Engineering Encounters: Building a Spaghetti Structure
ERIC Educational Resources Information Center
Llewellyn, Douglas; Pray, Sandra; DeRose, Rob; Ottman, William
2016-01-01
This column presents ideas and techniques to enhance science teaching. In this month's issue an upper elementary Science, technology, engineering, and math (STEM) challenge brings an engineer into the classroom while emphasizing cooperation, communication, and creativity. STEM activities come in various shapes and sizes. Some are quite involved…
Neurobiological Underpinnings of Math and Reading Learning Disabilities
ERIC Educational Resources Information Center
Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod
2013-01-01
The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in…
Love of Science Began at Early Age for Air Force Captain | DoDLive
advice: "I emphasize early math, as much math as you can take." So what does the future hold avoidance technologies program, Capt. Heather Stickney, Force of the Future, math, science, STEM, Wright
ERIC Educational Resources Information Center
Hansen, Michael; Gonzalez, Thomas
2014-01-01
Science, technology, engineering and math (STEM) advocates commonly emphasize an interdisciplinary, authentic, project-based, and technology-based approach to learning, though the strength of prior research varies. This study examines the association between a range of classroom activities and academic performance gains in math and science. Using…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery
NASA Astrophysics Data System (ADS)
Preininger, Anita M.
2017-02-01
There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before and after the 18-week chemistry class; results from the chemistry class were compared to survey results from students in an elective science class that did not emphasize mathematics. At the end of the 18-week period, only the chemistry students exhibited more positive views toward their abilities in mathematics and careers that involve mathematics, as compared to their views at the outset of the course. To ensure that chemistry mastery was not hindered by the additional emphasis on math, and that mastery on state end-of-course examinations reflected knowledge acquired during the math-intensive chemistry class, a chemistry progress test was administered at the start and end of the term. This exploratory study suggests that emphasizing mathematical approaches in chemistry may positively influence attitudes toward math in general, as well as foster mastery of chemistry content.
ERIC Educational Resources Information Center
Medrano, Juan
2012-01-01
The purpose of this study is to impact the teaching and learning of math of 2nd through 4th grade math students at Porfirio H. Gonzales Elementary School. The Cognitively Guided Instruction (CGI) model serves as the independent variable for this study. Its intent is to promote math instruction that emphasizes problem-solving to a greater degree…
ERIC Educational Resources Information Center
Brown, Linda
2012-01-01
Math achievement for students in the United States is not as high as in other countries. In response, one state implemented a new standards-based, integrated math curriculum that combines traditional high school math courses and emphasizes student centered instruction. The purpose of this study was to examine the implementation of a standards…
Working memory, math performance, and math anxiety.
Ashcraft, Mark H; Krause, Jeremy A
2007-04-01
The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.
Automatic Invocation Linking for Collaborative Web-Based Corpora
NASA Astrophysics Data System (ADS)
Gardner, James; Krowne, Aaron; Xiong, Li
Collaborative online encyclopedias or knowledge bases such as Wikipedia and PlanetMath are becoming increasingly popular because of their open access, comprehensive and interlinked content, rapid and continual updates, and community interactivity. To understand a particular concept in these knowledge bases, a reader needs to learn about related and underlying concepts. In this chapter, we introduce the problem of invocation linking for collaborative encyclopedia or knowledge bases, review the state of the art for invocation linking including the popular linking system of Wikipedia, discuss the problems and challenges of automatic linking, and present the NNexus approach, an abstraction and generalization of the automatic linking system used by PlanetMath.org. The chapter emphasizes both research problems and practical design issues through discussion of real world scenarios and hence is suitable for both researchers in web intelligence and practitioners looking to adopt the techniques. Below is a brief outline of the chapter.
Math CAMMP: A Constructivist Summer Camp for Teachers and Students
ERIC Educational Resources Information Center
Green, Michael; Piel, John A.
2012-01-01
A summer session, math methods course for elementary teachers incorporates 30 hours of instruction that emphasizes (1) developmentally appropriate instructional strategies, (2) hierarchical levels of increasingly abstract manipulatives, (3) ongoing assessment of student learning, (4) integrated thematic instructional modules, (5) team planning and…
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
ERIC Educational Resources Information Center
Fett, Paula
2010-01-01
In recent years, "math and science" has been the mantra for many educators and business leaders who warn of an urgent need to encourage the pursuit of these and other technological disciplines or risk losing ground in the global economy. Simply emphasizing the need for "math and science" expertise does not, however, encourage…
Partnership Teaching: Success for All Children Using Math as a Vehicle.
ERIC Educational Resources Information Center
Adeeb, Patty; Bosnick, Janet; Terrell, Sue
1998-01-01
Using a constructivist and multicultural approach, math skills were taught in urban elementary classrooms. Acceptance of self and others, teamwork, problem solving, and critical thinking were emphasized. Game-formatted activities with hand-size wooden basketball goals and race cars were used to teach fractions and metrics. (MMU)
Synchronizing Physics And Math Standards
NASA Astrophysics Data System (ADS)
Weisel, Derek
2008-04-01
State and national standards tend to focus primarily on math and reading. This has led many schools to focus the majority of instruction time on these two subjects. This creates the negative effect of placing less emphasis on physics in many schools. An effective way to keep physics as a primary focus in schools is to emphasize that physics curriculum meets many of the math standards and can be used as a tool to introduce, practice and reinforce important math concepts. This is also a way for physics curriculum to be introduced at the elementary level. This talk will highlight some common areas where math standards are being met and exceeded in the physics curriculum.
ERIC Educational Resources Information Center
Jalan, Rahael
1992-01-01
Describes Saskatchewan Indian Federated College's preprofessional, university-level science program and its focus on building math and science skills and on Indian culture, traditional medicine, current and future health care needs, and the goals of Indian people. Reports departmentwide enrollment increases. (DMM)
ERIC Educational Resources Information Center
Berkowitz, Peter
2007-01-01
Higher education in America faces such formidable problems as unaffordable tuition, lack of accountability, students ill-prepared for college, declining enrollment in math and science, and too few graduates fluent in critical foreign languages. This Opportunity 08 position paper recommends that the next President should take the following steps to…
Innovative Math for Liberal Arts Majors
ERIC Educational Resources Information Center
Strasser, Nora
2011-01-01
An innovative Math for Liberal Arts course was designed to provide liberal arts students with the life skills necessary to survive in the 21st century. The course emphasizes application driven mathematics. This course has been successful in changing students' perceptions of the usefulness of the course and improving student success rate as well as…
Age at Menarche and Choice of College Major: Implications for STEM Majors
ERIC Educational Resources Information Center
Brenner-Shuman, Anna; Waren, Warren
2013-01-01
Even though boys and girls in childhood perform similarly in math and spatial thinking, after puberty fewer young women pursue majors that emphasize abilities such as science, technology, engineering, and math (STEM) in college. If postpubertal feminization contributes to a lower likelihood of choosing STEM majors, then young women who enter…
The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science
ERIC Educational Resources Information Center
Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.
2013-01-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…
An Evaluation of ChalleNGe Graduates DOD Employability
2018-01-22
initial reading and applied math TABE scores are more likely to complete ChalleNGe. In addition, those graduates who begin ChalleNGe with higher TABE...students arrive at ChalleNGe at low levels of reading comprehension, writing, and basic math ; they simply are not ready to acquire a second language...positive, long-term impacts for ChalleNGe graduates. Our previous work has shown that cadets with higher initial reading and applied math TABE scores are
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
NASA Astrophysics Data System (ADS)
Quigley, Cassie F.; Herro, Dani
2016-06-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.
ERIC Educational Resources Information Center
Ruiz, Amanda M.; Many, Joyce E.; Aoulou, Eudes
2011-01-01
This study examined uses of adolescent literature included secondary teacher preparation in English, math, science, and social studies education at 12 institutions. Analyses revealed programs emphasized adolescent literature in a variety of ways and most often in courses for English majors. Only two institutions required that prospective math,…
ERIC Educational Resources Information Center
Roman, Elliott M.
Staff Development for Pedagogues in Bilingual Math and Science provided two thematically-based workshops to 40 New York City science teachers who taught students of limited English proficiency (LEP) citywide. Workshops emphasized successful teaching strategies as well as psychological aspects involved in teaching LEP students. The project also…
ERIC Educational Resources Information Center
Watt, Helen M. G.; Shapka, Jennifer D.; Morris, Zoe A.; Durik, Amanda M.; Keating, Daniel P.; Eccles, Jacquelynne S.
2012-01-01
In this international, longitudinal study, we explored gender differences in, and gendered relationships among, math-related motivations emphasized in the Eccles (Parsons) et al. (1983) expectancy-value framework, high school math participation, educational aspirations, and career plans. Participants were from Australia, Canada, and the United…
ERIC Educational Resources Information Center
Jayanthi, Madhavi; Gersten, Russell; Taylor, Mary Jo; Smolkowski, Keith; Dimino, Joseph
2017-01-01
Contemporary state math standards emphasize that students must demonstrate an understanding of the mathematical ideas underlying the computations that have typically been the core of the elementary school math curriculum. The standards have put an increased emphasis on the study of fractions in upper elementary grades, which are the years during…
An Evaluation of ChalleNGe Graduates DOD Employability
2017-12-01
long-term impacts for ChalleNGe graduates. Our previous work has shown that cadets with higher initial reading and applied math TABE scores are...levels of reading comprehension, writing, and basic math ; they simply are not ready to acquire a second language. In addition, program directors noted...graduates. Our previous work has shown that cadets with higher initial reading and applied math TABE scores are more likely to complete ChalleNGe. In
ERIC Educational Resources Information Center
Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…
Helping Students Get Past Math Anxiety
ERIC Educational Resources Information Center
Scarpello, Gary
2007-01-01
Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…
Supporting English Language Learners in Math Class, Grades 6-8
ERIC Educational Resources Information Center
Melanese, Kathy; Chung, Luz; Forbes, Cheryl
2011-01-01
This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…
ERIC Educational Resources Information Center
Broderick, Kathy
1998-01-01
These new paperbacks and recent paperback reprints present simple and complex math concepts as engaging, challenging puzzles and can make math fun for children from preschool through primary grades. (Author/AEF)
Math and science illiteracy: Social and economic impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.L.
1994-05-01
Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiatedmore » programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.« less
Tips for Teaching Math to Elementary Students
ERIC Educational Resources Information Center
Scarpello, Gary
2010-01-01
Since most elementary school teachers do not hold a degree in mathematics, teaching math may be a daunting task for some. Following are a few techniques to help make teaching and learning math easier and less stressful. First, know that math is a difficult subject to teach--even for math teachers. The subject matter itself is challenging. Second,…
Exposing the Myth: Advanced Math Does Not Increase Drop out Rates. Math Works
ERIC Educational Resources Information Center
Achieve, Inc., 2013
2013-01-01
A common argument against raising math course-taking requirements for all students is that it will cause more students to drop out of high school. But most students who drop out for academic reasons do so not because they are being "too challenged," but rather because they are not being challenged enough. It is important to raise the rigor and…
A Math Intervention for Third Grade Latino English Language Learners at Risk for Math Disabilities
ERIC Educational Resources Information Center
Orosco, Michael J.
2014-01-01
Word problems for English language learners (ELLs) at risk for math disabilities are challenging in terms of the constant need to develop precise math language and comprehension knowledge. As a result of this, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a…
Petrina White | Oregon State University Extension Service
the "Get a new challenge" button which displays below the challenge text. Math question: * 6 + 6 = Solve this simple math problem and enter the result. E.g. for 1+3, enter 4. Send e-mail
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozak, K.; Gagnon, S.
1994-12-31
BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls,more » have been analyzed.« less
The role of social support in students' perceived abilities and attitudes toward math and science.
Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M
2013-07-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.
Effective pedagogies for teaching math to nursing students: a literature review.
Hunter Revell, Susan M; McCurry, Mary K
2013-11-01
Improving mathematical competency and problem-solving skills in undergraduate nursing students has been an enduring challenge for nurse educators. A number of teaching strategies have been used to address this problem with varying degrees of success. This paper discusses a literature review which examined undergraduate nursing student challenges to learning math, methods used to teach math and problem-solving skills, and the use of innovative pedagogies for teaching. The literature was searched using the Cumulative Index of Nursing and Allied Health Literature and Education Resource Information Center databases. Key search terms included: math*, nurs*, nursing student, calculation, technology, medication administration, challenges, problem-solving, personal response system, clickers, computer and multi-media. Studies included in the review were published in English from 1990 to 2011. Results support four major themes which include: student challenges to learning, traditional pedagogies, curriculum strategies, and technology and integrative methods as pedagogy. The review concludes that there is a need for more innovative pedagogical strategies for teaching math to student nurses. Nurse educators in particular play a central role in helping students learn the conceptual basis, as well as practical hands-on methods, to problem solving and math competency. It is recommended that an integrated approach inclusive of technology will benefit students through better performance, increased understanding, and improved student satisfaction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Word-Problem-Solving Strategy for Minority Students at Risk for Math Difficulties
ERIC Educational Resources Information Center
Kong, Jennifer E.; Orosco, Michael J.
2016-01-01
Minority students at risk for math difficulties (MD) struggle with word problems for various reasons beyond procedural or calculation challenges. As a result, these students require support in reading and language development in addition to math. The purpose of this study was to assess the effectiveness of a math comprehension strategy based on a…
Supporting English Language Learners in Math Class, Grades K-2
ERIC Educational Resources Information Center
Bresser, Rusty; Melanese, Kathy; Sphar, Christine
2009-01-01
More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…
Advanced Math Equals Career Readiness. Math Works
ERIC Educational Resources Information Center
Achieve, Inc., 2013
2013-01-01
The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…
Math and Movement: Practical Ways to Incorporate Math into Physical Education
ERIC Educational Resources Information Center
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
Supporting English Language Learners in Math Class, Grades 3-5
ERIC Educational Resources Information Center
Bresser, Rusty; Melanese, Kathy; Sphar, Christine
2009-01-01
More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades 3-5" outlines the challenges ELL students face when learning math and provides a wealth of specific…
ERIC Educational Resources Information Center
Abreu, Julio
2000-01-01
Four decades ago following Russia's Sputnik satellite launching, the nation embraced "new" math as part of its commitment not to fall behind its global neighbors. Issues addressed in "new-new" math include equal access to challenging learning, problem solving, reasoning and proof, communications, multiple ways to solve…
The Effects of Dynamic Strategic Math on English Language Learners' Word Problem Solving
ERIC Educational Resources Information Center
Orosco, Michael J.; Swanson, H. Lee; O'Connor, Rollanda; Lussier, Cathy
2013-01-01
English language learners (ELLs) struggle with solving word problems for a number of reasons beyond math procedures or calculation challenges. As a result, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a math comprehension strategy called Dynamic Strategic…
NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.
ERIC Educational Resources Information Center
Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.
2017-01-01
In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…
Predicting Success of Developmental Math Students
ERIC Educational Resources Information Center
Martinez, Isaac
2017-01-01
Addressing the needs of developmental math students has been one of the most challenging problems in higher education. Administrators at a private university were concerned about poor academic performance of math-deficient students and sought to identify factors that influenced students' successful progression from developmental to college-level…
Naval Sea Systems Command > Home
Parties Vehicles for Partnering STEM Programs FIRST LEGO League Robotics Program Carderock Math Contest Educational Partnership Agreements Math Clubs Seaplane Challenge Calculator-Controlled Robot Program Students - 'Fun Twist on Math' May 24, 2018 More SOCIAL MEDIA Facebook Logo Join us live as we commission
and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math
ERIC Educational Resources Information Center
Higa, Joice M.
2017-01-01
Students with disabilities often have difficulty meeting established math proficiency levels. Without these skills, students may face increased challenges in transitioning to adulthood, including fewer post-secondary educational opportunities, limited career options, and decreased long-term income. Addressing low math skills is important to…
Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L
2011-08-01
In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Escontrias, Gabriel, Jr.
Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other components of their parent center, the Mathematical, Computational and Modeling Sciences Center (MCMSC), to determine if the suggested pipeline, MCMSC Model for Enhancing the Math and Science Experiences of Latinas and Latinos, can positively impact our 21st century workforce and the dire representational need of Latinas and Latinos in STEM fields.
Physicist scorns syllabus that 'ill-equips' students
NASA Astrophysics Data System (ADS)
Randall, Ian
2017-03-01
Quantum physicist Michelle Simmons from the University of New South Wales has criticized the Australian school physics curriculum for reducing maths-based teaching and over-emphasizing essay-based questions - a move she says has left students “ill-equipped” on reaching university.
ERIC Educational Resources Information Center
Goldberger, Susan
2008-01-01
One of the most persistent inequities in U.S. education is the gap in math achievement along income and race lines. Yet some secondary schools beat the odds, producing consistently strong math performance with students who likely would fail in traditional settings. This report advocates that the math achievement gap is not the result of poor and…
Word Problem Strategy for Latino English Language Learners at Risk for Math Disabilities
ERIC Educational Resources Information Center
Orosco, Michael J.
2014-01-01
"English Language Learners" (ELLs) at risk for "math disabilities" (MD) are challenged in solving word problems for numerous reasons such as (a) learning English as a second language, (b) limited experience using math vocabulary, and (c) lack of strategies to improve word-problem-solving skills. As a result of these…
Laying the Foundations: Early Findings from the New Mathways Project
ERIC Educational Resources Information Center
Zachry Rutschow, Elizabeth; Diamond, John
2015-01-01
National studies reveal that 50 percent to 70 percent of community college students are required to take developmental, or remedial, math courses upon enrollment, and only 20 percent of developmental math students ever successfully complete a college-level math course. Taking up the challenge is the "New Mathways Project" (NMP),…
ERIC Educational Resources Information Center
Berland, Leema K.; Steingut, Rebecca
2016-01-01
Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistencies…
... time when they are challenged with writing and math exercises. Generally, children with the disorder exhibit poor handwriting and spelling skills, and difficulty with math functions, including adding, subtracting, multiplying, and dividing. An ...
Neurobiological Underpinnings of Math and Reading Learning Disabilities
Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod
2013-01-01
The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in each domain. Next we review functional imaging studies of MD and RD in children, integrating relevant theories from experimental psychology and cognitive neuroscience to characterize the functional neuroanatomy of cognitive dysfunction in MD and RD. We then review recent research on the anatomical correlates of MD and RD. Converging evidence from morphometry and tractography studies are presented to highlight distinct patterns of white matter pathways which are disrupted in MD and RD. Finally, we examine how the intersection of MD and RD provides a unique opportunity to clarify the unique and shared brain systems which adversely impact learning and skill acquisition in MD and RD, and point out important areas for future work on comorbid learning disabilities. PMID:23572008
... Auditory Overload Aphasia vs Apraxia Reading, Writing and Math Reading Rehab (PDF opens in new window) Putting ... on Paper (PDF opens in new window) Acalculia - Math Challenges After Stroke Maximizing Communication Recovery & Independence Talking ...
ERIC Educational Resources Information Center
Reed, Keith Deon
2017-01-01
This study focused on student achievement in remedial math through online and traditional delivery modes at Northwest Mississippi Community College. Student participants were interviewed through a semi-structured interview process to determine perceived influences and challenges that affected success in remedial math courses. The perceived…
ERIC Educational Resources Information Center
Griggs, Marissa Swaim; Rimm-Kaufman, Sara E.; Merritt, Eileen G.; Patton, Christine L.
2013-01-01
Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as…
Getting Started with The Math Forum Problems of the Week Library. Teacher's Guide
ERIC Educational Resources Information Center
Math Forum @ Drexel, 2009
2009-01-01
The Math Forum Problems of the Week Library is designed to leverage the power of interactive technology to hold student interest while increasing their success as strategic thinkers. The Math Forum Library is an online source of non-routine challenges in which problem solving and mathematical communication are key elements of every problem. This…
ERIC Educational Resources Information Center
Menz, Petra; Jungic, Veselin
2015-01-01
Among many challenges a math department at a post-secondary institution will most likely be faced with the optimization problem of how best to offer out-of-lecture learning support to several thousand first- and second-year university students enrolled in large math service courses within given spatial, scheduling, financial, technological, and…
Teaching Math to Young Children. Educator's Practice Guide. What Works Clearinghouse. NCEE 2014-4005
ERIC Educational Resources Information Center
Frye, Douglas; Baroody, Arthur J.; Burchinal, Margaret; Carver, Sharon M.; Jordan, Nancy C.; McDowell, Judy
2013-01-01
The goal of this practice guide is to offer educators specific, evidence-based recommendations that address the challenge of teaching early math to children ages 3 to 6. The guide provides practical, clear information on critical topics related to teaching early math and is based on the best available evidence as judged by the authors. The guide…
ERIC Educational Resources Information Center
Lee, Wona; Lee, Jin Sook
2017-01-01
Two-Way Immersion (TWI) programs have demonstrated positive outcomes in students' academic achievement in English, yet less is known about content teaching and learning in the non-English language in these programs. This study uses math instruction as a lens to identify pedagogical strategies and challenges in the teaching of math in Korean to…
NASA Astrophysics Data System (ADS)
Parson, Laura J.
A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate participants reported being challenged by difficult and intimidating aspects of the teaching and learning environment. Second, undergraduate participants reported challenges meeting some of the characteristics of successful math and physics students (e.g., taking risks, asking questions, putting school first) and preferred a collectivistic environment. Third, participants described challenges from conflicting STEM academic expectations and institutional policies, which made it harder for them to meet STEM expectations. Findings indicate that efforts to reduce the "chilly" climate have been unsuccessful, largely because discourses that motivate the chilly climate have not changed. Those discourses are evidence of a masculine STEM institution, which also creates a male ideal that female students are expected to meet, further exacerbating their discomfort in the STEM environment. The masculinized nature of a STEM institution is reinforced by neoliberal policies that emphasize the importance of meeting gendered ideal STEM student characteristics. The result is that while women persist, they face stress, anxiety, and discomfort. Recommendations to improve the chilly climate include: revising the STEM institution from one that is masculine to one that is inclusive of women; and, to create a STEM educational environment that supports, validates, and gives women an equal voice.
Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J
2013-05-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Blueprint for Success: An Energy Education Unit Management Plan.
ERIC Educational Resources Information Center
National Energy Education Development Project, Reston, VA.
This energy education unit contains activities and classroom management strategies that emphasize cooperative learning and peer teaching. The activities are designed to develop students' science, math, language arts, and social studies skills and knowledge. Students' critical thinking, leadership, and problem solving skills will be enhanced as…
Synchronous Online Collaborative Professional Development for Elementary Mathematics Teachers
ERIC Educational Resources Information Center
Francis, Krista; Jacobsen, Michele
2013-01-01
Math is often taught poorly emphasizing rote, procedural methods rather than creativity and problem solving. Alberta Education developed a new mathematics curriculum to transform mathematics teaching to inquiry driven methods. This revised curriculum provides a new vision for mathematics and creates opportunities and requirements for professional…
Celebrate Mathematical Curiosity
ERIC Educational Resources Information Center
Redford, Christine
2011-01-01
Children's mathematical questions are often based in real-world experiences, as they instinctively make connections to the world around them. In teaching math methods courses, this author recently started to emphasize the importance of fostering curiosity in, and activating the thinking of, the students. In this article, she describes how to tap…
Math 3320--Technical Mathematics II.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for a college pre-calculus course designed as the second course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes applications from technology and verbal problems. Topics include trigonometric functions; identities;…
Deweyan Democratic Agency and School Math: Beyond Constructivism and Critique
ERIC Educational Resources Information Center
Stemhagen, Kurt
2016-01-01
In this article, Kurt Stemhagen reconstructs mathematics education in light of Dewey's democratic theory and his ideas about mathematics and mathematics education. The resulting democratic philosophy and pedagogy of mathematics education emphasizes agency and the connections between mathematics and students' social experiences. Stemhagen considers…
ERIC Educational Resources Information Center
Eichhorn, Melinda S.
2016-01-01
Only six states in India currently identify learning disabilities as a category of disability. This article highlights the challenges students with math learning disabilities face in their transition from secondary school to higher secondary education and Bachelor of Commerce degree programs in the state of Maharashtra. While the current…
ERIC Educational Resources Information Center
Allan, F.; Bourne, J.; Bouch, D.; Churches, R.; Dennison, J.; Evans, J.; Fowler, J.; Jeffers, A.; Prior, E.; Rhodes, L.
2012-01-01
Case study research suggests that NLP [neuro-linguistic programming] influencing strategies benefit teacher effectiveness. Maths pedagogy involving higher-order questioning, challenge, problem solving and collaborative working may be a way of improving attainment in adult numeracy learning, however, such strategies may be less effective if the…
Videoconferencing in Math and Science Preservice Elementary Teachers' Field Placements
NASA Astrophysics Data System (ADS)
Plonczak, Irene
2010-03-01
This study was designed to examine benefits and challenges of teaching through videoconferencing in the context of students’ field placement experiences, particularly as it relates to an inquiry-based approach to teaching and learning math and science. In the context of mathematics and science methods courses, preservice teachers, with the supervision of professors, field placement supervisors and cooperating teachers, taught a series of math and science lessons via video conferencing to 5th grade classes in a major urban public school. Two major results of this study indicate that: (1) teaching through videoconferencing highlights strengths and weaknesses in questioning skill techniques that are at the heart of an inquiry-based approach; (2) teaching through videoconferencing raises the intellectual challenge of teaching and allows preservice teachers to look face to face into their limited understanding of the content matter in math and science.
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
Math Activities Using LogoWriter--Investigations.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
Saving Endangered Species: Using Technology to Teach Thematically.
ERIC Educational Resources Information Center
Wepner, Shelly B.; Seminoff, Nancy E.
1994-01-01
Describes a project using software in kindergarten instruction. Seven pieces of software used in a unit on endangered species that included social studies, math, art, language arts, and music emphases are briefly described. Ideas for managing a one-computer classroom and general recommendations drawn from the study are given. (KRN)
Living in Space. A Preschool Aerospace Curriculum Module.
ERIC Educational Resources Information Center
Young Astronaut Council, Washington, DC.
This program is designed to be an extension of the regular curriculum providing preschool children with a firm foundation and life-long appreciation for space and space-related topics. The program delivers both classroom and at-home family activities which emphasize age-appropriate language, math, art, science, nutrition, and health concepts…
Improving Procedural Knowledge and Transfer by Teaching a Shortcut Strategy First
ERIC Educational Resources Information Center
DeCaro, Marci S.
2015-01-01
Students often memorize and apply procedures to solve mathematics problems without understanding why these procedures work. In turn, students demonstrate limited ability to transfer strategies to new problem types. Math curriculum reform standards underscore the importance of procedural flexibility and transfer, emphasizing that students need to…
Math for Electronics; Industrial Electronics 1: 9323.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This curriculum guide is designed for the student interested in preparing for vocational electronics and related fields of electricity, emphasizing the mathematics necessary for an indepth study of electronics. Included in the course content are goals, specific block objectives, basic algebra, powers of 10, the slide rule, basic trigonometry…
Math 3310--Technical Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for a college pre-calculus designed as the first course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes engineering technology applications and verbal problems. Topics include a review of elementary algebra; factoring…
ERIC Educational Resources Information Center
Stapp, Alicia; Chessin, Debby; Deason, Rebecca
2018-01-01
The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…
Putting the spark into physical science and algebra
NASA Astrophysics Data System (ADS)
Pill, Bruce; Dagenais, Andre
2007-06-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.
Pedagogical Reform and College WOMEN’S Persistence in Mathematics
NASA Astrophysics Data System (ADS)
Strand, Kerry J. Strand; Mayfield, M. Elizabeth
Significant gender differences persist in the election of mathematics courses and math-related majors in college. Recent research suggests that part of the blame lies with conventional pedagogical approaches and that alternative approaches emphasizing practical applications, collaborative problem solving, and group work make mathematics more understandable and appealing to all students, particularly women. Using questionnaires administered to 355 traditional-age female college students, the authors examined the relationship between alternative teaching strategies in high school mathematics classes and two categories of outcome variables: mathematics-related attitudes and mathematics persistence in college. Multivariate analysis showed that experience with this so-called female-friendly pedagogy is positively related to students’ math-related attitudes and that these attitudes predict math persistence in college. However, the authors’ data also indicate that alternative teaching strategies have no discernible direct effect on students’ choices of mathematics courses or mathrelated
Obama Emphasizes Science and Innovation in State of the Union Address
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2011-02-01
U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder-Scholer, B.
1994-12-31
An overview of SCI/MATH/MN - Minnesota`s standards-based, systemic approach to the reform and improvement of the K-12 science and mathematics education delivery system - is offered as an illustration of the challenges of aligning state educational practices with the national curriculum standards, and as a model for business involvement in state educational policy issues that will enable fundamental, across-the-system reform. SCI/MATH/MN illustrates the major challenges involved in developing a statewide vision for math and science education reform, articulating frameworks aligned with the national standards, building capacity for system-oriented change at the local level, and involving business in systemic reform.
University of Wisconsin-Madison logo The University of Chicago logo Skip to content Home Concept Math at a Glance Math for a DOE Grand Challenge Connections Interactions with other DOE Projects DOE INCITE Award
ERIC Educational Resources Information Center
Cassidy, Jack
1991-01-01
Presents suggestions for teaching math word problems to elementary students. The strategies take into consideration differences between reading in math and reading in other areas. A problem-prediction game and four self-checking activities are included along with a magic password challenge. (SM)
First Generation College Students in STEM: Counter Stories of Success
NASA Astrophysics Data System (ADS)
Hernandez, Carol D.
First-generation community college Science, Technology, Engineering, and Mathematics (STEM) students have unique challenges in transferring to a four-year college. This is especially true for Latin and African American students who may experience multiple challenges, including discrimination, immigration issues and language issues, and sometimes poor academic preparation in their K-12 education. This project used a grounded theory approach to explore through an equity lens the educational journey of seven Los Medanos College students who have successfully transferred to a four-year institution were interviewed. All of these students that participated in this project were former Mathematics Engineering Science Achievement Program (MESA) students at Los Medanos College. The MESA Program is a learning community that provides academic support for "educationally and economically disadvantaged" students so they can excel in math and science, transfer to four-year institutions as majors in math-based fields, and graduate with baccalaureate degrees in STEM majors. Several intervention strategies are embedded into the program, including: counseling, mentors, a learning center, tutors, financial aid and transfer workshops, and internship and scholarship opportunities. The students were interviewed and asked several questions regarding their high school life, MESA, and community college and transfer experiences. The main theoretical framework utilized to analyze the interviews was Border Lands theory because these students created a safe space that allowed them to straddle their life at home and their life at school. Interviews with these students reveal seven successful, happy, and engaged students. Several themes emerged with respect to the importance of students' finding a major that they love, finding community, and the importance of teachers, family, and engagement in their success. The results of this project also emphasize the importance of hiring passionate teachers, challenging students, and engaging them via their interests and passions. The interviews uncovered Critical Race Theory counter stories, showing that despite the many barriers that these students encountered throughout their educational journey, they were able to succeed at the highest levels.
Examining a Grade-Level Math CBM Designed for Persistently Low-Performing Students
ERIC Educational Resources Information Center
Anderson, Daniel; Lai, Cheng-Fei; Alonzo, Julie; Tindal, Gerald
2011-01-01
Students with disabilities participate in two major measurement systems. The Individuals with Disabilities Education Act emphasizes working within a Response to Intervention (RTI) framework to identify and monitor the progress of low-performing students. Persistent low-performing students also may be eligible for some form of an alternate…
A Comparison of Constructivist and Traditional Instruction in Mathematics
ERIC Educational Resources Information Center
Alsup, John
2004-01-01
The researcher in this study theorized that preservice elementary teachers who had taken a semester-long mathematics course emphasizing a constructivist approach to instruction would realize a decreased level of math anxiety and gains in perceived teaching efficacy and autonomy over those who had taken a teacher-centered course based on a more…
Teaching and Learning Information Technology Process: From a 25 Year Perspective--Math Regents
ERIC Educational Resources Information Center
Lewis Sanchez, Louise
2007-01-01
This paper will describe the Teaching and Learning Informational Technology Process (TLITP). Before present day strategies, teaching and learning relied on transformations based on quantification to measure performance. The process will be a non-linear three construct of teacher, student and community. Emphasizing old practices now is the…
Teaching with Technology in Physical Education
ERIC Educational Resources Information Center
Eberline, Andrew D.; Richards, K. Andrew R.
2013-01-01
Physical education is at a crossroads in the 21st century. With government mandates related to the No Child Left Behind Act (U.S. Department of Education, 2001) emphasizing core subjects, such as math and literacy, non-core subjects have been deemphasized. The most recent "Shape of the Nation Report" (National Association for Sport and…
ERIC Educational Resources Information Center
Acevedo-Gil, Nancy; Solorzano, Daniel G.; Santos, Ryan E.
2014-01-01
This qualitative study examines the experiences of Latinas/os in community college English and math developmental education courses. Critical race theory in education and the theory of validation serve as guiding frameworks. The authors find that institutional agents provide academic validation by emphasizing high expectations, focusing on social…
Math Activities Using LogoWriter--Patterns and Designs.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
Math Activities Using LogoWriter--Numbers & Operations.
ERIC Educational Resources Information Center
Flewelling, Gary
This book is one in a series of teacher resource books developed to: (1) rescue students from the clutches of computers that drill and control; and (2) supply teachers with computer activities compatible with a mathematics program that emphasizes investigation, problem solving, creativity, and hypothesis making and testing. This is not a book…
Building Ramps and Hovercrafts and Improving Math Skills.
ERIC Educational Resources Information Center
Bottge, Brian A.
2001-01-01
This article describes a video- and computer-based program used to motivate and develop mathematics skills in middle school students with disabilities. The program emphasizes real-life problems such as building a cage for a pet, a skate boarding ramp, and a "hovercraft" frame. Case studies illustrate the program's effectiveness with individual…
ERIC Educational Resources Information Center
Acevedo-Gil, Nancy; Santos, Ryan E.; Alonso, LLuliana; Solorzano, Daniel G.
2015-01-01
This qualitative study examines the experiences of Latinas/os in community college English and math developmental education courses. Critical race theory in education and the theory of validation serve as guiding frameworks. The authors find that institutional agents provide academic validation by emphasizing high expectations, focusing on social…
What's My Math Course Got to Do with Biology?
ERIC Educational Resources Information Center
Burks, Robert; Lindquist, Joseph; McMurran, Shawnee
2008-01-01
At United States Military Academy, a unit on biological modeling applications forms the culminating component of the first semester core mathematics course for freshmen. The course emphasizes the use of problem-solving strategies and modeling to solve complex and ill-defined problems. Topic areas include functions and their shapes, data fitting,…
ERIC Educational Resources Information Center
Louie, Josephine; Brodesky, Amy; Brett, Jessica; Yang, Li-Ming; Tan, Yvette
2008-01-01
The No Child Left Behind (NCLB) Act of 2001 requires states to ensure that all students make adequate yearly progress in achieving proficiency in English language arts and math. This study examines how six diverse schools have responded to the challenge of educating their students in math, particularly students with disabilities and other…
Mathematical and Computational Aspects Related to Soil Modeling and Simulation
2017-09-26
and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...applied math tools need to be established and used to figure out how to impose compatible boundary conditions, how to better approximate the gradient
Gunderson, Elizabeth A; Hamdan, Noora; Sorhagen, Nicole S; D'Esterre, Alexander P
2017-06-01
Individuals' implicit theories of intelligence exist on a spectrum, from believing intelligence is fixed and unchangeable, to believing it is malleable and can be improved with effort. A belief in malleable intelligence leads to adaptive responses to challenge and higher achievement. However, surprisingly little is known about the development of academic-domain-specific theories of intelligence (i.e., math vs. reading and writing). The authors examined this in a cross-section of students from 1st grade to college (N = 523). They also examined whether students hold different beliefs about the role of fixed ability in adult jobs versus their own grade. The authors' adult-specific beliefs hypothesis states that when children learn societally held beliefs from adults, they first apply these beliefs specifically to adults and later to students their own age. Consistent with this, even the youngest students (1st and 2nd graders) believed that success in an adult job requires more fixed ability in math than reading and writing. However, when asked about students in their own grade, only high school and college students reported that math involves more fixed ability than reading and writing. High school and college students' math-specific theories of intelligence were related to their motivation and achievement in math, controlling for reading and writing-specific theories. Reading and writing-specific theories did not predict reading and writing-specific motivations or achievement, perhaps because students perceive reading and writing as less challenging than math. In summary, academic-domain-specific theories of intelligence develop early but may not become self-relevant until adolescence, and math-specific beliefs may be especially important targets for intervention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Putting the “Spark” into Physical Science and Algebra
NASA Astrophysics Data System (ADS)
Dagenais, Andre; Pill, B.
2006-12-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering
An Urban Collaborative in Critical Perspective.
ERIC Educational Resources Information Center
Bruckerhoff, Charles E.; Popkewitz, Thomas S.
1991-01-01
Discusses the rationale behind the Cleveland Collaborative for Mathematics Education, which networks urban high school math teachers with college math professors and mathematicians in business. Describes a typical teaching day for one high school teacher and how environmental challenges such as family abuse, student absenteeism, and lack of…
Lapan; Shaughnessy; Boggs
1996-12-01
A longitudinal study was conducted to test the mediational role of efficacy expectations in relation to sex differences in the choice of a math/science college major. Data on 101 students were gathered prior to their entering college and then again after they had declared a major 3 years later. Path analytic results support the importance of both math self-efficacy beliefs and vocational interest in mathematics in predicting entry into math/science majors and mediating sex differences in these decisions. Also, students who described themselves as more extroverted were less likely to take additional math classes in high school. Students with stronger artistic vocational interests chose majors less related to math and science. School personnel are strongly encouraged to develop programs that challenge the crystallization of efficacy beliefs and vocational interest patterns before students enter college.
NASA Astrophysics Data System (ADS)
Adamuti-Trache, Maria; Sweet, Robert
2014-03-01
The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.
ERIC Educational Resources Information Center
Hamilton, Asia Fuller; Malin, Joel; Hackmann, Donald
2015-01-01
This study analyzed high school Career and Technical Education (CTE) enrollments in Illinois, with comparisons to national data when possible, by career cluster and pathway and with respect to gender and racial/ethnic makeup of students. Enrollment patterns in Science, Technology, Engineering, and Math (STEM) CTE programming were emphasized.…
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman Mohammed
2006-01-01
Howard Gardner's Theory of Multiple Intelligences has provided educators with a new view of intelligence. It emphasizes that science, math and language are not the only ways to exhibit intelligence. People exhibit intelligence in many different ways. Each type of intelligence is as valuable as the others. Gardner classifies these intelligences…
ERIC Educational Resources Information Center
Jackson, Deborah C.; Johnson, Elizabeth D.
2013-01-01
The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…
ERIC Educational Resources Information Center
Ritchhart, Ron, Ed.
In six sites across the United States teams of teachers began creating "portfolio cultures"--classrooms where growth towards high common standards and reflection was emphasized for both students and teachers. Working groups of teachers became involved in a 2-year process to develop curriculum. This book is a part of this series…
ERIC Educational Resources Information Center
McKaveney, Edward W.
2017-01-01
A number of national directives and successful case studies, focus on the need for change in teaching and learning, particularly emphasizing increasingly rigorous STEM learning tied to the use of ICT and digital tools for technological literacy and future workforce development. This action research study investigated the role of instructional…
ERIC Educational Resources Information Center
Wright, Robert J.; Ellemor-Collins, David; Tabor, Pamela D.
2011-01-01
This fourth book in the Mathematics Recovery series equips teachers with detailed pedagogical knowledge and resources for teaching number to 7 to 11-year olds. Drawing on extensive programs of research, curriculum development, and teacher development, the book offers a coherent, up-to-date approach emphasizing computational fluency and the…
ERIC Educational Resources Information Center
Noblitt, Bethany A.; Buckley, Brooke E.
2011-01-01
Teams, pit stops, clues, time limits, fast forwards, challenges, and prizes are all components of the CBS hit show "The Amazing Race." They were also elements of the Amazing Mathematical Race sponsored by the Math and Stats Club at Northern Kentucky University in April 2009. Held in recognition of Math Awareness Month, which is advocated…
Motivation for Math in Rural Schools: Student and Teacher Perspectives
ERIC Educational Resources Information Center
Hardre, Patricia L.
2011-01-01
Rural schools, students, teachers, administrators, families and community leaders face unique challenges from those of their urban and suburban counterparts. This paper investigates motivation in rural secondary schools, with a particular focus on mathematics, from teacher and student perspectives. It integrates recent research on math learning…
Profiles of State-Supported Residential Math and Science Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2009-01-01
Unless we sharply increase the training of homegrown math and science talents, we may suffer negative economic and technological consequences. One means of addressing this challenge has been through specialty schools devoted to science, technology, engineering, and mathematics (STEM) training. In 1980, the North Carolina School of Science and…
Where Have All the Mathematics Teachers Gone?
ERIC Educational Resources Information Center
Clever, George
Three basic causes for the general decline in mathematics achievement among high school graduates nationally are poor motivation to learn math, poor math curriculum, and poor or no mathematics instruction. Many Native Americans drop mathematics because of lack of challenging courses or interesting teachers in their high schools. Since American…
ERIC Educational Resources Information Center
Hekimoglu, Serkan; Kittrell, Emily
2010-01-01
This study investigates whether seeing a documentary on how mathematicians do mathematics improves students' math "self-efficacy beliefs." The analysis of students' written reflections and classroom observations suggests that watching the documentary may help students' math anxiety decrease and positive self-efficacy toward learning mathematics…
Crosnoe, Robert
2010-01-01
The theoretical and policy focus on parental involvement in education has evolved into a consideration of two-way connections between families and schools. Working from a social capital perspective emphasizing the importance of information in periods and domains of uncertainty, this study tested a specific application of this reconceptualization. Multilevel models of the National Education Longitudinal Study (n = 17,899) revealed that youth started high school in higher-level math when parents, middle school personnel, and high school personnel were in contact with each other and when middle school personnel bridged the other two. The observed effects of other family-school patterns on math and of all family-school patterns on science were driven by selection, including adolescents' characteristics selecting them into different family-school configurations. Importantly, multiple forms of family-school communication were related to reduced income and language disparities in math and science coursework, regardless of their associations with coursework in the general population. PMID:19586180
Math and Science Teachers: Recruiting and Retaining California's Workforce. Policy Brief
ERIC Educational Resources Information Center
EdSource, 2008
2008-01-01
Middle and high school math and science teachers provide the foundation for education in the growing science, technology, engineering, and mathematics fields. They are crucial to California's efforts to remain competitive in a global economy. This policy brief looks at the shortage and challenges involved in recruiting and retaining fully prepared…
Examining Student Achievement and Interventions for Underprepared Vocational Math Students
ERIC Educational Resources Information Center
Hargens, Diane K.
2013-01-01
Math preparedness is a barrier to completion for many community college vocational students. With President Obama's (2010) challenge to produce more graduates in order to ensure our nation succeeds in the 21st century, community colleges across the country have an increased focus on graduation or completion. This study was conducted to provide…
Acceleration across California: Shorter Pathways in Developmental English and Math
ERIC Educational Resources Information Center
Hern, Katie
2012-01-01
Developmental courses in English, math, and reading have an important purpose in higher education, especially in the open-access world of community colleges. These classes--also referred to as "remedial"--are intended to give less-prepared students a chance to catch up and meet the challenges of college-level coursework. However,…
Remembering Math: The Design of Digital Learning Objects to Spark Professional Learning
ERIC Educational Resources Information Center
Halverson, Richard; Wolfenstein, Moses; Williams, Caroline C.; Rockman, Charles
2009-01-01
This article describes how the design of digital learning objects can spark professional learning. The challenge was to build learning objects that would help experienced special education teachers, who had been teaching in math classes, to demonstrate their proficiency in middle and secondary school mathematics on the PRAXIS examination. While…
Number Sense and Number Nonsense: Understanding the Challenges of Learning Math
ERIC Educational Resources Information Center
Krasa, Nancy; Shunkwiler, Sara
2009-01-01
How do children learn math--and why do some children struggle with it? The answers are in "Number Sense and Number Nonsense," a straightforward, reader-friendly book for education professionals and an invaluable multidisciplinary resource for researchers. More than a first-ever research synthesis, this highly accessible book brings math…
The Efficacy of Academic Acceleration for Gifted Minority Students
ERIC Educational Resources Information Center
Lee, Seon-Young; Olszewski-Kubilius, Paula; Peternel, George
2010-01-01
This study supported the use of acceleration for gifted minority students in math. The gifted minority students in this study viewed taking accelerated math courses as exciting and beneficial for preparation for high school and college and particularly liked the challenges they encountered while taking advanced classes. They enjoyed working ahead…
Parents' Perspectives on Hmong Students' Academic Challenges in Reading and Math
ERIC Educational Resources Information Center
Lee, Kenneth Kong
2014-01-01
The purpose of this survey study was to investigate the relationship between Hmong students' academic achievements and Hmong parental involvement, home environment, and acculturation adjustment as measured by the Math and English Language Arts sections of the California Standard Test in the United States from parents' perspective regarding student…
The Lifeworld Makes Mathematics Education Rural: Implications for Math Education Research.
ERIC Educational Resources Information Center
Howley, Craig
The great challenge for rural education scholars is explaining what relevance the rural circumstance might have to schooling, a task especially difficult in the case of mathematics education. This paper argues that the rural lifeworld makes math education rural and suggests implications for research based on that statement. The lifeworld is the…
ERIC Educational Resources Information Center
Quigley, Cassie F.; Herro, Dani
2016-01-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and…
ERIC Educational Resources Information Center
Watt, Helen M. G.
2008-01-01
This article presents latent growth modeling, a particular application of multilevel modeling, to examine the development of adolescents' math- and English-related talent perceptions and intrinsic values which are emphasized by Expectancy-Value theory as important precursors to a range of achievement-related outcomes. The longitudinal…
Summer Educational Program for the Children of Migrant Agricultural Workers, 1976. [North Dakota].
ERIC Educational Resources Information Center
North Dakota State Dept. of Public Instruction, Bismarck.
During the summer of 1976, North Dakota's 10 migrant centers enrolled more than 2,500 migrant children, ranging from a few days to 18 years of age. All students were entered in the Migrant Student Record Transfer System. A basic remedial program emphasizing instruction in reading, language arts, and math with some time devoted to science and…
NASA Astrophysics Data System (ADS)
Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza
2013-02-01
Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative action research. The mixed method study focused on: the relationship between gender and undergraduate major (science versus non-science) with respect to previous and current engagement in science and math, understanding the processes of inquiry, and learning outside the classroom. A field trip to a science center provided the setting for the data collection. From a sample of 132 PTs, a multivariate analysis showed that the science major of PTs explained most of the gender differences with respect to the PTs' attitudes toward science and mathematics. The process of inquiry is generally poorly interpreted by PTs, and non-science majors prefer a more social approach in their learning to teach science and math. The four educators/collaborators reflect on the impacts of the research on their individual practices, for example, the need to: include place-based learning, attend to the different learning strategies taken by non-science majors, emphasize social and environmental contexts for learning science and math, be more explicit regarding the processes of science inquiry, and provide out-of-classroom experiences for PTs. They conclude that the collaboration, though difficult at times, provided powerful opportunities for examining individual praxis.
Architecture: A Nexus of Creativity, Math, and Spatial Ability
ERIC Educational Resources Information Center
Senne, Jessica; Coxon, Steve V.
2016-01-01
The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…
How to Make STEM Education Cool for Students
ERIC Educational Resources Information Center
Steel, David
2012-01-01
Of all U.S. high school students who graduated in 2011, only 45 percent were ready for college-level math and a mere 30 percent were ready for science, according to ACT, a college-entrance testing agency. These data reflect the great challenge facing the United States in preparing students for science, technology, engineering, and math (STEM)…
Using Math as a Springboard to Success
ERIC Educational Resources Information Center
Mighton, John
2008-01-01
Ten years ago, the author started a tutoring club called JUMP (Junior Undiscovered Math Prodigy) in his apartment. He initially worked with a set of the most challenged students in a local school, including a number in special education who were performing far below grade level. The success of his program led him to realize that not only can all…
ERIC Educational Resources Information Center
Lochmiller, Chad R.; Acker-Hocevar, Michele
2016-01-01
We drew upon sense making and leadership content knowledge to explore how high school administrators' understanding of content areas informed their leadership. We used math and science to illustrate our interpretations, noting that other content areas may pose different challenges. We found that principals' limited understanding of these content…
Case Studies of a Robot-Based Game to Shape Interests and Hone Proportional Reasoning Skills
ERIC Educational Resources Information Center
Alfieri, Louis; Higashi, Ross; Shoop, Robin; Schunn, Christian D.
2015-01-01
Background: Robot-math is a term used to describe mathematics instruction centered on engineering, particularly robotics. This type of instruction seeks first to make the mathematics skills useful for robotics-centered challenges, and then to help students extend (transfer) those skills. A robot-math intervention was designed to target the…
The Relationship of Teacher-Facilitated, Inquiry-Based Instruction to Student Higher-Order Thinking
ERIC Educational Resources Information Center
Marshall, Jeff C.; Horton, Robert M.
2011-01-01
Commissions, studies, and reports continue to call for inquiry-based learning approaches in science and math that challenge students to think critically and deeply. While working with a group of middle school science and math teachers, we conducted more than 100 classroom observations, assessing several attributes of inquiry-based instruction. We…
2014-08-29
KISSIMMEE, Fla. – Guests at the Tom Joyner Family Reunion participate in "Learn and Spin Challenge," an opportunity to answer questions related to science, technology, engineering and math. Robert Smith asks a question as part of NASA’s educational theme during the five-day event. Behind Smith, to the left, is Debbie Houston who also supported the "Learn and Spin Challenge." The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.
2010-12-01
Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.
ERIC Educational Resources Information Center
Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather
2017-01-01
Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…
Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L
2013-12-01
Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.
2017-01-01
In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355
Phillips, Christopher J
2014-09-01
The "new math" curriculum, one version of which was developed in the 1950s and 1960s by the School Mathematics Study Group under the auspices of the National Science Foundation, occasioned a great deal of controversy among mathematicians. Well before its rejection by parents and teachers, some mathematicians were vocal critics, decrying the new curriculum because of the way it described the practice and history of the discipline. The nature of mathematics, despite the field's triumphs in helping to win World War II and its midcentury promotion as the key to a modern technological society, was surprisingly contested in this period. Supporters of the School Mathematics Study Group, like its director, Edward Begle, emphasized the importance of portraying mathematics as a system of abstract structures, while opponents like Morris Kline argued that math was essentially a tool for understanding the natural world. The debate about the curriculum--and the role of mathematicians in its design--was also a debate about the underlying identity of the subject itself.
Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L
2017-01-01
In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Burdman, Pamela
2015-01-01
The conventional algebra-intensive math curriculum commonly dictates students' options for entering and completing college, including their ability to transfer from two-year to four-year institutions. The assumption that higher-level algebra is necessary for college success has led some equity advocates to promote algebra for all students. Nearly…
Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools
ERIC Educational Resources Information Center
Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald
2007-01-01
If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…
Do Teacher-Coaches Make the Cut? The Effectiveness of Athletic Coaches as Math and Reading Teachers
ERIC Educational Resources Information Center
Egalite, Anna J.; Bowen, Daniel H.; Trivitt, Julie R.
2015-01-01
Math and reading teachers who also coach athletics in the public school system are challenged to balance the responsibilities that come with fulfilling dual occupational roles. While many studies have examined teacher-coaches' stress levels and job perception in the context of role strain, there is no evidence of how student achievement in tested…
Take the S.M.I.L.E. Challenge: Indoor Air Quality and Your High School.
ERIC Educational Resources Information Center
Deira, Maria-Isabel; Bloomfield, Molly
1998-01-01
The S.M.I.L.E. (Science and Math Investigative Learning Experiences) Program is a partnership between Oregon State University and eight rural Oregon school districts to provide science and math opportunities for disadvantaged students. Students in this program work on a problem that involves them in a real-world environmental issue. Describes an…
ERIC Educational Resources Information Center
Kimble-Ellis, Sonya
Puzzles, games, and activities provide perfect opportunities for students to work in groups, interact, communicate with each other, and discuss strategies. The activities, games, and puzzles contained in this book are designed to help students learn mathematics in a fun yet challenging way. The activities are designed to encourage students to…
ERIC Educational Resources Information Center
Gottfried, Michael; Bozick, Robert
2012-01-01
Academic math and science courses have been long shown to increase learning and educational attainment, but are they sufficient on their own to prepare youth for the challenges and rigor of the STEM workforce? Or, are there distinctive benefits to complementing these traditional academic courses with applied ones? Answers to these questions are…
ERIC Educational Resources Information Center
Fortmann, Thomas
2005-01-01
This report draws on the findings of nearly four dozen others: national and international studies that speak with a strong, collective voice about what it takes to improve math and science education. But the authors' intent with "World Class" is not simply to synthesize those reports. It is to establish a statewide, working agenda for…
ERIC Educational Resources Information Center
Walters, Kirk; Torres, Aubrey Scheopner; Smith, Toni; Ford, Jennifer
2014-01-01
This study describes key challenges and necessary supports related to implementation of the Common Core State Standards for Mathematics (CCSSM) identified by rural math educators in the Northeast. The research team interviewed state and district math coordinators and surveyed teachers in Maine, New Hampshire, New York and Vermont, to assess their…
VIDEO REVIEW: Maths in a Box video: Take-off - moving bodies with constant mass
NASA Astrophysics Data System (ADS)
Marks, Ken
1999-09-01
I write this review as a PGCE maths tutor, and therefore from the perspective of using parts of this series at A-level. The sample video, `Take-off - moving bodies with constant mass', is a good example of combining real footage with commentary as the viewer is invited to think about modelling the take-off of an aircraft. The style is reminiscent of Open University presentations and here the challenge is to determine the necessary length of the runway. The video is split into two sections. The first, commentary, section works quite well, although it jars a bit to hear Newton's Third Law put across as `Action and reaction are equal and opposite'; this is a familiar offering but one that still causes mystification in the sixth form. The viewer is invited to think about setting up equations, and reminded that the chain rule will be necessary to solve the differential equation generated from Newton's Second Law. This gives a good indication of the level of mathematics required. Unfortunately the flow is then somewhat disturbed by a strong emphasis on boundary conditions. If the student can cope with the general level of calculus required, this aspect of the challenge would also seem to fit more naturally into the second section of the video. This second section looks at setting up the equations and `solutions'. It can be used after classroom discussion, and takes the viewer through three, increasingly sophisticated, models involving functions for drag and resistance forces. On the whole this is clear and helpful, but for some reason the solutions each stop with an equation linking the length of the runway to the take-off velocity, failing to make use of the second equation to eliminate this intermediate variable. All in all, it is a useful addition to resources for A-level, particularly if students are also following the sort of mechanics syllabus (within mathematics) that emphasizes modelling.
NASA Astrophysics Data System (ADS)
Hoepner, Cynthia Colon
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were highlighted throughout the study. First, AP Chemistry was described as a foundational course necessary for the challenges of STEM courses. AP Calculus was considered a course with practical benefits across STEM majors. Finally, AP Biology was found to be a gateway course, which inspired students to continue to pursue STEM majors in college. All three courses were strongly recommended to high school students considering a STEM major. The findings will help grow a larger and equally prepared pool of females and males and help sustain a more even distribution of women across STEM fields.
Experiences of Visually Impaired Students in Community College Math Courses
NASA Astrophysics Data System (ADS)
Swan, S. Tomeka
Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.
ERIC Educational Resources Information Center
Holmquist, Stephanie Kaye
2014-01-01
The demand for STEM trained workers continues to increase not only in the United States, but globally. Reports have indicated that the United States is not doing a good job encouraging students to pursue STEM oriented degrees. In particular, it has become increasingly important to emphasize STEM connections at an early level in order to encourage…
ERIC Educational Resources Information Center
Kirk, Walters; Smith, Toni M.; Ford, Jennifer; Scheopner Torres, Aubrey
2014-01-01
This study describes key challenges and necessary supports related to implementation of the Common Core State Standards for Mathematics (CCSSM) identified by rural math educators in the Northeast. The research team interviewed state and district math coordinators and surveyed teachers in Maine, New Hampshire, New York and Vermont, to assess their…
ERIC Educational Resources Information Center
Hrastinski, Stefan; Edman, Anneli; Andersson, Fredrik; Kawnine, Tanvir; Soames, Carol-Ann
2014-01-01
The aim of this study is to describe and explore how instant messaging (IM) can be used to support informal math coaching. We have studied two projects where university students use IM to coach K-12 students in mathematics. The coaches were interviewed with a focus on how informal coaching works by examining coaching challenges, how coaching can…
Watt, Helen M G; Shapka, Jennifer D; Morris, Zoe A; Durik, Amanda M; Keating, Daniel P; Eccles, Jacquelynne S
2012-11-01
In this international, longitudinal study, we explored gender differences in, and gendered relationships among, math-related motivations emphasized in the Eccles (Parsons) et al. (1983) expectancy-value framework, high school math participation, educational aspirations, and career plans. Participants were from Australia, Canada, and the United States (Ns = 358, 471, 418, respectively) in Grades 9/10 at Time 1 and Grades 11/12 at Time 2. The 3 samples came from suburban middle to upper-middle socioeconomic backgrounds, primarily of Anglo-European descent. Multivariate analyses of variance revealed stereotypic gender differences in educational and occupational outcomes only among the Australian sample. Multigroup structural equation models identified latent mean differences where male adolescents held higher intrinsic value for math in the Australian sample and higher ability/success expectancy in both North American samples. Ability/success expectancy was a key predictor in the North American samples, in contrast to intrinsic value in the Australian sample. Attainment/utility ("importance") values were more important for female adolescents' career choices, except in the Australian sample. Findings are interpreted in relation to gender socialization practices, degree and type of early choice, and specialization across settings. Implications are discussed for long-term math engagement and career selection for female and male adolescents. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Shaping stereotypical behaviour through the discussion of social stereotypes.
Smith, Laura G E; Postmes, Tom
2011-03-01
In two studies, we demonstrate that small group discussions change the extent to which an activated stereotype affects performance in a relevant domain. In Study 1, female participants were asked why men are (or are not) better than them at maths. They generated their answers individually or through group discussion, and their subsequent maths performance was highest when they collectively challenged the stereotype and lowest when they collectively affirmed the stereotype. When participants affirmed the stereotype through discussion, they used more theories which supported the validity of the stereotype, compared to the individual thought condition; and consensus mediated the effect of group discussion on performance (relative to individual rumination). In Study 2, male and female participants affirmed or challenged the stereotype in same-gender discussion groups. After affirming the stereotype, women's performance decreased relative to their baseline scores and men's performance was 'lifted'. In contrast, when they challenged the stereotype, there was no difference between the performance of men and women on the maths test. This pattern of effects was mediated by confidence in mathematical ability. The findings support the idea that topical small group discussions can, in the short term, differentially alter the impact that stereotypes have on performance. ©2010 The British Psychological Society.
ERIC Educational Resources Information Center
Loveless, Tom
2008-01-01
This new study is being released as an advance excerpt of the 2008 Brown Center Report on American Education. This new report finds that the nation's push to challenge more students by placing them in advanced math classes in eighth grade has had unintended and damaging consequences, as some 120,000 middle-schoolers are now struggling in advanced…
AOTV Low L/D Preliminary Aeroheating Design Environment
NASA Technical Reports Server (NTRS)
Engel, C. D.
1983-01-01
The aerothermal environment to a configuration with a brake face which exhibits a low lift to drag ratio (L/D) of below 0.75 is emphasized. The five times geosynchronous (5 x Geo) orbit entry was selected as the design trajectory. The available data base and math model is discussed. The resulting preliminary design environment is documented. Recommendations as to how the design environment may be improved through technological advances are given.
Classroom Challenge: A 3D Snapshot of Student Learning in Mathematics
ERIC Educational Resources Information Center
Wilder, Sandra
2015-01-01
This article aims to describe a type of formative assessment, MAP Classroom Challenge, which has been introduced in mathematics classrooms in recent years. MAP, or the Mathematics Assessment Project Classroom Challenges (formerly known as Formative Assessment Lessons), are developed by teams of math educators from the Shell Centre for Mathematical…
ERIC Educational Resources Information Center
Larkin, Kevin; Jorgensen, Robyn
2016-01-01
Accessing children's feelings and attitudes towards mathematics is a challenging proposition since methods for data collection may be fraught in terms of bias and power relations. This article explores a method of collecting information from young students about their attitudes towards mathematics using iPads, and a video diary technique not…
Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking
NASA Astrophysics Data System (ADS)
Cassier, Maxence; Milton, Graeme W.
2017-07-01
Using a sum rule, we derive new bounds on Herglotz functions that generalize those given in Bernland et al. [J. Phys. A: Math. Theor. 44(14), 145205 (2011)] and Gustafsson and Sjöberg [New J. Phys. 12(4), 043046 (2010)]. These bounds apply to a wide class of linear passive systems such as electromagnetic passive materials. Among these bounds, we describe the optimal ones and also discuss their meaning in various physical situations like in the case of a transparency window, where we exhibit sharp bounds. Then, we apply these bounds in the context of broadband passive cloaking in the quasistatic regime to refute the following challenging question: is it possible to construct a passive cloaking device that cloaks an object over a whole frequency band? Our rigorous approach, although limited to quasistatics, gives quantitative limitations on the cloaking effect over a finite frequency range by providing inequalities on the polarizability tensor associated with the cloaking device. We emphasize that our results hold for a cloak or object of any geometrical shape.
2014-08-29
KISSIMMEE, Fla. – Former NASA astronaut Winston Scott signed autographs and posed for pictures with guests at the agency exhibit during the Tom Joyner Family Reunion. Now a senior vice president at the Florida Institute of Technology, he said that he likes to emphasize to young people how important a good education is in preparation for the future. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
2014-08-29
KISSIMMEE, Fla. – Former NASA astronaut Winston Scott signed autographs and posed for pictures with guests at the agency exhibit during the Tom Joyner Family Reunion. Now a senior vice president at the Florida Institute of Technology, he said that he likes to emphasize to young people how important a good education is in preparation for the future. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
2014-08-29
KISSIMMEE, Fla. – Former NASA astronaut Winston Scott signed autographs and posed for pictures with guests at the agency exhibit during the Tom Joyner Family Reunion. Now a senior vice president at the Florida Institute of Technology, he said that he likes to emphasize to young people how important a good education is in preparation for the future. The Tom Joyner Family Reunion is designed to present uplifting programs, entertainment and information about growing, diverse communities. An annual event of the nationally-syndicated Tom Joyner Morning Show, the many exhibits included NASA's participation focusing on encouraging young people to consider studies and careers in STEM -- science, technology, engineering and math. NASA's Education Division promoted the benefits of math and scientific learning along with career opportunities offered by the space agency. The activities took place at the Gaylord Palms Resort in Kissimmee, Florida, during the Labor Day weekend. Photo credit: NASA/Daniel Casper
Maras, Katie; Gamble, Tim; Brosnan, Mark
2017-10-01
Previous research suggests impaired metacognitive monitoring and mathematics under-achievement in autism spectrum disorder. Within educational settings, metacognitive monitoring is supported through the provision of feedback (e.g. with goal reminders and by explicitly correcting errors). Given the strength of the relationship between metacognition, learning and educational attainment, this research tested new computer-based metacognitive support (the 'Maths Challenge') for mathematics learners with autism spectrum disorder within the context of their classroom. The Maths Challenge required learners to engage in metacognitive monitoring before and after answering each question (e.g. intentions and judgements of accuracy) and negotiate with the system the level of difficulty. Forty secondary school children with autism spectrum disorder and 95 typically developing learners completed the Maths Challenge in either a Feedback condition, with metacognitive monitoring support regarding the accuracy of their answers, goal reminders and strategy support, or with No Feedback. Contrary to previous findings, learners with autism showed an undiminished ability to detect errors. They did, however, demonstrate reduced cohesion between their pre- and post-test intentions. Crucially, support from the Feedback condition significantly improved task performance for both groups. Findings highlight important implications for educational interventions regarding the provision of metacognitive support for learners with autism to ameliorate under-performance in mathematics within the classroom.
Gifted and Talented Students' Perceptions on Their Schooling: A Survey Study
ERIC Educational Resources Information Center
Kahveci, Nihat Gürel; Akgül, Savas
2014-01-01
This study provides elementary gifted and talented students: Social Studies, Math, Turkish, Science, and Foreign Language courses in terms of differentiation, challenging activities and classroom climate. Research studies contend the significance of differentiation, challenging curriculum and instruction, suitable classroom climate to provide…
Boundary layer transition: A review of theory, experiment and related phenomena
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1971-01-01
The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.
Expedition Zenith: Experiences of eighth grade girls in a non-traditional math/science program
NASA Astrophysics Data System (ADS)
Ulm, Barbara Jean
2004-11-01
This qualitative study describes the experiences of a group of sixteen, eighth grade girls participating in a single-sex, math/science program based on gender equity research and constructivist theory. This phenomenological case study highlights the individual changes each girl perceives in herself as a result of her involvement in this program which was based at a suburban middle school just north of New York City. Described in narrative form is what took place during this single-sex program. At the start of the program the girls worked cooperatively in groups to build canoes. The canoes were then used to study a wetland during the final days of the program. To further immerse the participants into nature, the girls also camped during these final days. Data were collected from a number of sources to uncover, as fully as possible, the true essence of the program and the girls' experiences in it. The data collection methods included direct observation; in-depth, open-ended interviews; and written documentation. As a result of data collection, the girls' perceived outcomes and assessment of the program, as well as their recommendations for future math/science programs are revealed. The researcher in this study also acted as teacher, directing the program, and as participant to better understand the experiences of the girls involved in the program. Thus, unique insights could be made. The findings in this study provide insight into the learning of the participants, as well as into the relationships they formed both inside and outside of the program. Their perceived experiences and assessment of the program were then used to develop a greater understanding as to the effectiveness of this non-traditional program. Although this study echoed much of what research says about the needs of girls in learning situations, and therefore, reinforces previously accepted beliefs, it also reveals significant findings in areas previously unaddressed by gender studies. For example, when girls feel supported they can experience success in math and science-based projects that are challenging, especially when such projects offer an opportunity to appreciate a sense of real-life relevancy. Positive effects can be seen when such projects build upon previous student experiences. But when an experience is new, investigating a scientific phenomenon in a less structured manner before developing more in-depth, formal studies provides an initial foundation upon which to build. Also, this study emphasizes the need for role models. Both teacher and parent involvement play a very important role in a girl's development.
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…
Smith college secondary math and science outreach program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.A.; Clark, C.
1994-12-31
The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less
Singapore Math: Challenging and Relevant Curriculum for the Gifted Learner
ERIC Educational Resources Information Center
Hazelton, Melody; Brearley, Donna
2008-01-01
Teachers know their students must struggle and grapple with authentic tasks in order to grow stronger. Classroom teachers of the gifted know that their students cannot advance cognitively without facing relevant and challenging material that demands higher level thinking and reasoning. Therefore, the teacher of gifted mathematics students must…
Scratch Your Brain Where It Itches: Math Games, Tricks and Quick Activities, Book C-1.
ERIC Educational Resources Information Center
Brumbaugh, Doug
This resource book contains mathematical games, tricks, and quick activities for the classroom. Categories of activities include computation, manipulative challenges, puzzlers, picky puzzlers, patterns, measurement, money, and riddles. The computation section contains 13 classroom games and activities along with 4 manipulative challenges.…
#WomenInSTEM: Using Science & Math to Power the Globe
Jordan, Rhonda
2018-01-16
Growing up, Dr. Rhonda Jordan always enjoyed math and science. After completing her master's in electrical engineering at Columbia University she co-founded a startup in Tanzania that provides access to power for residents who are not connected to the electrical grid.This video is part of the Energy Department's #WomenInSTEM video series. At the Energy Department, we're committed to supporting a diverse talent pool of STEM innovators ready to address the challenges and opportunities of our growing clean energy economy.
Aunola, Kaisa; Leskinen, Esko; Nurmi, Jari-Erik
2006-03-01
It has been suggested that children's learning motivation and interest in a particular subject play an important role in their school performance, particularly in mathematics. However, few cross-lagged longitudinal studies have been carried out to investigate the prospective relationships between academic achievement and task motivation. Moreover, the role that the classroom context plays in this development is largely unknown. The aim of the study was to investigate the developmental dynamics of maths-related motivation and mathematical performance during children's transition to primary school. The role of teachers' pedagogical goals and classroom characteristics on this development was also investigated. A total of 196 Finnish children were examined four times: (0) in October during their preschool year; (1) in October and (2) April during their first grade of primary school; and (3) in October during their second grade. Children's mathematical performance was tested at each measurement point. Task motivation was examined at measurement points 2, 3, and 4 using the Task-value scale for children. First-grade teachers were interviewed in November about their pedagogical goals and classroom characteristics. The results showed that children's mathematical performance and related task motivation formed a cumulative developmental cycle: a high level of maths performance at the beginning of the first grade increased subsequent task motivation towards mathematics, which further predicted a high level of maths performance at the beginning of the second grade. The level of maths-related task motivation increased in those classrooms where the teachers emphasized motivation or self-concept development as their most important pedagogical goal.
ERIC Educational Resources Information Center
Russo, James; Hopkins, Sarah
2017-01-01
The current study considered young students' (7 and 8 years old) experiences and perceptions of mathematics lessons involving challenging (i.e. cognitively demanding) tasks. We used the Constant Comparative Method to analyse the interview responses (n = 73) regarding what work artefacts students were most proud of creating and why. Five themes…
A Solution Space for a System of Null-State Partial Differential Equations: Part 3
NASA Astrophysics Data System (ADS)
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.
Can mixed assessment methods make biology classes more equitable?
Cotner, Sehoya; Ballen, Cissy J
2017-01-01
Many factors have been proposed to explain the attrition of women in science, technology, engineering and math fields, among them the lower performance of women in introductory courses resulting from deficits in incoming preparation. We focus on the impact of mixed methods of assessment, which minimizes the impact of high-stakes exams and rewards other methods of assessment such as group participation, low-stakes quizzes and assignments, and in-class activities. We hypothesized that these mixed methods would benefit individuals who otherwise underperform on high-stakes tests. Here, we analyze gender-based performance trends in nine large (N > 1000 students) introductory biology courses in fall 2016. Females underperformed on exams compared to their male counterparts, a difference that does not exist with other methods of assessment that compose course grade. Further, we analyzed three case studies of courses that transitioned their grading schemes to either de-emphasize or emphasize exams as a proportion of total course grade. We demonstrate that the shift away from an exam emphasis consequently benefits female students, thereby closing gaps in overall performance. Further, the exam performance gap itself is reduced when the exams contribute less to overall course grade. We discuss testable predictions that follow from our hypothesis, and advocate for the use of mixed methods of assessments (possibly as part of an overall shift to active learning techniques). We conclude by challenging the student deficit model, and suggest a course deficit model as explanatory of these performance gaps, whereby the microclimate of the classroom can either raise or lower barriers to success for underrepresented groups in STEM.
Can mixed assessment methods make biology classes more equitable?
Ballen, Cissy J.
2017-01-01
Many factors have been proposed to explain the attrition of women in science, technology, engineering and math fields, among them the lower performance of women in introductory courses resulting from deficits in incoming preparation. We focus on the impact of mixed methods of assessment, which minimizes the impact of high-stakes exams and rewards other methods of assessment such as group participation, low-stakes quizzes and assignments, and in-class activities. We hypothesized that these mixed methods would benefit individuals who otherwise underperform on high-stakes tests. Here, we analyze gender-based performance trends in nine large (N > 1000 students) introductory biology courses in fall 2016. Females underperformed on exams compared to their male counterparts, a difference that does not exist with other methods of assessment that compose course grade. Further, we analyzed three case studies of courses that transitioned their grading schemes to either de-emphasize or emphasize exams as a proportion of total course grade. We demonstrate that the shift away from an exam emphasis consequently benefits female students, thereby closing gaps in overall performance. Further, the exam performance gap itself is reduced when the exams contribute less to overall course grade. We discuss testable predictions that follow from our hypothesis, and advocate for the use of mixed methods of assessments (possibly as part of an overall shift to active learning techniques). We conclude by challenging the student deficit model, and suggest a course deficit model as explanatory of these performance gaps, whereby the microclimate of the classroom can either raise or lower barriers to success for underrepresented groups in STEM. PMID:29281676
Language Teacher Identities in the Southern United States: Transforming Rural Schools
ERIC Educational Resources Information Center
Fogle, Lyn Wright; Moser, Kelly
2017-01-01
Foreign language (FL) and English as a Second Language (ESL) teaching present considerable challenges in the rural U.S. South. Local language ideologies, budgetary considerations, and challenges in other curricular areas (e.g., math and science) lead to marginalizing both FL and ESL in schools. This article examines the personal and professional…
A Challenging High School Education for All
ERIC Educational Resources Information Center
US Department of Education, 2006
2006-01-01
High school is the training ground for college and work. Today, most good jobs require a college education. The way for children to get ready for college is to take challenging courses. The level of math, science and foreign language education students receive will be important for American global competitiveness and national security. In…
ERIC Educational Resources Information Center
Ludwig, Patrice M.; Nagel, Jacquelyn K.; Lewis, Erica J.
2017-01-01
Background: Preparing today's undergraduate students from science, technology, engineering, and math (STEM) and related health professions to solve wide-sweeping healthcare challenges is critical. Moreover, it is imperative that educators help students develop the capabilities needed to meet those challenges, including problem solving,…
NASA Astrophysics Data System (ADS)
Baer, E. M.; Whittington, C.; Burn, H.
2008-12-01
The geological sciences are fundamentally quantitative. However, the diversity of students' mathematical preparation and skills makes the successful use of quantitative concepts difficult in introductory level classes. At Highline Community College, we have implemented a one-credit co-requisite course to give students supplemental instruction for quantitative skills used in the course. The course, formally titled "Quantitative Geology," nicknamed "MathPatch," runs parallel to our introductory Physical Geology course. MathPatch teaches the quantitative skills required for the geology class right before they are needed. Thus, students learn only the skills they need and are given opportunities to apply them immediately. Topics include complex-graph reading, unit conversions, large numbers, scientific notation, scale and measurement, estimation, powers of 10, and other fundamental mathematical concepts used in basic geological concepts. Use of this course over the past 8 years has successfully accomplished the goals of increasing students' quantitative skills, success and retention. Students master the quantitative skills to a greater extent than before the course was implemented, and less time is spent covering basic quantitative skills in the classroom. Because the course supports the use of quantitative skills, the large number of faculty that teach Geology 101 are more comfortable in using quantitative analysis, and indeed see it as an expectation of the course at Highline. Also significant, retention in the geology course has increased substantially, from 75% to 85%. Although successful, challenges persist with requiring MathPatch as a supplementary course. One, we have seen enrollments decrease in Geology 101, which may be the result of adding this co-requisite. Students resist mandatory enrollment in the course, although they are not good at evaluating their own need for the course. The logistics utilizing MathPatch in an evening class with fewer and longer class meetings has been challenging. Finally, in order to better serve our students' needs, we began to offer on-line sections of MathPatch; this mode of instruction is not as clearly effective, although it is very popular. Through the new The Math You Need project, we hope to improve the effectiveness of the on-line instruction so it can provide comparable results to the face-to-face sections of this class.
ERIC Educational Resources Information Center
Feng, Chengde
1992-01-01
Fourteen mathematics problems from the 1987 Chinese Primary School Mathematics Examination for fifth and sixth grade students are presented. The word problems, accompanied by answers, involve algebra, division, ratios, areas, and other mathematical processes. (JDD)
Rational solutions of CYBE for simple compact real Lie algebras
NASA Astrophysics Data System (ADS)
Pop, Iulia; Stolin, Alexander
2007-04-01
In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.
ERIC Educational Resources Information Center
Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.
2016-01-01
In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…
ERIC Educational Resources Information Center
Liu, Edward; Rosenstein, Joseph G.; Swan, Aubrie E.; Khalil, Deena
2008-01-01
Administrators in six urban districts were interviewed to understand the nature and extent of their problems with recruiting and retaining high quality mathematics teachers. Findings suggest that the math staffing challenge is quite complex, and administrators have had to make difficult compromises because of deficiencies in the quantity and…
"Too Pretty to Do Math!" Young Women in Movement and Pedagogical Challenges
ERIC Educational Resources Information Center
Graff, Ulrike
2013-01-01
The article points out some pedagogical challenges in supporting girls and young women in their emancipatory movements today. It spotlights a specific section in gender pedagogy by focusing on the aim of self-determination (rather than achievement) in the field of social-pedagogy and it refers to the concept of "girls work" in Germany. A…
Robotics Competition Expands--FIRST Vex Challenge Inspires Creativity, Ingenuity and Innovation
ERIC Educational Resources Information Center
Morrison, Amanda
2006-01-01
FIRST (For Inspiration and Recognition of Science and Technology) is a multinational, not-for-profit organization that aspires to transform culture-making science, math, engineering, and technology as cool for kids as sports are today. FIRST has an exciting new program in the works--the VEX Challenge, which the author describes in this article.…
NASA Astrophysics Data System (ADS)
Wimmer, Jennifer Joy
The purpose of this phenomenological study was to investigate the lived experience of integrating new literacies in math and science content by upper elementary and middle school teachers. This study highlights the lived experience of six teachers including two elementary math teachers, two middle school math teachers, and two middle school science teachers. Data sources included five in-depth interviews, teachers' weekly reflection journals, weekly classroom observations, and one principal interview at each of the three high-needs schools. Data were analyzed through an analytic and thematic approach. A reconstructed story was created for each teacher which provides insight into the teacher as an individual. Additionally, a thematic analysis resulted in the identification of five essential themes across all six stories which included: technology exclusively, rethinking who they are as teachers, stabilizing rather than challenging content, rethinking student learning, circumstances, and futures, and serving official context and discourse. The findings indicate that the teachers' lived experience of integrating new literacies in math and science content was filled with uncertainty and a search for stability. A key implication of this study is the need for quality professional development that provides teachers with the opportunity to learn about, question, and rethink the intersection of new literacies, content area literacy, and teacher knowledge.
NASA Astrophysics Data System (ADS)
Gonzalez, Laura
Latin math and science students represent a resilient, determined, and encouraging group of high achievers. This qualitative study presents the narratives of 10 Latin science and math teacher candidates currently attending Hispanic-Serving Institutions in California. Semi structured, in-depth interviews were conducted, where participants shared the challenges they experienced and the factors that contributed to their resilience. The Connor Davidson Resilience Scale CD-RISC was used to present resilience measures for each participant. This score is compared to a group of college students throughout the nation. The findings provide insight into the critical need for universities to examine institutional practices and efforts to support these high achievers who have already beaten tremendous odds by entering the halls of higher education.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.
2002-04-27
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.
2002-04-27
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.
2002-04-27
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.
NASA Astrophysics Data System (ADS)
Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.
2013-04-01
Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.
NASA Astrophysics Data System (ADS)
Aldridge, Jacqueline Nouvelle
The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.
Using a Math Pre-Test in a Large General Education Geoscience Course: How Effective?
NASA Astrophysics Data System (ADS)
Richardson, R. M.
2006-12-01
Teaching large (150 or more students) General Education Geoscience courses presents many challenges, but one of the most important is how to effectively incorporate quantitative literacy. Many students are math phobic, and will run to General Education courses that minimize quantitative aspects. I will present results from one approach that we have used successfully for at least two years: a math pre-test. Our General Education Geoscience course has no prerequisites other than admission to the University, and is designed for first and second year non-science students. Fortunately, with limited exceptions, all entering students at the University of Arizona take a Math Readiness Test (MRT) for math placement. With the cooperation of the Mathematics Department, we have used old MRT exams to selectively use questions that are of the highest utility for the course material `understanding graphs, linear equations and extrapolations, scientific notation and large numbers, word problems, and scaling/unit conversions. We administer the exam in the first discussion section. Students receive full credit for a `serious effort', and we score the exam. In recent semesters the percentage of correct answers has varied from just under 50% to nearly 90% on individual questions. The pre-test has several important benefits. First, it lets students know clearly up front that there will be mathematics in the class. Second, it lets students know the range of skills expected to be successful. Third, because the average score is between 70-80% it gives students confidence that they can do the math in the course. Fourth, we contact all students who score less than 50%, and offer help, including referral to tutoring service in Mathematics. Feedback from students has been positive. Unfortunately, when we compared scores on the math pre-test to final grades in the course, we found essentially no correlation. We are exploring a number of possible explanations. We are also seeing if our math pre-test scores correlate with the initial MRT score, and overall student success.
ERIC Educational Resources Information Center
Mazzocco, Michele M. M.; Myers, Gwen F.; Lewis, Katherine E.; Hanich, Laurie B.; Murphy, Melissa M.
2013-01-01
Fractions pose significant challenges for many children, but for some children those challenges persist into high school. Here we administered a fractions magnitude comparison test to 122 children, from Grades 4 to 8, to test whether their knowledge of fractions typically learned early in the sequence of formal math instruction (e.g., fractions…
ERIC Educational Resources Information Center
Alford, Betty; Rudolph, Amanda; Beal, Heather Olson; Hill, Brenda
2014-01-01
Increasing rigor in secondary school classrooms for college and career readiness is a priority throughout the nation with the adoption of more challenging standards for student performance and is an important role for school leaders in creating conditions in schools to meet this challenge (Young, 2012). P-16 partnerships can assist by aligning the…
ERIC Educational Resources Information Center
Hirn, Regina G.; Scott, Terrance M.
2014-01-01
The purpose of this descriptive study was to examine teacher and student behavior in high school classrooms that included at least one student identified with challenging behavior. Across two school years and within the content areas of math, reading/English, social studies, and science, student/ teacher dyads were directly observed in the typical…
Efficient development and processing of thermal math models of very large space truss structures
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.
1993-01-01
As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, Randolph High School students are assembling their rocket in preparation for launch.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.
SKyTeach: Addressing the need for Science and Math Teachers in Kentucky
NASA Astrophysics Data System (ADS)
Bonham, Scott
2008-10-01
The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.
An Indigenous Framework for Science, Technology, Engineering and Mathematics
NASA Astrophysics Data System (ADS)
Monette, G.
2003-12-01
The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent, consistent set of policies that supports high quality math and science education for each student; convergence of science and math resource; and broad-based support from parents and the community.
Rescuing Middle School Astronomy
NASA Astrophysics Data System (ADS)
Mayo, L. A.; Janney, D.
2010-12-01
There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.
ERIC Educational Resources Information Center
Hestenes, David
2013-01-01
Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…
ERIC Educational Resources Information Center
Anderson, Julie, Ed.
1999-01-01
This document consists of ten issues of the newsletter "Community Update," containing articles on community and family involvement in education. Article topics include: a college education is necessary and possible; math and science study points out problems and positive solutions; the "America Reads Challenge"; meeting the…
76 FR 64330 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... talks on HPC Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR-BES Workshop on Data Challenges from Next Generation Facilities Public...
Priming performance-related concerns induces task-related mind-wandering.
Jordano, Megan L; Touron, Dayna R
2017-10-01
Two experiments tested the hypothesis that priming of performance-related concerns would (1) increase the frequency of task-related mind-wandering (i.e., task-related interference; TRI) and (2) decrease task performance. In each experiment, sixty female participants completed an operation span task (OSPAN) containing thought content probes. The task was framed as a math task for those in a condition primed for math-related stereotype threat and as a memory task for those in a control condition. In both studies, women whose performance-related concerns were primed via stereotype threat reported more TRI than women in the control. The second experiment used a more challenging OSPAN task and stereotype primed women also had lower math accuracy than controls. These results support the "control failures×current concerns" framework of mind-wandering, which posits that the degree to which the environmental context triggers personal concerns influences both mind-wandering frequency and content. Copyright © 2017 Elsevier Inc. All rights reserved.
Seven-panel solar wing deployment and on-orbit maneuvering analyses
NASA Astrophysics Data System (ADS)
Hwang, Earl
2005-05-01
BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.
ERIC Educational Resources Information Center
Grimes, Kimberly J.; Stevens, Dannelle D.
2009-01-01
Motivating elementary students in math can be a challenge. The authors describe an action research designed to determine the effects of differentiated instruction on 4th graders' academic achievement and motivation. Using a student self-assessment technique, the teacher had positive gains in both mathematics and motivation. The authors provide…
Mathematically Gifted Third Graders--A Challenge in the Classroom.
ERIC Educational Resources Information Center
Wolfle, Jane A.
1988-01-01
The third-grade classroom teacher can identify mathematically gifted students and can provide them with opportunities for extending their understanding and enjoyment of mathematics through use of such techniques as content sophistication, enrichment, peer tutoring, curriculum compacting, puzzles, and math centers. (Author/JDD)
ERIC Educational Resources Information Center
Keane, Linda; Keane, Mark
2016-01-01
We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…
This Rock 'n' Roll Video Teaches Math
ERIC Educational Resources Information Center
Niess, Margaret L.; Walker, Janet M.
2009-01-01
Mathematics is a discipline that has significantly advanced through the use of digital technologies with improved computational, graphical, and symbolic capabilities. Digital videos can be used to present challenging mathematical questions for students. Video clips offer instructional possibilities for moving students from a passive mode of…
The Governor's Challenge: "Building a Stronger Virginia Today": Transportation Visions and Solutions
NASA Technical Reports Server (NTRS)
Baker, Susan
2008-01-01
Using STM(Science, Technology, Engineering, Math) education, this emerging workforce will have the chance to creatively solve one of Virginia's biggest challenges: TRANSPORTATION. - Students will be asked to develop alternative transportation systems for the state. This competition will enable teams to work with business mentors to design creative solutions for regional gridlocks and develop other transportation systems to more easily and expediently reach all parts of the Commonwealth.
ERIC Educational Resources Information Center
Putwain, David William; Symes, Wendy
2014-01-01
Previous work has examined how messages communicated to students prior to high-stakes exams, that emphasise the importance of avoiding failure for subsequent life trajectory, may be appraised as threatening. In two studies, we extended this work to examine how students may also appraise such messages as challenging or disregard them as being of…
Girls Talk Math - Engaging Girls Through Math Media
NASA Astrophysics Data System (ADS)
Bernardi, Francesca; Morgan, Katrina
2017-11-01
``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.
STEM Girls Night In at Goddard
2016-11-05
Girls Night In was held at Goddard on Nov 4-5, 2016. This is a pilot program which reinvigorates, inspires, and engages high school girls who may be struggling or not fully engaged in STEM (Science, Technology Engineering and Math) education. The program allowed NASA women to share and demonstrate the work they do, provide the girls an opportunity to completely immerse themselves in Goddard science, technology, engineering and math as well as provide them activities that will challenge and promote knowledge and discovery. Goddard invites other NASA centers tolearn from this pilot program and work towards a simultaneous multicenter event in the future. Participating schools were: DuVal, Crossland, Flowers, High Point, Northwestern and Oxon Hill
STEM Girls Night In at Goddard
2016-11-04
Girls Night In was held at Goddard on Nov 4-5, 2016. This is a pilot program which reinvigorates, inspires, and engages high school girls who may be struggling or not fully engaged in STEM (Science, Technology Engineering and Math) education. The program allowed NASA women to share and demonstrate the work they do, provide the girls an opportunity to completely immerse themselves in Goddard science, technology, engineering and math as well as provide them activities that will challenge and promote knowledge and discovery. Goddard invites other NASA centers tolearn from this pilot program and work towards a simultaneous multicenter event in the future. Participating schools were: DuVal, Crossland, Flowers, High Point, Northwestern and Oxon Hill
ERIC Educational Resources Information Center
Swinford, Ashleigh
2016-01-01
With rigor outlined in state and Common Core standards and the addition of constructed-response test items to most state tests, math constructed-response questions have become increasingly popular in today's classroom. Although constructed-response problems can present a challenge for students, they do offer a glimpse of students' learning through…
Scratching the Seven-Year Itch
ERIC Educational Resources Information Center
Doan, Kim; Peters, Marilyn
2009-01-01
The challenge of retaining beginning teachers, particularly in shortage areas such as special education, math, and science, has long been the focus of both research and special induction programs at universities and in school districts. The difficulty of retaining mid-career teachers, however, has received little attention in comparison. Such…
Assessing Admission Interviews at Residential STEM Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2011-01-01
Seventeen state-sponsored residential math and science schools have been created across the country to direct talented teens toward STEM careers. Admission is selective, based on competitive grades, standardized test scores, and references. Most of the schools also require preadmission interviews. However, selection interviews may be challenged as…
Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching
ERIC Educational Resources Information Center
Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.
2017-01-01
Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…
ERIC Educational Resources Information Center
Hademenos, George; Russell, Jonathan; Birch, John; Wosczyna-Birch, Karen
2010-01-01
"Engineering Challenge for the 21st Century," a weeklong teacher workshop sponsored by the National Science Foundation, uses project-based learning (PBL) to help students and teachers build science, technology, engineering, and math (STEM) skills. The workshop, hosted by the U.S. Coast Guard Academy in New London, Connecticut, features the Coast…
Potential Implications of Changes in ChalleNGe Admission Criteria: A Literature Review
2016-04-01
Program (ChalleNGe) is a quasi -military, 22- week residential program designed to serve 16- to 18-year-old high school dropouts as well as students at...12]. Specifically, GED recipients have more behavioral and personality problems than any other group ; once these differences are controlled for, the... quantitative abilities, would suggest that the group and domain should, in fact, be negatively related (women should be less likely to perform well in math
Coaching in Early Mathematics.
Germeroth, Carrie; Sarama, Julie
2017-01-01
Falling scores in math have prompted a renewed interest in math instruction at early ages. By their own admission, early childhood educators are generally underprepared and not always comfortable teaching math. Professional development (PD) in early mathematics is widely considered a main way to increase teachers' skills and efficacy (e.g., Guskey, 2000; Hyson & Woods, 2014; Munby, Russell, & Martin, 2001; Piasta, Logan, Pelatti, Capps, & Petrill, 2015; Richardson & Placier, 2001; Sarama, Clements, Wolfe, & Spitler, 2016; Sarama & DiBiase, 2004; Zaslow, 2014). However, it has been documented that stand-alone PD is not as effective in changing practice (e.g., Biancarosa & Bryk, 2011; Garet et al., 2008; Guskey, 2000; Hyson & Woods, 2014; Institute of Medicine and National Research Council, 2015; Joyce & Showers, 2002; Zaslow, 2014). Site-embedded ongoing support in the form of coaching or mentoring has been shown to be critical for successful implementation (Neuman & Cunningham, 2009; Powell, Diamond, Burchinal, & Koehler, 2010). In this chapter, we describe coaching models and abstract characteristics of effective coaching from the research. With this background, we provide an in-depth view of the coaching aspect of two large empirical studies in early mathematics. We introduce the theoretical framework from which the coaching models for these projects were developed and describe the research on which they were based. We then summarize how the planned models were instantiated and challenges to their implementation within each project. In the final section, we summarize what we have learned and described implications and challenges for the field. © 2017 Elsevier Inc. All rights reserved.
Good Questions: Great Ways to Differentiate Mathematics Instruction
ERIC Educational Resources Information Center
Small, Marian
2009-01-01
Using differentiated instruction in the classroom can be a challenge, especially when teaching mathematics. This book cuts through the difficulties with two powerful and universal strategies that teachers can use across all math content: Open Questions and Parallel Tasks. Specific strategies and examples for grades Kindergarten - 8 are organized…
ERIC Educational Resources Information Center
Wall, Jennifer; Selmer, Sarah; Bingham Brown, Amy
2016-01-01
Prospective elementary teachers at three universities engaged in online modules called the Virtual Field Experience, created by the Math Forum. The prospective teachers learned about problem solving and mentoring elementary students in composing solutions and explanations to nonroutine challenge problems. Finally, through an asynchronous online…
Engagement in Science and Engineering through Animal-Based Curricula
ERIC Educational Resources Information Center
Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.
2018-01-01
One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…
Teaching Mathematics to Middle School Students with Learning Difficulties
ERIC Educational Resources Information Center
Montague, Marjorie, Ed.; Jitendra, Asha K., Ed.
2006-01-01
A highly practical resource for special educators and classroom teachers, this book provides specific instructional guidance illustrated with vignettes, examples, and sample lesson plans. Every chapter is grounded in research and addresses the nuts and bolts of teaching math to students who are not adequately prepared for the challenging middle…
Arts-Infused Learning in Middle Level Classrooms
ERIC Educational Resources Information Center
Lorimer, Maureen Reilly
2011-01-01
To address arts education disparities in middle level schools, this paper explores evidence that infusing the visual and performing arts into language arts, math, science, and history/social studies courses is a pedagogical approach that meets the developmental needs of early adolescents and fosters a relevant, challenging, integrative, and…
Increasing Student Engagement in Math: The Use of Khan Academy in Chilean Classrooms
ERIC Educational Resources Information Center
Light, Daniel; Pierson, Elizabeth
2014-01-01
Khan Academy, an online platform offering educational videos and exercises in different content areas, has awakened intense interest among foundations, multilateral organizations, policy makers, and educators about how this tool can help meet the educational challenges facing countries around the world. With support from Intel, Education…
ERIC Educational Resources Information Center
Smutny, Joan Franklin; Walker, Sally Yahnke; Honeck, Ellen I.
2016-01-01
These proven, practical early childhood teaching strategies help teachers identify young gifted children, differentiate curriculum, assess and document students' development, and build partnerships with parents. Chapters focus on early identification, curriculum compacting, social studies, language arts, math and science, cluster grouping,…
The Spatial-Numerical Congruity Effect in Preschoolers
ERIC Educational Resources Information Center
Patro, Katarzyna; Haman, Maciej
2012-01-01
Number-to-space mapping and its directionality are compelling topics in the study of numerical cognition. Usually, literacy and math education are thought to shape a left-to-right number line. We challenged this claim by analyzing performance of preliterate precounting preschoolers in a spatial-numerical task. In our experiment, children exhibited…
Super Mileage Challenge: Combining Education and Fun!
ERIC Educational Resources Information Center
Thompson, Jim; Fitzgerald, Mike
2006-01-01
Beginning in 1996, key leaders in Indiana business, education, and industry, along with the Department of Education and the Indiana Math Science Technology Education Alliance recognized that creating an event that would showcase true integration of mathematics, science, and technology could make learning more relevant to the lives of students. The…
Performance Indicators in Math: Implications for Brief Experimental Analysis of Academic Performance
ERIC Educational Resources Information Center
VanDerheyden, Amanda M.; Burns, Matthew K.
2009-01-01
Brief experimental analysis (BEA) can be used to specify intervention characteristics that produce positive learning gains for individual students. A key challenge to the use of BEA for intervention planning is the identification of performance indicators (including topography of the skill, measurement characteristics, and decision criteria) that…
Siemens Foundation and the STEM Challenge
ERIC Educational Resources Information Center
Harper-Taylor, Jeniffer
2010-01-01
For more than 12 years, the Siemens Foundation has found unique ways to partner with organizations to support educational initiatives in science, technology, engineering and mathematics (STEM) in the United States. Its focus is clear--to educate the next generation of innovators by supporting math and science education from grade school to grad…
ERIC Educational Resources Information Center
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Latino Parents' Educational Values and STEM Beliefs
ERIC Educational Resources Information Center
Hernandez, Diley; Rana, Shaheen; Alemdar, Meltem; Rao, Analía; Usselman, Marion
2016-01-01
Purpose: This paper aims to provide a snapshot of K-12 Latino families' beliefs about education, their awareness and interest in science, technology, engineering and math (STEM) careers and their perceived educational challenges. It builds on the existent body of literature by dispelling pervasive notions that Latino parents do not value…
Resistance, Reinhabitation, and Regime Change
ERIC Educational Resources Information Center
Gruenewald, David
2006-01-01
How do individuals know when, and what, to resist? Alan Schoenfeld, in the March 2006 issue of "Educational Researcher," tells a story of resistance that all math educators, and all curriculum specialists, need to consider. Schoenfeld titled his story, "What Doesn't Work: The Challenge and Failure of the What Works Clearinghouse to Conduct…
The Arctic Climate Modeling Program: Professional Development for Rural Teachers
ERIC Educational Resources Information Center
Bertram, Kathryn Berry
2010-01-01
The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…
The Role of Assessment in a Prevention Science Framework
ERIC Educational Resources Information Center
Herman, Keith C.; Riley-Tillman, T. Chris; Reinke, Wendy M.
2012-01-01
The articles in this Special Topic issue present a range of assessment models and challenges for improving the identification and early intervention of students in need of additional supports. Although each article targets a unique aspect of student learning (learning behaviors, math skills, reading comprehension, behavioral functioning, and…
Beyond Science and Math: Integrating Geography Education
ERIC Educational Resources Information Center
Grubbs, Michael E.; Grubbs, Steven
2015-01-01
This article discusses the status of World Geography Education and the importance of these concepts in developing 21st century students. Moreover, the authors also showcase how World Geography concepts can be intentionally taught through a technological/engineering, design-based learning challenge that requires students to solve a global housing…
A Provably Necessary Symbiosis
ERIC Educational Resources Information Center
Hochberg, Robert; Gabric, Kathleen
2010-01-01
The "new biology" of the 21st century is increasingly dependent on mathematics, and preparing high school students to have both strong science and math skills has created major challenges for both disciplines. Researchers and educators in biology and mathematics have been working long hours on a project to create high school teaching modules…
The Empire Strikes Back--Putting the "E" into STEM
ERIC Educational Resources Information Center
Loughran, Melissa
2017-01-01
The challenge schools face when creating a science, technology, engineering and mathematics (STEM) program is how to incorporate the "E" into the curriculum. The author's school was meeting the National (U. K.) Curriculum Science, Technology and Maths learning objectives, so how could they justify adding another subject into the mix…
Earth Matters: Studies for Our Global Future.
ERIC Educational Resources Information Center
Wasserman, Pamela; Doyle, Andrea
Through 12 readings and 32 activities this curriculum material introduces high school students to issues of the global environment and society, while both challenging them to critically evaluate the issues and motivating them to develop solutions. The materials are cited as being applicable to social studies, science, math, language arts, and…
ERIC Educational Resources Information Center
Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla
2015-01-01
Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…
IDRA Newsletter. Volume 35, No. 7
ERIC Educational Resources Information Center
Goodman, Christie L., Ed.
2008-01-01
Each edition of the IDRA Newsletter strives to provide many different perspectives on the issues in education topics discussed and to define its significance in the state and national dialogue. This issue focuses on Teaching Quality and includes: (1) The "Fourth-Grade Slump" and Math Achievement: Addressing the Challenge with Student Engagement…
Special Educators and Mathematics Phobia: An Initial Qualitative Investigation
ERIC Educational Resources Information Center
Humphrey, Michael; Hourcade, Jack J.
2010-01-01
Special educators are uniquely challenged to be content experts in all curricular areas, including mathematics, because students in their caseloads may require academic instruction in any area. However, special educators with math phobia may be limited in their ability to provide effective instruction to their students with mathematical deficits…
"Teachers Touch the Sky:" A Workshop in Astronomy for Teachers in Grades 3-9
NASA Astrophysics Data System (ADS)
Buratti, B. J.
2012-08-01
Eight times during the past two decades, JPL technical staff, assisted by master teachers, conducted a one-week workshop for teachers in grades 3-9. In these workshops, the teachers are walked through hands-on activities that are all based on current projects in astronomy and space science at JPL. The activities are inquiry-based and emphasize the scientific method and fundamental math and science skills. Each year the workshop focuses on a NASA theme: in 2011 it was the Dawn Mission to the asteroid 4 Vesta, as orbit insertion occurred right before the workshop. Several activities are based on the Lawrence Livermore Lab's Great Exploration in Math and Science (GEMS) guides. Teachers tour JPL's facilities such as the Space Flight Operations Center, the Spacecraft Assembly Facility, and the Mars Yard. The integration of the lessons into the teachers' own curricula is discussed, and a field trip to JPL's Table Mountain Observatory is included. Teachers learn of the resources NASA makes available to them, and they have the opportunity to talk to "real" scientists about their work. Teachers receive an honorarium for participation plus classroom materials.
Teachers Touch the Sky: A Workshop in Astronomy for Teachers in Grades 3-9
NASA Astrophysics Data System (ADS)
Buratti, Bonnie J.; Banholzer, S.; Dalba, P. A.; Edberg, S.
2012-10-01
Nine times during the past two decades, JPL technical staff assisted by master teachers conducted a one-week workshop for teachers in grades 3-9. The teachers are walked through hands-on activities that are all based on current projects in astronomy and space science at JPL. The activities are inquiry-based and emphasize the scientific method and fundamental math and science skills. Each year the workshop focuses on a NASA theme: in 2012 it was the Dawn Mission to the asteroid 4 Vesta. Several activities are based on the Lawrence Livermore Lab’s Great Exploration in Math and Science (GEMS) guides. Teachers tour JPL’s facilities such as the Space Flight Operations Center, the Spacecraft Assembly Facility, and the Mars Yard. The integration of the lessons into the teachers’ own curricula is discussed, and a field trip to JPL’s Table Mountain Observatory is included. Teachers learn of the resources NASA makes available to them, and they have the opportunity to talk to “real” scientists about their work. Teachers receive a stipend for participation plus classroom materials. Work funded by NASA through an E&PO supplement to the Dawn Participating Scientist Program.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Sealfon, C. D.; Plummer, J. D.
2012-08-01
The Women in Aerospace and Technology Project (WATP) is a collaborative effort between the Girl Scouts of Eastern Pennsylvania, the American Helicopter Museum, Boeing Rotorcraft, Sikorsky Global Helicopters, Drexel University, West Chester University, and Arcadia University. The program aims to increase the representation of women in STEM (Science, Technology, Engineering, and Math) fields; the evaluation team identified a secondary goal to assess growth in participants' understanding of scientific inquiry. Girls, grades 4-12, were invited to join Girl Scout troops formed at the American Helicopter Museum to participate in a series of eight workshops on the physics and engineering of flight. Five college women majoring in physics and engineering were recruited as mentors for the girls. Lessons were written by local aerospace industry partners (including Boeing and Sikorsky); the mentors then taught the lessons and activities during the workshops. To evaluate the impact of this project, we collected data to answer two research questions: 1) In what ways does the program impact participants' attitudes towards science and interest in pursuing science as a career? 2) In what ways does the program impact participants' understanding of the nature of scientific inquiry? In this article we summarize results from two sources of data: before and after survey of attitudes about science and end-of-workshop informal questionnaires. Across the seven months of data collection, two challenges became apparent. First, our assessment goals, focusing on scientific interest and inquiry, seemed misaligned with the workshop curricula, which emphasized engineering and design. Secondly, there was little connection among activities within workshops and across the program.
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Evaluating Pre-Service Teachers Math Teaching Experience from Different Perspectives
ERIC Educational Resources Information Center
Harding, Jenni L.; Hbaci, Ilham
2015-01-01
Are pre-service teachers able to notice their strengths and challenges in teaching? This article reports on a study of pre-service teachers' teaching performance being simultaneously evaluated by themselves and their professor. Thirty-two pre-service teachers created and planned mathematics lessons approved by their professor to be taught in…
The Arts in Contemporary Education
ERIC Educational Resources Information Center
Eger, John M.
2008-01-01
The demand for a new workforce to meet the challenges of a global knowledge economy is rapidly increasing. As a special report in Business Week magazine observed last year: "The game is changing. It isn't just about math and science anymore. It's about creativity, imagination, and, above all, innovation." Most analysts studying the new global…
ERIC Educational Resources Information Center
Lesar, Peter V.
2013-01-01
With changing academic standards, more rigorous state assessments, growing diversity among student populations, decreased school funding, and high achievement expectations from the state and federal government, teachers have a very challenging and demanding job. Fully aware of these high expectations from the education community, school leaders…
Adolescent Literacy in the Academic Disciplines: General Principles and Practical Strategies
ERIC Educational Resources Information Center
Jetton, Tamara L., Ed.; Shanahan, Cynthia, Ed.
2012-01-01
From leading authorities in both adolescent literacy and content-area teaching, this book addresses the particular challenges of literacy learning in each of the major academic disciplines. Chapters focus on how to help students successfully engage with texts and ideas in English/literature, science, math, history, and arts classrooms. The book…
Experiences of Visually Impaired Students in Community College Math Courses
ERIC Educational Resources Information Center
Swan, S. Tomeka
2017-01-01
Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this…
Elementary School Teacher's Perceptions of the Math Coach Approach to Professional Development
ERIC Educational Resources Information Center
Drust, Janice H.
2013-01-01
An increasingly popular way of supporting teachers is with instructional coaching, which involves the teacher working alongside an instructional coach in the classroom and participating weekly in professional development. Due to a challenge issued to educators from government leaders, schools and districts are considering the coaching model as an…
ERIC Educational Resources Information Center
Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L.
2014-01-01
The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…
ERIC Educational Resources Information Center
Stephenson, Paul
2007-01-01
The Magic Mathworks Travelling Circus is a touring maths lab--in and of itself, a good thing. When children enter it, they find particular pieces of apparatus captioned with particular challenges--which is perhaps not such a good thing. Students are faced with an apparatus that can do only one thing, and so are not encouraged to look again at…
Alabama's Education Report Card 2010-11
ERIC Educational Resources Information Center
Alabama Department of Education, 2012
2012-01-01
Public education in Alabama is moving in the right direction and is poised to be a national model for the college and career readiness of its students. Through some of the most challenging financial circumstances, public education in Alabama has continued to show great promise in many areas, including reading, math, and science. The success of…
The Dilemma of Excellence and Diversity
ERIC Educational Resources Information Center
Bonds, Crystal
2014-01-01
Crystal Bonds is Principal at The High School for Math, Science and Engineering at City College, New York, NY. During her three years as a new principal at one of New York City's eight specialized high schools, she found herself constantly wrestling with two challenges: (1) Maintaining the school's high academic standards; and (2) protecting the…
Goldilocks Discourse--Math Scaffolding That's Just Right
ERIC Educational Resources Information Center
Dale, Rachel; Scherrer, Jimmy
2015-01-01
The Common Core has brought a sharp shift in what it means to be mathematically literate. Becoming mathematically literate is now as much a matter of acquiring mathematical practices as of acquiring any defined set of content standards. This more ambitious definition of literacy presents a challenge not only for students, but also for teachers who…
Teaching with Student Math Notes.
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, Inc., Reston, VA.
Since 1982, the National Council of Teachers of Mathematics has published a student periodical five times a year. Each four-page issue focuses on a single theme, developing it from a simple opening-page activity through more challenging extensions at a higher level of understanding. In this document each four-page issue published from September,…
Are Face-to-Face Classes More Effective than Online Classes? An Empirical Examination
ERIC Educational Resources Information Center
Ganesh, Gopala; Paswan, Audhesh; Sun, Qin
2015-01-01
Using data from a unique undergraduate marketing math course offered in both traditional and online formats, this study looks at four dimensions of course evaluation: overall evaluation, perceived competence, perceived communication, and perceived challenge. Results indicate that students rate traditional classes better on all four dimensions.…
ERIC Educational Resources Information Center
Mitts, Charles R.
2013-01-01
In order for technology and engineering education (T&EE) students to meet the design challenges of this century, T&EE teachers will need to deepen their content pedagogy in the areas of science and math. This raises the question: Will the need to deepen content pedagogy initiate a process of change that transforms technology and engineering…
The Intersection of Language and Mathematics
ERIC Educational Resources Information Center
Swanson, Patricia E.
2010-01-01
Story problems either bring students to a screeching halt or send them into a frenzied search for numbers and operations. They cause greater anxiety, still, in English language learners. These problems are often the nemesis of many a math teacher. This author grappled with this challenge in the context of teaching a series of lessons on integers…
The Magnitude Response Learning Tool for DSP Education: A Case Study
ERIC Educational Resources Information Center
Kulmer, Florian; Wurzer, Christian Gun; Geiger, Bernhard C.
2016-01-01
Many concepts in digital signal processing are intuitive, despite being mathematically challenging. The lecturer not only has to teach the complicated math but should also help students develop intuition about the concept. To aid the lecturer in this task, the Magnitude Response Learning Tool has been introduced, a computer-based learning game…
Mentoring Mathematical Minds: An Innovative Program to Develop Math Talent
ERIC Educational Resources Information Center
Gavin, M. Katherine; Casa, Tutita M.; Adelson, Jill L.
2006-01-01
Meeting the needs of mathematically talented elementary students has always been a real challenge due to the lack of appropriate curricular resources and training for teachers. Mathematics is not generally a strength area for elementary or gifted/talented teachers; rather, their talents and interests often lie in the language arts realm. This is…
Games for Learning: Vast Wasteland or a Digital Promise?
ERIC Educational Resources Information Center
Levine, Michael H.; Vaala, Sarah E.
2013-01-01
Research about emerging best practices in the learning sciences points to the potential of deploying digital games as one possible solution to the twin challenges of weak student engagement and the need for more robust achievement in literacy, science, technology, and math. This chapter reviews key cross-cutting themes in this special volume,…
Closing Achievement Gaps with a Utility-Value Intervention: Disentangling Race and Social Class
ERIC Educational Resources Information Center
Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Priniski, Stacy J.; Hyde, Janet S.
2015-01-01
Many college students abandon their goal of completing a degree in science, technology, engineering, or math (STEM) when confronted with challenging introductory-level science courses. In the U.S., this trend is more pronounced for underrepresented minority (URM) and first-generation (FG) students, and contributes to persisting racial and…
ERIC Educational Resources Information Center
Di Domenico, Paula M.; Elish-Piper, Laurie; Manderino, Michael; L'Allier, Susan K.
2018-01-01
This study investigated how a high school literacy coach provided coaching to support teachers' understanding and implementation of disciplinary literacy instruction. With a focus on collaborations between the literacy coach and teachers in the disciplines of social studies, math, and English, this article presents three case studies that…
NASA Astrophysics Data System (ADS)
Clegg, Brian
2018-04-01
Everybody knows that quantum physics is weird, right? Indeed, quantum physicist Richard Feynman once said in a lecture: "The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense." Beyond Weird: Why Everything You Thought You Knew About Quantum Physics is Different by Philip Ball presents a refreshing challenge to this viewpoint.
Mathematical Instructional Practices and Self-Efficacy of Kindergarten Teachers
ERIC Educational Resources Information Center
Schillinger, Tammy
2016-01-01
A local urban school district recently reported that 86% of third graders did not demonstrate proficiency on the Math Standardized Test, which challenges students to solve problems and justify solutions. It is beneficial if these skills are developed prior to third grade. Students may be more academically successful if kindergarten teachers have…
Good Questions: Great Ways to Differentiate Mathematics Instruction. Second Edition
ERIC Educational Resources Information Center
Small, Marian
2012-01-01
Expanded to include connections to Common Core State Standards, as well as National Council of Teachers of Mathematics (NCTM) standards, this critically acclaimed book will help every teacher and coach to meet the challenges of differentiating mathematics instruction in the K-8 classroom. In this bestseller, math education expert Marian Small…
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
2002-05-22
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
2002-05-22
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.
2002-05-23
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
2002-05-22
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
2002-05-22
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
Educational benefits of ISY - NASA's perspective
NASA Technical Reports Server (NTRS)
Owens, Frank C.; Mcgee, A. S.
1992-01-01
Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.
NASA Astrophysics Data System (ADS)
French, L. M.; Borkovitz, D.
1999-12-01
At Wheelock College, a liberal arts college in Boston which prepares students for careers in elementary and early childhood teaching and social work, we are developing science and mathematics courses designed to prepare our students for their work with children while teaching them adult-level math and science. Our students arrive with varying skill levels and, often, a great deal of math and science anxiety. We must address the anxiety in order for the students to make progress as learners and, eventually, teachers of math and science. Two courses have been notable successes. A one-semester course entitled The Solar System has become a staple in the curriculum. Major topics covered include finding our way around the sky, the nature of light and color, the size and scale of the solar system, and the causes of the Earth’s seasons and the phases of the moon. Students report that it changes their minds about how science can be taught by modeling a style of teaching which is more interactive than the way they were taught. In the graduate school, astronomy is the focus for a course entitled Teaching and Learning. Co-taught by an education faculty member and an astronomer, the course immerses students in learning a new content area and asks them to consider their own learning process. Observations play an important role here, with students keeping journals of their own sky observations. We also describe two challenges. One is the establishment of more advanced courses; although an astrophysics class has been offered twice to overwhelmingly positive student reviews, it is not easy to “sell”. The other challenge is the establishment of an introductory level course in stars and galaxies for non-science majors. This work has been supported in part by a grant from the DUE of the National Science Foundation.
NASA Astrophysics Data System (ADS)
Rostock, Roseanne
The challenge of attracting and retaining the next generation of teachers who are skilled and committed to meeting the growing demands of the profession is of increasing concern to researchers and policy makers, particularly since 45--50% of beginning teachers leave the profession within five years (Ingersoll & Smith, 2003). Reasons for such attrition include compensation, status and working conditions; however, there is growing evidence that a critical factor in new teacher retention hinges on teachers' ability to accomplish the difficult task of forming a workable professional identity in the midst of competing discourses about teaching (Alsup, 2006; Britzman, 2003). There is little research on professional identity development among those beginning teachers at highest risk for attrition (secondary math and science teachers, and those with strong academic backgrounds). This study explores the professional identity development of early-career math and science teachers who are part of the Knowles Science Teaching Foundation's (KSTF) teaching fellowship program, an external support network that aims to address many of the issues leading to high attrition among this particular population of teachers. Using narrative research methods, I examine three case studies of beginning teachers, exploring how they construct professional identity in relation to various discourse communities and negotiate tensions across multiple discourses. The cases identify both dominant discourses and counter-discourses that the teachers draw upon for important identity development resources. They also demonstrate that the way a teacher manages tensions across competing discourses is important to how well one can negotiate a workable professional identity. In particular, they emphasize the importance of engaging in borderland discourses (Gee, 1996) as a way of taking agency in one's own identity development as well as in transforming one's discourse communities. These cases shed light on how these beginning teachers work to negotiate a workable professional identity that may sustain them in a teaching career. In addition, they help us understand how a support network like KSTF can serve as a resource for helping new teachers construct professional identities, therefore addressing some of the issues that may lead to attrition among this population of new teachers.
Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122
Wall, Anji E
2014-07-01
Global surgery, while historically a small niche, is becoming a larger part of the global health enterprise. This article discusses the burden of global surgery, emphasizing the importance of addressing surgical needs in low- and middle-income countries. It describes the barriers to surgical care in the developing world, the ethical challenges that these barriers create, and strategies to overcome these barriers. It emphasizes the crucial role of preparation for global surgical interventions as a way to maximize benefits as well as minimize harms and ethical challenges. It ends with the cautionary statement that preparation does not eliminate ethical problems, so surgical volunteers must be prepared not only for the technical challenges of global surgery but also for the ethical challenges.
Female teachers' math anxiety affects girls' math achievement.
Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C
2010-02-02
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
ERIC Educational Resources Information Center
Lee, Jihyun
2009-01-01
The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…
Addressing the STEM Workforce Challenge: Missouri. BHEF Research Brief
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2012
2012-01-01
While states and the federal government have put efforts in place to increase the size of the workforce trained in science, technology, engineering, and math (STEM) to meet innovation demands, there continues to be a nationwide shortage of students who are interested in and prepared for such careers. Missouri is no exception to this problem, one…
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2011
2011-01-01
A strong economy requires a highly educated workforce, especially in science, technology, engineering, and math (STEM) fields. In the United States, STEM degree production has stagnated, despite employment projections forecasting a 17% growth in the field over the next decade. Two key criteria influence progression through the STEM education…
The Relationship between English Learning and Achievement on the State Assessment
ERIC Educational Resources Information Center
McFann-Mora, Oribel
2016-01-01
In the United States, the number of English Language Learners (ELLs) has steadily grown over the past decades. In the State of Delaware, the growth has been exponential. ELLs' academic underachievement in reading and math has remained a challenge for K-12 educational institutions. It has continued to be necessary to research the causes and…
Title I Schools: The Student-Based Impact of Online, On-Demand Professional Development on Educators
ERIC Educational Resources Information Center
Shaha, Steven; Glassett, Kelly; Copas, Aimee; Ellsworth, Heather
2015-01-01
Title I students remain among the most challenging population for achieving significant gains in academic performance and standardized test scores. This multi-state, quasi-experimental, pre-versus-post study reflects the comparative Title I gains for math and reading scores for teachers participating in an online, on-demand professional…
Unique Challenges for Women of Color in STEM Transferring from Community Colleges to Universities
ERIC Educational Resources Information Center
Reyes, Marie-Elena
2011-01-01
In this article, Marie-Elena Reyes presents the issues faced by women of color in the fields of science, technology, engineering, and math (STEM) as they transfer from community colleges to universities. Community colleges offer a great potential for diversifying and increasing participation of underrepresented groups in STEM. Many women of color…
Choosing the Geoscience Major: Important Factors, Race/Ethnicity, and Gender
ERIC Educational Resources Information Center
Stokes, Philip J.; Levine, Roger; Flessa, Karl W.
2015-01-01
Geoscience faces dual recruiting challenges: a pending workforce shortage and a lack of diversity. Already suffering from low visibility, geoscience does not resemble the makeup of the general population in terms of either race/ethnicity or gender and is among the least diverse of all science, technology, engineering, and math fields in the U.S.…
Loving and Hating Mathematics: Challenging the Myths of Mathematical Life
ERIC Educational Resources Information Center
Hersh, Reuben; John-Steiner, Vera
2010-01-01
Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions--and inspire more love and hatred--than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. "Loving and Hating…
Got a Minute? Challenge Your Kids to Math Games on the Go
ERIC Educational Resources Information Center
Hildebrandt, Martha
2014-01-01
Parents and grandparents are always looking for new ways to engage their kids and grandkids in meaningful, enriching educational activities. While there is evidence that playing games can increase numerical fluency, research also shows that parental involvement outside of school is one of the best predictors of student achievement and that games…
ERIC Educational Resources Information Center
Wu, Zhonghe; An, Shuhua
2016-01-01
This study examined the effects of using the Model-Strategy-Application with Reasoning Approach (MSAR) in teaching and learning mathematics in linguistically and culturally diverse elementary classrooms. Through learning mathematics via the MSAR, students from different language ability groups gained an understanding of mathematics from creating…
2011-03-14
The Science Cheerleaders perform at a Women's History Month event for middle school and high school girls on Wednesday, March 16, 2011 at NASA Headquarters in Washington. The Science Cheerleaders are a group professional cheerleaders-turned-scientists and engineers who challenge stereotypes while helping to inspire young women to pursue careers in science, technology, engineering and math. Photo Credit: (NASA/Carla Cioffi)
District-Charter Collaborations on the Rise
ERIC Educational Resources Information Center
Finkel, Ed
2011-01-01
The Synergy Charter Academy, one of three charter schools in the Los Angeles Unified School District (LAUSD), used to occupy a cramped church space in south LA. Despite the facilities challenges, its more than 300 K students have generally scored in the top 10% on statewide tests in reading and math over the past seven years. When the district…
Preparing English as a Second Language Students for College Level Math
ERIC Educational Resources Information Center
Valenzuela, Hector
2014-01-01
In a diverse classroom, there are students who are in need of both mathematics and English as a second language instruction. One of the challenges faced at Lake Washington Institute of Technology (LWIT) was the development of a pathway for English language learners into core academic courses at the college. In addition, English language learners…
Development of an Internet Collaborative Learning Behavior Scale--Preliminary Results.
ERIC Educational Resources Information Center
Hsu, Ti; Wang, Hsiu Fei
It is well known that math phobia is a common problem among young school children. It becomes a challenge to educational practitioners and academic researchers to figure out ways to overcome the problem. Collaborative team learning has been proposed as one of the alternatives. This study was part of a large and ongoing research project designed to…
Developing Quantitative Reasoning: Will Taking Traditional Math Courses Suffice? An Empirical Study
ERIC Educational Resources Information Center
Agustin, Ma Zenia; Agustin, Marcus; Brunkow, Paul; Thomas, Susan
2012-01-01
Southern Illinois University Edwardsville (SIUE) is a postbaccalaureate comprehensive university in the Midwest. In 2005, SIUE embarked on a challenging journey of general education reform. A review of the current general education program revealed that it is possible for a student to graduate from SIUE without taking a quantitative course. Hence,…
What Keeps Chinese Students Motivated in Doing Math Homework? An Empirical Investigation
ERIC Educational Resources Information Center
Yang, Fuyi; Xu, Jianzhong; Tan, Heping; Liang, Ningjian
2016-01-01
Background: As many students face the enduring challenge of maintaining their motivation to complete homework assignments, there is a critical need to pay close attention to homework motivation management (i.e., students' efforts to sustain or enhance their motivation in order to complete homework assignments that might be boring or difficult).…
Push and Pull: The Influence of Race/Ethnicity on Agency in Doctoral Student Career Advancement
ERIC Educational Resources Information Center
Jaeger, Audrey J.; Mitchall, Allison; O'Meara, KerryAnn; Grantham, Ashley; Zhang, Jingjing; Eliason, Jennifer; Cowdery, Kelly
2017-01-01
This study examined and enriched our understanding of the career choice process for doctoral students of color in science, technology, engineering, and math (STEM) fields. In addition, it explored the challenges facing all doctoral students in STEM in understanding and making meaning of diversity as it relates to individual perspectives and…
STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices
ERIC Educational Resources Information Center
Herro, Danielle; Quigley, Cassie
2016-01-01
This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…
A College-Level Foundational Mathematics Course: Evaluation, Challenges, and Future Directions
ERIC Educational Resources Information Center
Maciejewski, Wes
2012-01-01
Recently in Ontario, Canada, the College Math Project brought to light startling data on the achievement of students in Ontario's College of Applied Arts and Technology System related to their performance in first-year mathematics courses: one-third of the students had failed their first-year mathematics course or were at risk of not completing…
ERIC Educational Resources Information Center
Yang, Dazhi
2017-01-01
Background: Teaching online is a different experience from that of teaching in a face-to-face setting. Knowledge and skills developed for teaching face-to-face classes are not adequate preparation for teaching online. It is even more challenging to teach science, technology, engineering and math (STEM) courses completely online because these…
ERIC Educational Resources Information Center
Currie, Michelle A.
2012-01-01
Black faculty at predominantly White institutions (PWIs) have historically been underrepresented and made to endure with academic isolation, scholarship marginalization and other challenges to the tenure process. When it comes to science, technology, engineering and math, also known as STEM, as it relates to race and success, little is known of…
ERIC Educational Resources Information Center
Stricker, David R.
2010-01-01
This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…
Overcoming Barriers through the Use of the Familiar
ERIC Educational Resources Information Center
Turner, William James
2015-01-01
There is no such thing as being "English-y" or "maths-y." One person may find English comes more naturally, but being naturally gifted at one subject does not make a person bad at the others. Just because we may find it more challenging to access certain content, this does not mean there is a barrier. William James Turner…
ERIC Educational Resources Information Center
Berch, Daniel B.
2017-01-01
In this commentary, I examine some of the distinctive, foundational difficulties in learning fractions and other types of rational numbers encountered by students with a mathematical learning disability and how these differ from the struggles experienced by students classified as low achieving in math. I discuss evidence indicating that students…
NASA Astrophysics Data System (ADS)
Zolnierczyk, Joanna Asia
The integration of mathematics and science in secondary schools in the 21st century continues to be an important topic of practice and research. The purpose of my research study, which builds on studies by Frykholm and Glasson (2005) and Berlin and White (2010), is to explore the potential constraints and benefits of integrating mathematics and science in Ontario secondary schools based on the perspectives of in-service and pre-service teachers with various math and/or science backgrounds. A qualitative and quantitative research design with an exploratory approach was used. The qualitative data was collected from a sample of 12 in-service teachers with various math and/or science backgrounds recruited from two school boards in Eastern Ontario. The quantitative and some qualitative data was collected from a sample of 81 pre-service teachers from the Queen's University Bachelor of Education (B.Ed) program. Semi-structured interviews were conducted with the in-service teachers while a survey and a focus group was conducted with the pre-service teachers. Once the data was collected, the qualitative data were abductively analyzed. For the quantitative data, descriptive and inferential statistics (one-way ANOVAs and Pearson Chi Square analyses) were calculated to examine perspectives of teachers regardless of teaching background and to compare groups of teachers based on teaching background. The findings of this study suggest that in-service and pre-service teachers have a positive attitude towards the integration of math and science and view it as valuable to student learning and success. The pre-service teachers viewed the integration as easy and did not express concerns to this integration. On the other hand, the in-service teachers highlighted concerns and challenges such as resources, scheduling, and time constraints. My results illustrate when teachers perceive it is valuable to integrate math and science and which aspects of the classroom benefit best from the integration. Furthermore, the results highlight barriers and possible solutions to better the integration of math and science. In addition to the benefits and constraints of integration, my results illustrate why some teachers may opt out of integrating math and science and the different strategies teachers have incorporated to integrate math and science in their classroom.
Optimal run-and-tumble-based transportation of a Janus particle with active steering
NASA Astrophysics Data System (ADS)
Mano, Tomoyuki; Delfau, Jean-Baptiste; Iwasawa, Junichiro; Sano, Masaki
2017-03-01
Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the “run-and-tumbling” behavior of Escherichia coli but with a deterministic steering in the tumbling phase: the particle is set to the run state when its orientation vector aligns with the target, whereas the transition to the “steering” state is triggered when it exceeds a tolerance angle
Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L
2016-01-01
Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Principals in Partnership with Math Coaches
ERIC Educational Resources Information Center
Grant, Catherine Miles; Davenport, Linda Ruiz
2009-01-01
One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
ERIC Educational Resources Information Center
US House of Representatives, 2016
2016-01-01
This document records testimony from a hearing held on April 22, 2015 on the topic of challenges that are faced by Native American schools. Nearly a century ago the Federal Government made a promise to deliver to Native American children a quality education that just doesn't teach math and science, but preserves their customs and culture.…
When approximate number acuity predicts math performance: The moderating role of math anxiety
Libertus, Melissa E.
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939
Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago
2017-12-01
Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Braham, Emily J; Libertus, Melissa E
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
Educational neuroscience: definitional, methodological, and interpretive issues.
Byrnes, James P; Vu, Lien T
2015-01-01
In this study, we hope to accomplish three aims as follows: (1) provide greater clarity regarding the nature and scope of the field of educational neuroscience, (2) propose a framework for understanding when and how neuroscientific research could be informative for educational practice, and (3) describe some examples of neuroscientific findings from the domains of reading and mathematics that are informative according to this framework. We propose that psychological models of learning-related processes should be the basis of instructional decisions, and that neuroscientific evidence in combination with traditional evidence from psychological experiments should be used to decide among competing psychological models. Our review of the neuroscientific evidence for both reading and mathematics suggests that while much has been learned over the past 20 years, there is still a 'disconnect' between contemporary psychological models that emphasize higher level skills and neuroscientific studies that focus on lower level skills. Moreover, few researchers have used neuroscientific evidence to decide among psychological models, but have focused instead on identifying the brain regions that subtend component skills of reading and math. Nevertheless, neuroscientific studies have confirmed the intrinsic relationship between reading and spoken language, revealed interesting predictive relationships between anatomical structures and reading and math disabilities, and there is the potential for fruitful collaborations between neuroscientists and psychologists in the future. © 2015 John Wiley & Sons, Ltd.
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
NASA Astrophysics Data System (ADS)
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.
Measurement of math beliefs and their associations with math behaviors in college students.
Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara
2014-12-01
Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
A latent profile analysis of math achievement, numerosity, and math anxiety in twins
Hart, Sara A.; Logan, Jessica A.R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2015-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math. PMID:26957650
A latent profile analysis of math achievement, numerosity, and math anxiety in twins.
Hart, Sara A; Logan, Jessica A R; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A
2016-02-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math.
ERIC Educational Resources Information Center
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2015-01-01
The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…
Once a physicist: Subramaniam Ramadorai
NASA Astrophysics Data System (ADS)
Ramadorai, Subramaniam
2009-09-01
Why did you choose to study physics? I come from a traditional South Indian family, where the culture typically emphasizes science education. My upbringing reflected these same influences, and my father in particular had a great love for mathematics and physics. I remember going on long walks with him in the countryside, where he shared with me his unfulfilled dreams of becoming an engineer. He felt that he had a talent for engineering, but parental advice steered him towards studying mathematics instead. Perhaps I imbibed his passion, because I always loved fixing things and figuring how they worked through experimentation. All of these developed in me a growing interest in physics, and so my major at Delhi University was physics, with maths and chemistry as subsidiary subjects.
Teaching Leadership to All: The Educational Challenge of Our Times
ERIC Educational Resources Information Center
Fish, Ted
2011-01-01
A hundred years ago, if people had asked a group of competent and talented educators whether any child--regardless of race, class, or gender--could one day learn to read Shakespeare, write scientific papers, or do algebraic math, all but the most visionary would have answered, "No." Only a small segment of the population was deemed capable of…
ERIC Educational Resources Information Center
Kingsley, Barbara E.; Robertson, Julia M.
2017-01-01
As a fundamental element of any psychology degree, the teaching and learning of research methods is repeatedly brought into sharp focus, and it is often regarded as a real challenge by undergraduate students. The reasons for this are complex, but frequently attributed to an aversion of maths. To gain a more detailed understanding of students'…
Getting over Epistemology and Treating Theory as a Recyclable Source of "Things"
ERIC Educational Resources Information Center
Kusznirczuk, John
2012-01-01
This paper challenges the way in which we are inclined to treat theory and suggests that our tendency to privilege it over method is counterproductive. Some consequences of privileging theory are pointed out and a remedy is proposed. The remedy entails a number of "reversals" in the way we treat theory and method in maths education research, the…
ERIC Educational Resources Information Center
Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon
2017-01-01
For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…
ERIC Educational Resources Information Center
Gunderson, Elizabeth A.; Hamdan, Noora; Sorhagen, Nicole S.; D'Esterre, Alexander P.
2017-01-01
Individuals' implicit theories of intelligence exist on a spectrum, from believing intelligence is fixed and unchangeable, to believing it is malleable and can be improved with effort. A belief in malleable intelligence leads to adaptive responses to challenge and higher achievement. However, surprisingly little is known about the development of…
The STEM Teacher Drought: Cracks and Disparities in California's Math and Science Teacher Pipeline
ERIC Educational Resources Information Center
Wolf, Leni
2015-01-01
In today's fast-moving and interconnected world, high school and college graduates must be able to think critically and generate creative solutions to address complex problems. With the world producing new knowledge at an exponential rate, we cannot anticipate what all these future challenges will be. Without a doubt, they will impact a society…
The Grand Challenge: Helping Teachers Learn/Teach Cutting-Edge Science via a PBL Approach
ERIC Educational Resources Information Center
Ertmer, Peggy A.; Schlosser, Sarah; Clase, Kari; Adedokun, Omolola
2014-01-01
A mixed-methods research study was designed to examine teachers' knowledge and confidence for implementing a STEM-based problem-based learning (PBL) unit in their 6-12 grade science and math classrooms. Twenty-one teachers (7 in-service and 13 pre-service) participated in an intensive two-week summer workshop during which they engaged in, and then…
Doing the Math on Teacher Pensions: How to Protect Teachers and Taxpayers
ERIC Educational Resources Information Center
Doherty, Kathryn M.; Jacobs, Sandi; Lueken, Martin F.
2015-01-01
Challenging the claims of pension boards and other groups about the cost-effectiveness, fairness and flexibility of the traditional defined benefit pension plans still in place in 38 states, this report includes a report card on each of the 50 states and the District of Columbia, with a detailed analysis of state teacher pension policies, and…
ERIC Educational Resources Information Center
McManis, Mark H.; McManis, Lilla Dale
2016-01-01
The use of touch-based technologies by young children to improve academic skills has seen growth outpacing empirical evidence of its effectiveness. Due to the educational challenges low-income children face, the stakes for providing instructional technology with demonstrated efficacy are high. The current work presents an empirical study of the…
ERIC Educational Resources Information Center
Park, Travis; Pearson, Donna; Richardson, George B.
2017-01-01
All students need to learn how to read, write, solve mathematics problems, and understand and apply scientific principles to succeed in college and/or careers. The challenges posed by entry-level career fields are no less daunting than those posed by college-level study. Thus, career and technical education students must learn effective math,…
ERIC Educational Resources Information Center
Ganesh, Tirupalavanam G.; Middleton, James A.
2006-01-01
This research effort reports the findings of an empirical study focusing on the ways in which technological tools are implemented specifically in mathematics education in a Title I school. The purpose was to identify the perspectives and actions of the school's mathematics specialist and the multi-graded (grades 2-3) classroom teacher as they…
ERIC Educational Resources Information Center
McMullin, Keith; Reeve, Edward
2014-01-01
An educational crisis has been reported from many scholarly platforms for the last quarter century. The United States is faced with the challenge of providing a secondary science, technology, engineering, and math (STEM) education, especially in secondary pre-engineering, that will lead its students to the fulfillment of academic and domestic…
ERIC Educational Resources Information Center
Lee, David L.; Asplen, Jennifer
2004-01-01
Dealing with the behavioral and academic problems of children with co-occurring learning disabilities and attention-deficit/hyperactivity disorder (AD/HD) can be challenge for educators. One characteristic often associated with AD/HD is an inability to remain engaged in tasks for long periods of time. This lack of attentional focus often results…
Mathematical Explorations: Fun with Triangular Numbers
ERIC Educational Resources Information Center
Medina, Elsa; Grassl, Richard; Fay-Zenk, Mary
2014-01-01
While some students are enjoying days at the park or at the beach, forty middle school students are in a classroom solving challenging mathematics problems. The second Math Camp for middle school students was offered in 2013 at a western university for students from local school districts. For three days, these students met from 10 a.m. to 3 p.m.…
ERIC Educational Resources Information Center
Parker, Frieda; Bartell, Tonya; Novak, Jodie D.
2017-01-01
Over the last couple of decades, there has been a growing call for teachers to become more responsive to the increasing cultural diversity of students as a means of improving students' experiences in school and their learning outcomes. Challenges exist in working with secondary mathematics teachers due to the common belief that math is…
Time to Proficiency for Hispanic English Learner Students in Texas. REL 2018-280
ERIC Educational Resources Information Center
Slama, Rachel; Molefe, Ayrin; Gerdeman, Dean; Herrera, Angelica; Brodziak de los Reyes, Iliana; August, Diane; Cavazos, Linda
2017-01-01
English learner students are challenged by the difficult task of learning English concurrently with learning content in areas such as reading and math. English learner students who have not attained proficiency in English or learned core course content by the middle and upper grades may not have the requisite skills to enroll in courses required…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Lai, Chiu-Lin
2017-01-01
Flipped learning is a well-recognized learning mode that reverses the traditional in-class instruction arrangement by delivering learning content outside of the classroom and engaging students in more activities in class. However, it remains a challenge for students to comprehend the learning material by themselves, particularly when learning…
Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work
ERIC Educational Resources Information Center
Bull, Heather
2009-01-01
Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…
2014-05-27
Girl Scout troop 2612 members from Tulsa, OK take photos of one another with Google Glass at the White House Science Fair Tuesday, May 27, 2014. Avery Dodson, 6; Natalie Hurley, 8; Miriam Schaffer, 8; Claire Winton, 8; and Lucy Claire Sharp, 8 participated in the Junior FIRST Lego League's Disaster Blaster Challenge, which invites elementary-school-aged students from across the country to explore how simple machines, engineering, and math can help solve problems posed by natural disasters. The girls invented the "Flood Proof Bridge" and built a model mechanizing the bridge using motors and developing a computer program to automatically retract the bridge when flood conditions are detected. The fourth White House Science Fair was held at the White House and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)
Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement
Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children. PMID:22701105
Math anxiety in second and third graders and its relation to mathematics achievement.
Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
ERIC Educational Resources Information Center
Otts, Cynthia D.
2010-01-01
The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…
College Math Assessment: SAT Scores vs. College Math Placement Scores
ERIC Educational Resources Information Center
Foley-Peres, Kathleen; Poirier, Dawn
2008-01-01
Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…
NASA Astrophysics Data System (ADS)
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.
Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon
2017-08-29
With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.
ERIC Educational Resources Information Center
Fast, Lisa A.; Lewis, James L.; Bryant, Michael J.; Bocian, Kathleen A.; Cardullo, Richard A.; Rettig, Michael; Hammond, Kimberly A.
2010-01-01
We examined the effect of the perceived classroom environment on math self-efficacy and the effect of math self-efficacy on standardized math test performance. Upper elementary school students (N = 1,163) provided self-reports of their perceived math self-efficacy and the degree to which their math classroom environment was mastery oriented,…
The role of expressive writing in math anxiety.
Park, Daeun; Ramirez, Gerardo; Beilock, Sian L
2014-06-01
Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Hart, Sara A; Ganley, Colleen M; Purpura, David J
2016-01-01
There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Math anxiety and its relationship with basic arithmetic skills among primary school children.
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-09-01
Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.
Ganley, Colleen M.; Purpura, David J.
2016-01-01
There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925
Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan
2014-03-01
The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.
Neural correlates of math anxiety - an overview and implications.
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824
The Challenge of Individualized Instruction in Corrections.
ERIC Educational Resources Information Center
Clements, Carl B.; McKee, John M.
2000-01-01
Discusses 14 challenges to the use of individualized instruction in corrections. Emphasizes a systems approach, motivational tools, programmed instructional materials, and approaches such as Direct Instruction and Precision Teaching. (SK)
ERIC Educational Resources Information Center
Ruff, Sarah E.; Boes, Susan R.
2014-01-01
Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…
A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults
ERIC Educational Resources Information Center
Hocker, Tami
2017-01-01
This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…
The science of complexity and the role of mathematics
NASA Astrophysics Data System (ADS)
Bountis, T.; Johnson, J.; Provata, A.; Tsironis, G.
2016-09-01
In the middle of the second decade of the 21st century, Complexity Science has reached a turning point. Its rapid advancement over the last 30 years has led to remarkable new concepts, methods and techniques, whose applications to complex systems of the physical, biological and social sciences has produced a great number of exciting results. The approach has so far depended almost exclusively on the solution of a wide variety of mathematical models by sophisticated numerical techniques and extensive simulations that have inspired a new generation of researchers interested in complex systems. Still, the impact of Complexity beyond the natural sciences, its applications to Medicine, Technology, Economics, Society and Policy are only now beginning to be explored. Furthermore, its basic principles and methods have so far remained within the realm of high level research institutions, out of reach of society's urgent need for practical applications. To address these issues, evaluate the current situation and bring Complexity Science closer to university students, a series of Ph.D. Schools on Mathematical Modeling of Complex Systems was launched, starting in July 2011 at the University of Patras, Greece (see
Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties
Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn
2009-01-01
Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494
NASA Astrophysics Data System (ADS)
Madadi, Vahid; Tavakoli, Touraj; Rahimi, Amir
2015-03-01
This study undertakes the experimental and theoretical investigation of heat losses from a cylindrical cavity receiver employed in a solar parabolic dish collector. Simultaneous energy and exergy equations are used for a thermal performance analysis of the system. The effects of wind speed and its direction on convection loss has also been investigated. The effects of operational parameters, such as heat transfer fluid mass flow rate and wind speed, and structural parameters, such as receiver geometry and inclination, are investigated. The portion of radiative heat loss is less than 10%. An empirical and simplified correlation for estimating the dimensionless convective heat transfer coefficient in terms of the
ERIC Educational Resources Information Center
Yu, Chong Ho; DiGangi, Samuel; Jannasch-Pennell, Angel
2012-01-01
Due to the poor performance of US students in international math and science tests, many authors worry that the US lead in science is in jeopardy. A recent study by Chen and Luoh ("Soc Indic Res" 96: 133-143, 2010) challenged this pessimistic view by delinking test performance and labor force quality. It was found that measures such as…
ERIC Educational Resources Information Center
Osler, James E.; Hollowell, Gail P.; Nichols, Stacy M.
2012-01-01
Technology Engineering is an innovative component of a much larger arena of teaching that effectively uses interactive technology as a method of enhancing learning and the learning environment. Using this method to teach science and math content empowers the teacher and enhances the curriculum as the classroom becomes more efficient and effective.…
ERIC Educational Resources Information Center
Herman, Joan L.; Matrundola, Deborah La Torre; Epstein, Scott; Leon, Seth; Dai, Yunyun; Reber, Sarah; Choi, Kilchan
2015-01-01
With support from the Bill and Melinda Gates Foundation, researchers and experts in mathematics education developed the Mathematics Design Collaborative (MDC) as a strategy to support the transition to Common Core State Standards in math. MDC provides short formative assessment lessons known as Classroom Challenges for use in middle and high…
ERIC Educational Resources Information Center
Kibler, Amanda
2011-01-01
Adolescent writers in second language settings often spend the majority of their school days in content area courses, such as math, science, and social studies, where they must negotiate challenging literacy tasks in their second languages with little explicit writing instruction. While genre scholars have built an extensive body of knowledge…
ERIC Educational Resources Information Center
Calisto, George W.
2013-01-01
This study sought to integrate Dweck and Leggett's (1988) self-theories of intelligence model (i.e., the view that intelligence is either fixed and unalterable or changeable through hard work and effort) with Elliot and Dweck's (1988) achievement goal theory, which explains why some people are oriented towards learning and others toward…
A Survey of ChalleNGe Program Teachers: Their Characteristics and Pedagogical Approaches
2015-08-01
aloud, and reading books of their choice during class. As we have done with other pedagogical methods, we estimated the relationship between the...significant relationships between pedagogical practices and average cadet outcomes. When considering the impact of specific math subjects and the extent...ChalleNGe). Although we did find some statistically significant relationships between pedagogical approaches and cadets’ average outcomes, we
The Positive Effects Extrinsic Motivation Can Have on Intrinsic Motivation in a Math Classroom
ERIC Educational Resources Information Center
Bilbrey, Joshua
2017-01-01
Faced with meeting the challenges that school districts have for the pass rates set before them by the state many schools have looked for new ways to engage their students and increase competency in the class. Intrinsically motivated students have always been shown to have a higher success rate compared to the students that do not possess this…
ERIC Educational Resources Information Center
Steele, Jennifer L.; Slater, Robert; Li, Jennifer; Zamarro, Gema; Miller, Trey
2013-01-01
Confronted with many challenges to improving the quality of U.S. public K-12 education, many policymakers have viewed the study of a second language as a useful but nonessential ingredient of a world-class education system. However, others point out that dual-language education can be a powerful intervention for closing the achievement gap for…
Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha
2013-11-01
Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P < 0.001). The degree of improvement on the RASS (which evaluates motor activity and orientation to task) and on math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.
Silk, Kami J; Parrott, Roxanne L
2014-01-01
Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.
Motivation and Math Anxiety for Ability Grouped College Math Students
ERIC Educational Resources Information Center
Helming, Luralyn
2013-01-01
The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…
All Students Need Advanced Mathematics. Math Works
ERIC Educational Resources Information Center
Achieve, Inc., 2013
2013-01-01
This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…
Math Anxiety, Working Memory, and Math Achievement in Early Elementary School
ERIC Educational Resources Information Center
Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.
2013-01-01
Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…
ERIC Educational Resources Information Center
Ruffins, Paul
2007-01-01
For years, mainstream thinking about math anxiety assumed that people fear math because they are bad at it. However, a growing body of research shows a much more complicated relationship between math ability and anxiety. It is true that people who fear math have a tendency to avoid math-related classes, which decreases their math competence.…
Math Anxiety Is Related to Some, but Not All, Experiences with Math
O'Leary, Krystle; Fitzpatrick, Cheryll L.; Hallett, Darcy
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not. PMID:29375410
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973
Math Anxiety Is Related to Some, but Not All, Experiences with Math.
O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Neurocognitive and Behavioral Predictors of Math Performance in Children with and without ADHD
Antonini, Tanya N.; O’Brien, Kathleen M.; Narad, Megan E.; Langberg, Joshua M.; Tamm, Leanne; Epstein, Jeff N.
2014-01-01
Objective: This study examined neurocognitive and behavioral predictors of math performance in children with and without attention-deficit/hyperactivity disorder (ADHD). Method: Neurocognitive and behavioral variables were examined as predictors of 1) standardized mathematics achievement scores,2) productivity on an analog math task, and 3) accuracy on an analog math task. Results: Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the Attentional Network Task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Conclusion: Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. PMID:24071774
Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.
Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N
2016-02-01
This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.
Math-gender stereotypes in elementary school children.
Cvencek, Dario; Meltzoff, Andrew N; Greenwald, Anthony G
2011-01-01
A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) me with male (gender identity), (b) male with math (math-gender stereotype), and (c) me with math (math self-concept). Two findings emerged. First, as early as second grade, the children demonstrated the American cultural stereotype that math is for boys on both implicit and explicit measures. Second, elementary school boys identified with math more strongly than did girls on both implicit and self-report measures. The findings suggest that the math-gender stereotype is acquired early and influences emerging math self-concepts prior to ages at which there are actual differences in math achievement. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
Number-specific and general cognitive markers of preschoolers' math ability profiles.
Gray, Sarah A; Reeve, Robert A
2016-07-01
Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach
NASA Astrophysics Data System (ADS)
Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun
2015-02-01
The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed. PMID:27788235
The role of early language abilities on math skills among Chinese children.
Zhang, Juan; Fan, Xitao; Cheung, Sum Kwing; Meng, Yaxuan; Cai, Zhihui; Hu, Bi Ying
2017-01-01
The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills. The current findings indicate 1) Children's language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills.
The role of early language abilities on math skills among Chinese children
Fan, Xitao; Cheung, Sum Kwing; Cai, Zhihui; Hu, Bi Ying
2017-01-01
Background The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Methodology Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children’s language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children’s language abilities and formal math skills was partially mediated by informal math skills. Results The current findings indicate 1) Children’s language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills. PMID:28749950
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Nurses' maths: researching a practical approach.
Wilson, Ann
To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.
ERIC Educational Resources Information Center
Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.
2018-01-01
School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…
A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins
ERIC Educational Resources Information Center
Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2016-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…
Singapore Math: Problem-Solving Secrets from the World's Math Leader
ERIC Educational Resources Information Center
Hogan, Bob
2005-01-01
Using this four CD-ROM disc set, teachers can have their very own math problem solving mentor as a leading expert in Singapore Math guides them through a lively presentation, working through math problems and explaining how Singapore has become the world's leading method in math. The expert's explanation of how to use Singapore's model-drawing…
A Longitudinal Analysis of Sex Differences in Math and Spatial Skills in Primary School Age Children
ERIC Educational Resources Information Center
Lachance, Jennifer A.; Mazzocco, Michele M. M.
2006-01-01
We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming…
Math at home adds up to achievement in school.
Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L
2015-10-09
With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.
Math Anxiety and Math Ability in Early Primary School Years.
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2009-06-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa-contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development.
Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.
Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana
2016-06-01
Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2010-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159
Ferriman, Kimberley; Lubinski, David; Benbow, Camilla P
2009-09-01
Work preferences, life values, and personal views of top math/science graduate students (275 men, 255 women) were assessed at ages 25 and 35 years. In Study 1, analyses of work preferences revealed developmental changes and gender differences in priorities: Some gender differences increased over time and increased more among parents than among childless participants, seemingly because the mothers' priorities changed. In Study 2, gender differences in the graduate students' life values and personal views at age 35 were compared with those of profoundly gifted participants (top 1 in 10,000, identified by age 13 and tracked for 20 years: 265 men, 84 women). Again, gender differences were larger among parents. Across both cohorts, men appeared to assume a more agentic, career-focused perspective than women did, placing more importance on creating high-impact products, receiving compensation, taking risks, and gaining recognition as the best in their fields. Women appeared to favor a more communal, holistic perspective, emphasizing community, family, friendships, and less time devoted to career. Gender differences in life priorities, which intensify during parenthood, anticipated differential male-female representation in high-level and time-intensive careers, even among talented men and women with similar profiles of abilities, vocational interests, and educational experiences. (c) 2009 APA, all rights reserved).
Michigan Turns to Leo Goldberg
NASA Astrophysics Data System (ADS)
Lindner, Rudi P.
2006-12-01
The death of Heber D. Curtis at the beginning of 1942 emphasized the difficult circumstances facing Michigan's astronomy program. There were no funds to figure or mount the 98" pyrex blank; the 37" reflector labored under floodlights; and the war sapped the graduate program. For a number of years the staff argued over the best path for the future, goaded by the unwelcome intervention of the "amateurs" McMath and Hulbert. The administration brought in outside consultants, attempted to prevent the observatory staff from making separate arrangements, trawled in western waters without success, and took conflicting advice on the future direction of the science. In 1946 the university leadership had, as well, to consider the aftermath of the war: new possibilities in physics, new funding opportunities, a booming student population, and the encapsulation of the observatory within the medical campus. At this time, Leo Goldberg was on the McMath-Hulbert staff, had little to do with the Ann Arbor community, and was considered to be an outsider, beholden to astrophysical theory and his promoters at Harvard. Leo Goldberg's rise from relative obscurity, his transformation from assistant to leader, and the university leadership's assessment of the possibilities for the transformation of a midwest, urban, and traditional program form the topic of this paper, based upon the Michigan and Harvard archives as well as the memories of Goldberg's cohort.
A Correlation of Community College Math Readiness and Student Success
NASA Astrophysics Data System (ADS)
Brown, Jayna Nicole
Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p < .001), performance (p = .008), and progress ( p = .001), indicating students who tested into Introduction to Algebra were more successful and persisted more often to degree completion. In order to improve instructional methods for Basic Math courses, a 3-day professional development workshop was developed for math faculty focusing on current, best practices in remedial math instruction. Implications for social change include providing math faculty with the knowledge and skills to develop new instructional methods for remedial math courses. A change in instructional methods may improve community college students' math competencies and degree achievement.
ERIC Educational Resources Information Center
Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…
Students' Mathematics Self-Efficacy, Anxiety, and Course Level at a Community College
ERIC Educational Resources Information Center
Spaniol, Scott R.
2017-01-01
Research suggests that student success in mathematics is positively correlated to math self-efficacy and negatively correlated to math anxiety. At a Hispanic serving community college in the Midwest, developmental math students had a lower pass rate than did college-level math students, but the role of math self-efficacy and math anxiety on these…
ERIC Educational Resources Information Center
Looney, Lisa; Perry, David; Steck, Andy
2017-01-01
Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…
ERIC Educational Resources Information Center
Steffens, Melanie C.; Jelenec, Petra; Noack, Peter
2010-01-01
Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…
Three brief assessments of math achievement.
Steiner, Eric T; Ashcraft, Mark H
2012-12-01
Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.
Mathematics achievement and anxiety and their relation to internalizing and externalizing behaviors.
Wu, Sarah S; Willcutt, Erik G; Escovar, Emily; Menon, Vinod
2014-01-01
Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. © Hammill Institute on Disabilities 2013.
Mathematics Achievement and Anxiety and Their Relation to Internalizing and Externalizing Behaviors
Wu, Sarah S.; Willcutt, Erik G.; Escovar, Emily; Menon, Vinod
2013-01-01
Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. PMID:23313869
Teaching Physics at a Business College: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Finberg, Sharon
2003-10-01
Most physicists are familiar with the challenge of teaching physics to non-science students. At Bentley College, a premier business university, we have unique challenges and opportunities. Newsweek magazine (Sept. 1, 2003) named Bentley College among the 12 "Hot Schools" for 2004 and the most "career-focused." Undergraduates intent on business majors often perceive physics as unbearable and opt for courses in other science disciplines to fulfill requirements. Within a relatively short period of time, I have successfully applied various strategies to attract these business-minded students to our one-semester "Basic Physics" course, such changing to a highly experiential course and including examples from many consumer products. Innovative one-semester elective courses aimed at specific interests such as energy, sports, music and the visual arts meet the challenge of enticing students to physics courses to complete their math/science elective requirement.
Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert
2009-01-01
The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of assessment. Univariate analyses provide a range of estimates of genetic (h2 = .00 –.63) and shared (c2 = .15–.52) environmental influences across math calculation, fluency, and problem solving measures. Multivariate analyses indicate genetic overlap between math problem solving with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Further, math fluency has unique genetic influences. In general, math ability has shared environmental overlap with general cognitive ability and decoding. These results indicate that aspects of math that include problem solving have different genetic and environmental influences than math calculation. Moreover, math fluency, a timed measure of calculation, is the only measured math ability with unique genetic influences. PMID:20157630
Yoshikawa, H
1999-01-01
This prospective longitudinal study, using data from the National Longitudinal Survey of Youth (NLSY; N = 614), addresses the gap in the research literature regarding the effects of welfare reform on children. Key questions addressed include whether welfare dynamics and support services relevant to welfare reform, both measured across the first 5 years of life, are associated with mothers' earnings in the 6th year and three child cognitive outcomes in the 7th and 8th years: Peabody Individual Achievement Test (PIAT) math and reading scores, and the Peabody Picture Vocabulary Test (PPVT). Welfare dynamics are represented by total time on welfare, degree of cycling on and off welfare, and degree to which welfare and work are combined. Support services measured include three forms of child care (relative, babysitter, and center-based), as well as three forms of human capital supports (child support, job training, and education). Controlling for a range of background factors and for different patterns of welfare use across the first 5 years, small positive associations with mother's earnings were found for child support, education, and job training. Small positive associations also were found between child support and both math and reading scores. Finally positive associations of medium effect size were found between center care and both mothers' earnings and child PPVT scores. Although effect sizes are generally small, the results suggest the potential value of welfare reform approaches that emphasize long-term human capital development. Interactions between welfare dynamics and support services suggest subgroup differences. Specifically, positive effects of support services on earnings are strongest among mothers with higher levels of human capital (higher levels of work while on welfare, lower total time on welfare). Babysitter care appears to have negative effects on both reading and math scores of children whose mothers report low levels of work while on welfare. Implications for welfare reform policy are discussed.
ERIC Educational Resources Information Center
Erturan, Selin; Jansen, Brenda
2015-01-01
Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…
ERIC Educational Resources Information Center
Petersen, Jennifer Lee; Hyde, Janet Shibley
2017-01-01
Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…
Lachance, Jennifer A.; Mazzocco, Michèle M.M.
2009-01-01
We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851
ERIC Educational Resources Information Center
Peterson, Paul E.; Woessmann, Ludger; Hanushek, Eric A.; Lastra-Anadon, Carlos X.
2011-01-01
At a time of persistent unemployment, especially among the less skilled, many wonder whether schools are adequately preparing students for the 21st-century global economy. This is the second study of student achievement in global perspective prepared under the auspices of Harvard's Program on Education Policy and Governance (PEPG). In the 2010…
ERIC Educational Resources Information Center
Pace, Diana; Witucki, Laurie; Blumreich, Kathleen
2008-01-01
This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…
Potential Implications of Changes in ChalleNGe Admission Criteria: A Literature Review
2015-04-01
experiment, Steele, Spencer , and Aronson (2002) administered a 25- minute section of the math GRE [58]. Some women were given a “stereotype-threat...final.pdf. [31] Uguroglu, Margaret E., and Herbert J. Walberg. 1979. “Motivation and Achievement: A Quantitative Synthesis.” American Educational...Analysis of Educational Productivity.” Education Economics 7 (3): 199-208. [58] Steele, Claude M., Steven J. Spencer , and Joshua Aronson. 2002
Leon, Jaime; Medina-Garrido, Elena; Núñez, Juan L.
2017-01-01
Math achievement and engagement declines in secondary education; therefore, educators are faced with the challenge of engaging students to avoid school failure. Within self-determination theory, we address the need to assess comprehensively student perceptions of teaching quality that predict engagement and achievement. In study one we tested, in a sample of 548 high school students, a preliminary version of a scale to assess nine factors: teaching for relevance, acknowledge negative feelings, participation encouragement, controlling language, optimal challenge, focus on the process, class structure, positive feedback, and caring. In the second study, we analyzed the scale’s reliability and validity in a sample of 1555 high school students. The scale showed evidence of reliability, and with regard to criterion validity, at the classroom level, teaching quality was a predictor of behavioral engagement, and higher grades were observed in classes where students, as a whole, displayed more behavioral engagement. At the within level, behavioral engagement was associated with achievement. We not only provide a reliable and valid method to assess teaching quality, but also a method to design interventions, these could be designed based on the scale items to encourage students to persist and display more engagement on school duties, which in turn bolsters student achievement. PMID:28701964
Leon, Jaime; Medina-Garrido, Elena; Núñez, Juan L
2017-01-01
Math achievement and engagement declines in secondary education; therefore, educators are faced with the challenge of engaging students to avoid school failure. Within self-determination theory, we address the need to assess comprehensively student perceptions of teaching quality that predict engagement and achievement. In study one we tested, in a sample of 548 high school students, a preliminary version of a scale to assess nine factors: teaching for relevance, acknowledge negative feelings, participation encouragement, controlling language, optimal challenge, focus on the process, class structure, positive feedback, and caring. In the second study, we analyzed the scale's reliability and validity in a sample of 1555 high school students. The scale showed evidence of reliability, and with regard to criterion validity, at the classroom level, teaching quality was a predictor of behavioral engagement, and higher grades were observed in classes where students, as a whole, displayed more behavioral engagement. At the within level, behavioral engagement was associated with achievement. We not only provide a reliable and valid method to assess teaching quality, but also a method to design interventions, these could be designed based on the scale items to encourage students to persist and display more engagement on school duties, which in turn bolsters student achievement.
The influence of math anxiety on symbolic and non-symbolic magnitude processing.
Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
The influence of math anxiety on symbolic and non-symbolic magnitude processing
Dietrich, Julia F.; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed. PMID:26579012
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers
Szkudlarek, Emily; Brannon, Elizabeth M.
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills. PMID:29867624
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.
Szkudlarek, Emily; Brannon, Elizabeth M
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.
Tsui, Joanne M.; Mazzocco, Michèle M. M.
2009-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180
NASA Astrophysics Data System (ADS)
Moran, J. E.
2011-12-01
The wide range of abilities in the student population at California State University East Bay, with a significant fraction of students under-prepared and requiring mathematics remediation, is a challenge to including mathematical concepts and exercises in our introductory geoscience courses. Student expectations that a geoscience course will not include quantitative work may result in math-phobics choosing the course and resisting quantitative work when presented with it. Introductory courses that are required for Geology and Environmental Science majors are also designated as General Education, which gives rise to a student group with a wide range of abilities and expectations. This presentation will focus on implementation of a series of online math tutorials for students in introductory geoscience courses called 'The Math You Need' (TMYN; http://serc.carleton.edu/mathyouneed/index.html). The program is implemented in a Physical Geology course, in which 2/3 of the students are typically non-majors. The Physical Geology course has a three hour lab each week and the lab exercises and lab manual offer several opportunities for application of TMYN. Many of the lab exercises include graphing, profiling, working with map scales, converting units, or using equations to calculate some parameter or solve for an unknown. Six TMYN modules covering topics using density calculations as applied to mineral properties and isostasy, graphing as applied to rock properties, earthquake location, and radiometric dating, and calculation of rates as applied to plate movement, stream discharge, and groundwater flow, are assigned as pre-labs to be completed before lab classes. TMYN skills are reinforced during lectures and lab exercises, as close in time as possible to students' exposure via TMYN. Pre- and post-tests give a measure of the effectiveness of TMYN in improving students' quantitative literacy.
ERIC Educational Resources Information Center
Öqvist, Anna; Högström, Per
2018-01-01
In the Swedish preschool curriculum, technology education is emphasized as one of the most significant pedagogical areas. Particularly, the teacher's role is emphasized: It is the preschool teacher's responsibility to stimulate and challenge children's interest in science and technology. Unfortunately, prior research indicates that preschool…
NASA Astrophysics Data System (ADS)
Rodriguez Flecha, Samuel
The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students' career choice, future directions and recommendations are provided. In sum, positive experiences in STEM can favorably contribute to students' sense of competence and satisfaction.
Cognitive consistency and math-gender stereotypes in Singaporean children.
Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu
2014-01-01
In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.
Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task
Suárez-Pellicioni, Macarena; Núñez-Peña, Maria Isabel; Colomé, Àngels
2015-01-01
Attentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA) and 20 low math-anxious (LMA) individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score) than the LMA one, which constitutes the first demonstration of an attentional bias toward math-related words in HMA individuals. PMID:26539137
ERIC Educational Resources Information Center
Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine
2017-01-01
Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…
Growth Texture and Mechanism of Zinc Nanowires Produced by Mechanical Elongation of Nanocontacts.
Yamabe, Kammu; Kizuka, Tokushi
2018-01-01
Two zinc nanotips were brought into contact and elongated inside a transmission electron microscope, thereby growing single-crystal nanowires. The growth dynamics was observed in situ via a lattice imaging method. The preferential crystal growth directions were identified as [10
Addressing Math Anxiety in the Classroom
ERIC Educational Resources Information Center
Finlayson, Maureen
2014-01-01
In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…
ERIC Educational Resources Information Center
Andrews, Amanda; Brown, Jennifer
2015-01-01
Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…
Math Exchanges: Guiding Young Mathematicians in Small-Group Meetings
ERIC Educational Resources Information Center
Wedekind, Kassia Omohundro
2011-01-01
Traditionally, small-group math instruction has been used as a format for reaching children who struggle to understand. Math coach Kassia Omohundro Wedekind uses small-group instruction as the centerpiece of her math workshop approach, engaging all students in rigorous "math exchanges." The key characteristics of these mathematical conversations…
Math Intervention Teachers' Pedagogical Content Knowledge and Student Achievement
ERIC Educational Resources Information Center
Waller, Lisa Ivey
2012-01-01
This research investigated the relationship of math intervention teachers' (MITs) pedagogical content knowledge (PCK) and students' math achievement gains in primary math interventions. The Kentucky Center for Mathematics gathered data on the MITs and primary math intervention students included in this study. Longitudinal data were analyzed for a…
Some Recent Results on Graph Matching,
1987-06-01
V. CHVATAL, Tough graphs and Hamiltonian circuits, Discrete Math . 5, 1973, 215-228. [El] J. EDMONDS, Paths, trees and flowers, Canad. J. Math. 17...Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [N] D. NADDEF, Rank of maximum matchings in a graph, Math. Programming 22, 52-70. [NP...Optimization, Ann. Discrete Math . 16, North-Holland, Amsterdam, 1982, 241-260. [P1] M.D. PLUMMER, On n-extendable graphs, Discrete Math . 31, 1980, 201-210
Business involvement in science education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, P.
1995-12-31
Science and math education in grades K through 12 directly affects America`s ability to meet tomorrow`s challenges. If America is to stay competitive in the world, we will need highly qualified scientists and engineers in industry and government and at universities. Jobs of the future will require greater technical and mathematical literacy than jobs of the past. Our goal is both to improve the quality of science education and to encourage more students to pursue science careers. General Atomics, a privately held research and development company, has joined the growing list of businesses that are committed to helping educators preparemore » students to meet these challenges.« less
Games for learning: vast wasteland or a digital promise?
Levine, Michael H; Vaala, Sarah E
2013-01-01
Research about emerging best practices in the learning sciences points to the potential of deploying digital games as one possible solution to the twin challenges of weak student engagement and the need for more robust achievement in literacy, science, technology, and math. This chapter reviews key cross-cutting themes in this special volume, drawing perspective from the context of the current United States program and policy reform. The authors conclude that digital games have some unique potential to address pressing educational challenges, but that new mechanisms for advancing purposeful research and development must be adopted by both policymakers and industry leaders. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.
Advanced Math Course Taking: Effects on Math Achievement and College Enrollment
Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.
2014-01-01
Using data from the Educational Longitudinal Study of 2002–2006 (ELS:02/06), this study investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status (SES) and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course taking had positive effects on math achievement and college enrollment. Results also demonstrated that the effect of advanced math course taking on math achievement was greater for low SES students than for high SES students, but smaller for Black students than for White students. No interaction effects were found for college enrollment. Limitations, policy implications, and future research directions are discussed. PMID:26508803
Cargnelutti, Elisa; Tomasetto, Carlo; Passolunghi, Maria Chiara
2017-06-01
Both general and math-specific anxiety are related to proficiency in mathematics. However, it is not clear when math anxiety arises in young children, nor how it relates to early math performance. This study therefore investigated the early association between math anxiety and math performance in Grades 2 and 3, by accounting for general anxiety and by further inspecting the prevalent directionality of the anxiety-performance link. Results revealed that this link was significant in Grade 3, with a prevalent direction from math anxiety to performance, rather than the reverse. Longitudinal analyses also showed an indirect effect of math anxiety in Grade 2 on subsequent math performance in Grade 3. Overall, these findings highlight the importance of monitoring anxiety from the early stages of schooling in order to promote proficient academic performance.
A Systematic Review of Longitudinal Studies of Mathematics Difficulty.
Nelson, Gena; Powell, Sarah R
2017-06-01
Some students may be diagnosed with a learning disability in mathematics or dyscalculia, whereas other students may demonstrate below-grade-level mathematics performance without a disability diagnosis. In the literature, researchers often identify students in both groups as experiencing math difficulty. To understand the performance of students with math difficulty, we examined 35 studies that reported longitudinal results of mathematics achievement (i.e., mathematics performance measured across at least a 12-month span). Our primary goal was to conduct a systematic review of these studies and to understand whether the growth of students with math difficulty was comparable or stagnant when compared with that of students without math difficulty. We also analyzed whether identification of math difficulty was predictive of mathematics achievement in later grades and whether a diagnosis of math difficulty was stable across grade levels. Results indicate that students with math difficulty demonstrate growth on mathematics measures, but this growth still leads to lower performance than that of students without math difficulty. Identification of math difficulty is strongly related to math performance in subsequent grades, and this diagnosis is often stable. Collectively, this literature indicates that students with math difficulty continue to struggle with mathematics in later grades.
Simple arithmetic: not so simple for highly math anxious individuals.
Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-12-01
Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.
Simple arithmetic: not so simple for highly math anxious individuals
Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-01-01
Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499
Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring
Iuculano, Teresa; Chen, Lang
2015-01-01
Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. SIGNIFICANCE STATEMENT Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. PMID:26354922
Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study
Ramirez, Gerardo
2017-01-01
Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children (N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children’s positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children’s math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education. PMID:29255439
Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study.
Ramirez, Gerardo
2017-01-01
Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children ( N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children's positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children's math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education.
Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students
ERIC Educational Resources Information Center
Luo, Wenshu; Lee, Kerry; Ng, Pak Tee; Ong, Joanne Xiao Wei
2014-01-01
This study investigated the relationships of students' incremental beliefs of math ability to their achievement emotions, classroom engagement and math achievement. A sample of 273 secondary students in Singapore were administered measures of incremental beliefs of math ability, math enjoyment, pride, boredom and anxiety, as well as math classroom…
Adults' Views on Mathematics Education: A Midwest Sample
ERIC Educational Resources Information Center
Brez, Caitlin C.; Allen, Jessica J.
2016-01-01
Currently, few studies have addressed public opinions regarding math education. The current study surveyed adults in a Midwestern town in the United States to assess opinions regarding math and math education. Overall, we found that adults believe that math is useful and that math education is important. We found that parents who currently have a…
The Effectiveness of Using STAR Math to Improve PSSA Math Scores
ERIC Educational Resources Information Center
Holub, Sherry L.
2017-01-01
This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…
1982 Maths Investigation: Technical Report. Mt. Druitt Longitudinal Study.
ERIC Educational Resources Information Center
Houghton, Karen; Low, Brian
Aims of this phase of a longitudinal mathematics achievement investigation were to (1) detect individual and group differences in math achievement among a sample of fourth-year children, (2) monitor changes in math skills since a 1981 math investigation, and (3) identify limits of children's understanding of mathematical concepts. (The math test…
Math at Work: Using Numbers on the Job
ERIC Educational Resources Information Center
Torpey, Elka
2012-01-01
Math is used in many occupations. And, experts say, workers with a strong background in mathematics are increasingly in demand. That equals prime opportunity for career-minded math enthusiasts. This article describes how math factors into careers. The first section talks about some of the ways workers use math in the workplace. The second section…
Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance
ERIC Educational Resources Information Center
Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.
2011-01-01
This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…
Math-Gender Stereotypes in Elementary School Children
ERIC Educational Resources Information Center
Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.
2011-01-01
A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…
Enhancing Mathematical Communication for Virtual Math Teams
ERIC Educational Resources Information Center
Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong
2010-01-01
The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…
Advanced Math Course Taking: Effects on Math Achievement and College Enrollment
ERIC Educational Resources Information Center
Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.
2015-01-01
Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…
Gender compatibility, math-gender stereotypes, and self-concepts in math and physics
NASA Astrophysics Data System (ADS)
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.
ERIC Educational Resources Information Center
Tobias, Sheila; Donady, Bonnie
1977-01-01
Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)
ERIC Educational Resources Information Center
Shaul, Marnie S.
2006-01-01
The No Child Left Behind Act (NCLBA) requires that states improve academic performance so that all students reach proficiency in reading and math by 2014 and that achievement gaps close among student groups. States set annual proficiency targets using an approach known as a status model, which calculates test scores 1 year at a time. Some states…
The Effects of a Summer Math Program on Academic Achievement
ERIC Educational Resources Information Center
Snyder, Kermit
2016-01-01
The math achievement of students is low in a small rural district in Colorado. The purpose of this study was to explore the efficacy of a summer third through fifth grade math program in improving math scores. Piaget's theory of cognitive development was used as the theoretical foundation for the math instructional resource delivered to the…
Taking Math Anxiety out of Math Instruction
ERIC Educational Resources Information Center
Shields, Darla J.
2007-01-01
To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…
ERIC Educational Resources Information Center
Tsui, Joanne M.; Mazzocco, Michele M. M.
2006-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…
Teachers and Counselors: Building Math Confidence in Schools
ERIC Educational Resources Information Center
Furner, Joseph M.
2017-01-01
Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is…
ERIC Educational Resources Information Center
Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago
2017-01-01
Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
ERIC Educational Resources Information Center
Powell, Torence J.
2017-01-01
The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…
Contextual Factors Related to Math Anxiety in Second-Grade Children
ERIC Educational Resources Information Center
Jameson, Molly M.
2014-01-01
As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…
ERIC Educational Resources Information Center
Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa
2015-01-01
The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…
ERIC Educational Resources Information Center
Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.
2010-01-01
This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…
Mathematics for the Eighties: A Study of Two Effective Math Programs.
ERIC Educational Resources Information Center
O'Connor, Patrick J.
1985-01-01
This bulletin describes two exemplary mathematics programs in Oregon: the Math Lab at Mountain View Junior High School in Beaverton and the Academy Math Program at Jefferson High School in northeastern Portland. The Math Lab at Mountain View is a weekly supplemental unit that is integrated into general math and pre-algebra courses for seventh and…
ERIC Educational Resources Information Center
Albrecht, Cathlene
2006-01-01
"When am I ever going to use this?" This question is heard or thought in every middle-level math class across the land. Teachers struggle to apply math lessons to everyday life and make math meaningful and useful for their students. This author, too, struggled with this problem, until she read the book "Math Curse" by Jon Scieszka (Viking Books,…
The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores
ERIC Educational Resources Information Center
Bennett, Angela Stephens
2010-01-01
One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…
Grade-Aligned Math Instruction for Secondary Students with Moderate Intellectual Disability
ERIC Educational Resources Information Center
Browder, Diane M.; Jimenez, Bree A.; Trela, Katherine
2012-01-01
The purpose of this study was to examine the effects of grade-aligned math instruction on math skill acquisition of four middle schools with moderate intellectual disability. Teachers were trained to follow a task analysis to teach grade-aligned math to middle school students using adapted math problem stories and graphic organizers. The teacher…