and weight gain of the offspring remains largely uncharacterised. In this study, six groups of rats were fed either rodent chow alone or with a junk food diet during gestation, lactation and/or post-weaning. The daily food intakes and body mass were measured in forty-two pregnant and lactating mothers as well as in 216 offspring from weaning up to 10 weeks of age. Results showed that 10 week-old rats born to mothers fed the junk food diet during gestation and lactation developed an exacerbated preference for fatty, sugary and salty foods at the expense of protein-rich foods when compared with offspring fed a balanced chow diet prior to weaning or during lactation alone. Male and female offspring exposed to the junk food diet throughout the study also exhibited increased body weight and BMI compared with all other offspring. This study shows that a maternal junk food diet during pregnancy and lactation may be an important contributing factor in the development of obesity.

  19. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  20. Obesity

    MedlinePlus

    ... little free time may have less time to exercise. The term eating disorder means a group of medical conditions that have an unhealthy focus on eating, dieting, losing or gaining weight, and body image. A person may be obese, follow an unhealthy ...

  1. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    SciTech Connect

    Miki, Takanori; Liu, Jun-Qian; Ohta, Ken-ichi; Suzuki, Shingo; Kusaka, Takashi; Warita, Katsuhiko; Yokoyama, Toshifumi; Jamal, Mostofa; Ueki, Masaaki; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2013-12-06

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.

  2. Modification of the fatty acid composition of an obesogenic diet improves the maternal and placental metabolic environment in obese pregnant mice.

    PubMed

    Gimpfl, Martina; Rozman, Jan; Dahlhoff, Maik; Kübeck, Raphaela; Blutke, Andreas; Rathkolb, Birgit; Klingenspor, Martin; de Angelis, Martin Hrabě; Öner-Sieben, Soner; Seibt, Annette; Roscher, Adelbert A; Wolf, Eckhard; Ensenauer, Regina

    2017-02-21

    Peri-conceptional exposure to maternal obesogenic nutrition is associated with in utero programming of later-life overweight and metabolic disease in the offspring. We aimed to investigate whether dietary intervention with a modified fatty acid quality in an obesogenic high-calorie (HC) diet during the preconception and gestational phases can improve unfavourable effects of an adipogenic maternal environment. In NMRI mice, peri-conceptional and gestational obesity was induced by feeding a HC diet (controls), and they were compared with dams on a fat-modified (Fat-mod) HC diet of the same energy content but enriched with medium-chain fatty acids (MCFAs) and adjusted to a decreased ratio of n-6 to n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). Effects on maternal and placental outcomes at delivery (day 17.5 post coitum) were investigated. Despite comparable energy assimilation between the two groups of dams, the modified fatty acid composition of the high-caloric diet induced lower maternal body weight, weights of fat depots, adipocyte size, and hepatic fat accumulation compared to the unmodified HC diet group. Further, there was a trend towards lower fasting glucose, insulin and leptin concentrations in dams fed the Fat-mod HC diet. Phenotypic changes were accompanied by inhibition of transcript and protein expression of genes involved in hepatic de novo lipogenesis comprising PPARG2 and its target genes Fasn, Acaca, Fabp4, whereas regulation of other lipogenic factors (Srebf1, Nr1h3, Abca1) appeared to be more complex. The modified diet led to a sex-specific placental response by upregulating PPARG-dependent fatty acid transport gene expression in female versus male placentae. Qualitative modification of the fatty acid spectrum of a high-energy maternal diet, using a combination of both MCFAs and n-3 LC-PUFAs, seems to be a promising interventional approach to ameliorate the adipogenic milieu of mice before and during gestation.

  3. Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomised, double-blind, placebo-controlled trial

    PubMed Central

    Chiswick, Carolyn; Reynolds, Rebecca M; Denison, Fiona; Drake, Amanda J; Forbes, Shareen; Newby, David E; Walker, Brian R; Quenby, Siobhan; Wray, Susan; Weeks, Andrew; Lashen, Hany; Rodriguez, Aryelly; Murray, Gordon; Whyte, Sonia; Norman, Jane E

    2015-01-01

    Summary Background Maternal obesity is associated with increased birthweight, and obesity and premature mortality in adult offspring. The mechanism by which maternal obesity leads to these outcomes is not well understood, but maternal hyperglycaemia and insulin resistance are both implicated. We aimed to establish whether the insulin sensitising drug metformin improves maternal and fetal outcomes in obese pregnant women without diabetes. Methods We did this randomised, double-blind, placebo-controlled trial in antenatal clinics at 15 National Health Service hospitals in the UK. Pregnant women (aged ≥16 years) between 12 and 16 weeks' gestation who had a BMI of 30 kg/m2 or more and normal glucose tolerance were randomly assigned (1:1), via a web-based computer-generated block randomisation procedure (block size of two to four), to receive oral metformin 500 mg (increasing to a maximum of 2500 mg) or matched placebo daily from between 12 and 16 weeks' gestation until delivery of the baby. Randomisation was stratified by study site and BMI band (30–39 vs ≥40 kg/m2). Participants, caregivers, and study personnel were masked to treatment assignment. The primary outcome was Z score corresponding to the gestational age, parity, and sex-standardised birthweight percentile of liveborn babies delivered at 24 weeks or more of gestation. We did analysis by modified intention to treat. This trial is registered, ISRCTN number 51279843. Findings Between Feb 3, 2011, and Jan 16, 2014, inclusive, we randomly assigned 449 women to either placebo (n=223) or metformin (n=226), of whom 434 (97%) were included in the final modified intention-to-treat analysis. Mean birthweight at delivery was 3463 g (SD 660) in the placebo group and 3462 g (548) in the metformin group. The estimated effect size of metformin on the primary outcome was non-significant (adjusted mean difference −0·029, 95% CI −0·217 to 0·158; p=0·7597). The difference in the number of women reporting the

  4. StartSmart: a randomized intervention to promote maternal weight control and reduce childhood obesity in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive gestational weight gain (GWG) can complicate a woman’s pregnancy and put her and her child at risk for poor delivery and birth outcomes and chronic conditions such as obesity. Further, feeding and activity habits established early in life can significantly impact the development of obesity...

  5. Reproductive, endocrine and metabolic feto-maternal features and placental gene expression in a swine breed with obesity/leptin resistance.

    PubMed

    Gonzalez-Bulnes, A; Torres-Rovira, L; Ovilo, C; Astiz, S; Gomez-Izquierdo, E; Gonzalez-Añover, P; Pallares, P; Perez-Solana, M L; Sanchez-Sanchez, R

    2012-03-01

    The current study was conducted in a swine breed (Iberian pig) with a genotype that predisposed the pig to obesity. The aim of the study was to determine the morphological, metabolomic and endocrine features of early conceptuses and to elucidate how placental gene expression (related to placentation, angiogenesis and fetal nutrition), maternal hormones and the metabolome affect the fetal environment and fetal growth. Conceptus viability and growth were found to be related to maternal endocrine (plasma progesterone levels) and metabolic features (plasma levels of leptin, cholesterol, HDL-c, LDL-c and triglycerides). These features were related to the placental expression of the vascular endothelial growth factor A (VEGFA) and leptin (LEP) genes, the placental efficiency and, thus, the nutrition and the metabolism of the fetus (availability of glucose, triglycerides and cholesterol, as HDL-c). Viability of conceptuses in females with evidence of dyslipidemia (low plasma levels of total cholesterol due to low HDL-c concentration but high levels of triglycerides) was diminished. The availability of nutrients and metabolic substrates to the conceptus was also affected in females with higher fat deposition and evidence of dyslipidemia. In conclusion, the conceptus viability and growth appear to be strongly related to maternal metabolic features and, thus, affected in females with alterations in lipid metabolism.

  6. NGF up-regulates TRPA1: implications for orofacial pain.

    PubMed

    Diogenes, A; Akopian, A N; Hargreaves, K M

    2007-06-01

    The transient receptor potential ankyrin repeat 1 (TRPA1) channel is believed to be involved in many forms of acute and chronic hyperalgesia. Nerve Growth Factor (NGF) regulates chronic inflammatory hyperalgesia by controlling gene expression in sensory neurons, including genes involved in inflammatory hyperalgesia in the dental pulp. We hypothesized that NGF increases functional activities of the TRPA1 channel in trigeminal ganglion neurons. Here, we show that NGF induced a concentration- and time-dependent up-regulation of TRPA1 mRNA in trigeminal ganglia neurons, as detected by real-time RT-PCR and in situ hybridization. In addition, NGF evoked a time-dependent increase of mustard oil (MO)-evoked TRPA1 activation in trigeminal ganglia neurons. Collectively, these findings demonstrate that NGF participates in the functional up-regulation of TRPA1 in trigeminal ganglia neurons. These enhanced activities of TRPA1 could play an important role in the development of hyperalgesia following nerve injury and inflammation in the orofacial region.

  7. Maternal dietary n-6/n-3 fatty acid ratio affects type 1 diabetes development in the offspring of non-obese diabetic mice.

    PubMed

    Kagohashi, Yukiko; Abiru, Norio; Kobayashi, Masakazu; Hashimoto, Michio; Shido, Osamu; Otani, Hiroki

    2010-12-01

    Environment factors, including maternal or infant dietary nutrition have been reported to have an influence on the pathogenesis of type 1 diabetes. In the present study, to investigate the effect of maternal or post-weaning offspring's nutrition, in particular the essential fatty acid ratio (n-6/n-3) on the development of type 1 diabetes, we prepared two kinds of chows with n-6/n-3 ratios of 3.0 (L) and 14.5 (H), and provided them to mothers of non-obese diabetic (NOD) mice during gestation and lactation and to the offspring after weaning. The n-6/n-3 ratios in breast milk and erythrocyte membrane of NOD offspring became nearly the same with that of the maternal diet at 2 weeks after birth. In the L chow-fed offspring from L chow-fed mother (LLL), levels of insulitis were higher than those in the H chow-fed offspring from H chow-fed mother (HHH) at 4 weeks of age, while the levels in the LLL offspring became lower than those in the HHH after 6 weeks. Early insulin autoantibody expressions were found from 2 to 6 weeks in the HHH offspring, but not in the LLL. The LLL offspring exhibited strong suppression of overt diabetes development in regard to the onset and accumulated incidence of diabetes compared to the HHH. The study with combined L and H chows during gestation, lactation in mother and in post-weaning offspring revealed that only the LLH chow significantly suppressed the development of diabetes with similar kinetics to LLL chow, although the other combinations may delay the onset of diabetes. The present findings suggest that n-6/n-3 ratio of the maternal diet during gestation and lactation rather than that of offspring after weaning strongly affects the development of overt diabetes in NOD mice.

  8. Effect of supervised exercise training during pregnancy on neonatal and maternal outcomes among overweight and obese women. Secondary analyses of the ETIP trial: A randomised controlled trial

    PubMed Central

    Garnæs, Kirsti Krohn; Nyrnes, Siri Ann; Salvesen, Kjell Åsmund; Salvesen, Øyvind; Mørkved, Siv

    2017-01-01

    Background Maternal obesity associates with complications during pregnancy and childbirth. Our aim was to investigate if exercise during pregnancy in overweight/obese women could influence birth weight or other neonatal and maternal outcomes at delivery. Material and methods This is a secondary analysis of a randomised controlled trial of exercise training in pregnancy for women with body mass index (BMI) ≥ 28 kg/m2. Ninety-one women (31.3 ± 4.3 years, BMI 34.5 ± 4.2 kg/m2) were allocated 1:1 to supervised exercise during pregnancy or to standard care. The exercise group was offered three weekly training sessions consisting of 35 minutes of moderate intensity walking/running followed by 25 minutes of strength training. Data from 74 women (exercise 38, control 36) were analysed at delivery. Results Birth weight was 3719 ± 695 g in the exercise group and 3912 ± 413 g in the control group (CI -460.96, 74.89, p = 0.16). Birth weight > 4000 g was 35% in the exercise group and 52% in the control group (p = 0.16). Mean gestational age at delivery was 39.1 weeks in the exercise group and 39.5 weeks in the control group (CI -1.33, 0.43, p = 0.31). No significant between-group differences were found in neonatal body size, skinfold thickness, placental weight ratio, or Apgar score. The prevalence of caesarean section was 24% in the exercise group and 17% in the control group (CI 0.20, 2.05, p = 0.57). Mean length of hospital stay was 4.8 days in the exercise group and 4.5 days in the control group (CI -0.45, 1.00, p = 0.45). Conclusions Offering supervised exercise during pregnancy for overweight and obese women did not influence birth weight or other neonatal and maternal outcomes at delivery. However our trial was limited by low sample size and poor adherence to the exercise protocol, and further research is needed. Trial registration ClinicalTrials.gov NCT01243554 PMID:28323893

  9. Maternal air pollution exposure induces fetal neuroinflammation and predisposes offspring to obesity in aduthood in a sex-specific manner

    EPA Science Inventory

    Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pre...

  10. Maternal Depressive and Anxiety Symptoms, Self-Esteem, Body Dissatisfaction and Preschooler Obesity: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Benton, Pree; Skouteris, Helen; Hayden, Melissa

    2016-01-01

    The primary aim of the present study was to cross-sectionally examine the associations between maternal psychosocial variables, child feeding practices, and preschooler body mass index z-score (BMI-z) in children (aged 2-4 years). A secondary aim was to examine differences in child weight outcomes between mothers scoring above and below specified…

  11. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    PubMed

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.

  12. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

  13. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  14. Influence of Maternal and Child Lifestyle-Related Characteristics on the Socioeconomic Inequality in Overweight and Obesity among 5-year-old Children; The “Be Active, Eat Right” Study

    PubMed Central

    Veldhuis, Lydian; Vogel, Ineke; van Rossem, Lenie; Renders, Carry M.; HiraSing, Remy A.; Mackenbach, Johan P.; Raat, Hein

    2013-01-01

    It is unclear whether the socioeconomic inequality in prevalence of overweight and obesity is already present among very young children. This study investigates the association between overweight and socioeconomic status (SES, with maternal educational level as an indicator of SES) among 5-year-old children. This cross-sectional study uses baseline data from 5-year-olds of Dutch ethnicity (n = 5,582) and their mothers collected for the “Be active, eat right” study. Compared to children of mothers with the highest educational level, for children of mothers with the lowest educational level the odds ratio (adjusted for demographic characteristics) for having overweight was 2.10 (95% confidence interval: 1.57–2.82), and for having obesity was 4.18 (95% confidence interval: 2.32–7.55). Addition of maternal and child lifestyle-related characteristics decreased the odds ratios for overweight and obesity by 26.4% and 42.1%, respectively. The results show that an inverse SES-overweight/obesity association is already present at elementary school entry, and that watching TV by mother and child, the child consuming breakfast and, especially maternal weight status, are contributing factors in this association. These results should be taken into account when developing policies to reduce inequalities in (childhood) health. PMID:23743794

  15. Influence of maternal and child lifestyle-related characteristics on the socioeconomic inequality in overweight and obesity among 5-year-old children; the "Be Active, Eat Right" Study.

    PubMed

    Veldhuis, Lydian; Vogel, Ineke; van Rossem, Lenie; Renders, Carry M; Hirasing, Remy A; Mackenbach, Johan P; Raat, Hein

    2013-06-06

    It is unclear whether the socioeconomic inequality in prevalence of overweight and obesity is already present among very young children. This study investigates the association between overweight and socioeconomic status (SES, with maternal educational level as an indicator of SES) among 5-year-old children. This cross-sectional study uses baseline data from 5-year-olds of Dutch ethnicity (n = 5,582) and their mothers collected for the "Be active, eat right" study. Compared to children of mothers with the highest educational level, for children of mothers with the lowest educational level the odds ratio (adjusted for demographic characteristics) for having overweight was 2.10 (95% confidence interval: 1.57-2.82), and for having obesity was 4.18 (95% confidence interval: 2.32-7.55). Addition of maternal and child lifestyle-related characteristics decreased the odds ratios for overweight and obesity by 26.4% and 42.1%, respectively. The results show that an inverse SES-overweight/obesity association is already present at elementary school entry, and that watching TV by mother and child, the child consuming breakfast and, especially maternal weight status, are contributing factors in this association. These results should be taken into account when developing policies to reduce inequalities in (childhood) health.

  16. Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig.

    PubMed

    Newell-Fugate, Annie E; Taibl, Jessica N; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M; Nowak, Romana A; Krisher, Rebecca L

    2015-01-01

    The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the

  17. Obesity in pregnancy.

    PubMed

    Lim, Chu Chin; Mahmood, Tahir

    2015-04-01

    The prevalence of obesity has reached alarming proportions globally, and continues to rise in both developed and developing countries. Maternal obesity has become one of the most commonly occurring risk factors in obstetric practice. The 2003-2005 report of the Confidential Enquiries into Maternal Deaths in the United Kingdom highlighted obesity as a significant risk for maternal death [1]. More than half of all women who died from direct or indirect causes were either overweight or obese. For the mother, obesity increases the risk of obstetric complications during the antenatal, intrapartum and postnatal period, as well as contributing to technical difficulties with fetal assessment. The offspring of obese mothers also have a higher rate of perinatal morbidity and an increased risk of long-term health problems.

  18. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    PubMed Central

    Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas

    2016-01-01

    Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167

  19. Risk factors for obesity and high blood pressure in Chinese American children: maternal acculturation and children's food choices.

    PubMed

    Chen, Jyu-Lin; Weiss, Sandra; Heyman, Melvin B; Lustig, Robert

    2011-04-01

    The objective of this study is to explore risk factors associated with overweight and high blood pressure in Chinese American children. Students and their parents were recruited from Chinese language schools in the San Francisco Bay Area. Data were collected on 67 children and their mothers, and included children's weight, height, waist and hip circumferences, blood pressure, level of physical activity, dietary intake, usual food choice, knowledge about nutrition and physical activity, and self-efficacy regarding diet and physical activity. Mothers completed questionnaires on demographic data and acculturation. About 46% of children had a body mass index exceeding the 85th percentile. Lower level of maternal acculturation is a risk factor for overweight and higher waist to hip ratio. Children's unhealthy food choices were predictive of high body mass index and high systolic blood pressure, whereas older age and less physical activity in children were predictors of high diastolic blood pressure. Developing culturally sensitive and developmentally appropriate interventions to reduce overweight and high blood pressure is critical to reduce health disparities among minority children.

  20. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling

    PubMed Central

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. PMID:27555521

  1. Maternal low protein diets decrease skeletal muscle growth, PGC-1alpha mRNA expression and mitochondrial oxidative respiration and increase obesity and insulin resistance in obesity prone Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition during the fetal growth period followed by postnatal catch-up growth results in obesity and the development of type 2 diabetes (T2D). To determine whether a prenatal low protein diet followed by postnatal high fat diet increases propensity for obesity and T2D in offspring, obese-prone f...

  2. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Staples, Karl J.; Chrysanthou, Elvina; Pearson, Helen; Ziegler-Heitbrock, Loems; Burke, Bernard

    2015-01-01

    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression. PMID:26057378

  3. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  4. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  5. Hepatotoxicity of piperazine designer drugs: up-regulation of key enzymes of cholesterol and lipid biosynthesis.

    PubMed

    Arbo, Marcelo Dutra; Melega, Simone; Stöber, Regina; Schug, Markus; Rempel, Eugen; Rahnenführer, Jörg; Godoy, Patricio; Reif, Raymond; Cadenas, Cristina; de Lourdes Bastos, Maria; Carmo, Helena; Hengstler, Jan G

    2016-12-01

    The piperazine derivatives most frequently consumed for recreational purposes are 1-benzylpiperazine, 1-(3,4-methylenedioxybenzyl) piperazine, 1-(3-trifluoromethylphenyl) piperazine and 1-(4-methoxyphenyl) piperazine. Generally, they are consumed as capsules, tablets or pills but also in powder or liquid forms. Currently, the precise mechanism by which piperazine designer drugs induce hepatotoxicity and whether they act by a common pathway is unclear. To answer this question, we performed a gene array study with rat hepatocytes incubated with the four designer drugs. Non-cytotoxic concentrations were chosen that neither induce a decrease in reduced glutathione or ATP depletion. Analysis of the gene array data showed a large overlap of gene expression alterations induced by the four drugs. This 'piperazine designer drug consensus signature' included 101 up-regulated and 309 down-regulated probe sets (p < 0.05; FDR adjusted). In the up-regulated genes, GO groups of cholesterol biosynthesis represented a dominant overrepresented motif. Key enzymes of cholesterol biosynthesis up-regulated by all four piperazine drugs include sterol C4-methyloxidase, isopentyl-diphosphate-Δ-isomerase, Cyp51A1, squalene epoxidase and farnesyl diphosphate synthase. Additionally, glycoprotein transmembrane nmb, which participates in cell adhesion processes, and fatty acid desaturase 1, an enzyme that regulates unsaturation of fatty acids, were also up-regulated by the four piperazine designer drugs. Regarding the down-regulated probe sets, only one gene was common to all four piperazine derivatives, the betaine-homocysteine-S-methyltransferase 2. Analysis of transcription factor binding sites of the 'piperazine designer drug consensus signature' identified the sterol regulatory element binding protein (SREBP-1) as strongly overrepresented in the up-regulated genes. SREBP transcription factors are known to regulate multiple genes of cholesterol metabolism. In conclusion, the present

  6. Mu opioid receptor up-regulation and participation in excitability of hippocampal pyramidal cell electrophysiology

    SciTech Connect

    Moudy, A.M.

    1988-01-01

    Chronic administration of opiate antagonists to rats results in up-regulation of their brain opioid receptors. Using subcellular fractionation techniques, brain opioid receptors were resolved into two membrane populations, one associated with synaptic plasma membranes (SPM) and the other enriched in smooth endoplasmic reticulum and Golgi (microsomes). This study addressed in part the question of whether an antagonist induces up-regulation uniformly in these two populations. Rats were administered naltrexone by subcutaneously implanted osmotic minipumps. Forebrain mu receptor levels were determined by homologous displacement of ({sup 3}H)D-ala{sup 2}-mePhe{sup 4}-gly-ol{sup 5}-enkephalin (DAGO) followed by computer estimation of binding parameters. Receptor levels in crude membranes rose 77% after treatment. Microsomes displayed a 92% increase, a two-fold greater change than in SPMs (51%). These results establish that naltrexone induces up-regulation of both membrane populations; and that microsomal and SPM receptors represent discrete populations of intracellular and cell surface sites, respectively. Binding experiments on isolated hippocampi also demonstrated up-regulation (71%) of mu receptors. To demonstrate up-regulation of opioid receptors electrophysiologically, hippocampal slices were prepared from rats which had been chronically treated with naltrexone. After superfusion with DAGO, these slices showed a 42% greater population spike output than controls in response to the same EPSP input. Hippocampi from animals treated for two weeks showed an additional increase in sensitivity. The results support a disinhibitory role for opioids in pyramidal cell hyper-excitability. More importantly, they demonstrate a significant physiological correlate to opioid receptor up-regulation.

  7. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis

    PubMed Central

    2014-01-01

    ATP-binding cassette transporter A1 (ABCA1) is a key transporter and receptor in promoting cholesterol efflux, and increasing the expression level of ABCA1 is antiatherogenic. In our previous study, rutaecarpine (RUT) was found to protect ApoE–/– mice from developing atherosclerosis through preferentially up-regulating ABCA1 expression. In the present work, a series of RUT derivatives were synthesized and examined as ABCA1 expression up-regulators. Compounds CD1, CD6, and BCD1–2 were found to possess the most potential activity as antiatherosclerotic agents among all compounds tested. PMID:25147608

  8. Female obesity and infertility.

    PubMed

    Talmor, Alon; Dunphy, Bruce

    2015-05-01

    Infertility affects one in seven couples, and its rate is on the increase. Ovulatory defects and unexplained causes account for >50% of infertile aetiologies. It is postulated that a significant proportion of these cases are either directly or indirectly related to obesity. The prevalence of overweight and obese men and women has topped 50% in some developed countries. Obesity is on the increase worldwide; in turn, the consequences in terms of the associated morbidity and mortality have also been increasing. Obesity is associated with various reproductive sequelae including anovulation, subfertility and infertility, increased risk of miscarriage and poor neonatal and maternal pregnancy outcomes. Thus, the combination of infertility and obesity poses some very real challenges in terms of both the short- and long-term management of these patients. The mechanism with which obesity impacts female reproductive function is summarised in this review.

  9. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma

    PubMed Central

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R.; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A.; Bielenberg, Diane R.

    2017-01-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. PMID:26877262

  10. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    PubMed

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  11. Executive functions and the down-regulation and up-regulation of emotion

    PubMed Central

    Gyurak, Anett; Goodkind, Madeleine S.; Kramer, Joel H.; Miller, Bruce L.; Levenson, Robert W.

    2011-01-01

    This study examined the relationship between individual differences in executive functions (EF; assessed by measures of working memory, Stroop, trail making, and verbal fluency) and ability to down-regulate and up-regulate responses to emotionally evocative film clips. To ensure a wide range of EF, 48 participants with diverse neurodegenerative disorders and 21 older neurologically normal aging participants were included. Participants were exposed to three different movie clips that were designed to elicit a mix of disgust and amusement. While watching the films they were either instructed to watch, down-regulate, and up-regulate their visible emotional responses. Heart-rate and facial behaviors were monitored throughout. Emotion regulatory ability was operationalized as changes in heart-rate and facial behavior in the down- and up-regulation conditions, controlling for responses in the watch condition. Results indicated that higher verbal fluency scores were related to greater ability to regulate emotion in both the down-regulation and up-regulation conditions. This finding remained significant even after controlling for age and general cognitive functioning. No relationships were found between emotion regulation and the other EF measures. We believe these results derive from differences among EF measures, with verbal fluency performance best capturing the complex sequence of controlled planning, activation, and monitoring required for successful emotion regulation. These findings contribute to our understanding of emotion-cognition interaction, suggesting a link between emotion-regulatory abilities and individual differences in complex executive functions. PMID:21432634

  12. Up-regulated miR-145 Expression Inhibits Porcine Preadipocytes Differentiation by Targeting IRS1

    PubMed Central

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering. PMID:23197937

  13. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1.

    PubMed

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.

  14. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.

  15. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  16. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    PubMed

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  17. Metabolic imprinting in obesity.

    PubMed

    Sullivan, E L; Grove, K L

    2010-01-01

    Increasing evidence indicates that early metabolic programming contributes to escalating obesity rates in children and adults. Metabolic imprinting is involved in the establishment of set points for physiologic and metabolic responses in adulthood. Evidence from epidemiological studies and animal models indicates that maternal health and nutritional status during gestation and lactation have long-term effects on central and peripheral systems that regulate energy balance in the developing offspring. Perinatal nutrition also impacts susceptibility to developing metabolic disorders and plays a role in programming body weight set points. The states of maternal energy status and health that are implicated in predisposing offspring to increased risk of developing obesity include maternal overnutrition, diabetes, and undernutrition. This chapter discusses the evidence from epidemiologic studies and animal models that each of these states of maternal energy status results in metabolic imprinting of obesity in offspring. Also, the potential molecular mediators of metabolic imprinting of obesity by maternal energy status including glucose, insulin, leptin, inflammatory cytokines and epigenetic mechanisms are considered.

  18. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression.

    PubMed

    Jin, Dan; Sun, Jun; Huang, Jing; Yu, Xiaoling; Yu, An; He, Yiduo; Li, Qiang; Yang, Zaiqing

    2015-08-15

    Disulfide-bond A oxidoreductase like-protein (DsbA-L) was identified as a molecular chaperone facilitating the assembly and secretion of adiponectin, an adipokine with multiple beneficial effects. In obesity the level of DsbA-L is reduced with a concomitant decrease of the circulating adiponectin level, especially of the high molecular weight form (HMW). Both rodent and human studies have shown that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ agonists increase adiponectin levels in serum by activating PPARγ, which up-regulates critical endoplasmic reticulum (ER) chaperones thus facilitating protein folding. As shown in the present study, overexpression of PPARγ in human embryonic kidney (HEK) 293 cells elicited the cellular release of HMW adiponectin. PPARγ enhanced expression of DsbA-L by binding directly to peroxisome proliferator response element (PPRE) site within the DsbA-L promoter. Conversely, in differentiated 3T3-L1 cells, PPARγ knockdown resulted in decreased expression of Adiponectin, DsbA-L and ERp44. DsbA-L expression increased after PPARγ agonist treatment and decreased upon treatment with PPARγ antagonist in 3T3-L1 adipocytes. DsbA-L deficiency in differentiated 3T3-L1 cells impaired the secretion of adiponectin. We therefore propose that DsbA-L plays an important role in facilitating HMW adiponectin formation and release from cells under the regulation of PPARγ.

  19. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    PubMed

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  20. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    PubMed

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  1. Up-regulation of Fas (CD95) expression in tumour cells in vivo

    PubMed Central

    Peshes-Yaloz, Naama; Rosen, Dalia; Sondel, Paul M; Krammer, Peter H; Berke, Gideon

    2007-01-01

    Both the function and regulation of Fas expression in tumours is poorly understood. Our laboratory has reported that cultured, low Fas-expressing tumours undergo massive, yet reversible, up-regulation of cell surface Fas expression when injected into mice. The present study was aimed at determining what causes this enhanced Fas expression and whether the newly expressed Fas functions as a death receptor. Newly expressed Fas is indeed capable of inducing apoptosis. Based on our observation that Fas induction is reduced when tumour cells are injected into immune-deficient mice, we propose that Fas up-regulation in vivo involves the host's immune system. Accordingly, Fas up-regulation occurs in vitro when low Fas-expressing tumour cells are cocultured with lymphoid cells. Furthermore ascitic fluid extracted from tumour-bearing mice trigger Fas up-regulation in low Fas expressing tumours. This last finding suggests that a soluble factor(s) mediates induction of Fas expression. The best candidate for this soluble factor is nitric oxide (NO) based on the following observations: the factor in the ascites is unstable; Fas expression is induced to a lesser degree after injection into inducible NO synthase (NOS)-deficient (iNOS–/–) mice when compared to control mice; similarly, coculture with iNOS–/– splenocytes induces Fas less effectively than coculture with control splenocytes; and finally, the NO donor SNAP induces considerable Fas up-regulation in tumours in vitro. Our model is that host lymphoid cells in response to a tumour increase NO synthesis, which in turn causes enhanced Fas expression in the tumour. PMID:17343612

  2. Links between maternal health and NCDs.

    PubMed

    Kapur, Anil

    2015-01-01

    Non-communicable diseases (NCDs) and maternal health are closely linked. NCDs such as diabetes, obesity and hypertension have a significant adverse impact on maternal health and pregnancy outcomes, and through the mechanism of intrauterine programming maternal health impacts the burden of NCDs in future generations. The cycle of vulnerability to NCDs is repeated with increasing risk accumulation in subsequent generations. This article discusses the impact, interlinkages and advocates for integration of services for maternal and child health, NCD care and prevention and health promotion to sustainably improve maternal health as well address the rising burden of NCDs.

  3. Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice.

    PubMed

    Trantham-Davidson, Heather; Vazdarjanova, Almira; Dai, Rujuan; Terry, Alvin; Bergson, Clare

    2008-06-03

    Gene linkage and association studies have implicated the region of chromosome 10q containing the calcyon locus with attention deficit hyperactivity disorder (ADHD), bipolar disorder, and schizophrenia susceptibility. In addition, levels of calcyon protein and transcripts are also significantly increased in postmortem tissue from schizophrenic brains. But whether altered calcyon expression might be part of the disease etiology or merely a patho-physiological side effect is not known. To begin to address this issue, we generated a transgenic mouse line (Cal(OE)) using the human calcyon cDNA in which calcyon expression is up-regulated in a number of forebrain structures including the hippocampus, prefrontal cortex (PFC), striatum, and amygdala. Compared to control littermates, the Cal(OE) mice display a range of abnormal behaviors including spontaneous hyperactivity, reduced anxiety, and/or impaired restraint (harm avoidance) that would indicate that calcyon up-regulation leads to deficits in control over behavioral output.

  4. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  5. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  6. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue.

    PubMed

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-11-01

    Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation.

  7. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53

    PubMed Central

    Zakaria, Yusmazura; Rahmat, Asmah; Pihie, Azimahtol Hawariah Lope; Abdullah, Noor Rain; Houghton, Peter J

    2009-01-01

    Background Eurycomanone is a cytotoxic compound found in Eurycoma longifolia Jack. Previous studies had noted the cytotoxic effect against various cancer cell lines. The aim of this study is to investigate the cytotoxicity against human hepato carcinoma cell in vitro and the mode of action. The cytotoxicity of eurycomanone was evaluated using MTT assay and the mode of cell death was detected by Hoechst 33258 nuclear staining and flow cytometry with Annexin-V/propidium iodide double staining. The protein expression Bax, Bcl-2, p53 and cytochrome C were studied by flow cytometry using a spesific antibody conjugated fluorescent dye to confirm the up-regulation of p53 and Bax in cancer cells. Results The findings suggested that eurycomanone was cytotoxic on cancerous liver cell, HepG2 and less toxic on normal cells Chang's liver and WLR-68. Furthermore, various methods proved that apoptosis was the mode of death in eurycomanone-treated HepG2 cells. The characteristics of apoptosis including chromatin condensation, DNA fragmentation and apoptotic bodies were found following eurycomanone treatment. This study also found that apoptotic process triggered by eurycomanone involved the up-regulation of p53 tumor suppressor protein. The up-regulation of p53 was followed by the increasing of pro-apoptotic Bax and decreasing of anti-apoptotic Bcl-2. The increased of cytochrome C levels in cytosol also results in induction of apoptosis. Conclusion The data suggest that eurycomanone was cytotoxic on HepG2 cells by inducing apoptosis through the up-regulation of p53 and Bax, and down-regulation of Bcl-2. PMID:19508737

  8. Delta healthy sprouts: a randomized comparative effectiveness trail to promote maternal weight control and reduce childhood obesity in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive and inadequate gestational weight gain can complicate a woman’s pregnancy and put her and her child at risk for poor delivery and birth outcomes. Further, feeding and activity habits established early in life can significantly impact the development of childhood obesity. Methods: The on...

  9. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury

    PubMed Central

    Ding, Xibing; Jin, Shuqing; Tong, Yao; Jiang, Xi; Chen, Zhixia; Mei, Shuya; Zhang, Liming; Billiar, Timothy R.; Li, Quan

    2017-01-01

    Acute lung injury is a life-threatening inflammatory response caused by severe infection. Toll-like receptors in alveolar macrophages (AMΦ) recognize the molecular constituents of pathogens and activate the host’s innate immune responses. Numerous studies have documented the importance of TLR-TLR cross talk, but few studies have specifically addressed the relationship between TLR4 and TLR3. We explored a novel mechanism of TLR3 up-regulation that is induced by LPS-TLR4 signaling in a dose- and time-dependent manner in AMΦ from C57BL/6 mice, while the LPS-induced TLR3 expression was significantly reduced in TLR4−/− and Myd88−/− mice and following pretreatment with a NF-κB inhibitor. The enhanced TLR3 up-regulation in AMΦ augmented the expression of cytokines and chemokines in response to sequential challenges with LPS and Poly I:C, a TLR3 ligand, which was physiologically associated with amplified AMΦ-induced PMN migration into lung alveoli. Our study demonstrates that the synergistic effect between TLR4 and TLR3 in macrophages is an important determinant in acute lung injury and, more importantly, that TLR3 up-regulation is dependent on TLR4-MyD88-NF-κB signaling. These results raise the possibility that bacterial infections can induce sensitivity to viral infections, which may have important implications for the therapeutic manipulation of the innate immune system. PMID:28198368

  10. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression

    PubMed Central

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-01-01

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-κB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-κB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression. PMID:19721007

  11. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression.

    PubMed

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-10-06

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.

  12. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.

    PubMed

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C

    2007-12-01

    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  13. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring.

    PubMed

    Ornellas, Fernanda; Souza-Mello, Vanessa; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2016-01-01

    We aimed to evaluate the effects of maternal and/or paternal obesity on offspring body mass, leptin signaling, appetite-regulating neurotransmitters and local inflammatory markers. C57BL/6 mice received standard chow (SC, lean groups) or high-fat diet (HF, obese groups) starting from one month of age. At three months, HF mice became obese relative to SC mice. They were then mated as follows: lean mother and lean father, lean mother and obese father, obese mother and lean father, and obese mother and obese father. The offspring received the SC diet from weaning until three months of age, when they were sacrificed. In the offspring, paternal obesity did not lead to changes in the Janus kinase (JAK)/signal transducer and activation of the transcription (STAT) pathway or feeding behavior but did induce hypothalamic inflammation. On the other hand, maternal obesity resulted in increased weight gain, hyperleptinemia, decreased leptin OBRb receptor expression, JAK/STAT pathway impairment, and increased SOCS3 signaling in the offspring. In addition, maternal obesity elevated inflammatory markers and altered NPY and POMC expression in the hypothalamus. Interestingly, combined parental obesity exacerbated the deleterious outcomes compared to single-parent obesity. In conclusion, while maternal obesity is known to program metabolic changes and obesity in offspring, the current study demonstrated that obese fathers induce hypothalamus inflammation in offspring, which may contribute to the development of metabolic syndromes in adulthood.

  14. Obesity: a transgenerational problem linked to nutrition during pregnancy.

    PubMed

    Frias, Antonio E; Grove, Kevin L

    2012-12-01

    The increased obstetric risks of maternal obesity have been well described. These include increased risks of gestational diabetes mellitus, preeclampsia, stillbirth, and cesarean delivery. The fetal/neonatal consequences of prenatal maternal obesity have received less attention. In addition to an increased risk of stillbirth, the fetal/neonatal consequences include increased adiposity and a metabolic status that increases the lifetime risk of obesity and diabetes. This review focuses on the clinical obstetric consequences of maternal obesity and highlights recent mechanistic insights on fetal programming as well as evidence suggesting that prenatal care provides a unique opportunity to ameliorate these risks and decrease the cycle of childhood obesity.

  15. [Maternity blues].

    PubMed

    Gonidakis, F

    2007-04-01

    Maternity blues is a transient change of mood that occurs mainly between the 1st and 10th day of puerpartum and is characterized by bursts of tears, mild depressive mood, anxiety and liability of mood. The frequency of maternity blues varies in different studies form 4% to 80%. A number of biological and psychosocial parameters have been studied in order to determine their correlation with maternity blues. The most well studied biological parameters are progesterone and cortizol although their relation with maternity blues has not yet been clearly defined. Stress and the emotional state of the woman during pregnancy as well as history of mood disorders or maternity blues in a previous birth are the psychosocial parameters that are more likely to correlate with the occurrence of maternity blues. Most of the authors suggest that information on maternity blues and reassurance of the woman are the best way to deal with maternity blues both on preventive and therapeutical basis.

  16. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  17. Up-regulation of the hyaluronate receptor CD44 in canine distemper demyelinated plaques.

    PubMed

    Alldinger, S; Fonfara, S; Kremmer, E; Baumgärtner, W

    2000-02-01

    CD44 antigen (CD44), the principle cell surface receptor for hyaluronate, is up-regulated in the human demyelinating disease multiple sclerosis on fibrous astrocytes. As astrocytes are the main target cell of canine distemper virus (CDV), the consequences of a CDV infection on the CD44 expression and distribution in brains with spontaneous demyelinating canine distemper encephalitis (CDE) were of interest. Thirteen acute, 35 subacute, and 11 chronic plaques of nine dogs with immunohistologically confirmed CDE and brains of control dogs were included in the study. For light microscopy, 5-micron-thick serial sections were stained with H&E and incubated with monoclonal antibodies (mAbs) against CD44 and canine distemper virus nucleoprotein and polyclonal antibodies (pAbs) against glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). For immunoelectron microscopy, 90-nm-thick sections were double stained with anti-GFAP and anti-CD44 mAbs to specify CD44-expressing structures. In controls, CD44 was diffusely distributed in the white matter and single meningeal cells exhibited a marginal expression of the antigen. In acute and more prominently in subacute demyelinating encephalitis, there was a plaque-associated up-regulation of CD44 which paralleled GFAP. In chronic demyelinating lesions, a reduction of CD44 associated with a loss of GFAP-positive astrocytes was noted. Additionally, in chronic plaques, CD44 was expressed on the cell membrane of perivascular mononuclear cells. Immunoelectron microscopically, in controls, CD44 was rarely demonstrated on astrocytic cell processes. In contrast, in brains with CDE CD44 was found on the cell membrane of broadened astrocytic cell processes. In summary, CD44 is up-regulated on astrocytes in the early phase of CDE and seems to represent a marker for the activation of immune cells in the late phase of the infection.

  18. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  19. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation.

    PubMed

    Li, Shih-Wen; Yang, Tsuey-Ching; Lai, Chien-Chen; Huang, Su-Hua; Liao, Jun-Ming; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2014-09-05

    Novel influenza A H7N9 virus, which emerged in 2013, and highly pathogenic H5N1 virus, identified since 2003, pose challenges to public health and necessitate quest for new anti-influenza compounds. Anthraquinone derivatives like aloe-emodin, emodin and chrysophanol, reportedly exhibit antiviral activity. This study probes their inhibitory mechanism and effect against influenza A virus. Of three anthraquinone derivatives, aloe-emodin, with a lower cytotoxicity showed concentration-dependently reducing virus-induced cytopathic effect and inhibiting replication of influenza A in MDCK cells. 50% inhibitory concentration value of aloe-emodin on virus yield was less than 0.05 μg/ml. Proteomics and Western blot of MDCK cells indicated aloe-emodin up-regulating galectin-3, and thioredoxin as well as down-regulating nucleoside diphosphate kinase A. Western blot and quantitative PCR confirmed aloe-emodin up-regulating galectin-3 expression; recombinant galectin-3 augmented expression of antiviral genes IFN-β, IFN-γ, PKR and 2'5',-OAS in infected cells, agreeing with expression pattern of those treated with aloe-emodin. Galectin-3 also inhibited influenza A virus replication. Proteomic analysis of treated cells indicated galectin-3 up-regulation as one anti-influenza A virus action by aloe-emodin. Since galectin-3 exhibited cytokine-like regulatory actions via JAK/STAT pathways, aloe-emodin also restored NS1-inhibited STAT1-mediated antiviral responses in transfected cells: e.g., STAT1 phosphorylation of interferon (IFN) stimulation response element (ISRE)-driven promoter, RNA-dependent protein kinase (PKR) and 2'5',-oligoadenylate synthetase (2'5',-OAS) expression. Treatment with aloe-emodin could control influenza infection in humans.

  20. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness.

  1. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma

    PubMed Central

    2012-01-01

    Background The Breast Cancer Resistance Protein (BCRP/ABCG2) is one member of ABC transporters proteins super family responsible of drug resistance. Since data on ABCG2 expression in liver malignances are scanty, here we report the expression of ABCG2 in adult human hepatocellular carcinoma (HCC) in both in vivo and in vitro models with different degree of malignancy. Methods In cell lines derived from human hepatocellular carcinoma, ABCG2 gene expression was assessed by reverse transcription quantitative real time PCR and function by Hoechst 33342 efflux assay; protein content was assessed by SDS-PAGE Western blot. Results ABCG2 expression was found to be highest in the most undifferentiated cell lines, and this was related with a higher functional activity. ABCG2 expression was sensitive to antineoplastic drugs since exposure to 5 μM doxorubicin for 24 hours resulted in significant up-regulations of ABCG2 in all cell lines, particularly in those lines with low basal ABCG2 expression (p<0.01). The gene expression was also investigated in 51 adult liver tissues with HCC and related cirrhosis; normal liver tissue was used as control. ABCG2 gene expression was higher in HCC than both cirrhotic paired tissue and normal tissue. This up-regulation was greater (p<0.05) in pathological poorly differentiated grade G3/G4 than in well-differentiated G1/G2 HCC. Conclusions Our results suggest a correlation of ABCG2 gene expression and differentiation stage both in human and HCC derived cell lines. The rapid up-regulation of ABCG2 to exposure to doxorubicin emphasizes the importance of this transporter in accounting for drug resistance in liver tumors. PMID:23153066

  2. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.

    PubMed

    Cerri, Chiara; Chimenti, Daniele; Conti, Ilaria; Neri, Tommaso; Paggiaro, Pierluigi; Celi, Alessandro

    2006-08-01

    Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.

  3. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  4. The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons

    PubMed Central

    Ghosh, Anamitra; Saminathan, Hariharan; Kanthasamy, Arthi; Anantharam, Vellareddy; Jin, Huajun; Sondarva, Gautam; Harischandra, Dilshan S.; Qian, Ziqing; Rana, Ajay; Kanthasamy, Anumantha G.

    2013-01-01

    Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117–4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP+-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP+-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD. PMID:23754278

  5. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    PubMed Central

    Rubio, Carlos A.

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  6. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures.

  7. Mung bean decreases plasma cholesterol by up-regulation of CYP7A1.

    PubMed

    Yao, Yang; Hao, Liu; Shi, Zhenxing; Wang, Lixia; Cheng, Xuzhen; Wang, Suhua; Ren, Guixing

    2014-06-01

    Our results affirmed that supplementation of 1 or 2% mung bean could decrease plasma total cholesterol and triacylglycerol level. Mung bean increased mRNA 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Most importantly, mung bean increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of mung bean was most probable mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  8. Frequent up-regulation of WNT5A mRNA in primary gastric cancer.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-05-01

    WNT signal is transduced to the beta-catenin - TCF pathway, the JNK pathway, or the Ca2+-releasing pathway through seven-transmembrane-type WNT receptors encoded by Frizzled genes (FZD1-FZD10). We have previously cloned and characterized human WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT10A, WNT10B, WNT11, WNT14, and WNT14B/WNT15 by using bioinformatics, cDNA-library screening, and cDNA-PCR. Here, we investigated expression of human WNT5A mRNA in various normal tissues, 66 primary tumors derived from various tissues, and 15 human cancer cell lines. WNT5A mRNA was relatively highly expressed in salivary gland, bladder, uterus, placenta, and fetal kidney. Up-regulation of WNT5A mRNA was detected in 5 out of 8 cases of primary gastric cancer, 5 out of 18 cases of primary colorectal tumors, and in 2 out of 7 cases of primary uterus tumors by using matched tumor/normal expression array analysis. Up-regulation of WNT5A mRNA was also detected in 7 out of 10 other cases of primary gastric cancer by using cDNA-PCR. Although low-level expression of WNT5A mRNA was detected in gastric cancer cell line MKN45, WNT5A mRNA was almost undetectable in gastric cancer cell lines OKAJIMA, TMK1, MKN7, MKN28, MKN74, and KATO-III. Compared with frequent up-regulation of WNT5A mRNA in primary gastric cancer, expression levels of WNT5A mRNA in 7 gastric cancer cell lines were significantly lower than that in normal stomach. Frequent up-regulation of WNT5A mRNA in human primary gastric cancer might be due to cancer-stromal interaction.

  9. Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study

    PubMed Central

    Rzehak, Peter; Saffery, Richard; Reischl, Eva; Covic, Marcela; Wahl, Simone; Grote, Veit; Xhonneux, Annick; Langhendries, Jean-Paul; Ferre, Natalia; Closa-Monasterolo, Ricardo; Verduci, Elvira; Riva, Enrica; Socha, Piotr; Gruszfeld, Dariusz; Koletzko, Berthold

    2016-01-01

    Mounting evidence links prenatal exposure to maternal tobacco smoking with disruption of DNA methylation (DNAm) profile in the blood of infants. However, data on the postnatal stability of such DNAm signatures in childhood, as assessed by Epigenome Wide Association Studies (EWAS), are scarce. Objectives of this study were to investigate DNAm signatures associated with in utero tobacco smoke exposure beyond the 12th week of gestation in whole blood of children at age 5.5 years, to replicate previous findings in young European and American children and to assess their biological role by exploring databases and enrichment analysis. DNA methylation was measured in blood of 366 children of the multicentre European Childhood Obesity Project Study using the Illumina Infinium HM450 Beadchip (HM450K). An EWAS was conducted using linear regression of methylation values at each CpG site against in utero smoke exposure, adjusted for study characteristics, biological and technical effects. Methylation levels at five HM450K probes in MYO1G (cg12803068, cg22132788, cg19089201), CNTNAP2 (cg25949550), and FRMD4A (cg11813497) showed differential methylation that reached epigenome-wide significance according to the false-discovery-rate (FDR) criteria (q-value<0.05). Whereas cg25949550 showed decreased methylation (-2% DNAm ß-value), increased methylation was observed for the other probes (9%: cg12803068; 5%: cg22132788; 4%: cg19089201 and 4%: cg11813497) in exposed relative to non-exposed subjects. This study thus replicates previous findings in children ages 3 to 5, 7 and 17 and confirms the postnatal stability of MYO1G, CNTNAP2 and FRMD4A differential methylation. The role of this differential methylation in mediating childhood phenotypes, previously associated with maternal smoking, requires further investigation. PMID:27171005

  10. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin

    PubMed Central

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-01-01

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1. PMID:28251987

  11. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    PubMed

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E; Passananti, Claudio

    2007-08-22

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  12. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    PubMed Central

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  13. Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    PubMed Central

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E.; Passananti, Claudio

    2007-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics. PMID:17712422

  14. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  15. Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone.

    PubMed

    Barchuk, A R; Maleszka, R; Simões, Z L P

    2004-10-01

    Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a 'behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts ( approximately 4 and approximately 5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate-crab-tick-locust group than to the dipteran-lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding.

  16. LTP but not seizure is associated with up-regulation of AKAP-150.

    PubMed

    Génin, A; French, P; Doyère, V; Davis, S; Errington, M L; Maroun, M; Stean, T; Truchet, B; Webber, M; Wills, T; Richter-Levin, G; Sanger, G; Hunt, S P; Mallet, J; Laroche, S; Bliss, T V P; O'Connor, V

    2003-01-01

    We have used differential display to profile and compare the mRNAs expressed in the hippocampus of freely moving animals after the induction of long-term potentiation (LTP) at the perforant path-dentate gyrus synapse with control rats receiving low-frequency stimulation. We have combined this with in situ hybridization and have identified A-kinase anchoring protein of 150 kDa (AKAP-150) as a gene selectively up-regulated during the maintenance phase of LTP. AKAP-150 mRNA has a biphasic modulation in the dentate gyrus following the induction of LTP. The expression of AKAP-150 was 29% lower than stimulated controls 1 h after the induction of LTP. Its expression was enhanced 3 (50%), 6 (239%) and 12 h (210%) after induction, returning to control levels by 24 h postinduction. The NMDA receptor antagonist CPP blocked the tetanus-induced modulation of AKAP-150 expression. Interestingly, strong generalized stimulation produced by electroconvulsive shock did not increase the expression of AKAP-150. This implies that the AKAP-150 harbours a novel property of selective responsiveness to the stimulation patterns that trigger NMDA-dependent LTP in vivo. Its selective up-regulation during LTP and its identified functions as a scaffold for protein kinase A, protein kinase C, calmodulin, calcineurin and ionotropic glutamate receptors suggest that AKAP-150 encodes is an important effector protein in the expression of late LTP.

  17. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin.

    PubMed

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-03-02

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1.

  18. Glutamate Transporter EAAT2 Expression is Up-Regulated in Reactive Astrocytes in Human Periventricular Leukomalacia

    PubMed Central

    DESILVA, TARA M.; BILLIARDS, SARAID S.; BORENSTEIN, NATALIA S.; TRACHTENBERG, FELICIA L.; VOLPE, JOSEPH J.; KINNEY, HANNAH C.; ROSENBERG, PAUL A.

    2010-01-01

    The major neuropathological correlate of cerebral palsy in premature infants is periventricular leukomalacia (PVL), a disorder of the immature cerebral white matter. Cerebral ischemia leading to excitotoxicity is thought to be important in the pathogenesis of this disorder, implying a critical role for glutamate transporters, the major determinants of extracellular glutamate concentration. Previously, we found that EAAT2 expression is limited primarily to premyelinating oligodendrocytes early in development and is rarely observed in astrocytes until >40 weeks. In this study, we analyzed the expression of EAAT2 in cerebral white matter from PVL and control cases. Western blot analysis suggested an up-regulation of EAAT2 in PVL compared with control cases. Single- and double-label immunocytochemistry showed a significantly higher percentage of EAAT2-immunopositive astrocytes in PVL (51.8% ± 5.6%) compared with control white matter (21.4% ± 5.6%; P = 0.004). Macrophages in the necrotic foci in PVL also expressed EAAT2. Premyelinating oligodendrocytes in both PVL and control cases expressed EAAT2, without qualitative difference in expression. The previously unrecognized up-regulation of EAAT2 in reactive astrocytes and its presence in macrophages in PVL reported here may reflect a response to either hypoxic-ischemic injury or inflammation. PMID:18314905

  19. Endothelial interleukin-21 receptor up-regulation in peripheral artery disease

    PubMed Central

    Wang, Tao; Cunningham, Alexis; Houston, Kevin; Sharma, Aditya M; Chen, Lingdan; Dokun, Ayotunde O; Lye, R John; Spolski, Rosanne; Leonard, Warren J; Annex, Brian H

    2016-01-01

    In most patients with symptomatic peripheral artery disease (PAD), severe stenosis in or occlusion of the major blood vessels that supply the legs make the amount of distal blood flow dependent on the capacity to induce angiogenesis and collateral vessel formation. Currently, there are no medications that improve perfusion to the ischemic limb, and thus directly treat the primary problem of PAD. A recent report from our group in a pre-clinical mouse PAD model showed that interleukin-21 receptor (IL-21R) is up-regulated in the endothelial cells from ischemic hindlimb muscle. We further showed that loss of IL-21R resulted in impaired perfusion recovery in this model. In our study, we sought to determine whether IL-21R is present in the endothelium from ischemic muscle of patients with PAD. Using human gastrocnemius muscle biopsies, we found increased levels of IL-21R in the skeletal muscle endothelial cells of patients with PAD compared to control individuals. Interestingly, PAD patients had approximately 1.7-fold higher levels of circulating IL-21. These data provide direct evidence that the IL-21R pathway is indeed up-regulated in patients with PAD. This pathway may serve as a therapeutic target for modulation. PMID:26705256

  20. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    PubMed

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni

    2014-11-07

    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  1. Identification of three proteins up-regulated by raw starch in Cytophaga sp.

    PubMed

    Shiau, Rong-Jen; Wen, Yu-Der; Jeang, Chii-Ling

    2008-12-01

    Raw starch-digesting amylases (RSDAs) in many microorganisms convert starch granules into maltodextrins and simple sugars. We cloned and sequenced from Cytophaga sp. an RSDA with an excellent raw starch digestion activity. This RSDA was highly inducible by raw starch, but not by other sugars, suggesting that an unknown signal transduction mechanism is involved in the degradation of raw starch. We used a proteomic approach to investigate the effect of raw starch on protein expression in Cytophaga sp. Using MALDI-TOF MS protein analysis, we have identified three proteins up-regulated by raw starch, i.e., a 60-kDa chaperonin (cpn60), glutaminase, and pyruvate phosphate dikinase (PPDK). Subsequent time-course studies detected an increased expression of RSDA as well as the highest expression of PPDK occurring 6 h post-incubation with raw corn starch, implying that the latter enzyme may work along with RSDA on the digestion of raw starch. Finding these proteins up-regulated by raw starch may provide an insight into how Cytophaga sp. cells respond to raw starch stimulation.

  2. Antimetastatic effects of norcantharidin on hepatocellular carcinoma cells by up-regulating FAM46C expression

    PubMed Central

    Wan, Xu-Ying; Zhai, Xiao-Feng; Jiang, Yi-Ping; Han, Ting; Zhang, Qiao-Yan; Xin, Hai-Liang

    2017-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Norcantharidin (NCTD), a demethylated analog of cantharidin, possesses antimetastatic effects on HCC cells. The aim of this study was to identify target proteins of NCTD. In this study, we confirmed the antimetastatic effects of NCTD on SMMC-7721 and MHCC-97H cells. Through RNA sequencing, we found a non-canonical poly (A) polymerase, Family-with-sequence-similarity-46C (FAM46C) was up-regulated in response to NCTD exposure. Gene set enrichment analysis on The Cancer Genome Atlas liver HCC (LIHC) dataset revealed that metastasis down pathway was strongly associated with FAM46C expression. Overexpression of FAM46C in HCC cells suppressed cell migration and invasion via suppressing transforming growth factor-β (TGF-β)/Smad signaling and epithelial-mesenchymal transition (EMT) process. Additionally, the antimetastatic effects of NCTD on HCC cells were partially rescued by FAM46C knockdown. Collectively, our results suggested that FAM46C, up-regulated by NCTD treatment, played a critical role in promoting the migration and invasion of HCC cells via TGF-β/Smad signaling. We identified a new therapeutic target of NCTD. PMID:28123642

  3. Up-regulation of SLAP in FLI-1-transformed erythroblasts interferes with EpoR signaling.

    PubMed

    Lebigot, Ingrid; Gardellin, Paola; Lefebvre, Laurent; Beug, Hartmut; Ghysdael, Jacques; Quang, Christine Tran

    2003-12-15

    Rearrangement of the FLI-1 locus and ensuing overexpression of FLI-1 protein is an early event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. When overexpressed in primary erythroblasts, FLI-1 converts erythropoietin (Epo)-induced terminal differentiation into a proliferative response. We found that SLAP, a gene encoding a recently described negative regulator of T-cell antigen receptor function during thymocyte development, is up-regulated both at the RNA and protein levels in FLI-1-transformed erythroblasts. Src-like adaptor protein (SLAP) was found in a specific complex with erythropoietin receptor (EpoR), a cytokine receptor essential to erythroid differentiation. Constitutive expression of SLAP severely impairs hemoglobinization and late survival during Epo-induced terminal differentiation of erythroblasts. This impairment is associated with the specific inhibition of several critical Epo-dependent signaling events, including signal transducer and activator of transcription 5 (STAT5) activation and up-regulation of the expression of the antiapoptotic BCL-X gene. Our data support a model by which FLI-1 inhibits normal erythroid differentiation through the deregulation of genes encoding adaptors/effectors that modify the signaling output of cytokine receptors normally required for terminal differentiation.

  4. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation.

    PubMed

    Regan, Jenna N; Lim, Joohyun; Shi, Yu; Joeng, Kyu Sang; Arbeit, Jeffrey M; Shohet, Ralph V; Long, Fanxin

    2014-06-10

    The bone marrow environment is among the most hypoxic in the body, but how hypoxia affects bone formation is not known. Because low oxygen tension stabilizes hypoxia-inducible factor alpha (HIFα) proteins, we have investigated the effect of expressing a stabilized form of HIF1α in osteoblast precursors. Brief stabilization of HIF1α in SP7-positive cells in postnatal mice dramatically stimulated cancellous bone formation via marked expansion of the osteoblast population. Remarkably, concomitant deletion of vascular endothelial growth factor A (VEGFA) in the mouse did not diminish bone accrual caused by HIF1α stabilization. Thus, HIF1α-driven bone formation is independent of VEGFA up-regulation and increased angiogenesis. On the other hand, HIF1α stabilization stimulated glycolysis in bone through up-regulation of key glycolytic enzymes including pyruvate dehydrogenase kinase 1 (PDK1). Pharmacological inhibition of PDK1 completely reversed HIF1α-driven bone formation in vivo. Thus, HIF1α stimulates osteoblast formation through direct activation of glycolysis, and alterations in cellular metabolism may be a broadly applicable mechanism for regulating cell differentiation.

  5. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  6. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    PubMed

    Hoffman, Gloria E; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  7. Exploring the effects of maternal eating patterns on maternal feeding and child eating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research has demonstrated the importance of maternal feeding practices and children’s eating behavior in the development of childhood obesity. The purpose of this study was to examine the relations between maternal and child eating patterns, and to examine the degree to which these relationsh...

  8. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  9. The role of systemic inflammation linking maternal BMI to neurodevelopment in children.

    PubMed

    van der Burg, Jelske W; Sen, Sarbattama; Chomitz, Virginia R; Seidell, Jaap C; Leviton, Alan; Dammann, Olaf

    2016-01-01

    Children of obese mothers are at increased risk of developmental adversities. Maternal obesity is linked to an inflammatory in utero environment, which, in turn, is associated with neurodevelopmental impairments in the offspring. This is an integrated mechanism review of animal and human literature related to the hypothesis that maternal obesity causes maternal and fetal inflammation, and that this inflammation adversely affects the neurodevelopment of children. We propose integrative models in which several aspects of inflammation are considered along the causative pathway linking maternal obesity with neurodevelopmental limitations.

  10. Placental Glucose transporter 3 (GLUT3) is Up-regulated in Human Pregnancies Complicated by Late-onset Intrauterine Growth Restriction

    PubMed Central

    Janzen, Carla; Lei, Margarida Y.Y.; Cho, John; Sullivan, Peggy; Shin, Bo-Chul; Devaskar, Sherin U.

    2013-01-01

    Introduction Transport of glucose from maternal blood across the placental trophoblastic tissue barrier is critical to sustain fetal growth. The mechanism by which GLUTs are regulated in trophoblasts in response to ischemic hypoxia encountered with intra-uterine fetal growth restriction (IUGR) has not been suitably investigated. Objective To investigate placental expression of GLUT1, GLUT3 and GLUT4 and possible mechanisms of GLUT regulation in idiopathic IUGR. Methods We analyzed clinical, biochemical and histological data from placentas collected from women affected by idiopathic full-term IUGR (n=10) and gestational age-matched healthy controls (n=10). Results We found increased GLUT3 protein expression in the trophoblast (cytotrophoblast greater than syncytiotrophoblast) on the maternal aspect of the placenta in IUGR compared to normal placenta, but no differences in GLUT1 or GLUT4 were found. No differential methylation of the GLUT3 promoter between normal and IUGR placentas was observed. Increased GLUT3 expression was associated with an increased nuclear concentration of HIF-1α, suggesting hypoxia may play a role in the up-regulation of GLUT3. Discussion Further studies are needed to elucidate whether increased GLUT3 expression in IUGR is a marker for defective villous maturation or an adaptive response of the trophoblast in response to chronic hypoxia. Conclusions Patients with IUGR have increased trophoblast expression of GLUT3, as found under the low-oxygen conditions of the first trimester. PMID:24011442

  11. [Maternal phenylketonuria].

    PubMed

    Bókay, János; Kiss, Erika; Simon, Erika; Szőnyi, László

    2013-05-05

    Elevated maternal phenylalanine levels during pregnancy are teratogenic, and may result in embryo-foetopathy, which could lead to stillbirth, significant psychomotor handicaps and birth defects. This foetal damage is known as maternal phenylketonuria. Women of childbearing age with all forms of phenylketonuria, including mild variants such as hyperphenylalaninaemia, should receive detailed counselling regarding their risks for adverse foetal effects, optimally before contemplating pregnancy. The most assured way to prevent maternal phenylketonuria is to maintain the maternal phenylalanine levels within the optimal range already before conception and throughout the whole pregnancy. Authors review the comprehensive programme for prevention of maternal phenylketonuria at the Metabolic Center of Budapest, they survey the practical approach of the continuous maternal metabolic control and delineate the outcome of pregnancies of mothers with phenylketonuria from the introduction of newborn screening until most recently.

  12. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber.

    PubMed

    Tuohy, Kieran M; Conterno, Lorenza; Gasperotti, Mattia; Viola, Roberto

    2012-09-12

    Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.

  13. Water deprivation up-regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, Meng-Meng; Wang, De-Hua

    2016-04-01

    To better understand how desert rodents adapt to water scarcity, we examined urine osmolality, renal distribution and expression of aquaporins (AQPs) in Mongolian gerbils (Meriones unguiculatus) during 7 days of water deprivation (WD). Urine osmolality of the gerbils during WD averaged 7503 mOsm kg(-1). Renal distributions of AQP1, AQP2, and AQP3 were similar to that described in other rodents. After the 7 day WD, renal AQP2 was up-regulated, while resting metabolic rate and total evaporative water loss decreased by 43% and 36%, respectively. Our data demonstrated that Mongolian gerbils showed high urine concentration, renal AQPs expression and body water conservation to cope with limited water availability, which may be critical for their survival during dry seasons in cold deserts.

  14. Exercise-induced up-regulation of MMP-1 and IL-8 genes in endurance horses

    PubMed Central

    Cappelli, Katia; Felicetti, Michela; Capomaccio, Stefano; Pieramati, Camillo; Silvestrelli, Maurizio; Verini-Supplizi, Andrea

    2009-01-01

    Background The stress response is a critical factor in the training of equine athletes; it is important for performance and for protection of the animal against physio-pathological disorders. In this study, the molecular mechanisms involved in the response to acute and strenuous exercise were investigated using peripheral blood mononuclear cells (PBMCs). Results Quantitative real-time PCR (qRT-PCR) was used to detect modifications in transcription levels of the genes for matrix metalloproteinase-1 (MMP-1) and interleukin 8 (IL-8), which were derived from previous genome-wide expression analysis. Significant up-regulation of these two genes was found in 10 horses that had completed a race of 90–120 km in a time-course experimental design. Conclusion These results suggest that MMP-1 and IL-8 are both involved in the exercise-induced stress response, and this represents a starting point from which to understand the adaptive responses to this phenomenon. PMID:19552796

  15. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  16. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate.

  17. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.

    PubMed

    Wang, Yue; Cai, Xiaoli; Zhang, Shuqin; Cui, Ming; Liu, Fabao; Sun, Baodi; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2017-03-11

    The oncoprotein hepatitis B X-interacting protein (HBXIP) results in the dysregulation of lipid metabolism to enhance the development of breast cancer. Acyl-CoA synthetase long-chain family member 1 (ACSL1) is required for thioesterification of long-chain fatty acids into their acyl-CoA derivatives. In this study, we present a hypothesis that HBXIP might be involved in the regulation of ACSL1 in breast cancer. Interestingly, we found that the overexpression of HBXIP was able to up-regulate ACSL1 at the levels of mRNA and protein in a dose-dependent manner in breast cancer cells. Conversely, silencing of HBXIP led to the opposite results. Mechanistically, HBXIP as a coactivator interacted with transcriptional factor Sp1 through binding to the promoter of ACSL1 by ChIP assays analysis, leading to the transcription of ACSL1 in breast cancer cells. Immunohistochemistry staining revealed that the positive rate of ACSL1 was 71.4% (35/49) in clinical breast cancer tissues, HBXIP 79.6% (39/49), in which the positive rate of ACSL1 was 76.9% (30/39) in the HBXIP-positive specimens. But, few positive rate of ACSL1 10% (1/10) was observed in normal breast tissues. The mRNA levels of ACSL1 were significantly higher in clinical breast cancer tissues than those in their corresponding peritumor tissues. The mRNA levels of ACSL1 were positively associated with those of HBXIP in clinical breast cancer tissues. Thus, we conclude that the oncoprotein HBXIP is able to up-regulate ACSL1 through activating the transcriptional factor Sp1 in breast cancer.

  18. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    PubMed

    Tsai, Wen-Chung; Hsu, Chih-Chin; Pang, Jong-Hwei S; Lin, Miao-Sui; Chen, Ying-Hsun; Liang, Fang-Chen

    2012-01-01

    Low-level laser therapy (LLLT) is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2)). Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA) and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR) and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  19. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis

    PubMed Central

    2005-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620

  20. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    PubMed

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  1. Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses

    PubMed Central

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-01-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)–CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist γ-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF–CA3 synapses but not at Schaffer collateral–CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus. PMID:19651762

  2. Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival

    PubMed Central

    Zaman, Mohd Saif; Shahryari, Varahram; Deng, Guoren; Thamminana, Sobha; Saini, Sharonjot; Majid, Shahana; Chang, Inik; Hirata, Hiroshi; Ueno, Koji; Yamamura, Soichiro; Singh, Kamaldeep; Tanaka, Yuichiro; Tabatabai, Z. Laura; Dahiya, Rajvir

    2012-01-01

    Background MicroRNA-21 is up-regulated in a variety of cancers like, breast, colorectal, lung, head and neck etc. However, the regulation of miR-21 in renal cell carcinoma (RCC) has not yet been studied systematically. Methods and Results We measured miR-21 levels in 54 pairs of kidney cancers and their normal matched tissues by real-time PCR. The expression level of miR-21 was correlated with 5 year survival and the pathological stage. Functional studies were done after inhibiting miR-21 in RCC cell lines. We studied in vitro and in vivo effects of the chemo preventive agent genistein on miR-21 expression. In 48 cases (90%), miR-21 was increased. All patients with low miR-21 expression survived 5 years, while with high miR-21 expression, only 50% survived. Higher expression of miR-21 is associated with an increase in the stage of renal cancer. Functional studies after inhibiting miRNA-21 in RCC cell lines show cell cycle arrest, induction of apoptosis and reduced invasive and migratory capabilities. Western blot analysis showed an increase in the expression of p21 and p38 MAP kinase genes and a reduction in cyclin E2. Genistein inhibited the expression of miR-21 in A-498 cells and in the tumors formed after injecting genistein treated A-498 cells in nude mice besides inhibiting tumor formation. Conclusions The current study shows a clear correlation between miR-21 expression and clinical characteristics of renal cancer. Thus we believe that miR-21 can be used as a tumor marker and its inhibition may prove to be useful in controlling cancers with up-regulated miR-21. PMID:22347428

  3. Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline.

    PubMed

    Kim, Seong Who; Park, So Yeon; Hwang, Onyou

    2002-04-01

    The neurotransmitter serotonin is involved in a variety of brain functions, and abnormal changes in serotonin neurotransmission are associated with an array of psychiatric disorders, including depression. Sertraline is a selective serotonin reuptake inhibitor (SSRI) and an effective antidepressant. Sertraline increases the serotonin concentration in the synaptic cleft by a short-term action; however, clinical improvement is observed only after several weeks, suggesting that the therapeutic effect may be caused by long-term alterations in serotonin transmission. We determined the effects of sertraline on serotonin synthesis in vivo and in vitro. Long-term treatment of rats with sertraline up-regulated mRNA and protein levels of the serotonin-synthesizing enzyme tryptophan hydroxylase (TPH), as determined by in situ hybridization and immunocytochemistry, respectively. In vitro studies using RBL-2H3 cells also showed an increase in mRNA and protein levels of TPH by sertraline, as determined by Northern blot and immunoblot analyses, respectively. This was accompanied by increases in the levels of TPH enzymatic activity and total serotonin. These data demonstrate that in addition to the known short-term action as an uptake blocker, sertraline also exerts a long-term effect on the serotonin neurotransmission by enhancing serotonin synthesis. A similar effect was observed with another SSRI, fluoxetine, but not with the non-SSRI chlorpromazine. The up-regulation of TPH gene expression by sertraline was attenuated by the protein kinase A (PKA) inhibitor N-[2-(p-bromocinnamylamine)-ethyl]-5-isoquinolinesulfonamine, suggesting that a mechanism involving the PKA signaling pathway might at least in part mediate the long-term therapeutic action.

  4. To Assess the Effect of Maternal BMI on Obstetrical Outcome

    NASA Astrophysics Data System (ADS)

    Lakhanpal, Shuchi; Aggarwal, Asha; Kaur, Gurcharan

    2012-06-01

    AIMS: To assess the effect of maternal BMI on complications in pregnancy, mode of delivery, complications of labour and delivery.METHODS:A crossectional study was carried out in the Obst and Gynae department, Kasturba Hospital, Delhi. The study enrolled 100 pregnant women. They were divided into 2 groups based on their BMI, more than or equal to 30.0 kg/m2 were categorized as obese and less than 30 kg/m2 as non obese respectively. Maternal complications in both types of patients were studied.RESULTS:CONCLUSION: As the obstetrical outcome is significantly altered due to obesity, we can improve maternal outcome by overcoming obesity. As obesity is a modifiable risk factor, preconception counseling creating awareness regarding health risk associated with obesity should be encouraged and obstetrical complications reduced.

  5. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus ofobesity-induced hypertensive rats.

    PubMed

    Kishi, Takuya; Hirooka, Yoshitaka; Nagayama, Tomomi; Isegawa, Kengo; Katsuki, Masato; Takesue, Ko; Sunagawa, Kenji

    2015-01-01

    In metabolic syndrome (MetS), previous studies have suggested that cognitive decline is worsened. Among the factors associated with cognition, decreased brain-derived neurotrophic factor (BDNF) in the hippocampus causes cognitive decline. We previously reported that exercise training with calorie restriction yielded protection against cognitive decline via BDNF in the hippocampus of hypertensive rats. The aim of the present study was to determine whether or not calorie restriction results in protection against cognitive decline via BDNF and its receptor tropomyosin-related kinase B (TrkB) in the hippocampus of MetS model rats. We divided dietary-induced obesity-prone and hypertensive rats (OP), as metabolic syndrome model rats, into three groups, fed with a high fat diet (HF), treated with calorie restriction (CR) plus vehicle, and treated with CR and ANA-12 (a TrkB antagonist) (CR+A). After treatment for 28 days, body weight, insulin, fasting blood glucose, adiponectin, systolic blood pressure, and oxidative stress in the hippocampus were significantly lower, and BDNF expression in the hippocampus was significantly higher in CR and CR+A than in HF. Cognitive performance determined by the Morris water maze test was significantly higher in CR than in HF, whereas the benefit was attenuated in CR+A. In conclusion, calorie restriction protects against cognitive decline via up-regulation of BDNF/TrkB through an antioxidant effect in the hippocampus of dietary-induced obesity rats.

  6. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPARalpha activation and oxidative stress.

    PubMed

    Zhang, X; Li, L; Prabhakaran, K; Zhang, L; Leavesley, H B; Borowitz, J L; Isom, G E

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential (DeltaPsi(m)) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPARalpha antagonist) or PPARalpha knock-down by RNA interference (RNAi) inhibited PPARalpha activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPARalpha did not alter ROS generation, suggesting a PPARalpha-independent component to the response. Co-treatment with PPARalpha-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPARalpha-mediated pathway and an oxidative stress pathway independent of PPARalpha mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  7. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  8. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum).

    PubMed

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-19

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.

  9. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  10. Factors associated with abdominal obesity in children

    PubMed Central

    Melzer, Matheus Ribeiro Theodósio Fernandes; Magrini, Isabella Mastrangi; Domene, Semíramis Martins Álvares; Martins, Paula Andrea

    2015-01-01

    Objective: To identify the association of dietary, socioeconomic factors, sedentary behaviors and maternal nutritional status with abdominal obesity in children. Methods: A cross-sectional study with household-based survey, in 36 randomly selected census tracts in the city of Santos, SP. 357 families were interviewed and questionnaires and anthropometric measurements were applied in mothers and their 3-10 years-old children. Assessment of abdominal obesity was made by maternal and child's waist circumference measurement; for classification used cut-off points proposed by World Health Organization (1998) and Taylor et al. (2000) were applied. The association between variables was performed by multiple logistic regression analysis. Results: 30.5% of children had abdominal obesity. Associations with children's and maternal nutritional status and high socioeconomic status were shown in the univariate analysis. In the regression model, children's body mass index for age (OR=93.7; 95%CI 39.3-223.3), female gender (OR=4.1; 95%CI 1.8-9.3) and maternal abdominal obesity (OR=2.7; 95%CI 1.2-6.0) were significantly associated with children's abdominal obesity, regardless of the socioeconomic status. Conclusions: Abdominal obesity in children seems to be associated with maternal nutritional status, other indicators of their own nutritional status and female gender. Intervention programs for control of childhood obesity and prevention of metabolic syndrome should consider the interaction of the nutritional status of mothers and their children. PMID:26298655

  11. Management of obesity in pregnancy.

    PubMed

    Catalano, Patrick M

    2007-02-01

    Maternal pregravid obesity is a significant risk factor for adverse outcomes during pregnancy. In early pregnancy there is an increased risk of spontaneous abortion and congenital anomalies. In later gestation maternal metabolic manifestations of the metabolic syndrome, such as gestational hypertensive disorders and diabetes, become clinically recognized because of the increased insulin resistance in obese compared with nonobese women. In women with pregestational glucose intolerance, hypertension, central obesity, and lipid disorders, the physiologic changes in pregnancy increase the risk of problems previously not routinely encountered during pregnancy. These include chronic cardiac dysfunction, proteinuria, sleep apnea, and nonalcoholic fatty liver disease. At parturition the obese patient is at an increased risk of cesarean delivery and associated complications of anesthesia, wound disruption, infection, and deep venous thrombophlebitis. For the fetus there are short-term risks of fetal macrosomia, more specifically obesity, and long-term risks of adolescent components of the metabolic syndrome. Although preliminary results of bariatric surgery are encouraging, the procedure is expensive and not for all obese women, and we recognize that long-term follow-up data on offspring of obese women who have undergone bariatric surgery before pregnancy are lacking. In the interim, we need to encourage obese women to lose weight before conception, using lifestyle changes if possible. During pregnancy, weight gain should be limited to Institute of Medicine guidelines (currently under review) and encouragement given for physical activity.

  12. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation.

    PubMed

    Lin, Yan; Chen, Yulong; Zhu, Ninghong; Zhao, Sihai; Fan, Jianglin; Liu, Enqi

    2016-10-01

    Hydrogen sulfide (H2S) is an important gaseous signaling molecule that serves many important regulatory roles in physiological and pathophysiological conditions. H2S exerts an anti-atherosclerotic effect through mediating the biological functions of nitric oxide (NO). However, its mechanism of action is unclear. The purpose of this study is to explore the effect mechanism of H2S on the development of atherosclerosis with regard to protein S-nitrosylation. A total of 45 male apoE(-/-) mice were randomly divided into three groups. Atherosclerosis was induced by Western diet (21% fat and 0.15% cholesterol) with/without administration of a H2S donor (NaHS) or an endogenous cystathionine γ-lyase inhibitor (d, l-propargylglycine) for 12 weeks. After 12 weeks, plasma lipid and plasma NO levels were measured. Aortic gross lesion area and histopathological features of aortic lesion were determined. Additionally, the level of S-nitrosylated proteins in vascular smooth muscle cells (VSMCs) was detected using immunofluorescence in aorta. Rat VSMCs were performed in an in vitro experiment. Inducible nitric oxide synthase (iNOS) protein expression, NO generation, protein S-nitrosylation, and cell proliferation and migration were measured. We found that H2S significantly reduced the aortic atherosclerotic lesion area (P=0.006) and inhibited lipid and macrophage accumulation (P=0.004, P=0.002) and VSMC proliferation (P=0.019) in apoE(-/-) mice. H2S could up-regulate levels of plasma NO and protein S-nitrosylation in aorta VSMCs. However, d, l- propargylglycine had the opposite effect, increasing the lesion area and the content of lipids and macrophages in the lesions of apoE(-/-) mice and down-regulating plasma NO levels and protein S-nitrosylation in aorta VSMCs. In vitro experiments, H2S could significantly reverse the reduction of iNOS expression and NO generation induced by oxidized low-density lipoprotein in VSMCs. Moreover, H2S could increase the protein S

  13. Genistein Up-Regulates Tumor Suppressor MicroRNA-574-3p in Prostate Cancer

    PubMed Central

    Chiyomaru, Takeshi; Yamamura, Soichiro; Fukuhara, Shinichiro; Hidaka, Hideo; Majid, Shahana; Saini, Sharanjot; Arora, Sumit; Deng, Guoren; Shahryari, Varahram; Chang, Inik; Tanaka, Yuichiro; Tabatabai, Z. Laura; Enokida, Hideki; Seki, Naohiko; Nakagawa, Masayuki; Dahiya, Rajvir

    2013-01-01

    Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as ‘Pathways in cancer’, ‘Jak-STAT signaling pathway’, and ‘Wnt signaling pathway’. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3′ UTR of several target genes (such as RAC1, EGFR and EP300) that are components of ‘Pathways in cancer’. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa. PMID:23554959

  14. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  15. Centenarians, but not octogenarians, up-regulate the expression of microRNAs.

    PubMed

    Serna, Eva; Gambini, Juan; Borras, Consuelo; Abdelaziz, Kheira M; Mohammed, Kheira; Belenguer, Angel; Sanchis, Paula; Avellana, Juan A; Rodriguez-Mañas, Leocadio; Viña, Jose

    2012-01-01

    Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity.

  16. Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase

    PubMed Central

    Henriques, Alexandre; Croixmarie, Vincent; Priestman, David A.; Rosenbohm, Angela; Dirrig-Grosch, Sylvie; D'Ambra, Eleonora; Huebecker, Mylene; Hussain, Ghulam; Boursier-Neyret, Claire; Echaniz-Laguna, Andoni; Ludolph, Albert C.; Platt, Frances M.; Walther, Bernard; Spedding, Michael; Loeffler, Jean-Philippe; Gonzalez De Aguilar, Jose-Luis

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. Growing evidence suggests a link between changes in lipid metabolism and ALS. Here, we used UPLC/TOF-MS to survey the lipidome in SOD1(G86R) mice, a model of ALS. Significant changes in lipid expression were evident in spinal cord and skeletal muscle before overt neuropathology. In silico analysis also revealed appreciable changes in sphingolipids including ceramides and glucosylceramides (GlcCer). HPLC analysis showed increased amounts of GlcCer and downstream glycosphingolipids (GSLs) in SOD1(G86R) muscle compared with wild-type littermates. Glucosylceramide synthase (GCS), the enzyme responsible for GlcCer biosynthesis, was up-regulated in muscle of SOD1(G86R) mice and ALS patients, and in muscle of wild-type mice after surgically induced denervation. Conversely, inhibition of GCS in wild-type mice, following transient peripheral nerve injury, reversed the overexpression of genes in muscle involved in oxidative metabolism and delayed motor recovery. GCS inhibition in SOD1(G86R) mice also affected the expression of metabolic genes and induced a loss of muscle strength and morphological deterioration of the motor endplates. These findings suggest that GSLs may play a critical role in ALS muscle pathology and could lead to the identification of new therapeutic targets. PMID:26483191

  17. Up-regulation of Vps4A promotes neuronal apoptosis after intracerebral hemorrhage in adult rats.

    PubMed

    Ren, Jianbing; Yuan, Debin; Xie, Lili; Tao, Xuelei; Duan, Chenwei; Bao, Yifeng; He, Yunfeng; Ge, Jianbin; Lu, Hongjian

    2017-04-01

    Vps4, vacuolar protein sorting 4, belongs to ATPases Associated with diverse cellular Activities (AAA) protein family which is made up of Vps4A and Vps4B. Previous studies demonstrated that Vps4A plays vital roles in diverse aspects such as virus budding, the efficient transport of H-Ras to the PM (plasma membrane) and the involvement in the MVB (multivesiculate bodies) pathway. Interestingly, Vps4A is also expressed in the brain. However, the distribution and function of Vps4A in ICH diseases remain unclear. In this study, we show that Vps4A may be involved in neuronal apoptosis during pathophysiological processes of intracerebral hemorrhage (ICH). Based on the results of Western blot and immunohistochemistry, we found a remarkable up-regulation of Vps4A expression surrounding the hematoma after ICH. Double labeled immunofluorescence showed that Vps4A was co-expressed with NeuN but rarely with astrocytes and microglia. Morever, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with Vps4A. Additionaly, Vps4A knockdown in vitro specifically leads to decreasing neuronal apoptosis coupled with increased Akt phosphorylation. All datas suggested that Vps4A was involved in promoting neuronal apoptosis via inhibiting Akt phosphorylation after ICH.

  18. [PPARγ up-regulates TGFβ/smad signal pathway repressor c-Ski].

    PubMed

    Li, Gong-bo; Li, Jun; Zeng, Yi-jun; Zhong, Dan; Wu, Geng-ze; Fu, Xiao-hong; He, Feng-tian; Dai, Shuang-shuang

    2011-02-25

    TGFβ/smad pathway is recognized as an important signal pathway to promote the pathogenesis of atherosclerosis (AS). Peroxisome proliferator-activated receptor γ (PPARγ) activation is considered to be important in modulating AS. Herein, we investigated the regulation of PPARγ on c-Ski, the repressor of TGFβ/smad pathway, in rat AS model and cultured vascular smooth muscle cells (VSMCs). c-Ski mRNA and protein expression were detected by real-time PCR and Western blot, respectively, in vivo and in vitro with treatment of PPARγ agonist rosiglitazone and antagonist GW9662. The proliferation and collagen secretion of VSMCs after c-Ski transfection were investigated. The underlying mechanism was further investigated by online program NUBIScan and luciferase reporter gene analysis. Results showed that both mRNA and protein expressions of c-Ski in the AS lesions was down-regulated in vivo, while in cultured VSMCs, c-Ski transfection significantly suppressed the proliferation and collagen secretion of rat VSMCs. Rosiglitazone significantly up-regulated mRNA and protein levels of c-Ski in VSMCs, which could be blocked by GW9662. Online NUBIScan analysis suggested possible PPARγ binding sites in the promoter region of c-Ski. In addition, luciferase activity of c-Ski reporter gene was also increased obviously in the presence of rosiglitazone. These results indicate that c-Ski is one of the newly found target genes of PPARγ and thus involved in the anti-AS effect of PPARγ.

  19. Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells

    PubMed Central

    Lai, Ming-Chih; Chang, Chiao-May; Sun, H. Sunny

    2016-01-01

    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. PMID:27078027

  20. Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef

    NASA Astrophysics Data System (ADS)

    Mörk, Erik; Sjöö, Gustaf Lilliesköld; Kautsky, Nils; McClanahan, Tim R.

    2009-09-01

    Top-down and bottom-up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity ( H') and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.

  1. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    PubMed

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  2. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts

    PubMed Central

    Trerotola, Marco; Ganguly, Kirat K.; Fazli, Ladan; Fedele, Carmine; Lu, Huimin; Dutta, Anindita; Liu, Qin; De Angelis, Tiziana; Riddell, Luke W.; Riobo, Natalia A.; Gleave, Martin E.; Zoubeidi, Amina; Pestell, Richard G.; Altieri, Dario C.; Languino, Lucia R.

    2015-01-01

    In this study, we show that the transmembrane glycoprotein Trop-2 is up-regulated in human prostate cancer (PCa) with extracapsular extension (stages pT3/pT4) as compared to organ-confined (stage pT2) PCa. Consistent with this evidence, Trop-2 expression is found to be increased in metastatic prostate tumors of Transgenic Adenocarcinoma of Mouse Prostate mice and to strongly correlate with α5β1 integrin levels. Using PCa cells, we show that Trop-2 specifically associates with the α5 integrin subunit, as binding to α3 is not observed, and that Trop-2 displaces focal adhesion kinase from focal contacts. In support of the role of Trop-2 as a promoter of PCa metastatic phenotype, we observe high expression of this molecule in exosomes purified from Trop-2-positive PCa cells. These vesicles are then found to promote migration of Trop-2-negative PCa cells on fibronectin, an α5β1 integrin/focal adhesion kinase substrate, thus suggesting that the biological function of Trop-2 may be propagated to recipient cells. In summary, our findings show that Trop-2 promotes an α5β1 integrin-dependent pro-metastatic signaling pathway in PCa cells and that the altered expression of Trop-2 may be utilized for early identification of capsule-invading PCa. PMID:26015409

  3. Inflammasome Up-Regulation and Activation in Dysferlin-Deficient Skeletal Muscle

    PubMed Central

    Rawat, Rashmi; Cohen, Tatiana V.; Ampong, Beryl; Francia, Dwight; Henriques-Pons, Andrea; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    A deficiency of the dysferlin protein results in limb girdle muscular dystrophy type 2B and Miyoshi myopathy, with resulting plasma membrane abnormalities in myofibers. Many patients show muscle inflammation, but the molecular mechanisms that initiate and perpetuate this inflammation are not well understood. We previously showed abnormal activation of macrophages and hypothesized that activation of the inflammasome pathway may play a role in disease progression. To test this, we studied the inflammasome molecular platform in dysferlin-deficient human and mouse muscle. Consistent with our model, components of the NACHT, LRR and PYD-containing proteins (NALP)-3 inflammasome pathway were specifically up-regulated and activated in dysferlin-deficient but not in dystrophin-deficient and normal muscle. We demonstrate for the first time that normal primary skeletal muscle cells are capable of secreting IL-1β in response to combined treatment with lipopolysaccharide and the P2X7 receptor agonist, benzylated ATP, suggesting that not only immune cells but also muscle cells can actively participate in inflammasome formation. In addition, we show that dysferlin-deficient primary muscle cells express toll-like receptors (TLRs; TLR-2 and TLR-4) and can efficiently produce IL-1β in response to lipopolysaccharide and benzylated ATP. These data indicate that skeletal muscle is an active contributor of IL-1β and strategies that interfere with this pathway may be therapeutically useful for patients with limb girdle muscular dystrophy type 2B. PMID:20413686

  4. Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis.

    PubMed

    de Oliveira, Joana T; Ribeiro, Cláudia; Barros, Rita; Gomes, Catarina; de Matos, Augusto J; Reis, Celso A; Rutteman, Gerard R; Gärtner, Fátima

    2015-01-01

    The tumor microenvironment encompasses several stressful conditions for cancer cells such as hypoxia, oxidative stress and pH alterations. Galectin-3, a well-studied member of the beta-galactoside-binding animal family of lectins has been implicated in multiple steps of metastasis as cell-cell and cell-ECM adhesion, promotion of angiogenesis, cell proliferation and resistance to apoptosis. However, both its aberrantly up- and down-regulated expression was observed in several types of cancer. Thus, the mechanisms that regulate galectin-3 expression in neoplastic settings are not clear. In order to demonstrate the putative role of hypoxia in regulating galectin-3 expression in canine mammary tumors (CMT), in vitro and in vivo studies were performed. In malignant CMT cells, hypoxia was observed to induce expression of galectin-3, a phenomenon that was almost completely prevented by catalase treatment of CMT-U27 cells. Increased galectin-3 expression was confirmed at the mRNA level. Under hypoxic conditions the expression of galectin-3 shifts from a predominant nuclear location to cytoplasmic and membrane expressions. In in vivo studies, galectin-3 was overexpressed in hypoxic areas of primary tumors and well-established metastases. Tumor hypoxia thus up-regulates the expression of galectin-3, which may in turn increase tumor aggressiveness.

  5. Δ(9)-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ).

    PubMed

    Takeda, Shuso; Yoshida, Kazutaka; Nishimura, Hajime; Harada, Mari; Okajima, Shunsuke; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2013-07-15

    Δ(9)-Tetrahydrocannabinol (Δ(9)-THC) has been reported as possessing antiestrogenic activity, although the mechanisms underlying these effects are poorly delineated. In this study, we used the estrogen receptor α (ERα)-positive human breast cancer cell line, MCF-7, as an experimental model and showed that Δ(9)-THC exposures markedly suppresses 17β-estradiol (E2)- induced MCF-7 cell proliferation. We demonstrate that these effects result from Δ(9)-THC's ability to inhibit E2-liganded ERα activation. Mechanistically, the data obtained from biochemical analyses revealed that (i) Δ(9)-THC up-regulates ERβ, a repressor of ERα, inhibiting the expression of E2/ERα-regulated genes that promote cell growth and that (ii) Δ(9)-THC induction of ERβ modulates E2/ERα signaling in the absence of direct interaction with the E2 ligand binding site. Therefore, the data presented support the concept that Δ(9)-THC's antiestrogenic activities are mediated by the ERβ disruption of E2/ERα signaling.

  6. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  7. Snail up-regulates pro-inflammatory mediators and inhibits differentiation in oral keratinocytes

    PubMed Central

    Lyons, J. Guy; Patel, Vyomesh; Roue, Naomi C.; Fok, Sandra Y.; Soon, Lilian L.; Halliday, Gary M.; Gutkind, J. Silvio

    2008-01-01

    The transcriptional repressor, Snail2, is over-expressed in head and neck squamous cell carcinomas (HNSCCs) relative to non-malignant head and neck mucosal epithelium, and in locally recurrent relative to non-recurrent HNSCCs. We investigated the mechanisms by which Snails might contribute to the pathogenesis of HNSCCs using cell biological and molecular analyses. Oral keratinocytes that expressed Snails acquired an enhanced ability to attract monocytes and to invade a dense interstitial collagen matrix. They were also found to up-regulate production of pro-inflammatory cytokines and cyclooxygenase-2 (COX2), which have previously been shown to correlate with malignancy. Induction of nuclear factor-kappa B transcriptional activity by Snails was weak and not sufficient to account for the elevated levels of COX2, interleukin-6, interleukin-8 or CXCL1. In addition, expression of Snails in oral keratinocytes impaired desquamation in vitro and strongly repressed expression of both ELF3 and matriptase-1, which play important roles in the terminal differentiation of keratinocytes. Re-expression of matriptase-1 in Snail-expressing cells partially rescued desquamation. This implicates Snails as contributing to malignancy both at the early stages, by impeding terminal differentiation, and at later stages, when invasion and inflammation are important. PMID:18559496

  8. [Preliminary influence of 2015 cigarette excise tax up-regulation on cigarette retail price].

    PubMed

    Feng, G Z; Wang, C X; Yang, J Q; Jiang, Y

    2016-10-10

    Objective: To evaluate the impact of cigarette excise tax up-regulation on the retail price of cigarettes in 2015. Methods: Nominal and real price of selected cigarette varieties were calculated with data from Tobacco Retail Price Monitoring Project, which was conducted in 10 cities of China from 2013 to 2015. The trend of the cigarette prices changing was analyzed with annual data. Results: A total of 352 varieties of cigarettes were surveyed during the three years. The nominal price of these cigarettes did not change significantly from 2013 to 2014. Compared with nominal price of 2014, the price of 286 varieties increased and the price of 10 most popular varieties increased from 0.6% to 7.4% after cigarette excise tax increased, but the actual prices had both rise and fall compared with 2013. Conclusions: Cigarette excise tax raise in 2015 had influence on the retail price of cigarettes. But the increase in retail price was very limited, if factors including inflation and purchasing power are taken into consideration. Therefore, the influence of 2015 cigarette excise tax raise on tobacco control needs further evaluation.

  9. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  10. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks

    PubMed Central

    Singer, Tania

    2015-01-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  11. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin

    PubMed Central

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  12. Cocaine up-regulates norepinephrine transporter binding in the rat placenta.

    PubMed

    Shearman, L P; Meyer, J S

    1999-12-10

    We investigated the influence of 3 days of continuous cocaine exposure on norepinephrine transporter binding in the rat placenta. On gestational day 17, pregnant rats were implanted subcutaneously with two cocaine-containing Silastic capsules. There were two control groups, one that received capsules with vehicle only and was pair-fed to the cocaine-treated females, and a second group that was untreated and fed ad libitum. Placentas and fetal brains were harvested and frozen on gestational day 20, and subsequently subjected to saturation analyses for norepinephrine transporter binding using the selective ligand [3H]nisoxetine. There was a marked increase in the density (B(max)) of norepinephrine transporter binding sites in the placentas of the cocaine-treated animals compared to both control groups, but no change in the fetal brain. The mechanism underlying this up-regulation of the placental norepinephrine transporter is not yet known, but it could involve a beta-adrenoceptor- and cAMP-mediated induction of transporter gene expression.

  13. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN

    PubMed Central

    Kuo, Hsiao-Mei; Liu, Li-Fen; Hu, Tsung-Hui; Sun, Cheuk-Kwan; Kung, Mei-Lang; Lin, Shih-Wei; Wang, E-Ming; Ma, Yi-Ling; Cheng, Kwan-Hung; Lai, Kwok Hung; Wen, Zhi-Hong; Hsu, Ping-I; Tai, Ming-Hong

    2014-01-01

    Celecoxib, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, can prevent several types of cancer, including hepatocellular carcinoma (HCC). Here we show that celecoxib suppressed the self-renewal and drug-pumping functions in HCC cells. Besides, celecoxib depleted CD44 + /CD133 + hepatic cancer stem cells (hCSC). Prostaglandin E2 (PGE2) and CD133 overexpression did not reverse the celecoxib-induced depletion of hCSC. Also, celecoxib inhibited progression of rat Novikoff hepatoma. Moreover, a 60-day celecoxib program increased the survival rate of rats with hepatoma. Histological analysis revealed that celecoxib therapy reduced the abundance of CD44 + /CD133 + hCSCs in hepatoma tissues. Besides, the hCSCs depletion was associated with elevated apoptosis and blunted proliferation and angiogenesis in hepatoma. Celecoxib therapy activated peroxisome proliferator-activated receptor γ (PPARγ) and up-regulated PTEN, thereby inhibiting Akt and disrupting hCSC expansion. PTEN gene delivery by adenovirus reduced CD44/CD133 expression in vitro and hepatoma formation in vivo. This study suggests that celecoxib suppresses cancer stemness and progression of HCC via activation of PPARγ/PTEN signaling. PMID:24721996

  14. Withdrawal from chronic cocaine up-regulates 5-HT1B receptors in the rat brain.

    PubMed

    Przegaliński, Edmund; Czepiel, Klaudia; Nowak, Ewa; Dlaboga, Daniel; Filip, Małgorzata

    2003-11-20

    In the present study we examined the effect of prolonged treatment with cocaine (a sensitization and discrimination paradigm) on the expression of serotonin (5-HT)(1B) receptors in rat brain structures using a quantitative autoradiographic analysis. To estimate the distribution of 5-HT(1B) receptors in several brain coronal sections, we used [N-methyl-(3)H]GR 125743, a 5-HT(1B/1D) receptor antagonist, in the presence of ketanserin (a drug used to block 5-HT(1D) receptors). The binding of [N-methyl-(3)H]GR 125743 in the areas containing dopamine cell bodies (the ventral tegmental area, the substantia nigra) and terminals (the nucleus accumbens shell and core, but not in the caudate-putamen) and in the subiculum of the hippocampus was increased after withdrawal from repeated cocaine in both the discrimination and the sensitization paradigms, either being effective as confirmed by behavioral experiments. Neither acute cocaine injection nor the psychostimulant challenge following its repeated administration affected the binding of [N-methyl-(3)H]GR 125743 in the above brain areas. Our results indicate that withdrawal from chronic cocaine induces up-regulation of 5-HT(1B) receptors in a number of rat brain structures.

  15. Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle

    PubMed Central

    Fountain, S J; Cheong, A; Flemming, R; Mair, L; Sivaprasadarao, A; Beech, D J

    2004-01-01

    This study focused on the hypothesis that KCNA genes (which encode KVα1 voltage-gated K+ channels) have enhanced functional expression in smooth muscle cells of a primary determinant of peripheral resistance – the small mesenteric artery. Real-time PCR methodology was developed to measure cell type-specific in situ gene expression. Profiles were determined for arterial myocyte expression of RNA species encoding KVα1 subunits as well as KVβ1, KVα2.1, KVγ9.3, BKCaα1 and BKCaβ1. The seven major KCNA genes were expressed and more readily detected in endothelium-denuded mesenteric resistance artery compared with thoracic aorta; quantification revealed dramatic differential expression of one to two orders of magnitude. There was also four times more RNA encoding KVα2.1 but less or similar amounts encoding KVβ1, KVγ9.3, BKCaα1 and BKCaβ1. Patch-clamp recordings from freshly isolated smooth muscle cells revealed dominant KVα1 K+ current and current density twice as large in mesenteric cells. Therefore, we suggest the increased RNA production of the resistance artery impacts on physiological function, although there is quantitatively less K+ current than might be expected. The mechanism conferring up-regulated expression of KCNA genes may be common to all the gene family and play a functional role in the physiological control of blood pressure. PMID:14742730

  16. Syndecan-1 is up-regulated in ras-transformed intestinal epithelial cells.

    PubMed Central

    Wong, Z. M.; Choo, B.; Li, M.; Carey, D. J.; Cano-Gauci, D. F.; Buick, R. N.

    1998-01-01

    The syndecans, a family of cell-surface heparan sulphate proteoglycans, have been proposed to mediate cellular interactions with extracellular effector molecules, such as growth factors and components of the extracellular matrix, during critical phases of development. Transcripts of all four syndecans are expressed at varying levels in the developing rat intestine and in a series of immature rat intestinal epithelial cell lines. In addition, we report the novel finding that, in the intestinal epithelial cell lines, expression of syndecan-1 transcript is up-regulated by transformation with activated H-ras. This is in contrast to other cell lines in which ras transformation is associated with a decrease in syndecan-1 levels. The observed increase in the syndecan-1 occurs as a result of increased transcription and can be correlated with the degree of transformation of the IEC-18 cells. Transformation is also associated with a decrease in apparent molecular weight and increased shedding of the proteoglycan into the culture medium. Increased shedding of syndecan-1 into the culture medium after transformation with H-ras may contribute to the disruption of proteoglycan interactions with the extracellular matrix, leading to alterations in cell adhesion and organization. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9528830

  17. Gibberellins Promote Trichome Formation by Up-Regulating GLABROUS1 in Arabidopsis1

    PubMed Central

    Perazza, Daniel; Vachon, Gilles; Herzog, Michel

    1998-01-01

    Trichome development is dependent on gibberellin (GA) signaling in Arabidopsis thaliana. Using the GA-deficient mutant ga1–3, the GA-response mutant spy-5, and uniconazol (a GA-biosynthesis inhibitor), we show that the GA level response correlates positively with both trichome number and trichome branch number. Two genes, GL1 and TTG, are required for trichome initiation. In ga1–3, coexpression of GL1 and R, the maize TTG functional homolog, under control of the constitutive 35S promoter, restored trichome development, whereas overexpression of neither GL1 nor R alone was sufficient to significantly suppress the glabrous phenotype. We next focused on GL1 regulation by GAs. In the double mutant the gl1–1 glabrous phenotype is epistatic to the spy-5 phenotype, suggesting that GL1 acts downstream of the GA signal transduction pathway. The activity of a β-glucuronidase reporter gene driven by the GL1 promoter was decreased in the wild type grown on uniconazol and showed a clear GA-dependent activation in ga1–3. Finally, quantification of GL1 transcript levels by reverse transcriptase-polymerase chain reaction demonstrated that relative to wild type, ga1–3 plants contained less transcript. These data support the hypothesis that GAs induce trichome development through up-regulation of GL1 and possibly TTG genes. PMID:9625690

  18. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    PubMed

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  19. Up-regulation of Apoptosis Inhibitory Protein IAP-2 by Hypoxia

    PubMed Central

    Dong, Zheng; Venkatachalam, Manjeri A.; Wang, Jinzhao; Patel, Yogendra; Saikumar, Pothana; Semenza, Gregg L.; Force, Thomas; Nishiyama, Junichiro

    2010-01-01

    Hypoxia is a key determinant of tissue pathology during tumor development and organ ischemia. However, little is known regarding hypoxic regulation of genes that are directly involved in cell death or death resistance. Here we report the striking induction by severe hypoxia of the anti-apoptotic protein IAP-2. Hypoxic cells with IAP-2 up-regulation became resistant to apoptosis. IAP-2 was induced by hypoxia per se rather than by the secondary effects of hypoxia, including ATP depletion and cell injury. The inductive response did not relate to alterations of cellular redox status or arrest of mitochondrial respiration. On the other hand, IAP-2 induction was attenuated by actinomycin D, suggesting a role for gene transcription. In vitro nuclear run-on assays demonstrated specific increases in IAP-2 transcriptional activity after hypoxia exposure. HIF-1, the primary transcription factor that is responsible for multiple gene activation under hypoxia, does not have a role in IAP-2 expression. HIF-1 and IAP-2 were induced by different degrees of hypoxia; severe hypoxia or anoxia was required for IAP-2 induction. Moreover, cobalt chloride and desferrioxamine activated HIF-1 but not IAP-2. Finally, IAP-2 was induced by severe hypoxia in mouse embryonic stem cells that were deficient of HIF-1. Thus, this study not only provides the first demonstration of hypoxic regulation of an anti-apoptotic gene but also suggests the participation of novel hypoxia-responsive transcription mechanisms. PMID:11278985

  20. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    PubMed Central

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  1. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect.

  2. Maternal Immunization

    PubMed Central

    Chu, Helen Y.; Englund, Janet A.

    2014-01-01

    Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

  3. Chronic up-regulation of sonic hedgehog has little effect on postnatal craniofacial morphology of euploid and trisomic mice

    PubMed Central

    Singh, Nandini; Dutka, Tara; Reeves, Roger H.; Richtsmeier, Joan T.

    2015-01-01

    Background In Ts65Dn, a mouse model of Down syndrome (DS), brain and craniofacial abnormalities that parallel those in people with DS are linked to an attenuated cellular response to sonic hedgehog (SHH) signaling. If a similarly reduced response to SHH occurs in all trisomic cells, then chronic up-regulation of the pathway might have a positive effect on development in trisomic mice, resulting in amelioration of the craniofacial anomalies. Results We crossed Ts65Dn with Ptch1tm1Mps/+ mice and quantified the craniofacial morphology of Ts65Dn;Ptch+/− offspring to assess whether a chronic up-regulation of the SHH pathway rescued DS-related anomalies. Ts65Dn;Ptch1+/− mice experience a chronic increase in SHH in SHH-receptive cells due to haploinsufficiency of the pathway suppressor, Ptch1. Chronic up-regulation had minimal effect on craniofacial shape and did not correct facial abnormalities in Ts65Dn;Ptch+/− mice. We further compared effects of this chronic up-regulation of SHH to acute pathway stimulation in mice treated on the day of birth with a SHH pathway agonist, SAG. We found that SHH affects facial morphology differently based on chronic vs. acute postnatal pathway up-regulation. Conclusions Our findings have implications for understanding the function of SHH in craniofacial development and for the potential use of SHH-based agonists to treat DS-related abnormalities. PMID:26509735

  4. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    PubMed

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  5. Unconventional wisdom about the obesity epidemic.

    PubMed

    Zinn, Andrew R

    2010-12-01

    Diet and sedentary lifestyle, interacting with "thrifty" genes, are widely accepted as the principal cause of the current global obesity epidemic. However, a number of alternative etiologies for obesity have been proposed, including "drifty" genes, viruses, bacteria, environmental toxins, social network effects, maternal imprinting, sleep deprivation, and others. These Grand Rounds reviews the background of some of these unconventional ideas and evidence for or against their roles in the obesity epidemic.

  6. Obesity epidemic: impact from preconception to postpartum

    PubMed Central

    Moussa, Hind N; Alrais, Mesk A; Leon, Mateo G; Abbas, Elizabeth L; Sibai, Baha M

    2016-01-01

    The obesity epidemic is on the rise throughout the USA and the world. Not only does it affect the general population but it also specifically poses unique threats to a woman’s life in the antepartum, peripartum and postpartum periods. An increased BMI is associated with worse perinatal outcomes, including higher rates of preeclampsia (and other hypertensive disorders), macrosomia, other neonatal morbidities and gestational diabetes. Isolated maternal obesity and additional maternal diabetes predispose the infant to potential adult disease through fetal programming. This review of the literature examines the effects of obesity on a woman’s life, outlining complications beginning with preconception through the postpartum period. PMID:28031980

  7. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  8. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism.

    PubMed

    Coleman, Heather D; Ellis, Dave D; Gilbert, Margarita; Mansfield, Shawn D

    2006-01-01

    The effects of the overexpression of sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) on plant growth and metabolism were evaluated in tobacco (Nicotiana tabacum cv. Xanthi). T(1) transgenic plants expressing either gene under the control of a tandem repeat cauliflower mosaic virus 35S promoter (2x35S) or a xylem-localized 4CL promoter (4-coumarate:CoA ligase; 4CL) were generated, and reciprocally crossed to generate plants expressing both genes. Transcript levels, enzyme activity, growth parameters, fibre properties and carbohydrate content of stem tissue were quantified. The expression profiles of both genes confirmed the expression pattern of the promoters: 2x35S expressed more strongly in leaves, while 4CL expression was highest in stem tissue. In-depth plant characterization revealed that the single-transgene lines showed significant increases in the height growth compared with corresponding control lines. The double-transgene plants demonstrated an additive effect, proving to be even taller than the single-transgene parents. Several of these lines had associated increases in soluble sugar content. Although partitioning of storage carbohydrates into starch or cellulose was not observed, the increased height growth and increases in soluble carbohydrates suggest a role for SuSy as a marker in sink strength and lend credit to the function of UGPase in a similar role. The up-regulation of these two genes, although not increasing the percentage cellulose content, was effective in increasing the total biomass, and thus the overall cellulose yield, from a given plant.

  9. Didymin Induces Apoptosis by Inhibiting N-Myc and up regulating RKIP in Neuroblastoma

    PubMed Central

    Singhal, Jyotsana; Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Ashutosh; Awasthi, Sanjay; Singhal, Sharad S

    2011-01-01

    Neuroblastomas arise from the neural crest cells and represent the most common solid tumors outside the nervous system in children. The amplification of N-Myc plays a primary role in the pathogenesis of neuroblastomas whereas acquired mutations of p53 lead to refractory and relapsed cases of neuroblastomas. In this regard, dietary compounds which can target N-Myc and exert anti-cancer effects independent of p53 status acquire significance in the management of neuroblastomas. Hence, we investigated the anti-cancer properties of the flavonoid didymin in neuroblastomas. Didymin effectively inhibited proliferation and induced apoptosis irrespective of p53 status in neuroblastomas. Didymin down regulated PI3K, pAkt, Akt, vimentin and up regulated RKIP levels. Didymin induced G2/M arrest along with decreasing the levels of cyclin D1, CDK4 and cyclin B1. Importantly, didymin inhibited NMyc as confirmed at protein, mRNA and transcriptional level by promoter-reporter assays. HPLC analysis of didymin (2 mg/kg b.w.) treated mice serum revealed effective oral absorption with free didymin concentration of 2.1 μM. Further in vivo mice xenograft studies revealed that didymin (2 mg/kg b.w.) treated animals had significant reductions in tumors size compared to controls. Didymin strongly inhibited the proliferation (Ki67) and angiogenesis (CD31) markers as well as N-Myc expression as revealed by the histopathological examination of paraffin embedded section of resected tumors. Collectively, our in vitro and in vivo studies elucidated the anti-cancer properties and mechanisms of action of a novel, orally active and palatable flavonoid didymin which makes it a potential new approach for neuroblastoma therapy (NANT) to target pediatric neuroblastomas. PMID:22174364

  10. Molecular characterization of Ran gene up-regulated in large yellow croaker (Pseudosciaena crocea) immunity.

    PubMed

    Han, Fang; Wang, Xiao-Qing; Yao, Cui-luan; Wang, Zhi-yong

    2010-08-01

    RanGTPase, one family of small G protein superfamily, has been widely demonstrated to be involved in transport system between cytoplasm and nucleus. However the knowledge about the function of RanGTPase in immunity remains limited. In this report, Ran gene (named LycRan) cDNA was cloned from the large yellow croaker, Pseudosciaena crocea, a marine fish. The full-length cDNA of LycRan was of 1033 bp, including a 5'-terminal untranslated region (UTR) of 43 bp, 3'-terminal UTR of 338 bp and an open reading frame (ORF) of 648 bp encoding a polypeptide of 216 amino acids. The deduced protein is highly homologous, it shares 90.74%, 88.89%, 89.35% and 85.20% identities with those of salmon, frog, human and fruit fly respectively. RT-PCR analysis indicated that LycRan gene was constitutively expressed in 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative Real-Time RT-PCR analysis revealed the highest expression in kidney and the weakest expression in skin. Time course analysis showed that LycRan expression was obviously up-regulated in kidney, blood and spleen after immunization with either poly I:C or formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus. It indicated that the highest expression was 2.8 times (at 48 h) as much as that in the control in the kidney (p < 0.05) challenged by poly I:C and 3.2 times (at 24 h) in the blood (p < 0.05) challenged by bacteria. These results suggested that LycRan might play an important role in large yellow croaker defense against the pathogen infection. Our study, therefore, might provide a clue to elucidate the large yellow croaker innate immunity.

  11. Salsolinol Up-Regulates Oxytocin Expression and Release During Lactation in Sheep.

    PubMed

    Górski, K; Marciniak, E; Zielińska-Górska, M; Misztal, T

    2016-03-01

    Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a dopamine-derived compound present in the central nervous system and pituitary gland. Several previous studies on lactating sheep and rats have reported that salsolinol plays a crucial role in the regulation of prolactin secretion. The present study investigated the effects of salsolinol, which was infused into the third ventricle of the brain, on oxytocin expression and release in lactating sheep, 48 h after weaning of 8-week-old lambs. Serial 30-min infusions of salsolinol and vehicle were performed at 30-min intervals from 10.00 to 15.00 h. Blood samples were collected every 10 min. The supraoptic nucleus (SON), paraventricular nucleus (PVN) and posterior pituitary were collected immediately after the experiment. Expression levels of mRNAs for oxytocin and peptidylglycine α-amidating monooxygenase (PAM), the terminal enzyme in the oxytocin synthesis pathway, were measured using a real-time polymerase chain reaction. Oxytocin peptide content in the posterior pituitary was measured by an enzyme-linked immunosorbent assay, and plasma oxytocin concentration was measured by radioimmunoassay. Salsolinol treatment significantly up-regulated oxytocin and PAM gene expression in the SON (P < 0.01 and P < 0.05, respectively), PVN (P < 0.01 and P < 0.05, respectively) and posterior pituitary (P < 0.05 and P < 0.05, respectively). Oxytocin peptide content in the posterior pituitary and the area under the response curve of plasma oxytocin were significantly (P < 0.05 and P < 0.01, respectively) higher in salsolinol-treated sheep than in control animals. The present study shows for the first time that salsolinol stimulates oxytocin secretion during lactation in sheep.

  12. Up-Regulated Expression of SPRY4-IT1 Predicts Poor Prognosis in Colorectal Cancer

    PubMed Central

    Tan, Wenlong; Song, Zi-zheng; Xu, Qunfang; Qu, Xinyan; Li, Zhen; Wang, Yu; Yu, Qun; Wang, Shengqi

    2017-01-01

    Background Long non-coding RNA SPRY4 intronic transcript 1 (lncRNA SPRY4-IT1) has been reported to be associated with the progression of several cancers, but its expression level in colorectal cancer (CRC) has rarely been reported. The purpose of this study was to estimate the clinical significance of SPRY4-IT1 in CRC. Material/Methods The relative expression levels of SPRY4-IT1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in diseased tissues and the adjacent normal tissues of 106 CRC patients. Chi-square method was used to evaluate the association between SPRY4-IT1 expression and the clinical features. Additionally, we assessed the overall survival at different expression levels of SPRY4-IT1 using Kaplan-Meier method. The prognostic significance of SPRY4-IT1 was estimated by Cox regression analysis. Results Up-regulated level of SPRY4-IT1 was detected in pathologic tissues of CRC patients compared with adjacent normal tissues (P=0.000). The relative expression of SPRY4-IT1 was associated with the tumor size, the depth of invasion, lymph node invasion, distant invasion, and tumor stage (P<0.05). Patients with high expression of SPRY4-IT1 had poor overall survival compared with those with high level (39.3 vs. 49.3 months, log-rank test, P=0.016). Cox regression analysis showed that SPRY4-IT1 could act as an independent prognostic factor in CRC (HR=2.341, 95% CI=1.136–4.826, P=0.021). Conclusions SPRY4-IT1 might be associated with tumorigenesis and progression of CRC, and it may be a promising biomarker for prognosis in patients with CRC. PMID:28099409

  13. Cellular and Molecular Mechanisms of Heat Stress-Induced Up-Regulation of Occludin Protein Expression

    PubMed Central

    Dokladny, Karol; Ye, Dongmei; Kennedy, John C.; Moseley, Pope L.; Ma, Thomas Y.

    2008-01-01

    The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39°C or 41°C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein. PMID:18276783

  14. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro*

    PubMed Central

    Spatz, Jordan M.; Wein, Marc N.; Gooi, Jonathan H.; Qu, Yili; Garr, Jenna L.; Liu, Shawn; Barry, Kevin J.; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M.; Babij, Philip; Pajevic, Paola Divieti

    2015-01-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  15. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    PubMed

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-02-09

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2(+)/ErbB2(+)) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2(+)/ErbB2(+) breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2(+)/ErbB2(+) breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer.

  16. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    PubMed

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  17. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14

    PubMed Central

    Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC. PMID:27494117

  18. Wheat VIN3-like PHD finger genes are up-regulated by vernalization.

    PubMed

    Fu, Daolin; Dunbar, Mignon; Dubcovsky, Jorge

    2007-03-01

    The term 'vernalization' describes the acceleration of the transition between the vegetative and reproductive stages after exposing plants to an extended period of low temperature. In Arabidopsis, vernalization promotes flowering by silencing the flowering repressor gene FLOWERING LOCUS C (FLC). Mitotically stable repression of FLC is the result of chromatin modifications mediated by the Vernalization-INsensitive 3 (VIN3) and VIN3-Like (VIL) proteins. In this study, we identified and characterized three VIL genes in diploid wheat (Triticum monococcum L.), named TmVIL1, TmVIL2, and TmVIL3. Similar to Arabidopsis VIN3, all three wheat VIL proteins carry three conserved domains including a plant homeodomain finger motif (PHD), a fibronectin type III domain (FNIII), and a VIN3 interacting domain (VID). Genetic mapping placed TmVIL1, TmVIL2, and TmVIL3 loci in the centromeric regions of chromosome 5, 6, and 1, respectively. The chromosome location of TmVIL1 is close to that of the vernalization gene VRN-D5, but more precise mapping information is required to validate this relationship. Transcription of the wheat VIL genes was up-regulated by vernalization, with a peak after 4-6 weeks of cold treatment. When transferred back to warm conditions, transcript levels of the wheat VIL genes returned to pre-vernalization levels. In addition, the transcript levels of wheat VIL genes are affected by photoperiod. This study indicates that wheat VIL genes have retained a similar structure and transcriptional regulation as their Arabidopsis VIN3/VIL homologues, suggesting that they might have retained some of their functions.

  19. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells.

    PubMed

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-09-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  20. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    PubMed

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc.

  1. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    PubMed

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  2. Up-regulation of niacinamide in intervertebral disc aggrecan in vitro.

    PubMed

    Xiong, Xiaoqian; Yang, Shuhua; Shao, Zengwu; Liu, Xin; Zhan, Zirui; Duan, Deyu

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8% as compared with control group (P < 0 01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3% as compared with control group (P < 0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P < 0.01) and untreated group (P < 0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1beta was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1beta-induced degenerated IVDS was increased with the increase of Nia concentrations. It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1beta-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  3. Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients.

    PubMed

    Mansilla, María José; Comabella, Manuel; Río, Jordi; Castilló, Joaquín; Castillo, Mireia; Martin, Roland; Montalban, Xavier; Espejo, Carmen

    2014-03-01

    Inducible heat shock protein (HSP)70 (HSP70-1A and HSP70-1B proteins) is a chaperone responsible for assisting proper protein folding. Following stress conditions, HSP70 is highly up-regulated to mediate cytoprotective functions. In addition, HSP70 is able to trigger innate and adaptive immune responses that promote the immune recognition of antigens and to act as a cytokine when it is released. The data in the literature are controversial with regard to expression studies in peripheral blood mononuclear cells (PBMCs). In the present study, we aimed to examine if alterations of HSP70-1A/B expression are involved in the autoimmune pathogenesis of multiple sclerosis (MS). We determined both mRNA and protein expression in PBMCs of MS patients and healthy donors (HDs). We found a baseline increased expression of the HSPA1A gene in PBMCs from MS patients compared with HDs. Gene expression findings were associated with an increased protein expression of HSP70-1A/B in T lymphocytes (CD4+ and CD8+) and monocytes from MS patients under basal conditions that may reflect the immunological activation occurring in MS patients. We also provided evidence that heat shock (HS) stimulus induced HSP70-1A/B protein expression in HDs and MS patients, and that HS-induced HSP70-1A/B protein expression in monocytes correlated with the number of T2 lesions at baseline in MS patients. However, after lipopolysaccharide inflammatory stimulus, monocytes from MS patients failed to induce HSP70-1A/B protein expression. Our data hint at altered immune responses in MS and may indicate either a state of chronic stress or increased vulnerability to physiological immune responses in MS patients.

  4. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  5. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

    PubMed Central

    Narizhneva, Natalya V.; Razorenova, Olga V.; Podrez, Eugene A.; Chen, Juhua; Chandrasekharan, Unni M.; DiCorleto, Paul E.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    Expression of cell adhesion molecules (CAM) responsible for leukocyte-endothelium interactions plays a crucial role in inflammation and atherogenesis. Up-regulation of vascular CAM-1 (VCAM-1), intracellular CAM-1 (ICAM-1), and E-selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin-1 (TSP-1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP-1 induced expression of VCAM-1 and ICAM-1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C-terminal domain of TSP-1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP-1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP-1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF-α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti-atherosclerosis therapeutic strategies. PMID:15833768

  6. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-03

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.

  7. Argonaute 2 is up-regulated in tissues of urothelial carcinoma of bladder

    PubMed Central

    Yang, Feng-Qiang; Huang, Jian-Hua; Liu, Min; Yang, Feng-Ping; Li, Wei; Wang, Guang-Chun; Che, Jian-Ping; Zheng, Jun-Hua

    2014-01-01

    Argonaute 2 proteins (Ago2) have been demonstrated to be widely expressed and involved in post-transcriptional gene silencing and play key roles in carcinogenesis. However, its expression profile and prognostic value in urothelial carcinoma of the bladder (UCB) have not been investigated. Methods: Real-time quantitative PCR (qRT-PCR) and Western blot were used to explore Ago2 expression in UCBs and normal bladder tissues. Moreover immunohistochemistry (ICH) was used to detect the expression of Ago2 in UCBs. Spearman’s rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Results: Up-regulated expression of Ago2 mRNA and protein was observed in the majority of UCBs by qRT-PCR and Western blot when compared with their paired normal bladder tissues. Clinic pathological analysis was showed a significant correlation existed between the higher expression of Ago2 protein with the Histological grade, lymph node metastasis and Distant metastasis (P<0.05); Survival analysis by Kaplan-Meier survival curve and log-rank test demonstrated that elevated Ago2 expression in cancer tissue predicted poorer overall survival (OS) compared with group in lower expression (62.2% VS 86.3%, P<0.05). Notably, multivariate analyses by Cox’s proportional hazard model revealed that expression of Ago2 was an independent prognostic factor in UCB. Conclusions: These results suggest that the aberrant expression of Ago2 in human UCB is possibly involved with tumorigenesis and development, and the Ago2 protein could act as a potential biomarker for prognosis assessment of bladder cancer. Further studies on the cellular functions of Ago2 need to address these issues. PMID:24427355

  8. Ossotide promotes cell differentiation of human osteoblasts from osteogenesis imperfecta patients by up-regulating miR-145.

    PubMed

    Sun, Keming; Wang, Junjian; Liu, Fangna; Ji, Zejuan; Guo, Zhanhao; Zhang, Chunxu; Yao, Manye

    2016-10-01

    Ossotide as an effective bone formation compound preparation has been proved to promote osteoblasts differentiation. MiR-145 is significantly decreased in osteogenesis imperfecta (OI) patients, but it is still unknown whether ossotide performed its effect by regulating miR-145. In this study, we investigated the effect of ossotide on regulating miR-145 expression and osteoblasts differentiation. The primary osteoblasts cells were isolated from OI patients and then cultured with different concentrations (0, 25, 50, 100, 200μg/l) of ossotide. The cell proliferation was detected with CCK-8 Elisa kit after ossotide treatment. The level of miR-145 expression was determined using qRT-PCR. In order to study whether ossotide up regulated miR-145, miR-145 mimic and miR-145 inhibitor were used to up regulate and down regulate the miR-145 levels in osteoblasts. The expressions of Runx2, Osx, β-catenin, TCF-1 were detected using Western blot and qRT-PCR. We observed that miR-145 was up regulated by ossotide treatment in miR-145 mimic or miR-145 inhibitor treated osteoblasts. What's more, up regulated miR-145 increased the expression of osteoblasts differentiation regulated protein Runx2 and Osx. In addition, Wnt signaling related β-catenin, TCF-1 were activated by up-regulated miR-145 which was induced by ossotide treatment. In summary, ossotide induced cell differentiation and Wnt signaling activation in osteoblasts by up regulating miR-145.

  9. Expression of a chitin deacetylase gene, up-regulated in Cryptococcus laurentii strain RY1, under nitrogen limitation.

    PubMed

    Chakraborty, Writachit; Sarkar, Soumyadev; Chakravorty, Somnath; Bhattacharya, Semantee; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-05-01

    This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation. These results suggest chitin deacetylase might play a significant role in nitrogen limiting growth of Cryptococcus laurentii strain RY1.

  10. Maternal overweight programs insulin and adiponectin signaling in the offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gestational exposure to maternal overweight (OW) influences the risk of obesity in adult-life. Male offspring from OW dams gain greater body weight, fat mass and develop insulin resistance when fed high fat diets (45 percent fat). In this report we identify molecular targets of maternal OW-induced p...

  11. Putting the "M" back in maternal-fetal medicine.

    PubMed

    D'Alton, Mary E; Bonanno, Clarissa A; Berkowitz, Richard L; Brown, Haywood L; Copel, Joshua A; Cunningham, F Gary; Garite, Thomas J; Gilstrap, Larry C; Grobman, William A; Hankins, Gary D V; Hauth, John C; Iriye, Brian K; Macones, George A; Martin, James N; Martin, Stephanie R; Menard, M Kathryn; O'Keefe, Daniel F; Pacheco, Luis D; Riley, Laura E; Saade, George R; Spong, Catherine Y

    2013-06-01

    Although maternal death remains rare in the United States, the rate has not decreased for 3 decades. The rate of severe maternal morbidity, a more prevalent problem, is also rising. Rise in maternal age, in rates of obesity, and in cesarean deliveries as well as more pregnant women with chronic medical conditions all contribute to maternal mortality and morbidity in the United States. We believe it is the responsibility of maternal-fetal medicine (MFM) subspecialists to lead a national effort to decrease maternal mortality and morbidity. In doing so, we hope to reestablish the vital role of MFM subspecialists to take the lead in the performance and coordination of care in complicated obstetrical cases. This article will summarize our initial recommendations to enhance MFM education and training, to establish national standards to improve maternal care and management, and to address critical research gaps in maternal medicine.

  12. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    PubMed Central

    Lewis, Joshua B.; Milner, Dallin C.; Lewis, Adam L.; Dunaway, Todd M.; Egbert, Kaleb M.; Albright, Scott C.; Merrell, Brigham J.; Monson, Troy D.; Broberg, Dallin S.; Gassman, Jason R.; Thomas, Daniel B.; Arroyo, Juan A.; Reynolds, Paul R.

    2016-01-01

    It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating

  13. Up-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4.

    PubMed

    Samarin, Jana; Rehm, Margot; Krueger, Bettina; Waschke, Jens; Goppelt-Struebe, Margarete

    2009-02-01

    Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer. Furthermore, CA-4P induced CTGF expression in endothelial cells, forming tube-like structures on basement membrane gels. Up-regulation of CTGF by CA-4P was dependent on Rho kinase signaling and was increased when p42/44 mitogen-activated protein kinase was inhibited. Additionally, FoxO transcription factors were identified as potent regulators of CTGF expression in endothelial cells. Activation of FoxO transcription factors by inhibition of phosphatidylinositol 3-kinase/AKT signaling resulted in a synergistic increase in CA-4P-mediated CTGF induction. CA-4P-mediated expression of CTGF was thus potentiated by the inhibition of kinase pathways, which are targets of novel antineoplastic drugs. Up-regulation of CTGF by low concentrations of CA-4P may thus occur in newly formed tumor vessels and contribute to the microvessel destabilization and antiangiogenic effects of CA-4P observed in vivo.

  14. PMA-induced dissociation of Ku86 from the promoter causes transcriptional up-regulation of histamine H1 receptor

    PubMed Central

    Mizuguchi, Hiroyuki; Miyagi, Kohei; Terao, Takuma; Sakamoto, Noriko; Yamawaki, Yosuke; Adachi, Tsubasa; Ono, Shohei; Sasaki, Yohei; Yoshimura, Yoshiyuki; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2012-01-01

    Histamine H1 receptor (H1R) gene is up-regulated in patients with allergic rhinitis, and its expression level strongly correlates with the severity of symptoms. However, the mechanism underlying this remains unknown. Here we report the mechanism of H1R gene up-regulation. The luciferase assay revealed the existence of two promoter regions, A and B1. Two AP-1 and one Ets-1 bound to region A, while Ku86, Ku70, and PARP-1 bound to region B1. Ku86 was responsible for DNA binding and poly(ADP-ribosyl)ated in response to phorbol-12-myristate-13-acetate stimulation, inducing its dissociation from region B1 that is crucial for promoter activity. Knockdown of Ku86 gene enhanced up-regulation of H1R gene expression. Experiments using inhibitors for MEK and PARP-1 indicate that regions A and B1 are downstream regulatory elements of the PKCδ/ERK/PARP-1 signaling pathway. Data suggest a novel mechanism for the up-regulation of H1R gene expression. PMID:23209876

  15. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  16. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  17. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feedingdouble dagger.

    PubMed

    Puthoff, David P; Sardesai, Nagesh; Subramanyam, Subhashree; Nemacheck, Jill A; Williams, Christie E

    2005-07-01

    SUMMARY Both yield and grain-quality are dramatically decreased when susceptible wheat (Triticum aestivum) plants are infested by Hessian fly (Mayetiola destructor) larvae. Examination of the changes in wheat gene expression during infestation by virulent Hessian fly larvae has identified the up-regulation of a gene, Hessian fly responsive-2 (Hfr-2), which contains regions similar to genes encoding seed-specific agglutinin proteins from Amaranthus. Hfr-2, however, did not accumulate in developing seeds, as do other wheat seed storage proteins. Additionally, a separate region of the HFR-2 predicted amino acid sequence is similar to haemolytic proteins, from both mushroom and bacteria, that are able to form pores in cell membranes of mammalian red blood cells. The involvement of Hfr-2 in interactions with insects was supported by experiments demonstrating its up-regulation by both fall armyworm (Spodoptera frugiperda) and bird cherry-oat aphid (Rhopalosiphum padi) infestations but not by virus infection. Examination of wheat defence response pathways showed Hfr-2 up-regulation following methyl jasmonate treatment and only slight up-regulation in response to salicylic acid, abscisic acid and wounding treatments. Like related proteins, HFR-2 may normally function in defence against certain insects or pathogens. However, we propose that as virulent Hessian fly larvae manipulate the physiology of the susceptible host, the HFR-2 protein inserts in plant cell membranes at the feeding sites and by forming pores provides water, ions and other small nutritive molecules to the developing larvae.

  18. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    PubMed

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia.

  19. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis.

    PubMed

    Moutasim, Karwan A; Jenei, Veronika; Sapienza, Karen; Marsh, Daniel; Weinreb, Paul H; Violette, Shelia M; Lewis, Mark P; Marshall, John F; Fortune, Farida; Tilakaratne, Waninayaka M; Hart, Ian R; Thomas, Gareth J

    2011-02-01

    Oral submucous fibrosis (OSF) is a premalignant, fibrosing disorder of the mouth, pharynx, and oesophagus, with a malignant transformation rate of 7-13%. OSF is strongly associated with areca (betel) nut chewing and worldwide, over 5 million people are affected. As αvβ6 integrin is capable of promoting both tissue fibrosis and carcinoma invasion, we examined its expression in fibroepithelial hyperplasia and OSF. αvβ6 was markedly up-regulated in OSF, with high expression detected in 22 of 41 cases (p < 0.001). We investigated the functional role of αvβ6 using oral keratinocyte-derived cells genetically modified to express high αvβ6 (VB6), and also NTERT-immortalized oral keratinocytes, which express low αvβ6 (OKF6/TERT-1). VB6 cells showed significant αvβ6-dependent activation of TGF-β1, which induced transdifferentiation of oral fibroblasts into myofibroblasts and resulted in up-regulation of genes associated with tissue fibrosis. These experimental in vitro findings were confirmed using human clinical samples, where we showed that the stroma of OSF contained myofibroblasts and that TGF-β1-dependent Smad signalling was detectable both in keratinocytes and in myofibroblasts. We also found that arecoline, the major alkaloid of areca nuts, up-regulated keratinocyte αvβ6 expression. This was modulated through the M(4) muscarinic acetylcholine receptor and was suppressed by the M(4) antagonist, tropicamide. Arecoline-dependent αvβ6 up-regulation promoted keratinocyte migration and induced invasion, raising the possibility that this mechanism may support malignant transformation. Over 80% of OSF-related oral cancers examined had moderate/high αvβ6 expression. These data suggest that the pathogenesis of OSF may be epithelial-driven and involve arecoline-dependent up-regulation of αvβ6 integrin.

  20. Triamcinolone up-regulates GLUT 1 and GLUT 3 expression in cultured human placental endothelial cells.

    PubMed

    Kipmen-Korgun, Dijle; Ozmen, Asli; Unek, Gozde; Simsek, Mehmet; Demir, Ramazan; Korgun, Emin Turkay

    2012-01-01

    The placenta is a glucocorticoid target organ, and glucocorticoids (GCs) are essential for the development and maturation of fetal organs. They are widely used for treatment of a variety of diseases during pregnancy. In various tissues, GCs have regulated by glucose transport systems; however, their effects on glucose transporters in the human placental endothelial cells (HPECs) are unknown. In the present study, HPECs were cultured 24 h in the presence or absence of 0.5, 5 and 50 µmol · l(-1) of synthetic GC triamcinolone (TA). The glucose carrier proteins GLUT 1, GLUT 3 and GC receptor (GR) were detected in the HPECs. We showed increased expression of GLUT 1 and GLUT 3 proteins and messenger RNA (mRNA) levels (p < 0.05) after 24-h cell culture in the presence of 0.5, 5 and 50 µmol · l(-1) of TA. In contrast, GR protein and mRNA expressions were down-regulated (p < 0.05) with 0.5, 5 and 50 µmol · l(-1) of TA 24-h cell culture. The results demonstrate that GCs are potent regulators of placental GLUT 1 and GLUT 3 expression through GR. Excessive exposure to GCs causes maternal and fetal hypoglycemia and diminished fetal growth. We speculate that to compensate for fetal hypoglycemia and diminished fetal growth, the expression of placental endothelial glucose transporters might be increased.

  1. Exploring the effects of maternal eating patterns on maternal feeding and child eating.

    PubMed

    Morrison, Halley; Power, Thomas G; Nicklas, Theresa; Hughes, Sheryl O

    2013-04-01

    Recent research has demonstrated the importance of maternal feeding practices and children's eating behavior in the development of childhood obesity. The purpose of this study was to examine the relations between maternal and child eating patterns, and to examine the degree to which these relationships were mediated through maternal feeding practices. Two hundred and twenty-two low-income mothers and their preschool children participated. About half of the families were African American and half were Latino. Mothers completed questionnaires assessing maternal eating patterns, maternal feeding practices, and children's eating patterns. Maternal external eating (eating in response to outside stimuli, not internal hunger/thirst cues) was positively correlated with two child eating scores: picky eating and desire to eat. Mediational analyses showed that external eating in mothers was related to picky eating in children through high maternal control in feeding; the relationship between mothers' external eating and desire to eat in children was not mediated through maternal control. Picky eating and desire to eat in children were related to emotional eating in mothers as well. The implications of these results for understanding the development of childhood obesity are considered.

  2. Obesity: epigenetic aspects.

    PubMed

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  3. A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma

    PubMed Central

    Liao, Yan; Li, Jun; Yu, Xue-Zhong; Liao, Weijia; He, Songqing

    2015-01-01

    identified SPC24 upregualtion (p = 0.001), PVTT (p = 0.007), size of tumor > 5 cm (p < 0.001) as independent risk factors of DFS after resection, and SPC24 upregualtion (p < 0.001), PVTT (p = 0.029), size of tumor > 5 cm (p = 0.002), recurrence (p < 0.001) as independent prognostic factors for the OS of HCC patients. Additionally, siRNA-mediated silencing of SPC24 dramatically suppressed cell growth, adhesion, invasion and increased apoptosis in HCC cells. In conclusion, these results showed for the first time that SPC24 expression was significantly up-regulated in HCC, which may act as a novel prognostic biomarker for patients suffering from this deadly disease. Additionally, silence of SPC24 inhibiting HCC cell growth indicated that SPC24 may be a promising molecular target for HCC therapy. PMID:26515591

  4. Intrapartum Management of the Obese Gravida.

    PubMed

    Carpenter, Jeanette R

    2016-03-01

    Obese women are at increased risk for multiple labor abnormalities, including postdates pregnancy, failed induction of labor, prolonged labor, cesarean delivery, and postpartum hemorrhage (PPH). Prolonged labor among obese women is confined to the first stage of labor. In the setting of reassuring fetal and maternal status, increased time to progress in the first stage of labor should be allowed. Uterine atony occurs more frequently in obese women and vigilance in the prevention of PPH is critical. There is a lack of high-quality data to guide the management of induction, labor, and PPH prevention among obese women.

  5. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.

    PubMed

    Arumugam, Sridhar; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-01

    Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link

  6. Evolutionary neuropathology & congenital mental retardation: environmental cues predictive of maternal deprivation influence the fetus to minimize cerebral metabolism in order to express bioenergetic thrift.

    PubMed

    Reser, Jared Edward

    2006-01-01

    cause damage to vital homeostatic systems; most simply decrease the size and energy expenditure of the cerebral cortex and the hippocampus, the two structures known to show plasticity during changes in ecological rigor in vertebrates. Also, many disorders that present comorbidly with neuropathology, such as tendency toward obesity, decrement in anabolic hormones, hypotonic musculature, up-regulation of the hypothalamic-pituitary-adrenal axis, and decreased thyroid output are associated with energy conservancy and the thrifty phenotype, further implicating neuropathology in an ecological strategy. Determining the relative impact of evolutionary causation on neuropathological disease should prove informative for medical and gene therapeutic treatment modalities. Furthermore, use of the maternal deprivation paradigm presented here may help researchers more precisely identify the risk factors that determine cognitive trajectory.

  7. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  8. Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression.

    PubMed

    Yang, Zhou; Zhang, Xiaohong; Gang, Haiju; Li, Xiaojun; Li, Zumao; Wang, Tao; Han, Juan; Luo, Ting; Wen, Fuqiang; Wu, Xiaoting

    2007-07-06

    Twist, a newly found EMT-inducer, has been reported to be up-regulated in those of diffuse-type gastric carcinomas with high N-cadherin level. We show here MKN45, a cell line derived from undifferentiated carcinomas cells, expresses high levels of Twist. Down-regulation of Twist, using an antisense Twist vector in MKN45 cells, inhibits cell migration and invasion, companied with a morphologic changes associated with MET. Suppression of Twist also decreases the expressions of N-cadherin and fibronectin, but not of E-cadherin in MKN45. In contrast, overexpression of Twist in MKN28, a cell line derived from moderate differentiated carcinomas, results in up-regulation of N-cadherin and fibronectin, companied with down-regulation of E-cadherin. Taken together, our results suggest that Twist regulates cell motility and invasion in gastric cancer cell lines, probably through the N-cadherin and fibronectin production.

  9. Obesity Epidemiology

    PubMed Central

    Haidar, Yarah M.; Cosman, Bard C.

    2011-01-01

    Obesity has progressed in a few decades from a public health footnote in developed countries to a top-priority international issue. Because obesity implies increased morbidity and mortality from chronic, debilitating disorders, it is a major burden on individuals and health systems in both developing and developed countries. Obesity is a complex disorder unequally affecting all age groups and socioeconomic classes. Of special concern is increasing childhood obesity. This review presents the extent of the obesity epidemic and its impact worldwide by way of introduction to a discussion of colon and rectal surgery in the obese patient. PMID:23204935

  10. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    PubMed

    Hirai, Sachiko; Endo, Shinji; Saito, Rie; Hirose, Mitsuaki; Ueno, Takunori; Suzuki, Hideo; Yamato, Kenji; Abei, Masato; Hyodo, Ichinosuke

    2014-01-01

    Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  11. Mucin depleted foci, colonic preneoplastic lesions lacking Muc2, show up-regulation of Tlr2 but not bacterial infiltration.

    PubMed

    Femia, Angelo Pietro; Swidsinski, Alexander; Dolara, Piero; Salvadori, Maddalena; Amedei, Amedeo; Caderni, Giovanna

    2012-01-01

    Mucin depleted foci (MDF) are precancerous lesions of the colon in carcinogen-treated rodents and humans at high risk. Since MDF show signs of inflammation we hypothesized that the defective mucous production would expose them to the risk of being penetrated by intestinal bacteria, which can be sensed by Toll-like receptors (Tlrs) and activate inflammatory pathways. To verify this hypothesis we tested the expression of 84 genes coding for Tlrs and associated pathways using RT-qPCR in MDF (n = 7) from 1,2-dimethylhydrazine (DMH)-treated rats. Among the 84 tested genes, 26 were differentially expressed in MDF with 5 genes significantly up-regulated and 21 down-regulated when compared to the normal mucosa. Tlr2, as well as other downstream genes (Map4k4, Hspd1, Irak1, Ube2n), was significantly up-regulated. Among the genes regulating the NFkB pathway, only Map4k4 was significantly up-regulated, while 19 genes were not varied and 6 were down-regulated. Tlr2 protein was weakly expressed both in normal mucosa and MDF. To determine whether inflammation observed in MDF could be caused by bacteria contacting or infiltrating crypts, we performed fluorescence in situ hybridization (FISH) experiments with a rRNA universal bacterial probe. None of the 21 MDF tested, showed bacteria inside the crypts, while among the colonic tumors (n = 15), only one had very few bacteria on the surface and on the surrounding normal mucosa. In conclusion, the up-regulation of Tlr2 in MDF, suggests a link between this receptor and carcinogenesis, possibly related to a defective barrier function of these lesions. The data of FISH experiments do not support the hypothesis that inflammation in MDF and tumors is stimulated by bacterial infiltration.

  12. Up-regulation of M1 muscarinic receptors expressed in CHOm1 cells by panaxynol via cAMP pathway.

    PubMed

    Hao, Wang; Xing-Jun, Wu; Yong-Yao, Cui; Liang, Zhu; Yang, Lu; Hong-Zhuan, Chen

    Loss of cholinergic neurons along with muscarinic acetylcholine receptors (mAChRs) in cerebral cortex and hippocampus is closely associated with Alzheimer's disease (AD). Recent drug development for AD treatment focuses heavily on identifying M(1) receptor agonists. However, mAChRs undergo down-regulation in response to agonist-induced sustained activation. Therefore, therapeutic effectiveness wanes during continuous use. Thus, another potentially effective approach, which overcomes this drawback is to develop compounds, which instead up-regulate M(1) receptor expression. In the present study, we took this alternative approach and contrasted in Chinese hamster ovary cells transfected with human m(1) subtype gene (CHOm(1) cells) changes of M(1) receptor expression levels caused by muscarinic agonists and upregulators of its expression. The muscarinic agonists carbachol and pilocarpine reduced M(1) receptor number in CHOm(1) cells by 29 and 46%, respectively, at 100muM, whereas panaxynol, a polyacetylene compound isolated from the lipophilic fraction of Panax notoginseng, concentration-dependently up-regulated the M(1) receptor number after pre-incubation with CHOm(1) cells for 48 h, reaching a plateau at 1 microM, and was accompanied by enhanced M(1) mRNA levels. Moreover, the protein kinase A (PKA) inhibitor RP-adenosine-3',5'-cyclic mono-phosphoro-thioate triethylamine salt (RP-cAMPs) 5 microM completely prevented panaxynol-induced up-regulation of M(1) receptors. Panaxynol (1muM) caused a significant and consistent stimulation of cAMP accumulation (27% increase above basal at 40 min). These results suggest that in CHOm(1) cells panaxynol up-regulates M(1) receptor number through cAMP pathway-mediated stimulation of gene transcription.

  13. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation.

    PubMed

    Gonzalez-Ramos, M; de Frutos, S; Griera, M; Luengo, A; Olmos, G; Rodriguez-Puyol, D; Calleros, L; Rodriguez-Puyol, M

    2013-08-01

    Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.

  14. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; Oarada, Motoko; Kishi, Kyoichi; Nikawa, Takeshi

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  15. Socioeconomic differences in obesity among Mexican adolescents

    PubMed Central

    ULLMANN, S. HEIDI; BUTTENHEIM, ALISON M.; GOLDMAN, NOREEN; PEBLEY, ANNE R.; WONG, REBECA

    2012-01-01

    Objective We investigate socioeconomic disparities in adolescent obesity in Mexico. Three questions are addressed. First, what is the social patterning of obesity among Mexican adolescents? Second, what are the separate and joint associations of maternal and paternal education with adolescent obesity net of household wealth? Third, are there differences in socioeconomic status (SES) gradients among Mexican boys and girls, rural residents and non-rural residents? Methods Using data from the Mexican National Health Survey 2000 we examined the slope and direction of the association between SES and adolescent obesity. We also estimated models for sub-populations to examine differences in the social gradients in obesity by sex and non-rural residence. Results We find that household economic status (asset ownership and housing quality) is positively associated with adolescent obesity. High paternal education is related to lower obesity risk, whereas the association between maternal education and obesity is positive, but not always significant. Conclusion The household wealth components of SES appear to predispose Mexican adolescents to higher obesity risk. The effects of parental education are more complex. These findings have important policy implications in Mexico and the United States. PMID:20883181

  16. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells.

    PubMed

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F; Lundy, Fionnuala; McGarvey, Lorcan P A; Cosby, S Louise

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.

  17. Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice

    PubMed Central

    Nakahashi, Otoki; Yamamoto, Hironori; Tanaka, Sarasa; Kozai, Mina; Takei, Yuichiro; Masuda, Masashi; Kaneko, Ichiro; Taketani, Yutaka; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-01-01

    Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily members in mice were analyzed. An initial analysis confirmed plasma FGF23 levels positively correlated with the amount of dietary Pi. On the other hand, ileal Fgf15 gene expression, but not hepatic Fgf21 gene expression, was up-regulated by dietary Pi restriction. In addition, we observed the increase of plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels by dietary Pi restriction, and the up-regulation of ileal Fgf15 mRNA expression by 1,25(OH)2D3 and vitamin D receptor (VDR). Importantly, dietary Pi restriction-induced Fgf15 gene expression was prevented in VDR-knockout mice. Furthermore, diurnal variations of plasma triglyceride concentrations and hepatic mRNA expression of the bile acid synthesis enzyme Cyp7a1 as one of Fgf15 negative target genes was influenced by dietary Pi restriction. These results suggest that dietary Pi restriction up-regulates ileal Fgf15 gene expression through 1,25(OH)2D3 and VDR, and may affect hepatic bile acid homeostasis. PMID:24688219

  18. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  19. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    PubMed Central

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  20. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells

    SciTech Connect

    Salmina, Kristine; Jankevics, Eriks; Huna, Anda; Perminov, Dmitry; Radovica, Ilze; Klymenko, Tetyana; Ivanov, Andrey; Jascenko, Elina; Scherthan, Harry; Cragg, Mark; Erenpreisa, Jekaterina

    2010-08-01

    We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.

  1. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect.

    PubMed

    Rinehart, Joseph P; Hayward, Scott A L; Elnitsky, Michael A; Sandro, Luke H; Lee, Richard E; Denlinger, David L

    2006-09-19

    Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.

  2. Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B.

    PubMed

    Yang, Lei; Zhang, Yan; Zhu, Mengmeng; Zhang, Qiong; Wang, Xiaoling; Wang, Yanjiao; Zhang, Jincai; Li, Jing; Yang, Liang; Liu, Jie; Liu, Fei; Yang, Yinan; Kang, Licheng; Shen, Yanna; Qi, Zhi

    2016-12-01

    The objective was to examine the protective effect of resveratrol (RSV) on myocardial ischemia/reperfusion (IR) injury and whether the mechanism was related to vascular endothelial growth factor B (VEGF-B) signaling pathway. Rat hearts were isolated for Langendorff perfusion test and H9c2 cells were used for in vitro assessments. RSV treatment significantly improved left ventricular function, inhibited CK-MB release, and reduced infarct size in comparison with IR group ex vivo. RSV treatment markedly decreased cell death and apoptosis of H9c2 cells during IR. We found that RSV was responsible for the up-regulation of VEGF-B mRNA and protein level, which caused the activation of Akt and the inhibition of GSK3β. Additionally, RSV prevented the generation of reactive oxygen species (ROS) by up-regulating the expression of MnSOD either in vitro or ex vivo. We also found that the inhibition of VEGF-B abolished the cardioprotective effect of RSV, increased apoptosis, and led to the down-regulation of phosphorylated Akt, GSK3β, and MnSOD in H9c2 cells. These results demonstrated that RSV was able to attenuate myocardial IR injury via promotion of VEGF-B/antioxidant signaling pathway. Therefore, the up-regulation of VEGF-B can be a promising modality for clinical myocardial IR injury therapy.

  3. Protracted treatment with MDMA induces heteromeric nicotinic receptor up-regulation in the rat brain: an autoradiography study.

    PubMed

    Ciudad-Roberts, Andrés; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2014-08-04

    Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce a heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated male Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and sacrificed them the day after to perform [(125)I]Epibatidine binding autoradiograms on serial coronal slices. MDMA induced significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory, motor, auditory and retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 34% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The heteromeric nAChR up-regulation in certain areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term consumption of MDMA.

  4. Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2.

    PubMed

    Pham, Truc P T; Kwon, Jeongho; Shin, Jaekyoon

    2011-09-23

    Berberine exerts an anti-adipogenic activity that is associated with the down-regulation of C/EBPα and PPARγ. Stimulation of AMP-activated kinase (AMPK) caused by inhibition of mitochondrial respiration has been suggested to underlie such molecular regulation. In the present study, we show that berberine up-regulated the expression of two different sets of C/EBP inhibitors, CHOP and DEC2, while down-modulating C/EBPα, PPARγ and other adipogenic markers and effectors in differentiating 3T3-L1 preadipocytes and mature adipocytes. Data also suggested that the berberine-induced up-regulation of CHOP and DEC2 was attributable to selective activation of an unfolded protein response (UPR) and modified extracellular environment, respectively. As a result, the anti-adipogenic activity of berberine was diminished remarkably by adjusting the differentiation culture media and limitedly but consistently by knockdown of CHOP expression. Together, up-regulation of C/EBP inhibitors appears to underlie the berberine-induced repression of C/EBPα and PPARγ and, so, the inhibition of adipogenesis.

  5. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    PubMed Central

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-01-01

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797

  6. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    PubMed

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations.

  7. Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone.

    PubMed

    Keinänen, Sirpa I; Hassinen, Viivi H; Kärenlampi, Sirpa O; Tervahauta, Arja I

    2007-09-01

    Suppression subtractive hybridization (SSH) was used to isolate genes differentially expressed following exposure to copper (Cu) in a naturally selected Cu-tolerant birch (Betula pendula Roth.) clone originating from a disused lead/zinc smelter. Of the 352 cDNA fragments initially isolated, 108 were up-regulated by Cu, of which 55 showed over twofold induction by macroarray analysis. Searches against protein databases (Blastx) and sequence analysis provided the tentative identity of 21 genes. Three fragments lacked homology to any sequences in the databases. Most of the identified genes are involved in cellular transport, regulation or cell rescue and defense. Several genes have not previously been reported to be up-regulated by Cu, e.g., plasma intrinsic protein 2, glutamine synthetase and multi-drug resistance-associated protein (MRP4). The expression of MRP4, a vacuolar sorting receptor-like protein and an unidentified gene was studied in more detail by quantitative real-time PCR. These genes showed stronger up-regulation by Cu in the roots and shoots of the Cu-tolerant birch clone compared with a less tolerant clone. Clear clonal differences in gene expression were observed, e.g., for the regulator of chromosome condensation family protein, DnaJ protein homolog, vacuolar sorting receptor-like protein and MRP4. These findings contribute to our understanding of Cu tolerance in birch, a pioneer plant in metal-contaminated soils.

  8. Childhood Obesity

    ERIC Educational Resources Information Center

    Yuca, Sevil Ari, Ed.

    2012-01-01

    This book aims to provide readers with a general as well as an advanced overview of the key trends in childhood obesity. Obesity is an illness that occurs due to a combination of genetic, environmental, psychosocial, metabolic and hormonal factors. The prevalence of obesity has shown a great rise both in adults and children in the last 30 years.…

  9. Obesity management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rates of obesity in the United States have increased dramatically over the past 30 years. Approximately 35% of children and 66% of adults are currently considered overweight or obese. Although obesity is seen in all ethnicities and economic classes, ethnic minorities and those of lower socioeconomic...

  10. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation

    PubMed Central

    Kim, Ji Hye; Yoon, Sei Mee; Song, Sun U.; Park, Sang Gyu; Kim, Won-Serk; Park, In Guk; Lee, Jinu; Sung, Jong-Hyuk

    2016-01-01

    Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O2) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation. PMID:27563882

  11. Selective up-regulation of tumor necrosis factor receptor I in tumor-bearing rats with cancer-related cachexia.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Arena, Katia; Costelli, Paola; Aragno, Manuela; Danni, Oliviero; Boccuzzi, Giuseppe

    2003-08-01

    Tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6) are important mediators in cancer cachexia; however, the expression of these cytokines and their receptors in tumor-bearing animals is poorly characterized. We analyzed expression of TNF-alpha, IL-6, tumor necrosis factor (TNF-RI, TNF-RII) and interleukin 6 (IL-6R) receptors in the brain, kidney, spleen, liver, muscle, ascite tumors and serum, from Yoshida AH-130 hepatoma-bearing rats. TNF-alpha increased in the brain, spleen, liver, and muscle of cachectic animals; IL-6 increased in the liver and muscle. AH-130 cells expressed a good level of TNF-alpha; on the contrary, no TNF-alpha or IL-6 protein was detected in the serum of either tumor-bearing or control animals. TNF-RI mRNA was up-regulated in the spleen, liver and muscle of tumor-bearing rats. TNF-RI protein levels confirmed up-regulation in the spleen and liver, but failed to detect any increase in the muscle. Western blotting against TNF-RI revealed two bands of lower molecular weight in cachectic muscle, suggesting proteolysis involving TNF-RI. No significant increase of either TNF-RII or IL-6R was observed. This is the first demonstration of a selective up-regulation of TNF-RI in cancer cachexia and suggests that local production of TNF-alpha and IL-6 is a corner-stone in the induction/maintenance of this syndrome.

  12. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis.

    PubMed

    Zhu, Hong-Yan; Liu, Xuelian; Miao, Xiuhua; Li, Di; Wang, Shusheng; Xu, Guang-Yin

    2017-01-01

    Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12-CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with

  13. Linc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma

    PubMed Central

    Sahebi, Reza; Malakootian, Mahshid; Balalaee, Baharak; Shahryari, Alireza; Khoshnia, Masoud; Abbaszadegan, Mohammad Reza; Moradi, Abdolvahab; Javad Mowla, Seyed

    2016-01-01

    Objective(s): Similar characteristics of molecular pathways between cellular reprogramming events and tumorigenesis have been accentuated in recent years. Reprogramming-related transcription factors, also known as Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC), are also well-known oncogenes promoting cancer initiation, progression, and cellular transformation into cancer stem cells. Long non-coding RNAs (lncRNAs) are a major class of RNA molecules with emerging roles in stem cell pluripotency, cellular reprogramming, cellular transformation, and tumorigenesis. The long intergenic non-coding RNA ROR (lincRNA-ROR, linc-ROR) acts as a regulator of cellular reprograming through sponging miR-145 that normally negatively regulates the expression of the stemness factors NANOG, OCT4, and SOX2. Materials and Methods: Here, we employed a real-time PCR approach to determine the expression patterns of linc-ROR and its two novel spliced variants (variants 2 and 4) in esophageal squamous cell carcinoma (ESCC). Results: The quantitative real-time RT-PCR results revealed a significant up-regulation of linc-ROR (P=0.0098) and its variants 2 (P=0.0250) and 4 (P=0.0002) in tumor samples of ESCC, compared to their matched non-tumor tissues obtained from the margin of same tumors. Our data also demonstrated a significant up-regulation of variant 4 in high-grade tumor samples, in comparison to the low-grade ones (P=0.04). Moreover, the ROC curve analysis demonstrated that the variant 4 of ROR has a potential to discriminate between tumor and non-tumor samples (AUC=0.66, P<0.05). Conclusion: Our data suggest a significant up-regulation of linc-ROR and its variants 2 and 4 in ESCC tissue samples. PMID:27872710

  14. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    SciTech Connect

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-05-15

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R{sup -/-} mice (control) or caveolin-1{sup -/-}/LDL-R{sup -/-} mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1{sup -/-}/LDL-R{sup -/-} mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor {alpha}-naphthoflavone ({alpha}-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  15. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    PubMed

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  16. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2012-12-01

    Alteration of the oxidative stress of hepatocellular carcinoma (HCC) cells can influence the expressions of genes favored angiogenesis. Quinone reductase 2 which can activate quinones leading to reactive oxygen species production is a melatonin receptor known as MT3. Prazosin prescribed for benign prostate hyperplasia and hypertension is a potent antagonist for MT3. This study was to investigate the influence of therapeutic concentrations of prazosin (0.01 and 0.1μM) on cell proliferation and differential expressions of CCL2, CCL20, CXCL6, CXCL10, IL8 and IL6 genes related to inflammation and/or oxidative stress in human HCC cell lines. Two HCC cell lines including one without susceptible to amphotericin B-induced oxidative stress (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were investigated by 0.01 and 0.1μM prazosin. The premixed WST-1 cell proliferation reagent was applied for proliferation assay. Differential expressions of genes were examined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that both 0.01 and 0.1μM prazosin did not influence cell proliferation in both cell lines. Both 0.01 and 0.1μM prazosin in cell line A and 0.01μM prazosin in cell line B did not cause differential expressions of tested genes. However, 0.1μM prazosin caused remarkable up-regulation of IL6 gene and slightly up-regulation of CCL2 gene in cell line B. In conclusion, high therapeutic concentration of prazosin can up-regulate angiogenic IL6 and CCL2 genes in human HCC cells susceptible to amphotericin B-induced oxidative stress. Clinical application of prazosin in patients with HCC should consider this possibility.

  17. HYOU1, Regulated by LPLUNC1, Is Up-Regulated in Nasopharyngeal Carcinoma and Associated with Poor Prognosis

    PubMed Central

    Zhou, Yujuan; Liao, Qianjin; Li, Xiayu; Wang, Hui; Wei, Fang; Chen, Jie; Yang, Jing; Zeng, Zhaoyang; Guo, Xiaofang; Chen, Pan; Zhang, Wenling; Tang, Ke; Li, Xiaoling; Xiong, Wei; Li, Guiyuan

    2016-01-01

    Objective: This study aims to investigate the roles and mechanisms of long palate, lung and nasal epithelium clone 1 (LPLUNC1) in nasopharyngeal carcinoma (NPC). Methods: The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-TOF-MS/MS) was applied to identify differentially expressed proteins after over-expressing LPLUNC1 in NPC cells. The qRT-PCR and Western Blot were used to further validate differentially expression of Hypoxia up-regulated 1 (HYOU1). We also applied immunohistochemistry (IHC) to validate the expression of HYOU1 protein in NPC tissues. Results: Totally 44 differentially expressed proteins were identified, among which 19 proteins were up-regulated and 25 proteins were down-regulated. Function annotation indicated that these proteins were involved in molecular chaperone, cytoskeleton, metabolism and signal transduction. It was shown that the expression of HYOU1 both at mRNA level and protein level was up-regulated significantly in NPC tissues, and HYOU1 protein expression was positively correlated with clinical staging and metastasis of NPC. Kaplan-Meier survival curves showed that high expression of HYOU1 protein in NPC patients had shorter progression-free survival (PFS) and overall survival (OS). COX multivariate regression analysis further indicated that over-expressed HYOU1 was one of the predictors for poor prognosis in NPC patients. Conclusion: Through regulating proteins in different pathways, LPLUNC1 may inhibit the growth of NPC through participating in cell metabolism, proliferation, transcription and signaling transduction. HYOU1 can be regarded as potential molecular biomarker for progression and prognosis of NPC. PMID:26918051

  18. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium.

    PubMed

    Pohóczky, Krisztina; Kun, József; Szalontai, Bálint; Szőke, Éva; Sághy, Éva; Payrits, Maja; Kajtár, Béla; Kovács, Krisztina; Környei, József László; Garai, János; Garami, András; Perkecz, Anikó; Czeglédi, Levente; Helyes, Zsuzsanna

    2016-02-01

    Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17β-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up-regulation

  19. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    PubMed

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment.

  20. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

    PubMed

    Quick, Allison M; Cipolla, Marilyn J

    2005-02-01

    Neurologic complications of eclampsia are thought to be similar to hypertensive encephalopathy in which an acute, excessive elevation in blood pressure causes blood-brain barrier (BBB) disruption and edema formation. Because women who develop eclampsia are in general normotensive and asymptomatic prior to pregnancy, we hypothesized that pregnancy alone predisposes the brain to edema formation by up-regulation of aquaporin 4 (AQP4), a water channel in the brain that has been shown to positively correlate with edema formation. To test this hypothesis, we compared localization (immunohistochemistry), mRNA (RT-PCR), and protein levels (Western analysis) of AQP4 in brains from Sprague Dawley rats that were nonpregnant (NP, proestrous), mid-pregnant (MP, days 9-10), late-pregnant (LP, days 19-20), and postpartum (PP, days 3-4). AQP4 mRNA was detected in the brains of all the animals and was localized primarily around the brain parenchymal blood vessels, strongly implicating its role in BBB function. Western analysis revealed that the major AQP4 band at approximately 32 kDa was significantly elevated in MP, LP, and PP animals compared with NP by 9-, 22-, and 17-fold, respectively. These results suggest that pregnancy and the postpartum state up-regulate AQP4 protein located around the intraparenchymal blood vessels, a consequence that could promote edema formation when blood pressure is acutely and excessively elevated, as during eclampsia.-Quick, A. M., Cipolla, M. J. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia.

  1. Up-regulation of cocaine- and amphetamine-regulated transcript (CART) in the rat nucleus accumbens after repeated electroconvulsive shock.

    PubMed

    Roh, Myoung-Sun; Cui, Feng Ji; Ahn, Yong Min; Kang, Ung Gu

    2009-10-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide regulates appetite, reward, and mood. CART expression is regulated via the protein kinase A (PKA) pathway, and electroconvulsive shock (ECS), an efficient antipsychotic and antidepressant measure, activates PKA-related signaling. Thus, we hypothesized that ECS may regulate the expression of CART. ECS given daily for five consecutive days increased CART mRNA and protein in the rat nucleus accumbens (NAc), accompanied by an increase in CREB phosphorylation. Our results suggest that ECS-induced CART up-regulation might be associated with PKA-CREB signaling, but the causal direction remains to be elucidated in future studies.

  2. Discovering up-regulated VEGF-C expression in swine umbilical vein endothelial cells by classical swine fever virus Shimen.

    PubMed

    Ning, Pengbo; Zhang, Yanming; Guo, Kangkang; Chen, Ru; Liang, Wulong; Lin, Zhi; Li, Helin

    2014-04-23

    Infection of domestic swine with the highly virulent Shimen strain of classical swine fever virus causes hemorrhagic lymphadenitis and diffuse hemorrhaging in infected swine. We analyzed patterns of gene expression for CSFV Shimen in swine umbilical vein endothelial cells (SUVECs). Transcription of the vascular endothelial growth factor (VEGF) C gene (VEGF-C) and translation of the corresponding protein were significantly up-regulated in SUVECs. Our findings suggest that VEGF-C is involved in mechanisms of acute infection caused by virulent strains of CSFV.

  3. Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio.

    PubMed

    López-Hernández, Gretchen Y; Sánchez-Padilla, Javier; Ortiz-Acevedo, Alejandro; Lizardi-Ortiz, José; Salas-Vincenty, Janice; Rojas, Legier V; Lasalde-Dominicci, José A

    2004-09-03

    Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.

  4. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  5. Obstetric Obesity is Associated with Neonatal Hyperbilirubinemia with High Prevalence in Native Hawaiians and Pacific Island Women

    PubMed Central

    Rougée, Luc RA; Miyagi, Shogo J

    2016-01-01

    Obesity and pregnancy both place the liver under metabolic stress, but interactions between obstetric obesity and bilirubin metabolism have not been studied. We determined associations between obesity, maternal/neonatal bilirubin levels, and uridine 5′diphosphate-glucuronosyltransferase 1A1 (UGT1A1) enzyme that eliminates bilirubin. Adult livers were analyzed for UGT1A1 expression, activity, and bilirubin clearance by pharmacokinetic modeling. Then, matched maternal and neonatal sera (N = 450) were assayed for total and unconjugated bilirubin. Associations between obesity, UGT1A1, maternal and neonatal hyperbilirubinemia were determined statistically through correlation analysis (Pearson's test) as well as binned categories (one-way ANOVA). Morbid obesity decreased hepatic UGT1A1 protein levels, activity, and bilirubin clearance (P < .001). Increasing obesity corresponded to elevated maternal unconjugated bilirubin (P < .05). Maternal obesity was also significantly positively correlated with elevated neonatal bilirubin levels (P < .01, N = 450) and this was strongest in Native Hawaiians and Pacific Islander (NHPI) women (P < .01, n = 150). Obstetric obesity is associated with maternal and neonatal hyperbilirubinemia, likely through inhibition of hepatic UGT1A1. The NHPI cohort was the most obese and had the highest levels of maternal and neonatal unconjugated bilirubin. Neonates from obese mothers may be more susceptible to jaundice and side effects from parenteral nutrition. PMID:27980881

  6. Obesity during pregnancy impairs fetal iron status: Is hepcidin the link?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over half of reproductive age women in the developed world are overweight or obese. Obesity during pregnancy has serious consequences for maternal and child health which we are just beginning to understand. Obesity is characterized by chronic inflammation, which upregulates hepcidin, a peptide hormo...

  7. Obesity impairs cell-mediated immunity during the second trimester of pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with impaired immunity. In obese pregnancy, both mother and fetus are susceptible to the short- and long-term deleterious effects of infectious illness. The objective of the study was to determine the impact of obesity on maternal blood immune cell subsets, intracellular and s...

  8. Developmental Programming in Response to Maternal Overnutrition

    PubMed Central

    Alfaradhi, Maria Z.; Ozanne, Susan E.

    2011-01-01

    Metabolic disorders have seen an increased prevalence in recent years in developed as well as developing countries. While it is clear lifestyle choices and habits have contributed to this epidemic, mounting evidence suggests the nutritional milieu during critical stages of development in early life can “program” individuals to develop the metabolic syndrome later in life. Extensive epidemiological data presents an association between maternal obesity and nutrition during pregnancy and offspring obesity, and a number of animal models have been established in order to uncover the underlying mechanisms contributing to the programming of physiological systems. It is hard to distinguish the causal factors due to the complex nature of the maternal–fetal relationship; however, in order to develop adequate prevention strategies it is vital to identify which maternal factor(s) – be it the diet, diet-induced obesity or weight gain – and at which time during early development instigate the programmed phenotype. Curtailing the onset of obesity at this early stage in life presents a promising avenue through which to stem the growing epidemic of obesity. PMID:22303323

  9. Up-regulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of SVCV.

    PubMed

    Shao, Junhui; Huang, Jiang; Guo, Yana; Li, Lijuan; Liu, Xueqin; Chen, Xiaoxuan; Yuan, Junfa

    2016-11-01

    Generation of reactive oxygen species (ROS) and failure to maintain an appropriate redox balance contribute to viral pathogenesis. Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor that plays a pivotal role in maintaining intracellular homoeostasis and coping with invasive pathogens by coordinately activating a series of cytoprotective genes. Previous studies indicated that the transcription and expression levels of Nrf2 were up-regulated in SVCV-infected EPC cells with the unknown mechanism(s). In this study, the interactions between the Nrf2-ARE signalling pathway and SVCV replication were investigated, which demonstrated that SVCV infection induced accumulation of ROS as well as protein carbonyl groups and 8-OHdG, accompanied by the up-regulation of Nrf2 and its downstream genes. At the same time, the activation of Nrf2 with D, l-sulforaphane (SFN) and CDDO-Me could repress the replication of SVCV, and knockdown of Nrf2 by siRNA could promote the replication of SVCV. Taken together, these observations indicate that the Nrf2-ARE signal pathway activates a passive defensive response upon SVCV infection. The conclusions presented here suggest that targeting the Nrf2 pathway has potential for combating SVCV infection.

  10. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.

    PubMed

    Jiang, Zequn; Li, Shasha; Liu, Yunyi; Deng, Pengyi; Huang, Jianguo; He, Guangyuan

    2011-10-01

    In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmia-associated transcription factor (MITF). Sesamin could activate cAMP response element (CRE) binding protein (CREB), but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt. Moreover, sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway. Consistent with these results, sesamin-mediated increase of melanin synthesis was reduced significantly by H-89, a PKA inhibitor, but not by SB203580, a p38 MAPK inhibitor or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89. These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase, which was, in turn, due to the activation of cAMP signaling.

  11. High-antibody-producing Chinese hamster ovary cells up-regulate intracellular protein transport and glutathione synthesis.

    PubMed

    Orellana, Camila A; Marcellin, Esteban; Schulz, Benjamin L; Nouwens, Amanda S; Gray, Peter P; Nielsen, Lars K

    2015-02-06

    Chinese hamster ovary (CHO) cells are the preferred production host for therapeutic monoclonal antibodies (mAb) due to their ability to perform post-translational modifications and their successful approval history. The completion of the genome sequence for CHO cells has reignited interest in using quantitative proteomics to identify markers of good production lines. Here we applied two different proteomic techniques, iTRAQ and SWATH, for the identification of expression differences between a high- and low-antibody-producing CHO cell lines derived from the same transfection. More than 2000 proteins were quantified with 70 of them classified as differentially expressed in both techniques. Two biological processes were identified as differentially regulated by both methods: up-regulation of glutathione biosynthesis and down-regulation of DNA replication. Metabolomic analysis confirmed that the high producing cell line displayed higher intracellular levels of glutathione. SWATH further identified up-regulation of actin filament processes and intracellular transport and down regulation of several growth-related processes. These processes may be important for conferring high mAb production and as such are promising candidates for targeted engineering of high-expression cell lines.

  12. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    PubMed

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  13. Up-regulating of RASD1 and apoptosis of DU-145 human prostate cancer cells induced by formononetin in vitro.

    PubMed

    Liu, Xiao-Jia; Li, Yun-Qian; Chen, Qiu-Yue; Xiao, Sheng-Jun; Zeng, Si-En

    2014-01-01

    Prostate cancer is one of the most prevalent malignant cancers in men. The isoflavone formononetin is a main active component of red clover plants. In the present study, we assessed the effect of formononetin on human prostate cancer DU-145 cells in vitro, and elucidated possible mechanisms. DU-145 cells were treated with different concentrations of formononetin and cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 and flow cytometry, and protein levels of RASD1, Bcl-2 and Bax by Western blotting. The results showed that formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax. The level of RASD1 reached its maximum at 48 h post-treatment, and rapidly decreased thereafter. Together, we present evidence that formononetin triggered cell apoptosis through the mitochondrial apoptotic pathway by up-regulating RASD1.

  14. Nitrogen mustard up-regulates Bcl-2 and GSH and increases NTP and PCr in HT-29 colon cancer cells.

    PubMed Central

    Boddie, A. W.; Constantinou, A.; Williams, C.; Reed, A.

    1998-01-01

    We hypothesized that unexplained increases in nucleoside triphosphates (NTP) observed by 31P magnetic resonance spectroscopy (MRS) after treatment of tumours by DNA-damaging agents were related to chemotherapy-induced up-regulation of the bcl-2 gene and DNA damage prevention and repair processes. To test this hypothesis, we treated HT-29 cells with 10(-4) M nitrogen mustard (HN2) and performed sequential perchloric acid extractions in replicate over 0-18 h. By reference to an internal standard (methylene diphosphonic acid), absolute changes in 31P-detectable high-energy phosphates in these extracts were determined and correlated with changes in bcl-2 protein levels, cell viability, cell cycle, apoptosis and total cellular glutathione (GSH) (an important defence against DNA damage from alkylating agents). After HN2 administration, bcl-2 protein levels in the HT-29 cell line rose at 2 h. Cell viability declined to 25% within 18 h, but apoptosis measured using fluorescence techniques remained in the 1-4% range. Increased cell division was noted at 4 h. Two high-energy interconvertible phosphates, NTP (P < or = 0.006) and phosphocreatine (PCr) (P < or = 0.0002), increased at 2 h concurrently with increased levels of bcl-2 protein and glutathione. This study demonstrates that bcl-2 and glutathione are up-regulated by HN2 and links this to a previously unexplained 31P MRS phenomenon: increased NTP after chemotherapy. Images Figure 6 PMID:9652754

  15. Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease.

    PubMed

    Angulo, Ester; Noé, Véronique; Casadó, Vicent; Mallol, Josefa; Gomez-Isla, Teresa; Lluis, Carmen; Ferrer, Isidre; Ciudad, Carlos J; Franco, Rafael

    2004-11-01

    Gene expression throughout the different stages of Alzheimer's disease was analysed in samples from cerebral cortex. The gene encoding the voltage-gated potassium channel Kv3.4 was already overexpressed in early stages of the disease, and in advanced stages Kv3.4 was present at high levels in neurodegenerative structures. This subunit regulates delayed-rectifier currents, which are primary determinants of spike repolarization in neurones. In unique samples from a patient with Alzheimer's disease whose amount of amyloid plaques was decreased by beta amyloid immunization, Kv3.4 was overexpressed. The channel subunit was expressed in the neuropil, in the remaining conventional plaques in the frontal cortex and in collapsed plaques in the orbitary cortex. Therefore, amyloid deposition in plaques does not seem to be responsible for the increase in Kv3.4 levels. Nevertheless, Kv3.4 up-regulation is related to amyloid pathology, given that transgenic mice with the Swedish mutation of amyloid precursor protein showed increased expression of Kv3.4. Up-regulation of voltage-gated potassium channel subunits alters potassium currents in neurones and leads to altered synaptic activity that may underlie the neurodegeneration observed in Alzheimer's disease. Thus, Kv3.4 likely represents a novel therapeutic target for the disease.

  16. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis

    PubMed Central

    Powell, Nicole D.; Sloan, Erica K.; Bailey, Michael T.; Arevalo, Jesusa M. G.; Miller, Gregory E.; Chen, Edith; Kobor, Michael S.; Reader, Brenda F.; Sheridan, John F.; Cole, Steven W.

    2013-01-01

    Across a variety of adverse life circumstances, such as social isolation and low socioeconomic status, mammalian immune cells have been found to show a conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes. The present study examines whether such effects might stem in part from the selective up-regulation of a subpopulation of immature proinflammatory monocytes (Ly-6chigh in mice, CD16− in humans) within the circulating leukocyte pool. Transcriptome representation analyses showed relative expansion of the immature proinflammatory monocyte transcriptome in peripheral blood mononuclear cells from people subject to chronic social stress (low socioeconomic status) and mice subject to repeated social defeat. Cellular dissection of the mouse peripheral blood mononuclear cell transcriptome confirmed these results, and promoter-based bioinformatic analyses indicated increased activity of transcription factors involved in early myeloid lineage differentiation and proinflammatory effector function (PU.1, NF-κB, EGR1, MZF1, NRF2). Analysis of bone marrow hematopoiesis confirmed increased myelopoietic output of Ly-6chigh monocytes and Ly-6cintermediate granulocytes in mice subject to repeated social defeat, and these effects were blocked by pharmacologic antagonists of β-adrenoreceptors and the myelopoietic growth factor GM-CSF. These results suggest that sympathetic nervous system-induced up-regulation of myelopoiesis mediates the proinflammatory component of the leukocyte CTRA dynamic and may contribute to the increased risk of inflammation-related disease associated with adverse social conditions. PMID:24062448

  17. Uncoupling Protein-2 is an Antioxidant that is Up-Regulated in the Enamel Organ of Fluoride-Treated Rats*

    PubMed Central

    Suzuki, Maiko; Sierant, Megan L.; Antone, Jerry V.; Everett, Eric T.; Whitford, Gary M.; Bartlett, John D.

    2014-01-01

    Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F−) exposure generates reactive oxygen species (ROS) that can cause ER-stress. We therefore screened oxidative stress arrays to identify genes regulated by F− exposure. Vitamin E is an antioxidant so we asked if a diet high in vitamin E would attenuate dental fluorosis. Maturation stage incisor enamel organs (EO) were harvested from F− treated rats and mice were assessed to determine if vitamin E ameliorates dental fluorosis. Uncoupling protein-2 (Ucp2) was significantly up-regulated by F− (~1.5 & 2.0 fold for the 50 or 100 ppm F− treatment groups respectively). Immunohistochemical results on maturation stage rat incisors demonstrated that UCP2 protein levels increased with F− treatment. UCP2 down-regulates mitochondrial production of ROS, which decreases ATP production. Thus, in addition to reduced protein translation caused by ER-stress, a reduction in ATP production by UCP2 may contribute to the inability of ameloblasts to remove protein from the hardening enamel. Fluoride treated mouse enamel had significantly higher quantitative fluorescence (QF) than the untreated controls. No significant QF difference was observed between control and vitamin E enriched diets within a given F− treatment group. Therefore, a diet rich in vitamin E did not attenuate dental fluorosis. We have identified a novel oxidative stress response gene that is up-regulated in vivo by F− and activation of this gene may adversely affect ameloblast function. PMID:25158175

  18. Up-regulated A20 promotes proliferation, regulates cell cycle progression and induces chemotherapy resistance of acute lymphoblastic leukemia cells.

    PubMed

    Chen, Shuying; Xing, Haiyan; Li, Shouyun; Yu, Jing; Li, Huan; Liu, Shuang; Tian, Zheng; Tang, Kejing; Rao, Qing; Wang, Min; Wang, Jianxiang

    2015-09-01

    A20, also known as tumor necrosis factor-α (TNFα)-induced protein 3 (TNFAIP3), has been identified as a key regulator of cell survival in many solid tumors. However, little is known about the protein expression level and function of A20 in acute lymphoblastic leukemia (ALL). In this study, we found that A20 is up-regulated in ALL patients and several cell lines. Knockdown of A20 in Jurkat, Nalm-6, and Reh cells resulted in reduced cell proliferation, which was associated with cell cycle arrest. Phospho-ERK (p-ERK) was also down-regulated, while p53 and p21 were up-regulated in A20 knockdown cells. In addition, A20 knockdown induced apoptosis in Jurkat and Reh cells and enhanced the sensitivity of these cell lines to chemotherapeutic drugs. These results indicate that A20 may stimulate cell proliferation by regulating cell cycle progression. A20 inhibited apoptosis in some types of ALL cells, thereby enhancing their resistance to chemotherapy. This effect was abolished through A20 silencing. These findings suggest that A20 may contribute to the pathogenesis of ALL and that it may be used as a new therapeutic target for ALL treatment.

  19. Post-transcriptional up-regulation of PDGF-C by HuR in advanced and stressed breast cancer.

    PubMed

    Luo, Nian-An; Qu, Ya-Qi; Yang, Guo-Dong; Wang, Tao; Li, Ren-Li; Jia, Lin-Tao; Dong, Rui

    2014-11-06

    Breast cancer is a heterogeneous disease characterized by multiple genetic alterations leading to the activation of growth factor signaling pathways that promote cell proliferation. Platelet-derived growth factor-C (PDGF-C) is overexpressed in various malignancies; however, the involvement of PDGF-C in breast cancers and the mechanisms underlying PDGF-C deregulation remain unclear. Here, we show that PDGF-C is overexpressed in clinical breast cancers and correlates with poor prognosis. PDGF-C up-regulation was mediated by the human embryonic lethal abnormal vision-like protein HuR, which stabilizes the PDGF-C transcript by binding to two predicted AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). HuR is up-regulated in hydrogen peroxide-treated or ultraviolet-irradiated breast cancer cells. Clinically, HuR levels are correlated with PDGF-C expression and histological grade or pathological tumor-node-metastasis (pTNM) stage. Our findings reveal a novel mechanism underlying HuR-mediated breast cancer progression, and suggest that HuR and PDGF-C are potential molecular candidates for targeted therapy of breast cancers.

  20. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite.

    PubMed

    Stone, Michelle C; Nguyen, Michelle M; Tao, Juan; Allender, Dana L; Rolls, Melissa M

    2010-03-01

    Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite.

  1. Transcutaneous Electrical Nerve Stimulation (TENS) Improves the Diabetic Cytopathy (DCP) via Up-Regulation of CGRP and cAMP

    PubMed Central

    Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n = 15), DM group (n = 15) and control group (n = 15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG. PMID:23468996

  2. Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defence

    PubMed Central

    Minelli, Alba; Conte, Carmela; Grottelli, Silvia; Bellezza, Maria; Cacciatore, Ivana; Bolaños, Juan P

    2009-01-01

    Hystidyl-proline [cyclo(His-Pro)] is an endogenous cyclic dipeptide produced by the cleavage of thyrotropin releasing hormone. Previous studies have shown that cyclo(His-Pro) protects against oxidative stress, although the underlying mechanism has remained elusive. Here, we addressed this issue and found that cyclo(His-Pro) triggered nuclear accumulation of NF-E2-related factor-2 (Nrf2), a transcription factor that up-regulates antioxidant-/electrophile-responsive element (ARE-EpRE)-related genes, in PC12 cells. Cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion caused by glutamate, rotenone, paraquat and β-amyloid treatment. Moreover, real-time PCR analyses revealed that cyclo(His-Pro) induced the expression of a number of ARE-related genes and protected cells against hydrogen peroxide-mediated apoptotic death. Furthermore, these effects were abolished by RNA interference-mediated Nrf2 knockdown. Finally, pharmacological inhibition of p-38 MAPK partially prevented both cyclo(His-Pro)-mediated Nrf2 activation and cellular protection. These results suggest that the signalling mechanism responsible for the cytoprotective actions of cyclo(His-Pro) would involve p-38 MAPK activation leading to Nrf2-mediated up-regulation of antioxidant cellular defence. PMID:18373731

  3. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation.

    PubMed

    Li, Qifang; Zhu, Yesen; Jiang, Hong; Xu, Hui; Liu, Heping

    2008-09-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of factors such as heat, heme, ischemia, and hydrogen peroxide. In recent years, mounting findings have suggested that HO-1 has a neuroprotective activity against ischemic injury. The neuroprotective role of isoflurane, a commonly used anesthetic, has been well documented, but little is known about the underlying mechanisms involved. Recently, isoflurane has been shown to up-regulate HO-1 in the liver. In this study, we show that isoflurane preconditioning promotes the survival of cultured ischemic hippocampal neurons by increasing the number of surviving neurons and their viability. Further study by reverse transcription-polymerase chain reaction and Western blot analysis showed that isoflurane preconditioning significantly increases HO-1 expression in oxygen glucose deprivation (OGD)-induced neuronal injury. Furthermore, inhibition of HO activity by tin protoporphyrin partially abolishes isoflurane preconditioning's protective effect as measured by lactate dehydrogenase release in OGD neurons. These findings indicated that the neuroprotective role of isoflurane preconditioning against OGD-induced injury might be associated with its role in up-regulating HO-1 in ischemic neurons.

  4. Nicotine Induced Murine Spermatozoa Apoptosis via Up-Regulation of Deubiquitinated RIP1 by Trim27 Promoter Hypomethylation.

    PubMed

    Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhang, Meixing; Zhao, Xianglong; Xu, Wangjie; Chen, Zhong; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong

    2016-02-01

    Nicotine significantly promoted apoptosis in stages I, VII, VIII, and XI spermatogonia, stages I, VII, VIII, X, and XI spermatocytes, and stages I-V, VII, and VIII elongating spermatids. To explore the underlying molecular mechanisms, sperm mRNA next-generation sequencing of nicotine-treated mice was conducted. Out of the 86 genes related to apoptosis, Tnf (tumor necrosis factor alpha) was screened to be the most significant varied transcript, and the Onto-pathway analysis indicated that the TNF apoptotic pathway was especially activated by nicotine exposure. The TNF pathway was further studied at the gene and protein levels. The results showed that RIP1, the key component in the TNF apoptotic pathway, was up-expressed in its deubiquitinated form in nicotine-treated mice testis. TRIM27, an E3 ubiquitin ligase that activated TNF apoptotic pathway through up-regulating deubiquitinated RIP1, was also overexpressed in nicotine-treated spermatocytes; moreover, four consecutive CpG sites near the Trim27 transcription start site were less frequently methylated. Finally, in vitro experiments of Trim27 overexpression and RNA interference in GC-1 spermatogonial cells confirmed that the RIP1 deubiquitination and TRIM27 hyopmethylation were both positively correlated with spermatocyte apoptosis. In summary, our study suggests that nicotine may induce murine spermatozoal apoptosis via the TNF apoptotic pathway through up-regulation of deubiquitinated RIP1 by Trim27 promoter hypomethylation.

  5. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  6. TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes

    PubMed Central

    Hasei, Joe; Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Horii, Takuro; Olmer, Merissa; Hatada, Izuho; Fukuda, Kanji; Ozaki, Toshifumi; Lotz, Martin K.; Asahara, Hiroshi

    2017-01-01

    The objective was to investigate the levels of TWIST1 in normal and OA cartilage and examine its role in regulating gene expression in chondrocytes. Human cartilage tissues and chondrocytes were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee arthroplasty. TWIST1 expression was increased in human OA knee cartilage compared to normal knee cartilage. TWIST1 induced matrix metalloproteinase 3 (MMP3) expression without direct binding to MMP3 promoter and increased the 5-hydroxymethylcytosine (5hmC) level at the MMP3 promoter. The effect of TWIST1 on expression of TET family (TET1, 2 and 3) was measured in stable TWIST1 transfected TC28 cells, and TET1 expression was up-regulated. TWIST1 dependent upregulation of Mmp3 expression was suppressed in Tet triple KO fibroblast derived from mouse ES cells. Increased TWIST1 expression is a feature of OA-affected cartilage. We identified a novel mechanism of catabolic reaction where TWIST1 up-regulates MMP3 expression by enriching 5hmC levels at the MMP3 promoter via TET1 induction. These findings implicate TWIST1 as an important factor regulating OA related gene expression. Clarifying epigenetic mechanisms of 5hmC induced by TWIST1 is a critical molecule to understanding OA pathogenesis. PMID:28220902

  7. Up-regulation of muscle uncoupling protein 3 gene expression by calcium channel blocker, benidipine hydrochloride in rats.

    PubMed

    Sakane, Naoki; Kotani, Kazuhiko; Hioki, Chizuko; Yoshida, Toshihide; Kawada, Teruo

    2007-12-01

    To examine whether benidipine hydrochloride, one of the calcium channel blockers, up-regulate uncoupling protein 3 (UCP3) expression in two skeletal muscles (gastrocnemius and soleus) in rats. Wistar rats were treated orally with benidipine hydrochloride at 4 mg/kg for 7 days. Blood pressure was measured after 4 days. At the end of experiments, the rats were weighed, and brown adipose tissue (BAT) and skeletal muscles (gastrocnemius and soleus muscles) were removed. The mRNA levels of uncoupling protein 1 (UCP1) and UCP3 were measured using the real-time quantitative reverse transcription-polymerase chain reaction method. Benidipine reduced body weight and also had a hypotensive effect. In rats treated with benidipine, UCP1 mRNA levels were significantly increased 1.4-fold in BAT, and UCP3 mRNA levels in BAT and gastrocnemius muscle were significantly increased 1.7 and 3.0-fold, respectively, compared with the control rats. There was no difference in UCP3 mRNA levels in soleus muscle between the two groups. We concluded that benidipine up-regulates not only UCP1 gene expression in BAT but also UCP3 gene expression in BAT and gastrocnemius muscle, which may contribute to thermogenesis in rats.

  8. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice

    PubMed Central

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H.

    2014-01-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/− mice, as were structural anomalies of the cerebellum in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype. PMID:25511459

  9. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s

    PubMed Central

    Zhu, Fang; Moural, Timothy W.; Nelson, David R.; Palli, Subba R.

    2016-01-01

    The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals. PMID:26861263

  10. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    PubMed

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  11. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells.

    PubMed

    Zhu, Yongliang; Jiang, Qiaoli; Lou, Xiaojun; Ji, Xiaowei; Wen, Zhenzhen; Wu, Jia; Tao, Haiying; Jiang, Tingting; He, Wei; Wang, Caihua; Du, Qin; Zheng, Shu; Mao, Jianshan; Huang, Jian

    2012-01-01

    CagA of Helicobacter pylori is a bacterium-derived oncogenic protein closely associated with the development of gastric cancers. MicroRNAs (miRNAs) are a class of widespread non-coding RNAs, many of which are involved in cell growth, cell differentiation and tumorigenesis. The relationship between CagA protein and miRNAs is unclear. Using mammalian miRNA profile microarrays, we found that miRNA-584 and miRNA-1290 expression was up-regulated in CagA-transformed cells, miRNA-1290 was up-regulated in an Erk1/2-dependent manner, and miRNA-584 was activated by NF-κB. miRNA-584 sustained Erk1/2 activities through inhibition of PPP2a activities, and miRNA-1290 activated NF-κB by knockdown of NKRF. Foxa1 was revealed to be an important target of miRNA-584 and miRNA-1290. Knockdown of Foxa1 promoted the epithelial-mesenchymal transition significantly. Overexpression of miRNA-584 and miRNA-1290 induced intestinal metaplasia of gastric epithelial cells in knock-in mice. These results indicate that miRNA-584 and miRNA-1290 interfere with cell differentiation and remodel the tissues. Thus, the miRNA pathway is a new pathogenic mechanism of CagA.

  12. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina.

    PubMed

    Park, Seunghye; Polle, Juergen E W; Melis, Anastasios; Lee, Taek Kyun; Jin, Eonseon

    2006-01-01

    The unicellular green alga Dunaliella salina is an attractive model organism for studying photoacclimation responses and the photosystem II (PSII) damage and repair process in the photosynthetic apparatus. Irradiance during cell growth defines both the photoacclimation and the PSII repair status of the cells. To identify genes specific to these processes, a cDNA library was created from irradiance-stressed D. salina. From the cDNA library, 1112 randomly selected expressed sequence tags (ESTs) were analyzed. Because ESTs constitute the expressed part of the genome, the strategy of randomly sequencing cDNA clones at their 5'-ends allowed us to obtain information about the transcript level of numerous genes in light-stressed D. salina. The results of a BLASTX search performed on the obtained total set of ESTs showed that approximately 1% of the ESTs could be assigned to genes coding for proteins that are known to be up-regulated in response to high-light stress. Specifically, after 48 h of high-light exposure of the cells, an increase in the expression level of antioxidant genes, such as Fe-SOD and APX, was observed, as well as elevated levels of the Cbr transcript, a light-harvesting Chl-protein homolog. Further, the ATP-dependent Clp protease gene was also up-regulated in D. salina cells after 48 h of exposure to high light. The results provide initial insight into the global gene regulation process in response to irradiance.

  13. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation.

    PubMed

    Smorodchenko, Alina; Schneider, Stephanie; Rupprecht, Anne; Hilse, Karoline; Sasgary, Soleman; Zeitz, Ute; Erben, Reinhold G; Pohl, Elena E

    2017-04-01

    Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder of the central nervous system (CNS) associated with severe neurological disability. Reactive oxygen species (ROS) and mitochondrial dysfunction play a pivotal role in the pathogenesis of this disease. Several members of the mitochondrial uncoupling protein subfamily (UCP2-UCP5) were suggested to regulate ROS by diminishing the mitochondrial membrane potential and constitute therefore a promising pharmacological target for MS. To evaluate the role of different uncoupling proteins in neuroinflammation, we have investigated their expression patterns in murine brain and spinal cord (SC) during different stages of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. At mRNA and protein levels we found that only UCP2 is up-regulated in the SC, but not in brain. The increase in UCP2 expression was antigen-independent, reached its maximum between 14 and 21days in both OVA and MOG immunized animals and correlated with an augmented number of CD3(+) T-lymphocytes in SC parenchyma. The decrease in abundance of UCP4 was due to neuronal injury and was only detected in CNS of MOG-induced EAE animals. The results provide evidence that the involvement of mitochondrial UCP2 in CNS inflammation during EAE may be mainly explained by the invasion of activated T-lymphocytes. This conclusion coincides with our previous observation that UCP2 is up-regulated in activated and rapidly proliferating T-cells and participates in fast metabolic re-programming of cells during proliferation.

  14. Monophosphoryl lipid A stimulated up-regulation of nitric oxide synthase and nitric oxide release by human monocytes in vitro.

    PubMed

    Saha, D C; Astiz, M E; Lin, R Y; Rackow, E C; Eales, L J

    1997-10-01

    Monophosphoryl lipid A (MPL) is a derivative of lipopolysaccharide (LPS) with reduced toxicity which has been shown to modulate various immune functions in monocytes. We examined whether human monocytes can be stimulated to produce nitric oxide (NO) and its catalytic enzyme nitric oxide synthase (NOS). Monocytes were stimulated with LPS or MPL and both NOS and NO (as nitrite) production were measured. MPL at high doses (> 100 micrograms/ml) stimulated monocytes to release NO that was significantly greater than both the control and LPS-treated monocytes (p < 0.05). NO release by control cells and the LPS treated cells was not significantly different. Both arginase and N-monomethyl arginine (NMLA) inhibited the MPL stimulated release of NO (p < 0.01). MPL significantly increased inducible NOS (iNOS) expression as measured by both fluorescent microscopy and flow cytometry (p < 0.05). Similarly, both soluble NOS (sNOS) and particulate NOS (pNOS) activity were significantly up-regulated by MPL (p < 0.05). Significant correlations were found between pNOS expression and sNOS release (r = 0.72, p < 0.0001) and between 12 h NO release and sNOS production (r = 0.44, p < 0.005). These experiments confirm that human monocytes can be stimulated with MPL to produce NO in vitro and suggest that up-regulation of pNOS does not preclude NO release.

  15. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    PubMed

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  16. Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite

    PubMed Central

    Stone, Michelle C.; Nguyen, Michelle M.; Tao, Juan; Allender, Dana L.

    2010-01-01

    Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite. PMID:20053676

  17. Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT.

    PubMed

    He, Zhen-Yu; Wu, San-Gang; Peng, Fang; Zhang, Qun; Luo, Ying; Chen, Ming; Bao, Yong

    2017-02-01

    Triple-negative breast cancer (TNBC) was regarded as the most aggressive and mortal subtype of breast cancer (BC) since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3) significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.

  18. Obesity in pregnancy: addressing the issues at the booking appointment.

    PubMed

    Haken, Clara; Fitzsimons, Kate

    2011-03-01

    The recently published Centre for Maternal and Child Enquiries (CMACE) report, Maternal Obesity in the UK: Findings from a National Project, has provided new information on how often we are caring for women who have a body mass index (BMI) of 35 or more, who these women are, the complications and consequences associated with obesity during pregnancy and the preparedness of maternity services to meet these women's needs. Focusing on booking, this article highlights some of the study's key recommendations and discusses the implications for midwives. Accurate calculation of BMI, discussion of dietary advice including supplementation, risk assessment and referral on are all considerations for this consultation.

  19. Obesity vaccines.

    PubMed

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  20. Childhood Obesity

    PubMed Central

    Ahmad, Qazi Iqbal; Ahmad, Charoo Bashir; Ahmad, Sheikh Mushtaq

    2010-01-01

    Obesity is increasing at an alarming rate throughout the world. Today it is estimated that there are more than 300 million obese people world-wide. Obesity is a condition of excess body fat often associated with a large number of debilitating and life-threatening disorders. It is still a matter of debate as to how to define obesity in young people. Overweight children have an increased risk of being overweight as adults. Genetics, behavior, and family environment play a role in childhood overweight. Childhood overweight increases the risk for certain medical and psychological conditions. Encourage overweight children to expand high energy activity, minimize low energy activity (screen watching), and develop healthful eating habits. Breast feeding is protective against obesity. Diet restriction is not recommended in very young children. Children are to be watched for gain in height rather than reduction in weight. Weight reduction of less than 10% is a normal variation, not significant in obesity. PMID:21448410

  1. Multi-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking.

    PubMed

    Chen, Meimei; Yang, Fafu; Kang, Jie; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-11-29

    In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.

  2. The effect of maternal Inflammation on foetal programming of metabolic disease.

    PubMed

    Ingvorsen, C; Brix, S; Ozanne, S E; Hellgren, L I

    2015-08-01

    Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and related diseases. The literature on this topic is limited, so this review also includes animal models where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS). An LPS challenge results in an immunological response that resembles the obesity-induced immune profile, although LPS injections provoke a stronger response than the subclinical obesity-associated response. Maternal LPS or cytokine exposures result in increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. The cytokine levels might be specifically important for the metabolic imprinting, as cytokines are both transferable from maternal to foetal circulation and have the capability to modulate placental nutrient transfer. However, the immune response associated with obesity is moderate and therefore potentially weakened by the pregnancy-driven immune modulation, dominated by anti-inflammatory Treg and Th2 cells. We know from other low-grade inflammatory diseases, such as rheumatoid arthritis, that pregnancy can improve disease state. If pregnancy is also capable of suppressing the obesity-associated inflammation, the immunological markers might be less likely to affect metabolic programming in the developing foetus than otherwise implied.

  3. Differences in brain functional connectivity at resting-state in neonates born to healthy obese or normal-weight mothers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown associations between maternal obesity at pre- or early pregnancy and long-term neurodevelopment in children, suggesting in utero effects of maternal obesity on offspring brain development. In this study, we examined whether brain functional connectivity to the prefrontal lo...

  4. The epigenetics of obesity: Role of diet and exercise on adipose, skeletal muscle, and placental tissue metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal undernutrition or consumption of excess food energy contributes to the subsequent development of obesity in offspring. This phenomenon, in part, involves the epigenetic transmission of obesity risk across generations. The primary aim of our study is to determine whether a maternal diet incr...

  5. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells.

    PubMed

    Arner, Erik; Forrest, Alistair R R; Ehrlund, Anna; Mejhert, Niklas; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Laurencikiene, Jurga; Rydén, Mikael; Arner, Peter

    2014-01-01

    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons.

  6. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    PubMed Central

    Ma, Wenjuan; Wu, Jie; Zhang, Xiuyan; Hu, Xiaohui; Eaves, Connie J.; Wu, Depei; Zhao, Yun

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease. PMID:24465953

  7. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    SciTech Connect

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-09-15

    Previous work from our group indicated that {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric {alpha}7 nAChR ([{sup 3}H]methyllycaconitine binding) and other heteromeric subtypes ([{sup 3}H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [{sup 3}H]methyllycaconitine and [{sup 3}H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K{sub i} values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [{sup 3}H]methyllycaconitine and [{sup 3}H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [{sup 3}H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B{sub max} of high-affinity sites for both radioligands without affecting K{sub d}. The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes

  8. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.

  9. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells

    PubMed Central

    Vara-Ciruelos, Diana; Ramos-Torres, Ágata; Altamirano-Dimas, Manuel; Díaz-Laviada, Inés; Rodríguez-Henche, Nieves

    2016-01-01

    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer. PMID:27627761

  10. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the

  11. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity

    PubMed Central

    Fernandez-Twinn, Denise S.; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L.; Alfaradhi, Maria Z.; Loche, Elena; Sferruzzi-Perri, Amanda N.; Fowden, Abigail L.; Ozanne, Susan E.

    2017-01-01

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring. PMID:28291256

  12. Up-Regulation of MiR-300 Promotes Proliferation and Invasion of Osteosarcoma by Targeting BRD7.

    PubMed

    Xue, Zhen; Zhao, Jindong; Niu, Liyuan; An, Gang; Guo, Yashan; Ni, Linying

    2015-01-01

    Increasing reports suggest that deregulated microRNAs (miRNAs) might provide novel therapeutic targets for cancers. However, the expression and function of miR-300 in osteosarcoma is still unknown. In our study, we found that the expression of miR-300 was up-regulated in osteosarcoma tissues and cells compared with paired adjacent non-tumor bone tissues and osteoblastic cells using RT-qPCR. The enforced expression of miR-300 could promote cell proliferation, invasion and epithelial-mesenchymal transition (EMT). Moreover, we identified that bromodomain-containing protein 7 (BRD7), a new tumor suppressor gene, was a direct target of miR-300. Ectopic expression of BRD7 could significantly inhibit miR-300-promoted proliferation, invasion and EMT. Therefore, our results identify an important role for miR-300 in osteosarcoma through regulating BRD7 expression.

  13. Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli.

    PubMed

    Bratić, Ana M; Majić, Dragana B; Samardzić, Jelena T; Maksimović, Vesna R

    2009-06-01

    To shed light on expression regulation of the metallothionein gene from buckwheat (FeMT3), functional promoter analysis was performed with a complete 5' regulatory region and two deletion variants, employing stably transformed tobacco plants. Histochemical GUS assay of transgenic tobacco lines showed the strongest signals in vascular elements of leaves and in pollen grains, while somewhat weaker staining was observed in the roots of mature plants. This tissue specificity pattern implies a possible function of buckwheat MT3 in those tissues. Quantitative GUS assay showed strong up-regulation of all three promoter constructs (proportional to the length of the regulatory region) in leaves submerged in liquid MS medium containing sucrose, after a prolonged time period. This represented a complex stress situation composed of several synergistically related stress stimuli. These findings suggest complex transcriptional regulation of FeMT3, requiring interactions among a number of different factors.

  14. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    SciTech Connect

    Gwak, Jungsug; Song, Taeyun; Song, Jie-Young; Yun, Yeon-Sook; Choi, Il-Whan; Jeong, Yongsu; Shin, Jae-Gook; Oh, Sangtaek

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.