NASA Astrophysics Data System (ADS)
Quinn, Reginald
2013-01-01
The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and recommendations for future research are included.
NASA Astrophysics Data System (ADS)
Mary, Michael Todd
High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.
Students from Pueblo Triumph in Colorado Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
Students from Aurora Triumph in Competition of the Mind
fast-paced questions about physics, math, biology, astronomy, chemistry, computers and the earth educational programs to help stimulate young people's interest in science and math. NR-00797
High School Teams Compete in Science Bowl
fire question and answer tournament which focuses on physics, math, biology, astronomy, chemistry National Science Bowl eight years ago to help stimulate interest in science and math. The competition has
Students from Aurora Triumph in Denver Regional Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
Colorado Students Contend in Competition of the Mind
-paced match of questions about physics, math, biology, astronomy, chemistry, computers and the earth one of its premier educational programs to help stimulate young people's interest in science and math
Colorado Students Head to National Science Competition
question and answer tournament that focuses on physics, math, biology, astronomy, chemistry, computers and nine years ago to help stimulate interest in science and math. The competition has evolved into one of
Students From Highlands Ranch Triumph in Colorado Science Bowl
final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and interest in science and math. The competition has evolved into one of the Energy Department's premier
High School Students Gear Up for Battle of the Brains
answer tournament, which focuses on physics, math, biology, astronomy, chemistry, computers and the earth to help stimulate interest in science and math. The competition has evolved into one of the Energy
High School Students Gear Up for Battle of the Brains
tournament, which focuses on physics, math, biology, astronomy, chemistry, computers and the earth sciences competition. DOE began the National Science Bowl 11 years ago to help stimulate interest in science and math
Students from Grand Junction High School Triumph in Colorado Science Bowl
-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences years ago to help stimulate interest in science and math. The competition has evolved into one of the
High School Students Gear Up for Battle of the Brains
focuses on physics, math, biology, astronomy, chemistry, computers and the earth sciences. Each team is Science Bowl a decade ago to help stimulate interest in science and math. The competition has evolved into
Physics First: Impact on SAT Math Scores
NASA Astrophysics Data System (ADS)
Bouma, Craig E.
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.
ERIC Educational Resources Information Center
Hall-Wallace, Michelle; Mitchell, Carl
1996-01-01
Presents a unit that focuses on landslides and integrates earth science, physics, chemistry, and math. Includes activities to investigate porosity, permeability, cohesion, saturation, and gravity. (JRH)
ERIC Educational Resources Information Center
Avery, Zanj Kano
2010-01-01
The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
ERIC Educational Resources Information Center
Yüksel, Mehmet; Geban, Ömer
2016-01-01
This study attempted to predict physics, chemistry, and biology and math course achievements of vocational high school students according to the variables of student self-efficacy, academic self-efficacy, state anxiety and trait anxiety. Study data were collected using a questionnaire administered to the students of a vocational high school…
ERIC Educational Resources Information Center
Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje
2015-01-01
Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investigated the relation between students' reading…
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery
NASA Astrophysics Data System (ADS)
Preininger, Anita M.
2017-02-01
There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before and after the 18-week chemistry class; results from the chemistry class were compared to survey results from students in an elective science class that did not emphasize mathematics. At the end of the 18-week period, only the chemistry students exhibited more positive views toward their abilities in mathematics and careers that involve mathematics, as compared to their views at the outset of the course. To ensure that chemistry mastery was not hindered by the additional emphasis on math, and that mastery on state end-of-course examinations reflected knowledge acquired during the math-intensive chemistry class, a chemistry progress test was administered at the start and end of the term. This exploratory study suggests that emphasizing mathematical approaches in chemistry may positively influence attitudes toward math in general, as well as foster mastery of chemistry content.
ERIC Educational Resources Information Center
Quinn, Reginald
2013-01-01
The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month…
The Numbers Speak: Physics First Supports Math Performance
ERIC Educational Resources Information Center
Glasser, Howard M.
2012-01-01
More schools in the United States have begun teaching physics to ninth-graders, but there continues to be limited evidence that such a change benefits students. Many arguments in favor of Physics First and the inverted sequence of physics-chemistry-biology are based more on the intellectual logic of the sequence than on measured outcomes. Paul…
Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina
2012-11-01
Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.
Training Undergraduate Physics Peer Tutors
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Jacob, A. T.
2004-05-01
The University of Wisconsin's Physics Peer Mentor Tutor Program matches upper level undergraduate physics students in small study groups with students studying introductory algebra-based physics. We work with students who are potentially at-risk for having academic trouble with the course. They include students with a low exam score, learning disabilities, no high school physics, weak math backgrounds, and/or on academic probation. We also work with students from groups under represented in the sciences and who may be feeling isolated or marginal on campus such as minority, returning adult, and international students. The tutors provide a supportive learning environment, extra practice problems, and an overview of key concepts. In so doing, they help our students to build confidence and problem solving skills applicable to physics and other areas of their academic careers. The Physics Peer Mentor Tutor Program is modeled after a similar program for chemistry created by the University of Wisconsin's Chemistry Learning Center. Both programs are now run in collaboration. The tutors are chosen for their academic strength and excellent communication skills. Our tutors are majoring in physics, math, and secondary-level science education. The tutors receive ongoing training and supervision throughout the year. They attend weekly discipline-specific meetings to discuss strategies for teaching the content currently being discussed in the physics course. They also participate in a weekly teaching seminar with science tutors from chemistry and biochemistry to discuss teaching methods, mentoring, and general information relating to the students with whom we work. We will describe an overview of the Physics Peer Mentor Tutor Program with a focus on the teacher training program for our undergraduate tutors.
Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery
ERIC Educational Resources Information Center
Preininger, Anita M.
2017-01-01
There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before…
Peer Learning as a Tool to Strengthen Math Skills in Introductory Chemistry Laboratories
ERIC Educational Resources Information Center
Srougi, Melissa C.; Miller, Heather B.
2018-01-01
Math skills vary greatly among students enrolled in introductory chemistry courses. Students with weak math skills (algebra and below) tend to perform poorly in introductory chemistry courses, which is correlated with increased attrition rates. Previous research has shown that retention of main ideas in a peer learning environment is greater when…
ERIC Educational Resources Information Center
Science News, 1989
1989-01-01
Presented is a review of important science news stories of 1989 as reported in the pages of "Science News." Topics include anthropology, astronomy, behavior, biology, biomedicine, chemistry, environment, food science, math and computers, paleobiology, physics, science and society, space sciences, and technology. (CW)
ERIC Educational Resources Information Center
Donnelly, Laura
2006-01-01
In this article, students learn math through boat-building and navigation, music through sea-shanty-singing, literature and history through the study of nautically themed writings, and physical education by rowing traditional dories at Sound School Regional Vocational Aquaculture Center. The school also teaches plenty of modern chemistry,…
ERIC Educational Resources Information Center
Science News, 1990
1990-01-01
This is a review of important science news stories of 1990 as reported in the pages of this journal. Areas covered include anthropology, astronomy, behavior, biology, biomedicine, chemistry, computers and math, earth sciences, environment, food science, materials science, paleobiology, physics, science and society, and space sciences. (CW)
ERIC Educational Resources Information Center
Johnston, Peter R.; Watters, Dianne J.; Brown, Christopher L.; Loughlin, Wendy A.
2016-01-01
An online Maths Skills Site was developed as an integrated support programme for first year Chemistry students, the content of which, was based on an analysis of their high-school mathematical backgrounds. This study examined the students' perceptions of Maths, their patterns of usage of the Maths Skills Site and whether there was a relationship…
Middle School Regional Science Bowl Competition | Argonne National
biology, chemistry, earth science, physics, energy, and math. The winner of the academic portion of the Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, W.J.; Canada, J.; de Vore, L.
1994-04-01
This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.
Project Solo; Newsletter Number Seven.
ERIC Educational Resources Information Center
Pittsburgh Univ., PA. Project Solo.
The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…
An Interactive Environmental Science Course for Education Science Majors
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Slattery, William
2006-01-01
An interactive environmental science course was designed to provide a set of learning experiences that connect chemistry, geology, biology, physics, and math with the future careers as teachers. The environment deals with many factors contributing with the quality of life, such as the air, the water and the protective shelter of the atmosphere.
Actualizing Talent in Science: Case Studies of Finnish Olympians.
ERIC Educational Resources Information Center
Tirri, Kirsi
This paper discusses the critical events in the personal and professional lives of Finnish Olympians that have helped them to actualize their talent in science. The data include quantitative data from 158 Finnish Olympians in math, physics, and chemistry. The qualitative data include twelve in-depth interviews of these Olympians and their…
International Teaching Assistants at Universities: A Research Agenda
ERIC Educational Resources Information Center
Gorsuch, Greta
2016-01-01
International teaching assistants (ITAs) are Indian, Chinese, Korean, Turkish, etc. international students who have been admitted to graduate study at universities in the U.S.A. and Canada, and are being supported as instructors of undergraduate-level classes and labs in biology, chemistry, physics, and math. For the past 30 years, the number of…
Academic Competitions Serve the U.S. National Interests
ERIC Educational Resources Information Center
Campbell, James Reed; Verna, Marilyn Ann
2010-01-01
Competitions are used by many teachers at the grass roots level to develop the talents of their gifted students. Each year the top Math, Chemistry, and Physics Olympiad students are identified and assembled into national teams that compete against teams from around the world. This article summarizes findings from the American Olympiad study. Our…
ERIC Educational Resources Information Center
Rowland, Susan
2012-01-01
Academics who specialise in improving the teaching of "hard" sciences like chemistry, biology, maths and physics are increasing in number and influence at Australian universities. Those in academia who have channelled their energies into teaching are delighted with this development. It means that many committed tertiary teachers can now look…
The AfterMath (and Science) of the Gulf War.
ERIC Educational Resources Information Center
Shaw, John M.; Sheahen, Thomas P.
1991-01-01
Discusses the science used in the war with Iraq. Explains principles of mechanics and feedback systems, and describes how they were used in war technology. Explains the need for engineers to know physics and chemistry, to understand the capabilities and limitations of their equipment, to make accurate measurements, and to work in teams. (PR)
Promoting Scientific Faculties: Does It Work? Evidence from Italy
ERIC Educational Resources Information Center
Maestri, Virginia
2013-01-01
In reaction to the OECD-wide declining trend in scientific enrollments, the Italian government launched a policy in 2005 to promote the study of science at the university. The policy promoted extra-curricular activities for secondary school students in Chemistry, Physics, Math and Materials Science. This article evaluates the policy impact on…
Two-year colleges, Physics, and Teacher Preparation
NASA Astrophysics Data System (ADS)
Clay, Keith
2002-05-01
In the midst of a teacher shortage no field suffers more than physics. Half of our secondary physics teachers have less than a minor in physics. Meanwhile half of our future teachers start out at two-year colleges with physicists on staff. The opportunity for community colleges to have an impact on K-12 teaching is tremendous. Project TEACH has been honored as an outstanding teacher preparation program. It is a collaboration of colleges and K-12 schools dedicated to the improvement of teacher preparation, especially in science and math. Based at Green River Community College, Project TEACH unites certification institutions, community colleges, and K-12 school districts in the pre-service and in-service training of teachers. Activities of Project TEACH include recruitment and advising of future teachers, field experience for education students, creation of pre-teaching and para-educator degrees, tutoring from elementary school through college, in-service courses for current teachers, and special math and science courses aimed at future teachers. The yearlong interdisciplinary science sequence blends chemistry, physics, geology, and biology in a hands-on inquiry-based environment. The yearlong math sequence covers arithmetic, algebra, geometry, and probability with inquiry-based pedagogy. The programs developed by Project TEACH are being disseminated to colleges across Washington State and beyond.
The persistence of Black males in the STEM fields at Texas State University
NASA Astrophysics Data System (ADS)
Day, Beverly Woodson
For the past five years, enrollment in the College of Science and Engineering by first-time undergraduate students has steadily increased. However, retaining the students through their first-year and their persistence to their second year of college and beyond has been problematic. The purpose of this study is to add to the knowledge of why Black students, specifically Black men, are not persisting at Texas State University in the STEM majors. It will also determine if specific factors like the SAT scores, parent's education, high school rank, college GPA, college science and math courses (physics, math, biology and chemistry), college credits earned and average GPA in all science and math college courses predict college preparation and college performance for all students and for Black male students.
The Effect of Math SAT on Women's Chemistry Competency Beliefs
ERIC Educational Resources Information Center
Vincent-Ruz, Paulette; Binning, Kevin; Schunn, Christian D.; Grabowski, Joe
2018-01-01
In chemistry, lack of academic preparation and math ability have been offered as explanations as to why women seem to enroll, perform, and graduate at lower levels than men. In this paper, we explore the alternative possibility that the gender gap in chemistry instead originates from differential gender effects of academic factors on students'…
Closing the Engineering Gender Gap: Viewers like You
ERIC Educational Resources Information Center
Sullivan, Brigid
2007-01-01
A study published in the "Journal of Women and Minorities in Science and Engineering" found that girls are completing high school science and math courses at the same rate as boys: 94 percent of girls took biology (compared with 91 percent of boys), 64 percent took chemistry (57 percent for boys) and 26 percent studied physics (32 percent of…
Naval Shipyard Apprentice Program & Community-Technical College Linkages: A Model for Success.
ERIC Educational Resources Information Center
Cantor, Jeffrey A.
Each of the eight shipyards operated by the U.S. Navy administers a formal 4-year apprentice trades training program. The apprentice programs combine daily on-the-job training with classroom instruction in technical subjects related to work requirements, including shop math, chemistry, physics, and mechanical drafting. The programs are designed to…
Where the girls aren't: High school girls and advanced placement physics enrollment
NASA Astrophysics Data System (ADS)
Barton, Susan O'brien
During the high school years, when many students first have some choice in course selection, research indicates that girls choose to enroll in more math and science courses, take more advanced placement courses, and take more honors courses in English, biology, chemistry, mathematics, and foreign languages than ever before. Yet, not only are boys more likely to take all of the three core science courses (biology, chemistry, and physics), boys enroll in advanced placement physics approximately three times as often as do girls. This study examines the perceptions, attitudes, and aspirations of thirty high school girls enrolled in senior-level science electives in an attempt to understand their high school science course choices, and what factors were influencing them. This is a qualitative investigation employing constructivist grounded theory methods. There are two main contributions of this study. First, it presents a new conceptual and analytical framework to investigate the problem of why some high school girls do not enroll in physics coursework. This framework is grounded in the data and is comprised of three existing feminist perspectives along the liberal/radical continuum of feminist thought. Second, this study illuminates a complex set of reasons why participants avoided high school physics (particularly advanced placement physics) coursework. These reasons emerged as three broad categories related to: (a) a lack of connectedness with physics curriculum and instruction; (b) prior negative experiences with physics and math classroom climates; and (c) future academic goals and career aspirations. Taken together, the findings of this study indicate that the problem of high school girls and physics enrollment---particularly advanced placement physics enrollment---is a problem that cannot be evaluated or considered from one perspective.
Once a physicist: Eddie Morland
NASA Astrophysics Data System (ADS)
2008-06-01
How did you originally get into physics? I did maths, physics and chemistry A-levels, and I found physics the most interesting of the three. I chose not to go to university after finishing school because I wanted to get a job and earn some money. Instead, I did a part-time applied-physics degree at Manchester Polytechnic while working for the UK Atomic Energy Authority (UKAEA) as a junior researcher. It took a lot longer than a full-time degree, but it was a great to be able to apply the work from the course back in the laboratory.
Computer Science (CS) Education in Indian Schools: Situation Analysis Using Darmstadt Model
ERIC Educational Resources Information Center
Raman, Raghu; Venkatasubramanian, Smrithi; Achuthan, Krishnashree; Nedungadi, Prema
2015-01-01
Computer science (CS) and its enabling technologies are at the heart of this information age, yet its adoption as a core subject by senior secondary students in Indian schools is low and has not reached critical mass. Though there have been efforts to create core curriculum standards for subjects like Physics, Chemistry, Biology, and Math, CS…
New Feminism on a University Campus: From Job Equality to Female Studies.
ERIC Educational Resources Information Center
Tobias, Sheila
In her speech to the Symposium on Feminism, the author relates the growth and accomplishments of the women's movement at Cornell University. When the author first went to Cornell, not only were no women on tenure in the history, government, economics, English, physics, chemistry and math departments, but pride was taken that there had never been…
Are Parents Ready for New High School Curriculum Requirements? Policy Report 28
ERIC Educational Resources Information Center
Landauer-Menchik, Bettie
2006-01-01
The State Board of Education has recommended the implementation of a new, more rigorous curriculum for Michigan high schools. All students would be required to take four years of English; one year each of Algebra I, Geometry, Algebra II, and an additional math class in the senior year; one year each of Biology, Physics or Chemistry, and one…
Invisible Thread: Pre-Service Success Indicators Among Marine General Officers
2017-12-01
Science and Math Majors, Environment-Related Majors, Business Majors, Engineering & Technology Majors, Language, Literature & Social Science Majors...did get a chemistry set. So, you know, we were trying to mash up electronics and chemistry. So, yes so that was you know, my love for math and
NASA Astrophysics Data System (ADS)
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
Fort Collins High School Wins 28th Colorado High School Science Bowl | News
physics, math, biology, energy, chemistry, and earth and space sciences. Cherry Creek High School (Denver | NREL Fort Collins High School Wins 28th Colorado High School Science Bowl News Release: Fort Collins High School Wins 28th Colorado High School Science Bowl Team heading to Washington, D.C., to
Physiology undergraduate degree requirements in the U.S.
VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A
2017-12-01
Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.
An Introduction to Quantum Theory
NASA Astrophysics Data System (ADS)
Greensite, Jeff
2017-02-01
Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information
Learning Each Other's Ropes: Negotiating Interdisciplinary Authenticity
Redish, Edward F.; Cooke, Todd J.
2013-01-01
A common feature of the recent calls for reform of the undergraduate biology curriculum has been for better coordination between biology and the courses from the allied disciplines of mathematics, chemistry, and physics. Physics has lagged behind math and chemistry in creating new, biologically oriented curricula, although much activity is now taking place, and significant progress is being made. In this essay, we consider a case study: a multiyear conversation between a physicist interested in adapting his physics course for biologists (E.F.R.) and a biologist interested in including more physics in his biology course (T.J.C.). These extended discussions have led us both to a deeper understanding of each other's discipline and to significant changes in the way we each think about and present our classes. We discuss two examples in detail: the creation of a physics problem on fluid flow for a biology class and the creation of a biologically authentic physics problem on scaling and dimensional analysis. In each case, we see differences in how the two disciplines frame and see value in the tasks. We conclude with some generalizations about how biology and physics look at the world differently that help us navigate the minefield of counterproductive stereotypical responses. PMID:23737626
Gender compatibility, math-gender stereotypes, and self-concepts in math and physics
NASA Astrophysics Data System (ADS)
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.
Once a physicist: Subramaniam Ramadorai
NASA Astrophysics Data System (ADS)
Ramadorai, Subramaniam
2009-09-01
Why did you choose to study physics? I come from a traditional South Indian family, where the culture typically emphasizes science education. My upbringing reflected these same influences, and my father in particular had a great love for mathematics and physics. I remember going on long walks with him in the countryside, where he shared with me his unfulfilled dreams of becoming an engineer. He felt that he had a talent for engineering, but parental advice steered him towards studying mathematics instead. Perhaps I imbibed his passion, because I always loved fixing things and figuring how they worked through experimentation. All of these developed in me a growing interest in physics, and so my major at Delhi University was physics, with maths and chemistry as subsidiary subjects.
Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama
process reinforces classroom concepts related to chemistry and math. As part of AIDB work experience the state's science and math curriculum for the appropriate grade level, and visiting students collect
Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology
NASA Astrophysics Data System (ADS)
Redish, Edward F.; Kuo, Eric
2015-07-01
Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we suggest that a fundamental issue has received insufficient exploration: the fact that in science, we don't just use math, we make meaning with it in a different way than mathematicians do. In this reflective essay, we explore math as a language and consider the language of math in physics through the lens of cognitive linguistics. We begin by offering a number of examples that show how the use of math in physics differs from the use of math as typically found in math classes. We then explore basic concepts in cognitive semantics to show how humans make meaning with language in general. The critical elements are the roles of embodied cognition and interpretation in context. Then, we show how a theoretical framework commonly used in physics education research, resources, is coherent with and extends the ideas of cognitive semantics by connecting embodiment to phenomenological primitives and contextual interpretation to the dynamics of meaning-making with conceptual resources, epistemological resources, and affect. We present these ideas with illustrative case studies of students working on physics problems with math and demonstrate the dynamical nature of student reasoning with math in physics. We conclude with some thoughts about the implications for instruction.
Math and Movement: Practical Ways to Incorporate Math into Physical Education
ERIC Educational Resources Information Center
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology
ERIC Educational Resources Information Center
Redish, Edward F.; Kuo, Eric
2015-01-01
Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we…
ERIC Educational Resources Information Center
Ross, Jacqueline; And Others
This paper describes the efforts of a host community generally referred to as a "Collaborative Community" and comprised of the Biology and Math departments of the University of Wisconsin-Stout (UW-Stout), the Math and Biology Departments of the University of Wisconsin-Eau Claire (UW-EC), and the Departments of Math, Biology, and Chemistry of the…
Synchronizing Physics And Math Standards
NASA Astrophysics Data System (ADS)
Weisel, Derek
2008-04-01
State and national standards tend to focus primarily on math and reading. This has led many schools to focus the majority of instruction time on these two subjects. This creates the negative effect of placing less emphasis on physics in many schools. An effective way to keep physics as a primary focus in schools is to emphasize that physics curriculum meets many of the math standards and can be used as a tool to introduce, practice and reinforce important math concepts. This is also a way for physics curriculum to be introduced at the elementary level. This talk will highlight some common areas where math standards are being met and exceeded in the physics curriculum.
Transfer Students | College of Engineering & Applied Science
the equivalent of: Math 232 (Calc 2) with the grade of a C or better Chemistry 104 or 105 for have completed the equivalent of: Math 231 (Calc 1) with a grade of a C or better Completed at least 12
Hyde, Janet S; Canning, Elizabeth A; Rozek, Christopher S; Clarke, Emily; Hulleman, Chris S; Harackiewicz, Judith M
2017-03-01
In the context of concerns about American youths' failure to take advanced math and science (MS) courses in high school, we examined mothers' communication with their adolescent about taking MS courses. At ninth grade, U.S. mothers (n = 130) were interviewed about their responses to hypothetical questions from their adolescent about the usefulness of algebra, geometry, calculus, biology, chemistry, and physics. Responses were coded for elaboration and making personal connections to the adolescent. The number of science, technology, engineering, and mathematics courses taken in 12th grade was obtained from school records. Mothers' use of personal connections predicted adolescents' MS interest and utility value, as well as actual MS course-taking. Parents can play an important role in motivating their adolescent to take MS courses. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.
Improving Student Achievement in Math and Science
NASA Technical Reports Server (NTRS)
Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.
1998-01-01
As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order thinking via the incorporation of Global Learning Observations To Benefit the Environment (GLOBE), Mission to Planet Earth and the use of Geographic Imaging Systems into the K-12th grade curriculum.
ERIC Educational Resources Information Center
Chapman, Kenneth, Ed.
This report on three junior college chemistry conferences includes: (1) new and developing programs in 2-year college chemistry; (2) beginning chemistry offerings--repair of poor backgrounds in chemistry and math; (3) non-science major--chemistry program for non-science students; (4) first-year chemistry course: (a) programmed audio-tutorial…
ERIC Educational Resources Information Center
Bailey, Anne Lowrey
1984-01-01
Charles Pine, CASE's Professor of the Year, is a professor who gets students to know and love math and physics and who has emerged as a leading teacher of math teachers. It started when Pine found that his students couldn't do the math involved in his physics classes. (MLW)
NASA Astrophysics Data System (ADS)
Aldridge, Jacqueline Nouvelle
The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.
Naval Medical R and D News, January 2018, Volume X, Issue 1
2018-01-01
high school science, technology, engineering, and math (STEM) teachers toured the Naval Health Research Center (NHRC), Jan. 12, to see a working...lab into the classroom to promote hands-on science education. The teachers, whose subjects ranged from math and chemistry to biomedical sciences, came
NASA Astrophysics Data System (ADS)
Buchanan, Donald G.
This study evaluated selected demographic, pre-enrollment, and economic status variables in comparison to college-level performance factors of GPA and course completion ratios for gateway math and science courses. The Transfer and Retention of Urban Community College Students (TRUCCS) project team collected survey and enrollment data for this study in the Los Angeles Community College District (LACCD). The TRUCCS team surveyed over 5,000 students within the nine campus district beginning in the fall of 2000 and spring of 2001 with follow-up data for next several years. This study focused on the math and science courses; established background demographics; evaluated pre-enrollment high school self-reported grades; reviewed high school and college level math courses taken; investigated specific gateway courses of biology, chemistry and physics; and compared them to the overall GPAs and course completion ratios for 4,698 students. This involved the SPSS development of numerous statistical products including the data from frequency distributions, means, cross-tabulations, group statistics t-tests, independent samples t-tests, and one-way ANOVA. Findings revealed demographic and economic relationships of significance for students' performance factors of GPA and course completion ratios. Furthermore, findings revealed significant differences between the gender, age, ethnicity and economic employment relationships. Conclusions and implications for institutions of higher education were documented. Recommendations for dissemination, intervention programs, and future research were also discussed.
Problem Solving and the Use of Math in Physics Courses
ERIC Educational Resources Information Center
Redish, Edward F.
2006-01-01
Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are…
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
Efforts to Recruit Secondary STEM Teachers at Columbus State University
NASA Astrophysics Data System (ADS)
Webster, Zodiac T.; MaSST Preparation Council
2006-12-01
Physics as a discipline is not alone in having difficulty finding qualified teachers. Under-qualified teachers are present in high school Mathematics, Chemistry, Biology, and Earth-science classrooms as well. Columbus State University (CSU) has formed the Mathematics and Science Secondary Teachers (MaSST) Preparation Council to recruit more majors into our existing secondary teaching programs: Mathematics, Biology, Chemistry, and Geology. College of Education and College of Science faculty are working together to create a higher profile for these majors at our institution within the state of Georgia. In addition, we are planning an aggressive campaign to recruit from within by implementing a peer-tutoring program using outstanding students who have completed introductory math and science courses. Our group’s organization and initiatives can serve as a model for other institutions concerned about recruiting more high-school teachers.
Physics career intentions: The effect of physics identity, math identity, and gender
NASA Astrophysics Data System (ADS)
Lock, Robynne M.; Hazari, Zahra; Potvin, Geoff
2013-01-01
Although nearly half of high school physics students are female, only 21% of physics bachelor's degrees are earned by women. Using data from a national survey of college students in introductory English courses (on science-related experiences, particularly in high school), we examine the influence of students' physics and math identities on their choice to pursue a physics career. Males have higher math and physics identities than females in all three dimensions of our identity framework. These dimensions include: performance/competence (perceptions of ability to perform/understand), recognition (perception of recognition by others), and interest (desire to learn more). A regression model predicting students' intentions to pursue physics careers shows, as expected, that males are significantly more likely to choose physics than females. Surprisingly, however, when physics and math identity are included in the model, females are shown to be equally likely to choose physics careers as compared to males.
NASA Astrophysics Data System (ADS)
Drane, Denise; Smith, H. David; Light, Greg; Pinto, Larry; Swarat, Su
2005-09-01
Minority student attrition and underachievement is a long-standing and widespread concern in higher education. It is especially acute in introductory science courses which are prerequisites for students planning to pursue science-related careers. Poor performance in these courses often results in attrition of minorities from the science fields. This is a particular concern at selective universities where minority students enter with excellent academic credentials but receive lower average grades and have lower retention rates than majority students with similar credentials. This paper reports the first year results of a large scale peer-facilitated workshop program designed to increase performance and retention in Biology, Chemistry, and Physics at a selective research university. After adjusting for grade point average or SAT-Math score, workshop participants earned higher final grades than nonparticipants in Biology and Chemistry, but not in Physics. Similar effects on retention were found. While, positive effects of the program were observed in both majority and minority students, effect sizes were generally largest for minority students. Because of practical constraints in Physics, implementation of the program was not optimal, possibly accounting for the differential success of the program across disciplines.
MathBrowser: Web-Enabled Mathematical Software with Application to the Chemistry Curriculum, v 1.0
NASA Astrophysics Data System (ADS)
Goldsmith, Jack G.
1997-10-01
MathSoft: Cambridge, MA, 1996; free via ftp from www.mathsoft.com. The movement to provide computer-based applications in chemistry has come to focus on three main areas: software aimed at specific applications (drawing, simulation, data analysis, etc.), multimedia applications designed to assist in the presentation of conceptual information, and packages to be used in conjunction with a particular textbook at a specific point in the chemistry curriculum. The result is a situation where no single software package devoted to problem solving can be used across a large segment of the curriculum. Adoption of World Wide Web (WWW) technology by a manufacturer of mathematical software, however, has produced software that provides an attractive means of providing a problem-solving resource to students in courses from freshman through senior level.
ERIC Educational Resources Information Center
Sullivan, P. Teal; Carsten Conner, L. D.; Guthrie, Mareca; Pompea, Stephen; Tsurusaki, Blakely K.; Tzou, Carrie
2017-01-01
This article describes a chemistry/art activity that originated in an National Science Foundation--funded two-week STEAM (Science, Technology, Engineering, Art, and Math) academy for grade 4-6 girls. The authors recommend using this investigation in conjunction with other activities focusing on chemical change as a step toward fulfilling the…
Math remediation intervention for student success in the algebra-based introductory physics course
NASA Astrophysics Data System (ADS)
Forrest, Rebecca L.; Stokes, Donna W.; Burridge, Andrea B.; Voight, Carol D.
2017-12-01
Pretesting and early intervention measures to identify and remediate at-risk students were implemented in algebra-based introductory physics to help improve student success rates. Pretesting via a math and problem-solving diagnostic exam administered at the beginning of the course was employed to identify at-risk students based on their scores. At-risk students were encouraged to utilize an online math tutorial to increase their chances of passing the course. The tutorial covers the same math topics covered by the diagnostic exam. Results from 643 students enrolled in the course showed that the 61 at-risk students who successfully completed the math tutorial increased their odds of passing the course by roughly 4 times those of the at-risk students who did not. This intervention is easily implemented, short term, and can be administered concurrently with the course. Based on these results, the Department of Physics has implemented the math tutorials in all sections of the introductory algebra as well as the calculus-based physics courses.
ERIC Educational Resources Information Center
Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.
2017-01-01
Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…
& Planetary Sciences Humanities & Social Sciences Physics, Math & Astronomy Research Sciences Physics, Math & Astronomy Research Delve into Menu Centers & Institutes Student Research
Why are some STEM fields more gender balanced than others?
Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily
2017-01-01
Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
ERIC Educational Resources Information Center
Rau, Martina A.
2015-01-01
Multiple representations are ubiquitous in chemistry education. To benefit from multiple representations, students have to make connections between them. However, connection making is a difficult task for students. Prior research shows that supporting connection making enhances students' learning in math and science domains. Most prior research…
Investigation of the Factors That Influence Undergraduate Student Chemistry Course Selection
ERIC Educational Resources Information Center
Hinds, Elsa M.; Shultz, Ginger V.
2018-01-01
The introductory chemistry sequence is a common pathway for undergraduates pursuing science, technology, engineering, and math (STEM) and prehealth careers. Student's academic decision-making has far-reaching consequences for their trajectory, including persistence in the major and ultimate career choice. This phenomenon was studied using a survey…
ERIC Educational Resources Information Center
Gillian-Daniel, Donald L.; Walz, Kenneth A.
2016-01-01
Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…
Promoting children's health through physically active math classes: a pilot study.
Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W
2011-03-01
School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.
Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.
2017-01-01
Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211
NASA Astrophysics Data System (ADS)
Hemingway, Deborah; Eichenlaub, Mark; Losert, Wolfgang; Redish, Edward F.
2017-01-01
Student often face difficulties with using math in science, and this exploratory project seeks to address the underlying mechanisms that lead to these difficulties. This mixed-methods project includes the creation of two novel assessment surveys, the Mathematical Epistemic Games Survey (MEGS) and the Math Attitude and Expectations Survey (MAX). The MAX, a 30-question Likert-scale survey, focuses on the attitudes towards using mathematics of the students in a reformed introductory physics course for the life sciences (IPLS) which is part of the National Experiment in Undergraduate Education (NEXUS/Physics) developed at the University of Maryland (UMD). Preliminary results from the MAX are discussed with specific attention given to students' attitudes towards math and physics, opinions about interdisciplinarity, and the usefulness of physics in academic settings as well as in professional biological research and modern medicine settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasseh, Bizhan
Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry,more » and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.« less
Rescuing Middle School Astronomy
NASA Astrophysics Data System (ADS)
Mayo, L. A.; Janney, D.
2010-12-01
There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.
ERIC Educational Resources Information Center
Page, Michael F. Z.; Escott, Patrick; Silva, Maritza; Barding, Gregory A., Jr.
2018-01-01
This case study demonstrates the ability of high school chemistry students, with varying levels of math preparation, to experience learning-gains on state and district assessments as it relates to chemical reactions, thermodynamics, and kinetics. These advances were predicated on the use of a teaching style rooted in abstract reasoning. The…
The Physics Learning Program at the University of Wisconsin-Madison
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Watson, L.; Huesmann, A.; Jacob, A.; Fretz, J.; Clarke, M.
2006-05-01
The Physics Learning Program at the University of Wisconsin-Madison provides a supportive learning environment for students studying physics. We pair staff and upper level physics and secondary science education majors in small study groups with students studying introductory physics. Approximately 33-50% of our students are from racial and ethnic groups underrepresented in the sciences. In addition, students participating in our program include others who may be feeling isolated such as first-generation college students, returning adults, students with disabilities, international students, and students from small rural schools; as well as students with weak math and physics preparation and/or who are struggling with the course. The Physics Learning Program is run in conjunction with similar programs for chemistry and biochemistry. During the past year with a move to a new building we obtained a dedicated space for the Physics Learning Program, facilitating students to form their own study groups. We also began a pilot program for students in the calculus-based physics sequence. We will discuss these additions, as well as recruitment, pedagogy, teacher training, and mentoring practices that we use with the aim of creating an inclusive learning environment.
Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics
ERIC Educational Resources Information Center
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-01-01
Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…
Physical Disabilities: Education and Related Services, Fall 2002-Spring 2003.
ERIC Educational Resources Information Center
Kulik, Barbara J., Ed.
2003-01-01
Two issues of this journal on education and related services for students with physical disabilities contain the following major articles or reviews: "Environmental Effects on Education" (Harold F. Perla); "Using Touch Math for Students with Physical Impairments To Teach and Enhance Beginning Math Skills" (Adrienne L. Duris); "Traumatic Brain…
Curriculum that incorporates good physics and good math -- AT THE SAME TIME!
NASA Astrophysics Data System (ADS)
Weisel, Derek
2007-03-01
Anyone with experience in physics education knows there is considerable consternation about how much trouble students can have during their first experience with physics. It is a common opinion that many students struggle in physics because of a weak math background. Recent research has shown that this is not always the case. Many students who have shown a tested proficiency in mathematics still struggle in physics. It is an important question to ask how a student who excels in mathematics can still struggle in physics. If this question can be answered it may open up new methods of instruction to aid all students. After discussion of this question, examples of curriculum that simultaneously meet common standards of physics and common standards of math will be shown.
Chemistry and the Periodic Table: Teacher's Guide Levels A, B, and C. Preliminary Limited Edition.
ERIC Educational Resources Information Center
Cambridge Physics Outlet, Woburn, MA. Education Programs Dept.
This is a two-part curriculum package for the teaching of chemistry and the periodic table. The first part, the Teacher's Guide, contains information necessary for using the equipment in a typical classroom including learning goals, vocabulary, math skills, and sample data for each activity. The second part of the package consists of photocopy…
PhET: The Best Education Software You Can't Buy
NASA Astrophysics Data System (ADS)
Dubson, M.; Duncan, D. K.
2009-12-01
Project PhET provides free educational software in the form of stand-alone java and flash simulations and associated classroom materials. Our motto is "It's the best educational software that money can buy, except you can't buy it, because its free." You can start playing with PhET sims right now at http://phet.colorado.edu and add to our 1 million hits per month. PhET originally stood for Physics Education Technology, but we now include other science fields so PhET is now a brand name. Our site has about 80 simulations, mostly in physics and math, but also in chemistry, geology, and biology. Based on careful research and student interviews, our sims have no instructions because no one reads instructions. These simulations can be used in lecture demonstrations, classroom activities, and homework assignments. The PhET site includes a long list of user-tested classroom activities and teacher tips.
An Event to Encourage High School Students to Pursue College Degrees in Physics and Math
NASA Astrophysics Data System (ADS)
Bukiet, Bruce; Thomas, Gordon
2003-04-01
We discuss a Math and Physics Day for high school students and teachers, with hands-on activities and seminars involving mathematics and physics. Participants also learn about careers for those who go on to major in physics and mathematics in college. The New York State Section of the APS has provided generous support for this workshop through its Outreach grant program. Approximately a dozen high schools and 100 students attend each year. The program, which runs from 9:15 AM until 2:15 PM, includes an introduction to undergraduate degree programs in Mathematics, Statistics, Optics, Actuarial Science and Applied Physics, a group physics experiment/contest, brief talks over lunch by speakers from industry who have degrees in Math or Physics, and an afternoon seminar. Teachers earn Professional Development credit.
Feeding the pipeline: academic skills training for predental students.
Markel, Geraldine; Woolfolk, Marilyn; Inglehart, Marita Rohr
2008-06-01
This article reports the outcomes of an evaluation conducted to determine if an academic skills training program for undergraduate predental students from underrepresented minority backgrounds increased the students' standardized academic skills test scores for vocabulary, reading comprehension, reading rates, spelling, and math as well as subject-specific test results in biology, chemistry, and physics. Data from standardized academic skill tests and subject-specific tests were collected at the beginning and end of the 1998 to 2006 Pipeline Programs, six-week summer enrichment programs for undergraduate predental students from disadvantaged backgrounds. In total, 179 students (75.4 percent African American, 7.3 percent Hispanic, 5.6 percent Asian American, 5 percent white) attended the programs during these nine summers. Scores on the Nelson-Denny Reading Test showed that the students improved their vocabulary scores (percentile ranks before/after: 46.80 percent/59.56 percent; p<.001), reading comprehension scores (47.21 percent/62.67 percent; p<.001), and reading rates (34.01 percent/78.31 percent; p<.001) from the beginning to the end of the summer programs. Results on the Wide Range Achievement Test III showed increases in spelling (73.58 percent/86.22 percent; p<.001) and math scores (56.98 percent/81.28 percent; p<.001). The students also improved their subject-specific scores in biology (39.07 percent/63.42 percent; p<.001), chemistry (20.54 percent/51.01 percent; p<.001), and physics (35.12 percent/61.14 percent; p<.001). To increase the number of underrepresented minority students in the dental school admissions pool, efforts are needed to prepare students from disadvantaged backgrounds for this process. These data demonstrate that a six-week enrichment program significantly improved the academic skills and basic science knowledge scores of undergraduate predental students. These improvements have the potential to enhance the performance of these students in college courses and thus increase their level of competitiveness in the dental school admissions process.
NASA Astrophysics Data System (ADS)
2011-09-01
Competition: Physics Olympiad hits Thailand Report: Institute carries out survey into maths in physics at university Event: A day for everyone teaching physics Conference: Welsh conference celebrates birthday Schools: Researchers in Residence scheme set to close Teachers: A day for new physics teachers Social: Network combines fun and physics Forthcoming events
Undergraduate-postgraduate astronomy in Cambridge - a student's perspective
NASA Astrophysics Data System (ADS)
Williams, Robin
1991-01-01
This article describes the astronomical scene at Cambridge University from the point of view of a one-time graduate there: I'm now a first-year postgraduate. I progressed from an interest in Maths and Physics at sixth-form level to a degree in Physics and Theoretical Physics, a postgraduate Applied Maths and Theoretical Physics course (Part III) and now to the Institute of Astronomy.
NASA Astrophysics Data System (ADS)
Tanoff, Michael
2009-03-01
Kalamazoo College offers a ``one-size-fits-all'' concept-based introductory physics sequence. The widely varying demographic composition of the class --- including majors in biology, chemistry, pre-med, physics, and math, along with occasional humanities majors --- adds obvious challenges to the successful learning experience. As such, educational techniques that apply across the demographic are required. Several ideas presented at the Fall 2005 New Faculty Workshop apply to the needs of this broad range of students at Kalamazoo College, including an ``organic'' course syllabus that has been allowed to grow to whatever extent necessary to address recurring student concerns and misunderstandings about course expectations, policies, and guidelines, and to provide advice on recurring themes; peer instruction for maximizing classroom value; and hiring teaching assistants with first hand experience in the course and the labs. Details on implementing these techniques, including developing a syllabus with unusual section headings such as ``Attendance and Homework Dramas'' and ``Introductory Physics Survival Requirements,'' will be presented. Success of the techniques, as evidenced by performance on diagnostic exams, class attendance, and comments from course evaluations, will be discussed.
Status on Texas Secondary Science Teachers
NASA Astrophysics Data System (ADS)
Mount, Jennifer; Fuller, Ed
2009-10-01
One of the most important challenges today facing public schools is the recruitment and retention of highly qualified science teachers. Policy makers in Texas adopted the 4x4 requirements for graduation, which will create an increase in the supply of science teachers. Dr. Fuller analyzed the topics concerning the shortage of secondary math and science teachers. Dr. Fuller's study clearly shows an acute shortage of well-qualified and adequately prepared secondary math and science teachers in Texas schools. The study also explains that schools serving large percentages of poor, minority, and/or low-achieving students have the least qualified teachers and the greatest shortages compared to other non-minority students. Recently, there has been a shift in teacher preparation programs. Most future teachers are being prepared by alternative certification programs and certification by exam. The attrition rates vary depending on teachers' route of certification. There is a shortage of math and science teachers in Texas, but is part of this shortage due to teacher migration? My research will expand on Dr. Fuller's study by looking at the attrition and migration rates on the subgroups of chemistry and physics teachers. Migration is typically overlooked in analytical studies because it does not change the overall supply of teachers. My study will investigate if science teachers are migrating to wealthier districts and/or higher achieving school. This presentation will summarize results found by Dr. Fuller's study as well as look at further research in science teacher attrition and migration rates.
Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.
2012-05-14
CAPE CANAVERAL, Fla. – Students and their teachers get some hands-on experience inside the applied physics lab in the Operations and Checkout Building. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
2010-05-01
Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events
Gender contentedness in aspirations to become engineers or medical doctors
NASA Astrophysics Data System (ADS)
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2017-11-01
Medical doctor and engineer are highly esteemed STEM professions. This study investigates academic and motivational characteristics of a sample of high school students in Thailand who aspire to become medical doctors or engineers. We used logistic regression to compare maths performance, gender typicality, gender contentedness, and maths and physics self-concepts among students with aspirations for these two professions. We found that high levels of felt gender contentedness in men had positive association with aspirations for engineering irrespective of the levels of maths or physics self-concept. We found that high levels of felt gender contentedness combined with high levels of maths or physics self-concept in women had positive associations with aspirations to become a medical doctor. These findings are evidence that student views of self are associated with uneven gendered patterns in career aspirations and have implications for the potential for future participation.
Atlas 1.1: An Update to the Theory of Effective Systems Engineers
2018-01-16
Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain...Table 5. Atlas Proficiency Areas, Categories, and Topics Area Category Topic 1. Math / Science / General Engineering 1.1. Natural Science
Awards for the Particle Adventure
National Clearinghouse (ENC) collects both physical and virtual resources useful to math and science sites include valuable math and/or science content, teacher appeal, clear navigational aids, and that to the best science and math sites on the Internet Magellan A must-have site for budding (and
Math & the Dyslexic: Making the Abstract Concrete.
ERIC Educational Resources Information Center
Kitzen, Kay
1983-01-01
Math historian Morris Kline suggests that math instruction should be made concrete and that teachers should not turn kids off by making intuitively understood concepts complex through the use of fancy language. He advocates using pictorial representations and examples of actual physical occurrences. The dyslexic student has special difficulties in…
Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L
2017-01-01
Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
1985-09-01
Code 0 Physics (Calculus-Based) or Physical Science niscioline 0----------------------------------------- lR averaqe...opportunity for fficers with inadequate math- ematical and physical science backgrounds to establish a good math foundation to be able to gualify for a...technical curricu2um [Ref. 5: page 36]. There is also a six week refresher available that is designed to rapidly cover the calculus and physics
ERIC Educational Resources Information Center
Ochterski, Joseph; Lupacchino-Gilson, Lisa
2016-01-01
This article describes how the authors began a science, technology, engineering, art, and math (STEAM) collaboration and completed three projects of varying complexity in their art and chemistry classrooms. The projects align with the Next Generation Science Standards (NGSS Lead States 2013).
Buoys and Springs--Building Connections between Math and Physics
ERIC Educational Resources Information Center
Tenhoff, Amanda C.; Gerenz, Adam J.; Jalkio, Jeffrey A.
2016-01-01
Students often tend to compartmentalize material learned in school. While we see this phenomenon within our own classes, it is even more apparent that students have difficulty making connections between their math and physics courses. We believe that hands-on experiments are particularly useful in helping students make these connections. In this…
Putting the spark into physical science and algebra
NASA Astrophysics Data System (ADS)
Pill, Bruce; Dagenais, Andre
2007-06-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.
ERIC Educational Resources Information Center
Srikanth, Sudhish; Petrie, Trent A.; Greenleaf, Christy; Martin, Scott B.
2015-01-01
We examined the influence of physical and psychosocial variables on math and reading achievement test scores. Between 1 and 5 months prior to taking annual standardized reading and math tests, a sample of (N = 1,211) sixth through eight graders (53.7% girls; 57.2% White) self-reported levels of physical activity, academic self-beliefs, general…
ERRATUM: Papers published in incorrect sections
NASA Astrophysics Data System (ADS)
2004-04-01
A number of J. Phys. A: Math. Gen. articles have mistakenly been placed in the wrong subject section in recent issues of the journal. We would like to apologize to the authors of these articles for publishing their papers in the Fluid and Plasma Theory section. The correct section for each article is given below. Statistical Physics Issue 4: Microcanonical entropy for small magnetizations Behringer H 2004 J. Phys. A: Math. Gen. 37 1443 Mathematical Physics Issue 9: On the solution of fractional evolution equations Kilbas A A, Pierantozzi T, Trujillo J J and Vázquez L 2004 J. Phys. A: Math. Gen. 37 3271 Quantum Mechanics and Quantum Information Theory Issue 6: New exactly solvable isospectral partners for PT-symmetric potentials Sinha A and Roy P 2004 J. Phys. A: Math. Gen. 37 2509 Issue 9: Symplectically entangled states and their applications to coding Vourdas A 2004 J. Phys. A: Math. Gen. 37 3305 Classical and Quantum Field Theory Issue 6: Pairing of parafermions of order 2: seniority model Nelson C A 2004 J. Phys. A: Math. Gen. 37 2497 Issue 7: Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization Mota R D, Xicoténcatl M A and Granados V D 2004 J. Phys. A: Math. Gen. 37 2835 Issue 9: Could only fermions be elementary? Lev F M 2004 J. Phys. A: Math. Gen. 37 3285
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
ERIC Educational Resources Information Center
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-01-01
The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…
NASA Astrophysics Data System (ADS)
Wagner, Kurt Collins
2001-10-01
This research asks the fundamental question: "What is the profile of the successful AP chemistry student?" Two populations of students are studied. The first population is comprised of students who attend or attended the South Carolina Governor's School for Science and Mathematics, a specialized high school for high ability students, and who have taken the Advanced Placement (AP) chemistry examination in the past five years. The second population is comprised of the 581 South Carolina public school students at 46 high schools who took the AP chemistry examination in 2000. The first part of the study is intended to be useful in recruitment and placement decisions for schools in the National Consortium for Specialized Secondary Schools of Mathematics, Science and Technology. The second part of the study is intended to facilitate AP chemistry recruitment in South Carolina public schools. The first part of the study was conducted by ex post facto searches of teacher and school records at the South Carolina Governor's School for Science and Mathematics. The second part of the study was conducted by obtaining school participation information from the SC Department of Education and soliciting data from the public schools. Data were collected from 440 of 581 (75.7%) of students in 35 of 46 (76.1%) of schools. Intercorrelational and Multiple Regression Analyses (MRA) have yielded different results for these two populations. For the specialized school population, the significant predictors for success in AP chemistry are PSAT Math, placement test, and PSAT Writing. For the population of SC students, significant predictors for success are PSAT Math, count of prior science courses, and PSAT Writing. Multiple Regressions have been successfully developed for the two populations studied. Recommendations for their application are made.
NASA Astrophysics Data System (ADS)
Urbina, Josue N.
There is a national need to increase the STEM-related workforce. Among factors leading towards STEM careers include the number of advanced high school mathematics and science courses students complete. Florida's enrollment patterns in STEM-related Advanced Placement (AP) courses, however, reveal that only a small percentage of students enroll into these classes. Therefore, screening tools are needed to find more students for these courses, who are academically ready, yet have not been identified. The purpose of this study was to investigate the extent to which scores from a national standardized test, Preliminary Scholastic Assessment Test/ National Merit Qualifying Test (PSAT/NMSQT), in conjunction with and compared to a state-mandated standardized test, Florida Comprehensive Assessment Test (FCAT), are related to selected AP exam performance in Seminole County Public Schools. An ex post facto correlational study was conducted using 6,189 student records from the 2010 - 2012 academic years. Multiple regression analyses using simultaneous Full Model testing showed differential moderate to strong relationships between scores in eight of the nine AP courses (i.e., Biology, Environmental Science, Chemistry, Physics B, Physics C Electrical, Physics C Mechanical, Statistics, Calculus AB and BC) examined. For example, the significant unique contribution to overall variance in AP scores was a linear combination of PSAT Math (M), Critical Reading (CR) and FCAT Reading (R) for Biology and Environmental Science. Moderate relationships for Chemistry included a linear combination of PSAT M, W (Writing) and FCAT M; a combination of FCAT M and PSAT M was most significantly associated with Calculus AB performance. These findings have implications for both research and practice. FCAT scores, in conjunction with PSAT scores, can potentially be used for specific STEM-related AP courses, as part of a systematic approach towards AP course identification and placement. For courses with moderate to strong relationships, validation studies and development of expectancy tables, which estimate the probability of successful performance on these AP exams, are recommended. Also, findings established a need to examine other related research issues including, but not limited to, extensive longitudinal studies and analyses of other available or prospective standardized test scores.
Putting the “Spark” into Physical Science and Algebra
NASA Astrophysics Data System (ADS)
Dagenais, Andre; Pill, B.
2006-12-01
The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering
National Science Bowl Competitors Win Trip to Colorado
-elimination contests. Student teams faced off in a fast-paced match of questions about physics, math, biology stimulate students' interests in science and math. NR-02497 Follow NREL
ERIC Educational Resources Information Center
Seguin, Barbara Rehmann
1984-01-01
The Suggestive Accelerative Learning and Teaching method uses music, group discussion, physical exercise, and relaxation techniques to reduce math anxiety in adult basic education students who want to enter vocational programs at Blackhawk Technical Institute (Wisconsin). (SK)
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Watson, L. E.; Jacob, A. T.; Reading, J. A.
2005-05-01
The Physics Learning Program at the University of Wisconsin-Madison provides a supportive learning environment for introductory physics students potentially at-risk for having academic trouble or for feeling isolated at the University. Physics is a gateway course for many undergraduate science majors such as biology, physics, geophysics, atmospheric science, and astronomy, and for pre-health professions. Many students struggle with their physics courses due to factors including large class sizes, isolation and lack of study partners, and/or lack of confidence in mathematical problem solving skills. Our students include those with learning disabilities, no high school physics, weak math backgrounds, and/or on academic probation. We also work with students who may be feeling isolated, such as students from historically underrepresented racial and ethnic groups, first generation college students, returning adults, international students, and students from small rural schools. Many of our students are also part of retention programs such as the TRIO program, the Academic Advancement Program, the McNair Scholars Program, and the McBurney Disability Resource Center. The Physics Learning Program's Peer Mentor Tutor program is run in conjunction with similar programs for chemistry and biochemistry at the University of Wisconsin. We will discuss strategies we use for creating an inclusive learning environment that engages students in their learning. Such strategies include small group instruction, ongoing training of the tutors, teaching problem solving skills, and creating a welcoming atmosphere.
ERIC Educational Resources Information Center
Vakili, Khatoon; Pourrazavy, Zinat alsadat
2017-01-01
The aim of this study is comparing math anxiety of secondary school female students in groups (Science and Mathematical Physics) Public Schools, district 2, city of Sari. The purpose of the research is applied research, it is a development branch, and in terms of the nature and method, it is a causal-comparative research. The statistical…
National Science Bowl Second Place Winners Explore Colorado
-elimination contests. Student teams faced off in a fast-paced match of questions about physics, math, biology stimulate students' interests in science and math. Media are invited to cover the trip. NR-03997
NASA Astrophysics Data System (ADS)
Ramsey, Susan Brady
The purpose of this study is to examine the effectiveness of the National Math and Science Initiative's Advanced Placement Training and Incentive Program (APTIP) on the number of students taking AP science courses and their performance. The study evaluated 39 schools over a six-year period in six states that participate in the APTIP. The National Math and Science Initiative provided data for cohort I. A general linear model for repeated measures was used to evaluate the data. Data was evaluated three years prior to the intervention and three years during the intervention, which will actually continue for two more years (2012 and 2013) since cohort I schools were awarded five years of support. Students in APTIP schools enrolled in more AP science exams (AP Biology, AP Chemistry, AP Environmental Science, and AP Physics-B) over the course of the intervention. The quantity of students earning qualifying scores increased during the intervention years. APTIP is a multi-tiered program that includes seven days of teacher training, three six-hour student prep sessions, school equipment, reduced exam fees, and monetary incentives for students and teachers. This program positively impacted the quantity of enrollment and qualifying scores during the three years evaluated in this study. Increases in the number of female and African American students' test takers their and qualifying scores were seen in all three years of the APTIP intervention. This study supports the premise that the first step to increasing the Science, technology, engineering, and math (STEM) pipeline is giving access to advanced courses to more students in high schools.
Stereotype Threat? Male and Female Students in Advanced High School Courses
NASA Astrophysics Data System (ADS)
Corra, Mamadi
Propositions of stereotype threat theory imply that the social consequences of academic distinction in advanced quantitative areas (such as math and the physical sciences) for women may promote the under representation of female students in advanced quantitative academic courses. The hypothesis that female students will be underrepresented in advanced quantitative (honors and advanced placement math and physical science) courses is tested using academic performance and enrollment data for high school students in a "Student/Parent Informed Choice" (open registration) school district in North Carolina. Results show female students to be overrepresented in both advanced verbal/writing intensive (honors and advanced placement English, foreign language, and social science) and advanced quantitative (honors and advanced placement math and physical science) courses compared to their proportion of the student body. More surprisingly, results also indicate female students (compared to male students) to be overrepresented in advanced courses compared to their proportion of high-performing students. Furthermore, as with patterns observed at the district level, additional analysis of enrollment data for the entire state reveals similar results. Taken together, the findings call into question the prevailing presumption that female students continue to be underrepresented in math and physical science courses. Instead, the changing social context within which females and males experience schooling may provide an explanation for the findings.
Knowing the "Right Stuff": Attrition, Gender, and Scientific Literacy.
ERIC Educational Resources Information Center
McDade, Laurie A.
1988-01-01
For undergraduate women, attrition from chemistry and mathematics disciplines because of their noncompetitive performance involves abandoning their original goals. Male students explain their attrition as pragmatic moves toward more rewarding fields and do not, unlike women, question their talents as "math wiz kids." Reasons for this difference…
Get to Know Your Neighborhood Pest: An Interdisciplinary Project for Middle School Students.
ERIC Educational Resources Information Center
Zipko, Stephen J.
1982-01-01
Describes an interdisciplinary, month-long minicourse project focusing on the gypsy moth. The project provided students with opportunities to develop analytical and problem-solving skills while studying content from entomology, botany, chemistry, toxicology, ecology, math, art, law, political science, history, English, consumer studies, and…
Stereotype Threat and Gender Differences in Chemistry
ERIC Educational Resources Information Center
Sunny, Cijy Elizabeth; Taasoobshirazi, Gita; Clark, Lauren; Marchand, Gwen
2017-01-01
Stereotype threat theory (STT) offers one explanation for achievement differences in math and science for both women and minority students. Specifically, STT posits that the perceived risk of confirming a negative stereotype about an individual's identity group acts as a psychological burden that negatively impacts performance. This study examined…
Stemming the Diffusion of Responsibility: A Longitudinal Case Study of America's Chemistry Teachers
ERIC Educational Resources Information Center
Rushton, Gregory T.; Ray, Herman E.; Criswell, Brett A.; Polizzi, Samuel J.; Bearss, Clyde J.; Levelsmier, Nicholas; Chhita, Himanshu; Kirchhoff, Mary
2014-01-01
National initiatives to expand the aggregate science, technology, engineering, and math (STEM) workforce reflect America's goals to increase global competitiveness. However, the aggregation of STEM stakeholders may elicit a "diffusion of responsibility" because individuals assume others are already acting. Here, we perform a longitudinal…
ERIC Educational Resources Information Center
Bitter, Gary G., Ed.
1989-01-01
Reviews three software packages: (1) "Physics," tutorial, grades 11-12, Macintosh; (2) "Hands On Math: Volume I," interactive math exploration/simulation of manipulatives use, grades K-7, Apple II; and (3) "A.I.: An Experience with Artificial Intelligence," simulation, grades 5-12, Apple II. (MVL)
Regularity Results for a Class of Functionals with Non-Standard Growth
NASA Astrophysics Data System (ADS)
Acerbi, Emilio; Mingione, Giuseppe
We consider the integral functional
Lambkins Roar as the Top High School in the 27th Colorado Science Bowl |
round of the competition. As they readied to answer rapid-fire physics, math, biology, astronomy, energy group, which is an offshoot of his school's STEAM (science, technology, engineering, art, and math
NREL: News - High School Students Gear Up for Battle of the Brains
compete in this rapid-fire question-and-answer tournament, which focuses on physics, math, biology competition. DOE began the National Science Bowl 12 years ago to help stimulate interest in science and math
NREL: News - Students From Smoky Hill High School Triumph in Colorado
Colorado School of Mines. In the final round of rapid-fire questions and answers about physics, math interest in science and math. The competition has evolved into one of the Energy Department's premier
Correlation between physics A-levels/A-levels and degree performance
NASA Astrophysics Data System (ADS)
Chadwick, Roy
1985-09-01
The author presents an analysis of 178 students who left Solihull Sixth form College between 1975 and 1981 to do a degree in physics (approximately one third) or engineering (approximately two thirds) at university or polytechnic. The first table is an analysis of physics A-level grade and degree performance; the second table an analysis of the points total for physics A-level plus maths A-level (five for A, four for B, etc.), against degree performances, and the final table an analysis of the points total for physics A-level plus maths A-level plus third A-level (again five for A, four for B, etc.), against degree performance.
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2014-01-01
The "Next Generation Science Standards" (NGSS) focus attention on integrating engineering and math in science instruction. The dinosaur trackway project described in this article shows that it is possible to assign engineering applications to students in disciplines other than physics and to integrate math and engineering applications in…
Assessing the Math Performance of Young ESL Students.
ERIC Educational Resources Information Center
Lee, Fong Yun; Silverman, Fredrick L.; Montoya, Patricia
2002-01-01
Describes proven assessment strategies, which, used separately or in combination, can help young ESL students express their understanding of math concepts while building their English-language skills: Manipulative objects, diagrams, and physical movement. Also describes other assessment techniques including self-assessment, interviewing, and…
ERIC Educational Resources Information Center
Scarlatos, Lori L.
2006-01-01
Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…
The development of an instrument to assess chemistry perceptions
NASA Astrophysics Data System (ADS)
Wells, Raymond R.
The instrument, developed in this study, attempted to correct the deficiencies of previous instruments. Statements of belief and opinion can be validly included under the construct of chemistry perceptions. Further, statements that might be better characterized as science attitudes, math attitudes, or attitudes toward a specific course or program were not included. Eliminating statements of math anxiety and test anxiety insured that responses to statements of anxiety were perceptions of anxiety solely related to chemistry. The results of the expert judges' responses to the Validation of Proposed Perception Statements forms were detailed to establish construct and content validity. The nature of Likert scale construction and calculation of internal consistency also supported the validity of the instrument. A pilot Chemistry Perception Questionnaire (CPQ) was then constructed based on agreement of the appropriate subscale and mean importance of the perception statements. The pilot CPQ results were subjected to an item analysis based on three sets of statistics: the frequency of each response and the percentage of respondents making each response for each perception statement, the mean and standard deviations for each item, and the item discrimination index which correlated the item scores with the subscale scores. With no zero or negative correlations to the subscale scores, it was not necessary to replace any of the perception statements contained in the pilot instrument. Therefore, the piloted Chemistry Perception Questionnaire became the final instrument. Factor analysis confirmed the multidimensionality of the instrument. The instrument was administered twice with a separation interval of approximately one month in order to perform a test-retest reliability analysis. One hundred and forty-one pairs were matched and results detailed. The correlation between forms, for the total instrument, was 0.9342. The mean coefficient alpha, for the total instrument, was 0.9495. With test-retest correlations and alphas exceeding 0.70 for all seven subscales and the total instrument, it was determined that the Chemistry Perception Questionnaire instrument achieved reasonably high reliability estimations.
Investigating the Effect of an Adaptive Learning Intervention on Students' Learning
ERIC Educational Resources Information Center
Liu, Min; McKelroy, Emily; Corliss, Stephanie B.; Carrigan, Jamison
2017-01-01
Educators agree on the benefits of adaptive learning, but evidence-based research remains limited as the field of adaptive learning is still evolving within higher education. In this study, we investigated the impact of an adaptive learning intervention to provide remedial instruction in biology, chemistry, math, and information literacy to…
Interest-Based Curriculum for House Care Services: Science.
ERIC Educational Resources Information Center
Natchitoches Parish School Board, LA.
The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…
The Role of Identity Development, Values, and Costs in College STEM Retention
ERIC Educational Resources Information Center
Perez, Tony; Cromley, Jennifer G.; Kaplan, Avi
2014-01-01
The current short-term longitudinal study investigated the role of college students' identity development and motivational beliefs in predicting their chemistry achievement and intentions to leave science, technology, engineering, and math (STEM) majors. We collected 4 waves of data over 1 semester from 363 diverse undergraduate STEM students…
National Writing Project 2009 Annual Report
ERIC Educational Resources Information Center
National Writing Project (NJ1), 2009
2009-01-01
Writing as a tool for thinking, learning, and communicating is crucial to academic and career success as well as to active citizenship in a democracy. This annual report of the National Writing Project features teachers of math, chemistry, art, history, and business who develop their students as writers. These educators employ writing to engage…
THE COMMUNITY RESOURCES POOL SEMINAR DESCRIPTIONS.
ERIC Educational Resources Information Center
SATURDAY MORNING SEMINARS FOR ELEMENTARY AND SECONDARY SCHOOL STUDENTS WERE CONDUCTED WITH PROFESSIONAL RESOURCE PERSONS AS TEACHERS. THE PROGRAM WAS VOLUNTARY. THREE 9-WEEK SEMINARS WERE CONDUCTED IN THE FALL. SUBJECTS STUDIED WERE MICROBIOLOGY AND ZOOLOGY (6TH GRADE), COMPUTER MATH (7TH AND 8TH GRADE), AND CHEMISTRY (GRADES 9-12). DURING THE…
An Introductory Course: The Vector Space Theory of Matter
ERIC Educational Resources Information Center
Matsen, F. A.
1972-01-01
A course for superior freshmen for both science and liberal arts majors that satisfies the freshman chemistry requirement is discussed. It has been taught for six years and utilizes the new math'' which is based on the elementary concept of a set. A syllabus for the two semesters is included. (DF)
ERIC Educational Resources Information Center
Eccles, Jacquelynne S.
2005-01-01
This chapter describes the history of the Eccles et al. Expectancy Value Model and research on the influence of social and psychological factors on gender and ethnic differences in math, science, and information technology choices. (Contains 1 figure.)
Imaging the He2 quantum halo state using a free electron laser
NASA Astrophysics Data System (ADS)
Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schöllkopf, Wieland; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard
2016-12-01
Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of
A Two-Step Integrated Theory of Everything (TOE)
NASA Astrophysics Data System (ADS)
Colella, Antonio
2017-01-01
Two opposing TOE visions are my Two-Step (physics/math) and Hawking's single math step. My Two-Step should replace the single step because of the latter's near zero results after a century of attempts. My physics step had 3 goals. First ``Everything'' was defined as 20 interrelated amplified theories (e.g. string, Higgs forces, spontaneous symmetry breaking, particle decays, dark matter, dark energy, stellar black holes) and their intimate physical interrelationships. Amplifications of Higgs forces theory (e.g. matter particles and their associated Higgs forces were one and inseparable, spontaneous symmetry breaking was bidirectional and caused by high temperatures not Higgs forces, and sum of 8 Higgs forces of 8 permanent matter particles was dark energy) were key to my Two-Step TOE. The second goal answered all outstanding physics questions: what were Higgs forces, dark energy, dark matter, stellar black holes, our universe's creation, etc.? The third goal provided correct inputs for the two part second math step, an E8 Lie algebra for particles and an N-body cosmology simulation (work in progress). Scientific advancement occurs only if the two opposing TOEs are openly discussed/debated.
1984-04-01
Scientific- Architecture 4% 4% Technical Computer Sci 38% 37% Math 40% 40% Meteorology 6% 6% Physics 12 % 13% Nontechnical Quality Freeflow 2/ Quality...Architecture 4 Computer Sci 48 43 40 Math 30 35 38 Meteorology 6 6 6 Physics 12 12 12 Engineer Electrical 40% 50% 50% Aero Group 25 25 30 Other / 35 25 20...with Technical Degrees by Major Weapon System. . . 12 FIGURE 4 - Pilots with Technical Degrees by Category . . . . . . 13 FIGURE 5 - Regression
Increased Participation and Conversation Using Networked Devices
ERIC Educational Resources Information Center
Danielson, Christopher; Meyer, Dan
2016-01-01
For many the phrase "teaching math online" evokes a vision of teaching and learning that is not based in physical classrooms. Perhaps teachers and students are even interacting asynchronously. In math classrooms in the United States, the increasing availability of devices (e.g. laptops, Chromebooks™, smartphones, and tablets) and…
Future STEM Leaders Prepare for the National Science Bowl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, Angela
2014-06-11
Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
Future STEM Leaders Prepare for the National Science Bowl
Benjamin, Angela
2018-05-18
Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.
From The NIH Director - Envisioning the Future
... at the intersection of the physical sciences—mathematics, physics, engineering— and biological sciences. I believe deeply that ... a backwater—not very prestigious. But I loved physics and math, was interested in medicine, and had ...
NASA Astrophysics Data System (ADS)
Lyford, M. E.; Myers, J. D.; Mayes, R. L.
2009-12-01
Numerous educational studies have documented serious shortcomings in student's quantitative reasoning (QR), understanding of science and ability to connect these to their daily lives. These have driven many reform efforts in teacher professional development. Historically, most of these efforts have focused on science or math and rarely on the science-society connection. For the past two years, a Wyoming Department of Education funded Math-Science Partnership (MSP) professional development program has created a collaboration of university and community college faculty and middle and high school teachers to address QR, science and social relevance in the context of energy and the environment. This professional development project is designed to: 1) improve teacher content knowledge (both in the sciences and math); 2) demonstrate the many social contexts in which science and QR are relevant and can be taught; 3) model effective science and QR classroom activities for teachers; 4) provide teachers with the opportunity to develop and test their own classroom materials; 5) foster the development of professional learning communities across the state; and 6) initiate discussions about curriculum across disciplinary boundaries. Over the course of four summer meetings, participants investigate a series of issues centered on energy and the environment, including transportation, electricity, biogeochemical cycles, Peak Oil, carbon sequestration and climate change. Each issue is approached in an interdisciplinary manner, where relevant aspects from the life sciences, earth sciences, chemistry and physics are addressed. An introductory presentation on the general theme kicks off each meeting to introduce the problem. Subsequent sessions are lead by faculty from the various scientific disciplines as well as math. During their sessions, university and community college faculty model active learning exercises for each issue. These activities weave together the relevant disciplinary scientific concepts, societal connections, and the quantitative skills students need to understand the issues from the perspective of an engaged but questioning citizen of a democracy. The project encourages multidisciplinary teams of teachers (science and math) from a school or district to work together to develop curricula that may span across courses and across grade levels within a school. During the meetings, teachers work in teams to develop activities tied to energy and the environment which they present to the entire group for feedback. During the course of the school year, teachers implement their activities and share their experiences with the whole group through online-meetings. To date, the program has worked with three teacher cohorts of 25-30 teachers each. Teachers in the program are drawn from both the math and science areas thereby initiating cross-disciplinary discourses that are rarely accommodated by current school organizational structures.
Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.
Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan
2015-01-01
The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.
Recruitment to Physics and Mathematics Teaching: A Personality Problem?
ERIC Educational Resources Information Center
Smithers, Alan; Hill, Susan
1989-01-01
Results of a British study indicate that, among potential applicants (N=177), a small demand exists for a proposed science education degree program. Findings suggest that recruitment of science and math teachers may be hampered because the satisfactions provided by teaching are unlike those sought by science and math specialists. (IAH)
NASA Astrophysics Data System (ADS)
Baez, J.; Lapidaryus, M.; Siegel, Edward Carl-Ludwig
2011-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antonoff-Smith[AMS Joint Mtg.(2002)-Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)-fixed-point base=units=scale-invariance proven Newcomb[Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann. 7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac, Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons were always digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic "square-of-opposition" : FUZZYICS=CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein condensation(BEC) ABOVE ground-state with/and Rayleigh(cut-limit of "short-cut method";1870)-Polya(1922)-"Anderson"(1958) localization [Doyle and Snell, Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!].
NASA Astrophysics Data System (ADS)
2002-11-01
CD-ROM REVIEW (551) Essential Physics BOOK REVIEWS (551) Collins Advanced Science: Physics, 2nd edition Quarks, Leptons and the Big Bang, 2nd edition Do Brilliantly: A2 Physics IGCSE Physics Geophysics in the UK Synoptic Skills in Advanced Physics Flash! The hunt for the biggest explosions in the universe Materials Maths for Advanced Physics
ERIC Educational Resources Information Center
Reitz, Nancy; McCuen, Sharon
American River College's (California) Peer Assisted Learning (PAL) project is a 2-year project initiated in 1992 to improve the retention and performance of minority students and others in math, biology, and chemistry through increased contact and involvement with their peers. PAL involves a cadre of 24 student Learning Assistants (LA's) who have…
Do It Right! Requiring Multiple Submissions of Math and NMR Analysis Assignments in the Laboratory
ERIC Educational Resources Information Center
Slade, David J.
2017-01-01
The first-semester introductory organic chemistry laboratory has been adapted to include mini postlab assignments that students must complete correctly, through as many attempts as prove to be necessary. The use of multiple drafts of writing assignments is a standard approach to improving writing, so the system was designed to require drafts for…
ERIC Educational Resources Information Center
Kilner, William Cary
2014-01-01
Freshmen with declared life-science majors typically matriculate with a determination to succeed. However, inadequately-prepared students are easily overwhelmed and at risk of abandoning their aspirations for a STEM career. The investigator designed and taught weekly recitations for approximately 850 students during a five-year span, and…
Reasoning, Attitudes, and Learning: What matters in Introductory Physics?
NASA Astrophysics Data System (ADS)
Bateman, Melissa; Pyper, Brian
2009-05-01
Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.
Elementary Physical Education and Math Skill Development
ERIC Educational Resources Information Center
DeFrancesco, Charmaine; Casas, Betty
2004-01-01
Physical education programs are essential to holistic development of children, because learning occurs within several domains. In addition to addressing the psychomotor objectives related to physical development, many physical education curriculums include learning objectives geared toward facilitating the cognitive development of children. One…
NASA Astrophysics Data System (ADS)
Ferreira, Nadja; McLeod, Roger
2006-03-01
Safe and easy self-repair of damaged vision in youth, detected from squinted eyes, motivated by simple applied math and physics, and over-stretched elastics. Parental permission and participation, with math skills of numerical cancellation, bring physics understanding to students. They recognize pupil diameter changes with light intensity. Ideas of focal surfaces and wavelength dependence can be achieved by burning paper with a magnifying glass, and dispersing light with a prism. Safeness of eye and head movements required are like those of the mother in applying makeup, or of a father in shaving. Easily defined, performed and monitored visual tasks can complete the repair(s).
Chemophobia in the College Classroom: Extent, Sources, and Student Characteristics
NASA Astrophysics Data System (ADS)
Eddy, Roberta M.
2000-04-01
The purpose of this research was to provide an understanding of chemophobia (chemistry anxiety) at the college level by determining (i) the extent of chemophobia in the college classroom; (ii) the factors that contribute to college students' anxiety about learning chemistry and handling chemicals; and (iii) the characteristics of college students who have anxiety about learning chemistry and handling chemicals. A questionnaire containing the Derived Chemistry Anxiety Rating Scale (mean = 81.47, SD = 21.31, a = 0.94), the Revised Mathematics Anxiety Rating Scale (mean = 56.68, SD = 20.55, a = 0.98), and the Trait-Anxiety Scale (mean = 39, SD = 10, a = 0.90) was administered to 480 college students (435 nonmajors and 45 chemistry majors) taking an introductory chemistry course. Eight interviews were conducted. Quantitative data were analyzed by SPSS (p ?.05). Chemophobia was found to exist at an average level between a little bit and moderate. Highest anxiety was associated with chemistry evaluation; lowest anxiety with learning chemistry. Sources that contributed most to chemistry anxiety were, for learning, chemical equations; for evaluation, taking the final exam; and for handling chemicals, getting chemicals on hands. Women had significantly higher anxiety than men. Students with low chemistry experience had significantly higher anxiety than students with high chemistry experience. There were no significant main effects for type of major or math experience.
SKyTeach: Addressing the need for Science and Math Teachers in Kentucky
NASA Astrophysics Data System (ADS)
Bonham, Scott
2008-10-01
The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.
ERIC Educational Resources Information Center
de Berg, Kevin Charles
2014-01-01
Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…
Physical fitness and academic performance in middle school students.
Bass, Ronald W; Brown, Dale D; Laurson, Kelly R; Coleman, Margaret M
2013-08-01
The purpose of this study was to determine whether physical fitness is linked to academic success in middle school students. The FITNESSGRAM test battery assessed students (n = 838) in the five components of health-related fitness. The Illinois Standardized Achievement Test (ISAT) was used to assess academic achievement in reading and math. The largest correlations were seen for aerobic fitness and muscular endurance (ranging from 0.12 to 0.27, all p < 0.05). Boys in the Healthy Fitness Zone (HFZ) for aerobic fitness or muscular endurance were 2.5-3 times more likely to pass their math or reading exams. Girls in the HFZ for aerobic fitness were approximately 2-4 times as likely to meet or exceed reading and math test standards. Aerobic capacity and muscular endurance seem to positively affect academic achievement in middle school students. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Comparison of normalized gain and Cohen's d for analyzing gains on concept inventories
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Talbot, Robert M.; Nasim Thompson, Amreen; Van Dusen, Ben
2018-06-01
Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The metrics are normalized gain (g ), which is the most common method used in physics education research and other discipline based education research fields, and Cohen's d , which is broadly used in education research and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes (LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math concept inventories from 89 courses at 17 institutions from across the United States. We compared the two metrics across all the concept inventories. The results showed that the two metrics lead to different inferences about student learning and equity due to the finding that g is biased in favor of high pretest populations. We discuss recommendations for the analysis and reporting of findings on student learning data.
NASA Technical Reports Server (NTRS)
Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie
2012-01-01
The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.
ERIC Educational Resources Information Center
Lartson, Cobina Adu
2013-01-01
Recent trends indicate a significant decline in the number of students graduating from Science, Technology, Engineering and Math (STEM) programs in the US. The under-representation of students of color, females and low income students in STEM programs has also been documented. Design Based Science (DBS) instruction has been suggested to improve…
The Use of Mastery Learning with Competency-Based Grading in an Organic Chemistry Course
ERIC Educational Resources Information Center
Diegelman-Parente, Amy
2011-01-01
Mastery learning is an instructional method based on the idea that students learn best if they fully understand, or master, one concept before moving on to the next and has been shown to be extremely effective in math and science curricula. Competency-based grading is an evaluative tool that allows the faculty member to determine the level of…
ERIC Educational Resources Information Center
Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.
2017-01-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student…
U.S. Poised to Sit Out TIMSS Test: Physics, Advanced Math Gauged in Global Study
ERIC Educational Resources Information Center
Viadero, Debra
2007-01-01
This article reports on reactions to the U.S. Department of Education's first time decision to sit out an international study designed to show how advanced high school students around the world measure up in math and science. Mark S. Schneider, the commissioner of the department's National Center for Education Statistics, which normally takes the…
High school students' perceptions of physics
NASA Astrophysics Data System (ADS)
Checkley, Doug
There are far fewer high school students enrolled in physics than in chemistry or biology courses within the province of Alberta (Alberta Education, 2007). Students are also completing the highest level math course in larger numbers than those taking physics. It appears that a fear of physics exists within students in our province; this fear seems to be related to a level of difficulty the students associate with physics. Many students either opt to not take physics or enter the course with the expectation of failure. In this study I explored the impact of physics' reputation upon a group of students who chose not to take physics. In addition, I attempted to determine whether the perception of the difficulty of high school physics is accurate. This was done by investigating the perceptions of several students who took physics. I surveyed students from one high school in a small urban school district using group interviews. The students were in grades 10 to 12 and divided into groups of Science 10, Physics 20 and Physics 30 students. The students were interviewed to gain a deeper understanding of what perceptions they have about physics and why they may have them, hoping to identify factors that affect their academic decision to take or not take physics classes. For the students interviewed, I found that the biggest influence on their decisions to take or not take physics was related to their future aspirations. The students were also heavily influenced by their perceptions of physics. The students who took physics claimed that physics was not as difficult as they had believed it to be and they reported that it was interesting, enjoyable and relevant. Those students who had chosen to not take physics perceived it would be difficult, irrelevant and boring. Therefore, a major difference of perception exists between the students who took physics and those that did not.
Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry
NASA Astrophysics Data System (ADS)
Turner, Ronna C.; Lindsay, Harriet A.
2003-05-01
For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.
ERIC Educational Resources Information Center
Fiasca, Michael Aldo
Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…
Is GCSE science a waste of time?
NASA Astrophysics Data System (ADS)
Ellse, Mark
2008-04-01
I have long been outspoken about the dumbing down of science education, saying in particular that the latest GCSE exams - which are taken by 16-year-old pupils in England, Wales and Northern Ireland - are designed for intellectual pygmies. Indeed, I have witnessed at first hand my own children going through a science curriculum that is inappropriate for them. My 14-year-old daughter, of good but not outstanding ability, hopes to study classics or English at university. She is looking forward to A-levels in those subjects, but has been bored by the national-curriculum science she has been forced to study. Although planning to leave science behind, she knows that science qualifications are important. Being head of my daughter's school, I am in a unique position to help her, and we talked about skipping GCSEs and instead creating a four-year A-level course consisting of science A-levels for two years, followed by two years of classics and English. So last September my daughter embarked on maths, physics, chemistry and French A-levels.
Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey
NASA Astrophysics Data System (ADS)
Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.
2017-01-01
We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.
NASA Astrophysics Data System (ADS)
Huffmann, Master; Siegel, Edward Carl-Ludwig
2013-03-01
Newcomb-Benford(NeWBe)-Siegel log-law BEC Digit-Physics Network/Graph-Physics Barabasi et.al. evolving-``complex''-networks/graphs BEC JAMMING DOA attacks: Amazon(weekends: Microsoft I.E.-7/8(vs. Firefox): Memorial-day, Labor-day,...), MANY U.S.-Banks:WF,BoA,UB,UBS,...instantiations AGAIN militate for MANDATORY CONVERSION to PARALLEL ANALOG FAULT-TOLERANT but slow(er) SECURITY-ASSURANCE networks/graphs in parallel with faster ``sexy'' DIGITAL-Networks/graphs:``Cloud'', telecomm: n-G,..., because of common ACHILLES-HEEL VULNERABILITY: DIGITS!!! ``In fast-hare versus slow-tortoise race, Slow-But-Steady ALWAYS WINS!!!'' (Zeno). {Euler [#s(1732)] ∑- ∏()-Riemann[Monats. Akad. Berlin (1859)] ∑- ∏()- Kummer-Bernoulli (#s)}-Newcomb [Am.J.Math.4(1),39 (81) discovery of the QUANTUM!!!]-{Planck (01)]}-{Einstein (05)]-Poincar e [Calcul Probabilités,313(12)]-Weyl[Goett. Nach.(14); Math.Ann.77,313(16)]-(Bose (24)-Einstein(25)]-VS. -Fermi (27)-Dirac(27))-Menger [Dimensiontheorie(29)]-Benford [J.Am. Phil.Soc.78,115(38)]-Kac[Maths Stats.-Reason. (55)]- Raimi [Sci.Am.221,109(69)]-Jech-Hill [Proc.AMS,123,3,887(95)] log-function
NASA Astrophysics Data System (ADS)
Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig
2013-03-01
Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)
Have, Mona; Nielsen, Jacob Have; Gejl, Anne Kær; Thomsen Ernst, Martin; Fredens, Kjeld; Støckel, Jan Toftegaard; Wedderkopp, Niels; Domazet, Sidsel Louise; Gudex, Claire; Grøntved, Anders; Kristensen, Peter Lund
2016-04-11
Integration of physical activity (PA) into the classroom may be an effective way of promoting the learning and academic achievement of children at elementary school. This paper describes the research design and methodology of an intervention study examining the effect of classroom-based PA on mathematical achievement, creativity, executive function, body mass index and aerobic fitness. The study was designed as a school-based cluster-randomized controlled trial targeting schoolchildren in 1st grade, and was carried out between August 2012 and June 2013. Eligible schools in two municipalities in the Region of Southern Denmark were invited to participate in the study. After stratification by municipality, twelve schools were randomized to either an intervention group or a control group, comprising a total of 505 children with mean age 7.2 ± 0.3 years. The intervention was a 9-month classroom-based PA program that involved integration of PA into the math lessons delivered by the schools' math teachers. The primary study outcome was change in math achievement, measured by a 45-minute standardized math test. Secondary outcomes were change in executive function (using a modified Eriksen flanker task and the Behavior Rating Inventory of Executive Function (BRIEF) questionnaire filled out by the parents), creativity (using the Torrance Tests of Creative Thinking, TTCT), aerobic fitness (by the Andersen intermittent shuttle-run test) and body mass index. PA during math lessons and total PA (including time spent outside school) were assessed using accelerometry. Math teachers used Short Message Service (SMS)-tracking to report on compliance with the PA intervention and on their motivation for implementing PA in math lessons. Parents used SMS-tracking to register their children's PA behavior in leisure time. The results of this randomized controlled trial are expected to provide schools and policy-makers with significant new insights into the potential of classroom-based PA to improve cognition and academic achievement in children. Clinicaltrials.gov: NCT02488460 (06/29/2015).
NASA Astrophysics Data System (ADS)
Baez, Joao-Joan; Lapidaryus, Michelle; Siegel, Edward Carl-Ludwig
2013-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antono®-Smith[AMS Joint Mtg.(2002)- Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)- xed-point base =units =scale-invariance proven Newcomb [Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann.7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac,Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons because bosons are and always were quanta are and always were digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic ''square-of-opposition'' : FUZZYICS =CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein Condensation (BEC) ABOVE ground-state with/and Rayleigh(cut-limit of ''short-cut method''1870)-Polya(1922)-''Anderson''(1958) localization [Doyle and Snell,Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!] in Brillouin[Wave-Propagation in Periodic-Structures(1946) Dover(1922)]-Hubbard-Beeby[J.Phys.C(1967)] Siegel[J.Nonxline-Sol.40,453(1980)] generalized-disorder collective-boson negative-dispersion mode-softening universality-principle(G...P) first use of the ``square-of-opposition'' in physics since Plato and Aristote!!!
NASA Astrophysics Data System (ADS)
2000-01-01
A recent report from the American Institute of Physics has indicated that high school enrolments in physics in the USA have reached their highest level since World War II. Figures for the last decade show an increase in the proportion of high school students taking physics from 20 to 28% (800Â 000 students now), according to Physics Today (October 1999, p 68). The report, Maintaining Momentum: High School Physics for a New Millennium , was based on a 1997 survey of high school physics teachers, the fourth such since the mid-1980s. One conclusion drawn by the report's authors was that a broader range of physics courses is now offered, with increased popularity of `conceptual' physics courses using little algebra or trigonometry over the last ten years. The proportion of students with the strongest maths abilities now taking advanced placement or second-year physics has doubled since 1987. In addition the physics appeal has been noted among high school girls, where the percentage taking physics has risen from 39 to 47% in the ten years to 1997. These female students do not, however, seem to extend their studies into advanced placements or even into teaching physics (women constitute just a quarter of high school teachers of the subject). Sadly the good news is outweighed by the fact that physics still registers the lowest enrolments of all the high school sciences - about half those in chemistry for example. Indeed only around 1% of high school students have taken two years of physics before they graduate, which represents a much lower proportion than in many European and Asian countries. The full report can be viewed at the AIP's statistics division's homepage: www.aip.org/statistics/trends/hstrends.htm whilst summaries of the document are available free from the AIP, Education and Employment Statistics Division, One Physics Ellipse, College Park, MD 20740, USA.
NASA Astrophysics Data System (ADS)
Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.
2017-06-01
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.
Mathematics anxiety among talented students.
Lupkowski, A E; Schumacker, R E
1991-12-01
In order to test the assumption that mathematically talented students show little mathematics anxiety, students participating in an early entrance to college program for talented students were asked to complete the Mathematics Anxiety Rating Scale. Results indicated that these talented students were less math anxious than most unselected college students. However, they were more math anxious than a group of college students majoring in physics. Females in the study showed a tendency to be more math anxious than males (d=-.32), although this finding was not significant. No relationship between level of mathematics anxiety and grades or math anxiety and Scholastic Aptitude Test - Mathematics scores was found for the group of subjects. However, when those relationships were examined for males alone, higher verbal scores and higher grades were associated with lower levels of mathematics anxiety. These relationships were not evident for females.
NASA Astrophysics Data System (ADS)
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing physics in college, prior research reveals little in terms of the characteristics and career interests of women who do plan to major in physics or how these traits have evolved over time. To address these gaps, this study utilized nationwide data on first-time, full-time college students to (1) document national trends in plans to major in physics among women entering college, (2) document the career aspirations of women who intend to major in physics, and (3) explore the characteristics of women who intend to major in physics and how this population has evolved across time. This study found that women's interest in physics has been consistently very low in the past four decades. The most popular career aspiration among women who plan to major in physics is research scientist, although this career aspiration is declining in popularity, while increasing numbers of women say that they are undecided in their career choice. Further, this study identifies a distinctive profile of the average female physics student as compared to women in other STEM fields and women across all majors. Women who plan to pursue a physics major tend to be confident in their math abilities, value college as an opportunity to learn, plan to attend graduate school, and desire to make theoretical contributions to science. However, they are less likely than women in other fields to have a social activist orientation. These findings have important implications for scholars, educators, administrators, and policymakers as they seek to recruit more women into the physics field.
Physical Chemistry in Practice: Evaluation of DVD Modules
ERIC Educational Resources Information Center
Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.
2007-01-01
The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…
Investigating Graphical Representations of Slope and Derivative without a Physics Context
ERIC Educational Resources Information Center
Christensen, Warren M.; Thompson, John R.
2012-01-01
By analysis of student use of mathematics in responses to conceptual physics questions, as well as analogous math questions stripped of physical meaning, we have previously found evidence that students often enter upper-level physics courses lacking the assumed prerequisite mathematics knowledge and/or the ability to apply it productively in a…
ERIC Educational Resources Information Center
Weber, Stephen W.
A study examined the effectiveness of incorporating writing as a tool to master the concepts of physics. Subjects were students in the three traditional physics classes and one non-math or conceptual physics class at East High School in Rockford, Illinois. The instructor tried a variety of methods--students wrote criticisms of Carl Sagan videos,…
METEO in the TALNET project after 5 years - meteorology for talented high schools students
NASA Astrophysics Data System (ADS)
Pisoft, P.; Miksovsky, J.
2010-09-01
TALNET is a project aiming to systematically identify and work with gifted youth (13-19 years). Specifically, it applies online educational activities combined with face to face activities. It has been organised by the Faculty of Maths and Physics (MFF) of Charles University in Prague (UK) and National Institute for Youth (NIDM) since 2003, later in cooperation with other faculties, e.g. Natural Sciences (PrF UK), universities and science and research institutes in the Czech Republic and abroad, e.g. DLR, Germany. Topics of the educational activities come from natural sciences (such as physics, astronomy, biology, chemistry, meteorology etc.) and mathematics. The presented project's part METEO embraces lessons primarily focused on basics of meteorology and atmospheric physics in general and it has been part of the Talnet project for 5 years. The meteorological lectures consist of description of, e.g., climate system, meteorological quantities, weather forecasting, ozone and the stratosphere, climate change or atmospheric optics. On top of the lectures, the students are encouraged to work on enclosed homework such as meteorological time series analysis, clouds observation and classification, halo simulation and so on. The METEO course lasts one semester and the students make their seminar thesis at the end. The presented materials will consist of examples of the contemporary lectures and their organization, homeworks or seminar theses.
NASA Astrophysics Data System (ADS)
2001-01-01
The Editor welcomes letters, by e-mail to ped@iop.org or by post to Dirac House, Temple Back, Bristol BS1 6BE, UK. Contents: Maths for physics? Help! Fire! Energy and mass Maths for physics? As a maths graduate working as a university research associate I should be well qualified to support my daughter, who has just started AS-level physics, with the maths she needs for the course. There seems to be little integration between the maths and physics departments, so that maths needed for physics has not yet been covered in maths lessons. This is a problem I remember from my own school days, but the shorter timescale and modular nature of the AS and A2 levels means that it is essential that this mismatch of knowledge is resolved now. I would like to know whether physics teachers in the UK have encountered this problem and whether there is a deficiency in the maths syllabus in relation to the requirements of the AS and A2 levels in Physics or whether this is a problem peculiar to my daughter's school. Eleanor Parent of A-level student, Sheffield, UK Help! Fire! Is there a crisis in physics education? Is physics didactics coming to an end? Yes and no. Being a delegate from Norway at the on-going conference Physics on Stage (6-10 November 2000) at CERN in Geneva, I have had the opportunity to discuss this with people from all over Europe. Yes, there is a crisis. (Look at the proceedings for details on this.) I'd like to take a broader look at this situation. Like Hari Seldon in Isaac Asimov's Foundation Trilogy, I believe that there is nothing like a real crisis to get things going... Famous is the quote from the American Patent Office around 1890: 'Everything has been invented that could be invented'. Fortunately, this spurred action. The Michelson and Morley experiment heralded a most exciting period for physics. Just a cosmic blink later we put a person on the Moon. Coming back to the crisis - I am certain that in the near future we will see an interesting development within curriculum, presentation, outlook and attitude towards physics. Vegard Engstrom Physics Education Student Trondheim, Norway Energy and mass I stand accused [1] of 'adding to the confusion which is rife in this topic area'. The topic in question is E = mc2, which is being discussed in connection with its appearance in A-level syllabuses. One may (as I sometimes do) have qualms that such a topic (with numerical questions) be taught to children with a background of classical physics only. However, it is there, and the article under discussion [2] was meant to provide a meaningful and helpful insight into an experiment that (a) cannot be described by Newtonian mechanics, and (b) prepares the ground for relativity. Cockroft and Walton, in the first transmutation of a nucleus by an accelerated proton, observed the following reaction: _1^1H + _3^7Li rightarrow _2^4He + _2^4He + 17 MeV The masses of the nuclei involved were known (measured by Aston [3]), the kinetic energy of the proton beam known, and the kinetic energies of the helium nuclei were measured. Even if relativity had not been invented, a classical physicist would have noticed that something non-Newtonian was going on-and come up with the observation that the kinetic energy 'gained' (ΔE) was related to the mass 'loss' (Δm) by c2. Further experimentation with other nuclei would have revealed the same connection: ΔE = (Δm)c2. This is a very clear, insightful, experimental example of a breakdown of Newtonian mechanics, one that an A-level student could appreciate with understanding and interest. Since the models/theories of physics are designed to describe experimental results and observations, he or she would be wanting to know what was happening to Newtonian physics. Whether or not the student was capable of appreciating relativity at this point, the insight that something is wrong with Newtonian mechanics would be firmly established. The points raised by Keith Atkin belong, in my opinion, at the later stage, when the first relativity course is being presented, and the relationship between mass and energy developed. His reference [4], 'Energy has mass' by Bondi and Spurgin, and a letter [5], 'Mass and energy' by Peierls, presenting a different point of view, provide food for thought. References [1] Atkin K 2000 Clarifying the concept Phys. Educ. 35 319 [2] Tudor Jones G 2000 Concern about post-16 A-level Phys. Educ. 35 250 [3] Aston F W 1927 Bakerian Lecture-A new mass-spectrograph and the whole number rule Proc. Roy. Soc. 115A 487 [4] Bondi H and Spurgin C B 1987 Energy has mass Phys. Bull. 38 62 [5] Peierls R 1987 Mass and energy Phys. Bull. 38 127 Goronwy Tudor Jones Lecturer School of Continuing Studies, The University of Birmingham
Breckler, Jennifer L; Christensen, Tina; Sun, Wendy
2013-06-01
Biology students enrolled in a typical undergraduate physiology course encounter Poiseuille's law, a physics equation that describes the properties governing the flow of blood through the circulation. According to the equation, a small change in vessel radius has an exponential effect on resistance, resulting in a larger than expected change in blood flow. To help engage students in this important concept, we performed a physics experiment as a lecture demonstration to mimic the original research by the 19th-century French scientist. We tested its impact as a research project and found that students who viewed the demonstration reacted very positively and showed an immediate increase in test performance, while the control group was able to independently "catch up" at the fourth week posttest. We further examined whether students' math skills mapped to learning gains. The students with lower math scores who viewed the demonstration had slightly more improvement in test performance than those students who did not view the demonstration. Our data suggest that watching a lecture demonstration may be of even greater benefit to biology students with lower math achievement.
Breckler, Jennifer L.; Christensen, Tina; Sun, Wendy
2013-01-01
Biology students enrolled in a typical undergraduate physiology course encounter Poiseuille's law, a physics equation that describes the properties governing the flow of blood through the circulation. According to the equation, a small change in vessel radius has an exponential effect on resistance, resulting in a larger than expected change in blood flow. To help engage students in this important concept, we performed a physics experiment as a lecture demonstration to mimic the original research by the 19th-century French scientist. We tested its impact as a research project and found that students who viewed the demonstration reacted very positively and showed an immediate increase in test performance, while the control group was able to independently “catch up” at the fourth week posttest. We further examined whether students’ math skills mapped to learning gains. The students with lower math scores who viewed the demonstration had slightly more improvement in test performance than those students who did not view the demonstration. Our data suggest that watching a lecture demonstration may be of even greater benefit to biology students with lower math achievement. PMID:23737633
Math Machines: Using Actuators in Physics Classes
NASA Astrophysics Data System (ADS)
Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta
2018-01-01
Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.
Laboratory-Tutorial Activities for Teaching Probability
ERIC Educational Resources Information Center
Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.
2006-01-01
We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We…
75 FR 14565 - NIST Summer Institute for Middle School Science Teachers; Availability of Funds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
...), including, but not limited to, earth science, physical science, chemistry, physics, and/or biology. This... science, physical science, chemistry, physics and/or biology. NIST will award funding that will support... instruction in general science fields including earth science, physical science, chemistry, physics, and/or...
ERIC Educational Resources Information Center
Donnelly, Julie; Hernández, Florencio E.
2018-01-01
Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…
Physical and Biological Modes of Thought in the Chemistry of Linus Pauling
NASA Astrophysics Data System (ADS)
Nye, Mary Jo
No figure in modern chemistry better exemplifies than Linus Pauling (1901-1994) the intersections of the scientific disciplines of chemistry, physics, and biology nor the roles of physical and biological modes of thought in the 'central science' of chemistry.
The Relationship Between Mathematics and Physics at Pre-O-Level Stage
ERIC Educational Resources Information Center
Education in Science, 1976
1976-01-01
Presented are recommendations of English mathematicians and physicists for ensuring that there is an optimum match in the math/physics interface in secondary schools. Recommendations stress the need for increased cooperation between the disciplines. (SL)
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2010 CFR
2010-01-01
... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...
NASA Astrophysics Data System (ADS)
Beeman-Cadwallader, Nicole
In 2007 Pioneer High School, a public school in Whittier, California changed the sequence of its science courses from the Traditional Biology-Chemistry-Physics (B-C-P) to Biology-Physics-Chemistry (B-P-C), or "Physics Second." The California Standards Tests (CSTs) scores in Physics and Chemistry from 2004-2012 were used to determine if there were any effects of the Physics Second sequencing on student achievement in those courses. The data was also used to determine whether the Physics Second sequence had an effect on performance in Physics and Chemistry based on gender. Independent t tests and chi-square analysis of the data determined an improvement in student performance in Chemistry but not Physics. The 2x2 Factorial ANOVA analysis revealed that in Physics male students performed better on the CSTs than their female peers. In Chemistry, it was noted that male and female students performed equally well. Neither finding was a result ofthe change to the "Physics Second" sequencing.
Supplemental Instruction in Physical Chemistry I
ERIC Educational Resources Information Center
Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth
2016-01-01
Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…
NASA Astrophysics Data System (ADS)
Koul, Ravinder; Lerdpornkulrat, Thanita; Chantara, Soontornpathai
2011-12-01
A student's motivational orientation is considered to be a predictor of a range of related education decisions, from attending classes to choosing a particular course or a profession. This survey study conducted with student volunteers (males = 519; females = 904) enrolled in secondary school science-math academic stream in Thailand investigated the relationship between measures of motivation (achievement goal orientation and physics and biology classroom anxiety) and aspirations for high earning science and math related careers. Results of multiple discriminant analyses showed gender differences in the motivational factors that influence career aspirations. Our interpretation of the findings highlights the significance of cultural beliefs about gender in decision making for careers.
Examining the Gender Gap in Introductory Physics
NASA Astrophysics Data System (ADS)
Kost, Lauren; Pollock, Steven; Finkelstein, Noah
2009-05-01
Our previous research[1] showed that despite the use of interactive engagement techniques in the introductory physics course, the gap in performance between males and females on a mechanics conceptual learning survey persisted from pre- to post-test, at our institution. Such findings were counter to previously published work[2]. Follow-up studies[3] identified correlations between student performance on the conceptual learning survey and students' prior physics and math knowledge and their incoming attitudes and beliefs about physics and learning physics. The results indicate that the gender gap at our institution is predominantly associated with differences in males' and females' previous physics and math knowledge, and attitudes and beliefs. Our current work extends these results in two ways: 1) we look at the gender gap in the second semester of the introductory sequence and find results similar to those in the first semester course and 2) we identify ways in which males and females differentially experience several aspects of the introductory course. [1] Pollock, et al, Phys Rev: ST: PER 3, 010107. [2] Lorenzo, et al, Am J Phys 74, 118. [3] Kost, et al, PERC Proceedings 2008.
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline
NASA Astrophysics Data System (ADS)
Perkins, K. K.; Barbera, J.; Adams, W. K.; Wieman, C. E.
2007-01-01
A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors — generally required to take both of the courses — view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P ⩽ 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in `Overall' and the `Real World Connection' category, respectively, in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses.
Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
DeVoe, Howard; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…
Boundary layer transition: A review of theory, experiment and related phenomena
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1971-01-01
The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.
A Fresh Math Perspective Opens New Possibilities for Computational Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Linda; Govind, Niranjan; Yang, Chao
2017-05-26
By reformulating the TDDFT problem as a matrix function approximation, making use of a special transformation and taking advantage of the underlying symmetry with respect to a non-Euclidean metric, Yang and his colleagues were able to apply the Lanczos algorithm and a Kernal Polynomial Method (KPM) to approximate the absorption spectrum of several molecules. Both of these algorithms require relatively low-memory compared to non-symmetrical alternatives, which is the key to the computational savings.
Mullender-Wijnsma, Marijke J; Hartman, Esther; de Greeff, Johannes W; Doolaard, Simone; Bosker, Roel J; Visscher, Chris
2016-03-01
Using physical activity in the teaching of academic lessons is a new way of learning. The aim of this study was to investigate the effects of an innovative physically active academic intervention ("Fit & Vaardig op School" [F&V]) on academic achievement of children. Using physical activity to teach math and spelling lessons was studied in a cluster-randomized controlled trial. Participants were 499 children (mean age 8.1 years) from second- and third-grade classes of 12 elementary schools. At each school, a second- and third-grade class were randomly assigned to the intervention or control group. The intervention group participated in F&V lessons for 2 years, 22 weeks per year, 3 times a week. The control group participated in regular classroom lessons. Children's academic achievement was measured before the intervention started and after the first and second intervention years. Academic achievement was measured by 2 mathematics tests (speed and general math skills) and 2 language tests (reading and spelling). After 2 years, multilevel analysis showed that children in the intervention group had significantly greater gains in mathematics speed test (P < .001; effect size [ES] 0.51), general mathematics (P < .001; ES 0.42), and spelling (P < .001; ES 0.45) scores. This equates to 4 months more learning gains in comparison with the control group. No differences were found on the reading test. Physically active academic lessons significantly improved mathematics and spelling performance of elementary school children and are therefore a promising new way of teaching. Copyright © 2016 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Moran, J. E.
2011-12-01
The wide range of abilities in the student population at California State University East Bay, with a significant fraction of students under-prepared and requiring mathematics remediation, is a challenge to including mathematical concepts and exercises in our introductory geoscience courses. Student expectations that a geoscience course will not include quantitative work may result in math-phobics choosing the course and resisting quantitative work when presented with it. Introductory courses that are required for Geology and Environmental Science majors are also designated as General Education, which gives rise to a student group with a wide range of abilities and expectations. This presentation will focus on implementation of a series of online math tutorials for students in introductory geoscience courses called 'The Math You Need' (TMYN; http://serc.carleton.edu/mathyouneed/index.html). The program is implemented in a Physical Geology course, in which 2/3 of the students are typically non-majors. The Physical Geology course has a three hour lab each week and the lab exercises and lab manual offer several opportunities for application of TMYN. Many of the lab exercises include graphing, profiling, working with map scales, converting units, or using equations to calculate some parameter or solve for an unknown. Six TMYN modules covering topics using density calculations as applied to mineral properties and isostasy, graphing as applied to rock properties, earthquake location, and radiometric dating, and calculation of rates as applied to plate movement, stream discharge, and groundwater flow, are assigned as pre-labs to be completed before lab classes. TMYN skills are reinforced during lectures and lab exercises, as close in time as possible to students' exposure via TMYN. Pre- and post-tests give a measure of the effectiveness of TMYN in improving students' quantitative literacy.
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2016-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition. PMID:26779057
Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia
2015-01-01
The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition.
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
ERIC Educational Resources Information Center
Gragson, Derek E.; Hagen, John P.
2010-01-01
Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…
Let's Get Physical: Teaching Physics through Gymnastics
ERIC Educational Resources Information Center
Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.
2018-01-01
The concept of embodied learning--that we can learn with our bodies and with our minds--is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of…
ESPN2 Sports Figures Makes Math and Physics a Ball! 1996-97 Educator's Curriculum.
ERIC Educational Resources Information Center
Rusczyk, Richard; Lehoczky, Sandor
This guide is designed to accompany ESPN's SportsFigures video segments which were created to enhance the interest and learning progress of high school students in mathematics, physics, and physical science. Using actual, re-enacted, or staged events, the problems presented in each of the 16 Sports Figures segments illustrate the relationship…
ERIC Educational Resources Information Center
Timme, Nicholas; Baird, Michael; Bennett, Jake; Fry, Jason; Garrison, Lance; Maltese, Adam
2013-01-01
For the past two years, the Foundations in Physics and Mathematics (FPM) summer program has been held at Indiana University in order to fulfill two goals: provide additional physics and mathematics instruction at the high school level, and provide physics graduate students with experience and autonomy in designing curricula and teaching courses.…
Russell Hulse, the First Binary Pulsar, and Science Education
physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math
From action to abstraction: Using the hands to learn math
Novack, Miriam A.; Congdon, Eliza L.; Hemani-Lopez, Naureen; Goldin-Meadow, Susan
2014-01-01
Previous research has shown that children benefit from gesturing during math instruction. Here we ask whether gesturing promotes learning because it is itself a physical action, or because it uses physical action to represent abstract ideas. To address this question, we taught third-grade children a strategy for solving mathematical equivalence problems that was instantiated in one of three ways: (1) in the physical action children performed on objects, (2) in a concrete gesture miming that action, or (3) in an abstract gesture. All three types of hand movements helped children learn how to solve the problems on which they were trained. However, only gesture led to success on problems that required generalizing the knowledge gained. The results provide the first evidence that gesture promotes transfer of knowledge better than action, and suggest that the beneficial effects gesture has on learning may reside in the features that differentiate it from action. PMID:24503873
Humphreys, L G; Lubinski, D; Yao, G
1993-04-01
This article has two themes: First, we explicate how the prediction of group membership can augment test validation designs restricted to prediction of individual differences in criterion performance. Second, we illustrate the utility of this methodology by documenting the importance of spatial visualization for becoming an engineer, physical scientist, or artist. This involved various longitudinal analyses on a sample of 400,000 high school students tracked after 11 years following their high school graduation. The predictive validities of Spatial-Math and Verbal-Math ability composites were established by successfully differentiating a variety of educational and occupational groups. One implication of our findings is that physical science and engineering disciplines appear to be losing many talented persons by restricting assessment to conventional mathematical and verbal abilities, such as those of the Scholastic Aptitude Test (SAT) and the Graduate Record Examination (GRE).
Mathematics Preparation and Success in Introductory College Science Courses
NASA Astrophysics Data System (ADS)
Avallone, L. M.; Geiger, L. C.; Luebke, A. E.
2008-12-01
It is a long-held belief that adequate mathematics preparation is a key to success in introductory college science courses. Indeed, a number of recent studies have tested mathematics "fluency" and compared that to performance in introductory physics or chemistry courses. At the University of Colorado at Boulder, we administered a twenty-question math assessment to incoming first-year students as part of orientation registration. The intent of this tool was to provide information for advising new college students about their readiness for college-level science courses, both those for science majors and those for non-scientists. In this presentation we describe the results of the mathematics assessment for two incoming classes in the College of Arts and Sciences at CU-Boulder (about 9,000 students) and its predictive capabilities for success in introductory science courses. We also analyze student performance in these courses (i.e., course grade) with respect to ACT and/or SAT scores. We will present data on the relative success of students in college science courses both with and without prior college-level mathematics courses as well.
Tibell, Lena A E; Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Evaluation of Chemical Representations in Physical Chemistry Textbooks
ERIC Educational Resources Information Center
Nyachwaya, James M.; Wood, Nathan B.
2014-01-01
That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…
Fine motor skills and early comprehension of the world: two new school readiness indicators.
Grissmer, David; Grimm, Kevin J; Aiyer, Sophie M; Murrah, William M; Steele, Joel S
2010-09-01
Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness factors with 6 longitudinal data sets. Their results identified kindergarten math and reading readiness and attention as the primary long-term predictors but found no effects from social skills or internalizing and externalizing behavior. We incorporated motor skills measures from 3 of the data sets and found that fine motor skills are an additional strong predictor of later achievement. Using one of the data sets, we also predicted later science scores and incorporated an additional early test of general knowledge of the social and physical world as a predictor. We found that the test of general knowledge was by far the strongest predictor of science and reading and also contributed significantly to predicting later math, making the content of this test another important kindergarten readiness indicator. Together, attention, fine motor skills, and general knowledge are much stronger overall predictors of later math, reading, and science scores than early math and reading scores alone.
Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).
ERIC Educational Resources Information Center
Millstone, H. George
This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…
NASA Astrophysics Data System (ADS)
Hoepner, Cynthia Colon
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were highlighted throughout the study. First, AP Chemistry was described as a foundational course necessary for the challenges of STEM courses. AP Calculus was considered a course with practical benefits across STEM majors. Finally, AP Biology was found to be a gateway course, which inspired students to continue to pursue STEM majors in college. All three courses were strongly recommended to high school students considering a STEM major. The findings will help grow a larger and equally prepared pool of females and males and help sustain a more even distribution of women across STEM fields.
Math Machines: Using Actuators in Physics Classes
ERIC Educational Resources Information Center
Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta
2018-01-01
Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators--motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical…
Chemistry Division. Quarterly progress report for period ending June 30, 1949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1949-09-14
Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less
1982-01-01
R.ugustine Chairman iv OFFICE OF THE SECRETARY OF DEFENSE WASHINGTON, D.C. 20301 27 January 1982 DEFENSE SCIENCIE BOARD Mr. Norman R. Augustine Chai rman...Institute of Technology Dr. Norman Hackerman President Rice University Dr. Richard L. Haley Assistant Deputy Science and Technology USA Material ...Biological and Medical Sciences 51.8 67.8 22% Materials 53.2 65.1 13% Chemistry 47.8 60.1 17% Math and Computer Sciences 44.2 53.6 12% Oceanography 43.2
ERIC Educational Resources Information Center
Tsaparlis, Georgios
2014-01-01
Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
ERIC Educational Resources Information Center
Inglis, Michael; Mallaburn, Andrea; Tynan, Richard; Clays, Ken; Jones, Robert Bryn
2013-01-01
A recent Government response to shortages of new physics and chemistry teachers is the extended subject knowledge enhancement (SKE) course. Graduates without a physics or chemistry bachelor degree are prepared by an SKE course to enter a Postgraduate Certificate in Education (PGCE) programme to become science teachers with a physics or chemistry…
ERIC Educational Resources Information Center
Hart, Kathy, Ed.
A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…
Connecting the Dots between Math and Reality: A Study of Critical Thinking in High School Physics
ERIC Educational Resources Information Center
Loper, Timothy K.
2010-01-01
The purpose of this mixed method study was to discover whether training in understanding relationships between variables would help students read and interpret equations for the purposes of problem solving in physics. Twenty students from two physics classes at a private Catholic high school participated in a one group pretest-posttest unit with…
ERIC Educational Resources Information Center
Finn, Kevin E.; McInnis, Kyle J.
2014-01-01
Many children get little to no regular physical education during the school day. National recommendations call for schools to offer physical activity as part of planned academic lessons that teach math, language arts, science, and other subjects through movement. The purpose of this study was to analyze the student and teacher perceptions of the…
ERIC Educational Resources Information Center
Barham, Peter J.
2012-01-01
New undergraduate students arriving to study physics at the University of Bristol from 1975 onwards have all taken the same test of their knowledge and understanding of physics and mathematics. Many of the questions test knowledge of material that has been in the A-level syllabus for maths or physics throughout this period. The ability of incoming…
Unified Technical Concepts. Math for Technicians.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary technician programs. This UTC classroom textbook, consisting of 10 chapters, deals with mathematical concepts as they apply to the study of physics. Addressed in the individual chapters of the text are the following topics: angles and…
Video game-based exercise, Latino children's physical health, and academic achievement.
Gao, Zan; Hannan, Peter; Xiang, Ping; Stodden, David F; Valdez, Verónica E
2013-03-01
There is a paucity of research investigating the effects of innovative physical activity programs on physical health and academic performance in the Latino population. To examine the impact of Dance Dance Revolution [DDR]-based exercise on Latino children's physical fitness and academic achievement. A repeated-measures crossover design was used. In Year 1, Grade-4 students were assigned to the intervention group and offered 30 minutes of exercise (DDR, aerobic dance) three times per week. Grade-3 and Grade-5 students made up the comparison group and were offered no structured exercise at school. In Year 2, the Grade-4 students were again assigned to the intervention, whereas Grade-5 and Grade-6 students were in the comparison group. Assessments were conducted with 208 Latino school children. The baseline measures included time to complete a 1-mile run, BMI, and reading and math scores. Data were collected again 9 months later. Overall, data were collected in 2009-2011 and analyzed in 2012. Data yielded significant differences between the intervention and comparison groups in differences in 1-mile run and math scores in Year 1 and Year 2. The results also revealed net differences in the intervention versus comparison group scores on the 1-mile run for Grade 3 (p<0.01). Additionally, children's yearly pre-test and post-test BMI group changes differed (χ(2)((2)) = 6.6, p<0.05) only for the first year of intervention. The DDR-based exercise intervention improved children's cardiorespiratory endurance and math scores over time. Professionals should consider integrating exergaming at schools to achieve the goals of promoting a physically active lifestyle and enhancing academic success among Latino children. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Adams, Kim; Cook, Al
2014-07-01
To examine how using a robot controlled via a speech generating device (SGD) influences the ways students with physical and communication limitations can demonstrate their knowledge in math measurement activities. Three children with severe physical disabilities and complex communication needs used the robot and SGD system to perform four math measurement lessons in comparing, sorting and ordering objects. The performance of the participants was measured and the process of using the system was described in terms of manipulation and communication events. Stakeholder opinions were solicited regarding robot use. Robot use revealed some gaps in the procedural knowledge of the participants. Access to both the robot and SGD was shown to provide several benefits. Stakeholders thought the intervention was important and feasible for a classroom environment. The participants were able to participate actively in the hands-on and communicative measurement activities and thus meet the demands of current math instruction methods. Current mathematics pedagogy encourages doing hands-on activities while communicating about concepts. Adapted Lego robots enabled children with severe physical disabilities to perform hands-on length measurement activities. Controlling the robots from speech generating devices (SGD) enabled the children, who also had complex communication needs, to reflect and report on results during the activities. By using the robots combined with SGDs, children both exhibited their knowledge of and experienced the concepts of mathematical measurements.
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1989
1989-01-01
"Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)
ERIC Educational Resources Information Center
Tsaparlis, Georgios
2016-01-01
In a previous publication, Jensen's scheme for the logical structure of chemistry was employed to identify a logical structure for physical chemistry, which was further used as a tool for analyzing the organization of twenty physical chemistry textbooks. In addition, science education research was considered for the study of the psychological…
Field Day at the Rec: Working Out with Physics
NASA Astrophysics Data System (ADS)
Young, Chadwick; Young, Kaisa; Buxton, Gavin; Buzzelli, Armand
2017-03-01
Every year, thousands of college students in the life sciences take introductory physics. Some educators have advocated physics be presented in a way that is relevant to these students. Most are biology majors, but many students are in the allied health field studying to become athletic trainers, occupational therapists, or professionals in some other allied health field. These students take a physics course that often has no math prerequisites, covers all of classical physics in a year, and focuses on the physics of the human body.
Nationwide Survey of the Undergraduate Physical Chemistry Course
ERIC Educational Resources Information Center
Fox, Laura J.; Roehrig, Gillian H.
2015-01-01
A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…
Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model
ERIC Educational Resources Information Center
Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert
2015-01-01
The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…
1996-01-01
Dr. Michael Wargo, program scientist for materials science at NASA headquarters, explains the math and physics principles associated with freefall research to attendees at the arnual conference of the National Council of Teachers of Mathematics.
A Physical Chemist Looks at Organic Chemistry Lab.
ERIC Educational Resources Information Center
Pickering, Miles
1988-01-01
Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)
The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project
NASA Astrophysics Data System (ADS)
Beichner, Robert J.
2011-04-01
How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more successful in later engineering courses. 4) Top students gain the most, although students at all levels benefit. 5) Conceptual learning and problem solving are significantly improved, with same content coverage. In this talk I will discuss the need for reform, the SCALE-UP classroom environment, and examine the findings of studies of learning.
Improving High School Physics Through An Outreach Initiative
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2006-04-01
We want to discuss our outreach initiative at Jacksonville State University designed to help improve the teaching of physics at a number of high schools in Northeast Alabama. This initiative is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. IMPACTSEED is designed to achieve a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear-factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend workshops designed to help bring technology into physics classrooms, onsite support, and a hotline, we have been providing year-round support to the physics/chemistry teachers in this area. IMPACTSEED aims at providing our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
NASA Astrophysics Data System (ADS)
Shweikeh, Eman
Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty. Furthermore, improving attitudes and beliefs could be a potential for bringing about successful interventions to general chemistry learning. Importantly, the role of collaboration between chemistry educators is essential to forming instructional strategies. Additionally, shifting paradigms should be given utmost attention, including differences among student engagement in general chemistry, ways in which faculty can modify practices to meet student expectations, and the role of administrators in providing the necessary tools that stimulate chemistry education and research.
Sideridis, Georgios D.; Tsaousis, Ioannis; Al Harbi, Khaleel
2016-01-01
The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction. PMID:27790174
Sideridis, Georgios D; Tsaousis, Ioannis; Al Harbi, Khaleel
2016-01-01
The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... will consider candidates from the environmental scientific/technical fields, human health care... physics, aerosol chemistry, aerosol physics); Analytical Chemistry; Green Chemistry; Endocrinology...
ERIC Educational Resources Information Center
Bruno, Michael A.
2016-01-01
As school districts nationwide struggle to raise academic achievement of students, an emphasis is made to increase the rigor of core subjects such as math, language arts, reading and writing. To balance the school day, courses such as physical education, health, and fine arts are given less prominence in scheduling. For physical education (PE), a…
The Quantitative Reasoning for College Science (QuaRCS) Assessment in non-Astro 101 Courses II
NASA Astrophysics Data System (ADS)
Kirkman, Thomas W.; Jensen, Ellen
2017-06-01
The Quantitative Reasoning for College Science (QuaRCS) Assessment[1] aims to measure the pre-algebra mathematical skills that are often part of "general education" science courses like Astro 101. In four majors STEM classes, we report comparisons between QuaRCS metrics, ACT math, GPAO, and the course grade. In three of four classes QuaRCS QR score and ACT math were statistically significantly correlated (with r˜.6), however in the fourth course —a senior-level microbiology course— there was no statistically significantly correlation (in fact, r<0). In all courses —even in courses with seemingly little quantitative content— course grade was statistically significantly correlated to GPAO and QR. A QuaRCS metric aiming to report the students belief in the importance of math in science was seen to grow with the course level. Pre/post QuaRCS testing in Physics courses showed fractional sigma gains in QR, self-estimated math fluency and math importance, but not all of those increases were statistically significant. Using a QuaRCS map relating the questions to skill areas, we found graph reading, percentages, and proportional reasoning to be the most misunderstood skills in all four courses.[1] QuaRCS, Follette, et al.,2015, DOI: http://dx.doi.org/10.5038/1936-4660.8.2.2
Extreme value problems without calculus: a good link with geometry and elementary maths
NASA Astrophysics Data System (ADS)
Ganci, Salvatore
2016-11-01
Some classical examples of problem solving, where an extreme value condition is required, are here considered and/or revisited. The search for non-calculus solutions appears pedagogically useful and intriguing as shown through a rich literature. A teacher, who teaches both maths and physics, (as happens in Italian High schools) can find in these kinds of problems a mind stimulating exercise compared with the standard solution obtained by the differential calculus. A good link between the geometric and analytical explanations is so established.
ERIC Educational Resources Information Center
Behroozi, F.
2018-01-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses,…
The Four Keys to Teaching Golf in Elementary School
ERIC Educational Resources Information Center
Vasil, Jay
2006-01-01
Golf is a lifetime sport that can have a positive influence on children in many ways. Golf provides physical educators a means of teaching character education, etiquette, and interdisciplinary concepts such as math, in addition to physical education objectives such as motor skills, coordination, and flexibility. When teaching golf in schools,…
Teaching with Technology in Physical Education
ERIC Educational Resources Information Center
Eberline, Andrew D.; Richards, K. Andrew R.
2013-01-01
Physical education is at a crossroads in the 21st century. With government mandates related to the No Child Left Behind Act (U.S. Department of Education, 2001) emphasizing core subjects, such as math and literacy, non-core subjects have been deemphasized. The most recent "Shape of the Nation Report" (National Association for Sport and…
NASA Astrophysics Data System (ADS)
Clegg, Brian
2018-04-01
Everybody knows that quantum physics is weird, right? Indeed, quantum physicist Richard Feynman once said in a lecture: "The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense." Beyond Weird: Why Everything You Thought You Knew About Quantum Physics is Different by Philip Ball presents a refreshing challenge to this viewpoint.
Center for Applied Solar Physics
1990-04-30
and store each image. This may seriously de- 2 Jefferics, J., Lites, B. W., and Skumanich , A., "Transfer of Line Radia- tion in a Magnetic Field...in 1952. He received a B.S. degree in mathe- JOHN W. O’BYRNE was born in matics and physics from Andrews Sydney, Australia, in 1959. He re
Numeracy in Health and Physical Education
ERIC Educational Resources Information Center
Peters, Colleen; Geiger, Vince; Goos, Merrilyn; Dole, Shelley
2012-01-01
This article describes a teacher's Maths lesson that focuses on numeracy in health and physical education learning area. In the lesson, the students were learning about Directed Numbers, something they often struggle with and a topic where the teacher finds it hard to explain using real life situations when using addition and subtraction. The…
Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts
ERIC Educational Resources Information Center
Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan
2016-01-01
This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…
ERIC Educational Resources Information Center
Becker, Nicole; Towns, Marcy
2012-01-01
Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…
ERIC Educational Resources Information Center
Tynan, Richard; Mallaburn, Andrea; Jones, Robert Bryn; Clays, Ken
2014-01-01
During extended subject knowledge enhancement (SKE) courses, graduates without chemistry or physics bachelor degrees prepared to enter a Postgraduate Certificate in Education (PGCE) programme to become chemistry or physics teachers. Data were gathered from the exit survey returned by Liverpool John Moores University SKE students about to start…
What Physicists Mean By the Equals Sign in Undergraduate Education
NASA Astrophysics Data System (ADS)
Kornick, Kellianne; Alaee, Dina; Sayre, Eleanor; Franklin, Scott
2017-01-01
Mathematical syntax allows for the description of meaningful concepts in the physical sciences, and having nuanced proficiency in mathematical formalism is closely tied to communication and understanding of physical principles. The concept of equality is especially important, as it constrains and dictates the relationships between two equated expressions, and a student with detailed understanding of these relationships can derive physical meaning from syntactical expressions mediated by equals signs by knowing the ``meaning'' of equals signs. We delineate types of equals signs as used in undergraduate textbooks and develop a categorization scheme in order to investigate how equals signs are used paradigmatically and culturally in textbooks to convey physical meaning. We classify equals signs into general clusters (causal, definitional, assignment, balancing, and ``just math''), each cluster containing more detailed types. We investigate differences across various topics and between introductory and upper-division textbooks. We found that upper division textbooks are more likely to use balancing, definitional, and more complex kinds of assignment forms, while introductory texts have much higher frequencies of simple assignment and ``just math'' types.
Rees-Punia, Erika; Holloway, Alicia; Knauft, David; Schmidt, Michael D
2017-12-01
Recess and physical education time continue to diminish, creating a need for additional physical activity opportunities within the school environment. The use of school gardens as a teaching tool in elementary science and math classes has the potential to increase the proportion of time spent active throughout the school day. Teachers from 4 elementary schools agreed to teach 1 math or science lesson per week in the school garden. Student physical activity time was measured with ActiGraph GT3X accelerometers on 3 garden days and 3 no-garden days at each school. Direct observation was used to quantify the specific garden-related tasks during class. The proportion of time spent active and sedentary was compared on garden and no-garden days. Seventy-four children wore accelerometers, and 75 were observed (86% participation). Children spent a significantly larger proportion of time active on garden days than no-garden days at 3 of the 4 schools. The proportion of time spent sedentary and active differed significantly across the 4 schools. Teaching lessons in the school garden may increase children's physical activity and decrease sedentary time throughout the school day and may be a strategy to promote both health and learning.
The Holistic Impact of Classroom Spaces on Learning in Specific Subjects
Barrett, Peter; Davies, Fay; Zhang, Yufan; Barrett, Lucinda
2016-01-01
The Holistic Evidence and Design (HEAD) study of U.K. primary schools sought to isolate the impact of the physical design of classrooms on the learning progress of pupils aged from 5 to 11 years (U.S. kindergarten to fifth grade). One hundred fifty-three classrooms were assessed and links made to the learning of the 3,766 pupils in them. Through multilevel modeling, the role of physical design was isolated from the influences of the pupils’ characteristics. This article presents analyses for the three main subjects assessed, namely, reading, writing, and math. Variations in the importance of the physical design parameters are revealed for the learning of each subject. In addition to some common factors, such as lighting, a heavy salience for Individualization in relation to math becomes apparent and the importance emerges of Connection for reading and of Links to Nature for writing. Possible explanations are suggested. These results provide a stimulus for additional finesse in practice and for further investigation by researchers. PMID:28458394
A Quantum Chemistry Concept Inventory for Physical Chemistry Classes
ERIC Educational Resources Information Center
Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas
2016-01-01
A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…
ERIC Educational Resources Information Center
Merrow, Josh
1998-01-01
Junior high students designed their own bicycles from scratch and built them from steel tubing and salvaged parts. The project led to discoveries in math and physics and confidence in working with tools and materials. (Author/JOW)
Freefall Research Education Outreach
NASA Technical Reports Server (NTRS)
1996-01-01
Dr. Michael Wargo, program scientist for materials science at NASA headquarters, explains the math and physics principles associated with freefall research to attendees at the arnual conference of the National Council of Teachers of Mathematics.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
A study of the factors affecting advancement and graduation for engineering students
NASA Astrophysics Data System (ADS)
Fletcher, John Thomas
The purpose of this study was, first, to determine whether a set of predictor variables could be identified from pre-enrollment and post-enrollment data that would differentiate students who advance to a major in engineering from non-advancers and, further, to determine if the predictor variables would differentiate students who graduate from the College of Engineering from non-graduates and graduates of other colleges at Auburn University. A second purpose was to determine if the predictor variables would correctly identify male and female students with the same degree of accuracy. The third purpose was to determine if there were significant relationships between the predictor variables studied and grades earned in a set of 15 courses that have enrollments over 100 students and are part of the pre-engineering curriculum. The population for this study was the 868 students who entered the pre-engineering program at Auburn University as freshmen during the Summer and Fall Quarters of 1991. The variables selected to differentiate the different groups were ACT scores, high school grade indices, and first quarter college grade point average. Two sets of classification matrices were developed using analysis and holdout samples that were divided based on sex. With respect to the question about advancement to the professional engineering program, structure coefficients derived from discriminant analysis procedures performed on all the cases combined indicated that first quarter college grade point average, high school math index, ACT math score, and high school science grade index were important predictor variables in classifying students who advanced to the professional engineering program and those who did not. Further, important structure coefficients with respect to graduation with a degree from the College of Engineering were first quarter college grade point average, high school math index, ACT math score, and high school science grade index. The results of this study indicated that significant differences existed in the model's ability to predict advancement and graduation for male and female students. This difference was not unexpected based on the male-dominated population. However, the models identified predicted at a high rate for both male and female students. Finally, many significant relationships were found to exist between the predictor variables and the 15 pre-engineering courses that were selected. The strength of the relationships ranged from a high of .82, p < .001 (Chemistry 103 grade with total high school grade index) to a low of .07, p > .05 (Chemistry 102 with ACT science score).
NASA Astrophysics Data System (ADS)
Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David
2007-03-01
ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message system) permitted them to work independently without the need for textbook or lecture. On average, students who completed ChemPrep had higher grades in the subsequent GenChem, Nursing, and Honors chemistry courses, with a greater percentage achieving a grade of C- or higher. Participation in ChemPrep was voluntary, and more women than men responded. Students in the Honors course enrolled in ChemPrep in higher percentages than students in GenChem and Nursing. SAT and departmental math placement exam scores were used as proxy measures of prior achievement and ability. Based on these, Honors chemistry ChemPrep users were on par with their peers but performed better in the course than non-users. In GenChem and Nursing chemistry courses, ChemPrep helped students of high prior achievement and ability perform better than their achievement scores would predict. Weaker or less motivated students did not respond to the voluntary offerings of ChemPrep in the same numbers as stronger or more motivated students, and we are seeking alternate ways to reach this population.
Bringing Technology into High School Physics Classrooms
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2005-04-01
In an effort to help high school physics teachers bring technology into their classrooms, we at JSU have been offering professional development to secondary education teachers. This effort is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind (NCLB) grant funded by the Alabama Commission on Higher Education, serving high school physics teachers in Northeast Alabama. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. To achieve IMPACTSEED's goals, we have forged a functional collaboration with school districts from about ten counties. This collaboration is aimed at achieving a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear- factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend technology workshops, and onsite support, we have been providing year-round support to the physics/chemistry teachers in this area. This outreach initiative has helped provide our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
Curbing "Math Anxiety" with Galileo While Teaching Physicists, too
NASA Astrophysics Data System (ADS)
Schwartz, Brian P.
2006-12-01
Carthage College's introductory physics course caters to both freshmen in our program and students in general education. While "Understandings of Physics" is a conceptual overview of our discipline, physical science is necessarily quantitative. Galileo's "Dialogue Concerning the Two New Sciences" provides us with a novel way to teach the fundamentals of motion both to students who "fear" mathematics, as well as those who are adept at solving algebraic equations.
NASA Astrophysics Data System (ADS)
Richfield, Jon; bookfeller
2016-07-01
In reply to Ralph Kenna and Pádraig Mac Carron's feature article “Maths meets myths” in which they describe how they are using techniques from statistical physics to characterize the societies depicted in ancient Icelandic sagas.
Speaking the same language in physics and math
NASA Astrophysics Data System (ADS)
Harvey, Marci
2012-02-01
"Hey, is that the same thing as a derivative from calculus?" "Isn't that a quadratic equation?" These are some of the math-related questions my physics students ask every year. Some students realize that determining velocity from a position-time graph is the same thing as taking the first derivative in calculus or they recognize a quadratic equation has a t2 term. Why can all students not make the connection between the two? I wonder if we, as teachers of two different subjects, are making this learning more difficult because we have different terminology for identical concepts. We have an opportunity to create a learning environment that offers multiple opportunities to improve student comprehension. Teachers can connect the concepts from various classes into a cohesive set of information that can be used for higher-level thinking and processing skills.
Pursell, David P
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133
The Status of Women in Physics in the U.S.: Progress and New Actions
NASA Astrophysics Data System (ADS)
Xie, Aihua
2005-10-01
The 2005 Chair of the American Physical Society Committee on the Status of Women in Physics describes the committee's recent activities to recognize distinguished women physicists, improve the climate for women in physics, and provide leadership training for women in physics. The committee's response to the Harvard University president's suggestion of innate gender differences as regards women's representation in math and science is also discussed, as well as some encouraging developments in the status of women in physics in the U.S.
NASA Astrophysics Data System (ADS)
Clemmons, Karina
Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.
Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)
NASA Astrophysics Data System (ADS)
Pounds, Andrew
2001-05-01
This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.
Physical Activity Breaks and Student Learning: A Teacher-Research Project
ERIC Educational Resources Information Center
Camahalan, Faye Marsha G.; Ipock, Amanda R.
2015-01-01
This study is a teacher initiated action research. The purpose is to improve student learning in math using physical activity breaks during classroom lessons. The study was conducted by tracking the results of ten 5th grade students for a period of one week. Using anecdotal notes, students showed improvement on attentiveness during class…
Physical Activity and Music to Support Pre-School Children's Mathematics Learning
ERIC Educational Resources Information Center
Elofsson, Jessica; Englund Bohm, Anna; Jeppsson, Catarina; Samuelsson, Joakim
2018-01-01
In order to give all children equal opportunities in school, methods to prevent early differences are needed. The overall aim of this study was to investigate the effectiveness of two structured teaching methods: Math in Action, characterised by physical activity and music, and common numerical activities. Children (28 girls, 25 boys) were…
ERIC Educational Resources Information Center
Rothman, Arthur Israel
Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…
ERIC Educational Resources Information Center
Erdogan, Melek Nur; Koseoglu, Fitnat
2012-01-01
The purpose of this study is to analyze 9th grade physics, chemistry and biology curriculums, which were implemented by the Ministry of Education since the academic year 2008-2009, in terms of scientific literacy themes and the balance of these themes and also to examine the quality of statements about objectives. Physics, chemistry, and biology…
Physics and Its Interfaces with Medicinal Chemistry and Drug Design
NASA Astrophysics Data System (ADS)
Santos, Ricardo N.; Andricopulo, Adriano D.
2013-08-01
Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.
Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making
NASA Astrophysics Data System (ADS)
Modir, Bahar
In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
Cancer Prevention and Control Research Manpower Development
1997-10-01
of Lagos, Akoka, Lagos, Nigeria B.S. 1975 Chemistry Atlanta University, Atlanta, GA M.S. 1982 Physical Chemistry Georgia Institute of Technology...1992 Instructor of Hands on Laboratory Procedures in Physical Science Kindergarten through K8 Teachers in Atlanta Public School System. 1988-1990...Spectrum of Chlorine Nitrate and Evidence for the Existence of C1OONO. Journal of Physical Chemistry (1983), 87, 1091. 10
Engaging Science Faculty in Teacher Professional Development: Renewable Energy
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.; Czerniak, C.; Struble, J.; Mentzer, G.; Brooks, L.; Hedley, M.
2011-12-01
The LEADERS Program (Leadership for Educators: Academy for Driving Economic Revitalization in Science) is an NSF funded Math and Science Partnership program that aims to link economic revitalization in the Great Lakes region with K-12 education through renewable energy technology using a project-based learning approach. The LEADERS Program brings teacher leaders together with science and education faculty from the University of Toledo. Teacher leaders, from Toledo Public and Catholic Schools, attended a six week long institute in the summers of 2010 and 2011 and offered professional development for their colleagues during the school year. The teacher leaders took two science courses during the summer of 2010 in Physics and Chemistry of Renewable Energy as well as classes in Project-Based Science and Leadership and three courses in the summer of 2011, Earth Technologies, Climate Change and Biofuels. In addition, teachers were introduced to industry leaders in renewable energies as well as conservation. This presentation will discuss the implementation of the program and focus on the involvement of science faculty. We will discuss the challenges and successes in bringing together science faculty with teachers including how the experience has changed the teaching style of the scientists.
NASA Astrophysics Data System (ADS)
1999-11-01
Along with the increase in the number of young people applying to enter higher education announced back in July, the UK Department for Education and Employment noted that over a thousand more graduates had applied for postgraduate teacher training when compared with the same time in 1998. It appeared that the `Golden hello' programme for new mathematics and science teachers had succeeded in its aim of encouraging applicants in those subjects: an increase of 37% had been witnessed for maths teaching, 33% for physics and 27% for chemistry. Primary teacher training was also well on target with over five applicants seeking each available place. Statistics for UK schools released in August by the DfEE show that 62% of primary schools and 93% of secondary schools are now linked to the Internet (the corresponding figures were 17% and 83% in 1998). On average there is now one computer for every 13 pupils at primary school and one for every eight students in secondary school. The figures show continuing progress towards the Government's target of ensuring that all schools, colleges, universities, libraries and as many community centres as possible should be online (with access to the National Grid for Learning) by 2002.
Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life—often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from “pure sciences,” such as math, chemistry, and physics, through “applied sciences,” such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences. PMID:20194805
NASA Astrophysics Data System (ADS)
Beichner, Robert
2015-03-01
The Student Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) project was developed nearly 20 years ago as an economical way to provide collaborative, interactive instruction even for large enrollment classes. Nearly all research-based pedagogies have been designed with fairly high faculty-student ratios. The economics of introductory courses at large universities often precludes that situation, so SCALE-UP was created as a way to facilitate highly collaborative active learning with large numbers of students served by only a few faculty and assistants. It enables those students to learn and succeed not only in acquiring content, but also to practice important 21st century skills like problem solving, communication, and teamsmanship. The approach was initially targeted at undergraduate science and engineering students taking introductory physics courses in large enrollment sections. It has since expanded to multiple content areas, including chemistry, math, engineering, biology, business, nursing, and even the humanities. Class sizes range from 24 to over 600. Data collected from multiple sites around the world indicates highly successful implementation at more than 250 institutions. NSF support was critical for initial development and dissemination efforts. Generously supported by NSF (9752313, 9981107) and FIPSE (P116B971905, P116B000659).
Garcia, Jeanette M; Huang, Terry T; Trowbridge, Matthew; Weltman, Arthur; Sirard, John R
2016-12-01
We compared the effects of traditional (stable) and non-traditional (dynamic) school furniture on children's physical activity (PA), energy expenditure (EE), information retention, and math skills. Participants were 12 students (8.3 years, 58 % boys) in grades 1-5. Participants wore an Actigraph GT3X+ accelerometer (to assess PA), and an Oxycon Mobile indirect calorimetry device (to assess EE) for 40 min (20 min for each session). Each session consisted of a nutrition lecture, multiple choice questions related to the lecture, and grade-appropriate math problems. We used paired t tests to examine differences between the stable and dynamic furniture conditions. Average activity counts were significantly greater in the dynamic than the stable furniture condition (40.82 vs. 9.81, p < 0.05). We found no significant differences between conditions for average oxygen uptake (p = 0.34), percentage of nutrition questions (p = 0.5), or math problems (p = 0.93) answered correctly. Movement was significantly greater in the dynamic than the stable furniture condition, and did not impede information acquisition or concentration. Future studies should compare the long-term effects of traditional and dynamic furniture on health and academic outcomes in schools and other settings.
NASA Astrophysics Data System (ADS)
Smith, Leigh
2015-03-01
I will describe methods used at the University of Cincinnati to enhance student success in an algebra-based physics course. The first method is to use ALEKS, an adaptive online mathematics tutorial engine, before the term begins. Approximately three to four weeks before the beginning of the term, the professor in the course emails all of the students in the course informing them of the possibility of improving their math proficiency by using ALEKS. Using only a minimal reward on homework, we have achieved a 70% response rate with students spending an average of 8 hours working on their math skills before classes start. The second method is to use a flipped classroom approach. The class of 135 meets in a tiered classroom twice per week for two hours. Over the previous weekend students spend approximately 2 hours reading the book, taking short multiple choice conceptual quizzes, and viewing videos covering the material. In class, students use Learning Catalytics to work through homework problems in groups, guided by the instructor and one learning assistant. Using these interventions, we have reduced the student DWF rate (the fraction of students receiving a D or lower in the class) from an historical average of 35 to 40% to less than 20%.
NASA Astrophysics Data System (ADS)
Meltzer, David E.
2007-01-01
As part of an investigation into student learning of thermodynamics, we have probed the reasoning of students enrolled in introductory and advanced courses in both physics and chemistry. A particular focus of this work has been put on the learning difficulties encountered by physics, chemistry, and engineering students enrolled in an upper-level thermal physics course that included many topics also covered in physical chemistry courses. We have explored the evolution of students' understanding as they progressed from the introductory course through more advanced courses. Through this investigation we have gained insights into students' learning difficulties in thermodynamics at various levels. Our experience in addressing these learning difficulties may provide insights into analogous pedagogical issues in upper-level courses in both engineering and chemistry which focus on the theory and applications of thermodynamics.
NASA Astrophysics Data System (ADS)
Barbera, Jack
2007-12-01
This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.
Direction discovery: A science enrichment program for high school students.
Sikes, Suzanne S; Schwartz-Bloom, Rochelle D
2009-03-01
Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.
Physics and Biology Collaborate to Color the World
ERIC Educational Resources Information Center
Liu, Dennis W. C.
2013-01-01
To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.
NASA Astrophysics Data System (ADS)
Lehto, H.; Vacher, H. L.
2013-12-01
Educators have used spreadsheets to teach math concepts for years. However, when spreadsheet-based modules began to be used to teach math and geology concepts at USF students found them difficult to use. Most often students expressed frustration that learning how to use Excel took precedence over learning the concepts presented in the modules. Was the Excel was getting in the way? To investigate this question, we placed students in Physical Geology courses into two groups: one group was given a set of modules that instructed them to use Excel for their calculations, while the modules given to the other group simple instructed them to do the calculations but they were not told what method to use. Our expectation was that students in the Non-Excel group would be less frustrated and thus attain a higher level of learning of the concepts presented in the modules. However, our results show that students had high gains for both the math and geology concepts presented in the modules whether Excel was used or not. We also tested the students' attitudes about the modules and the knowledge they gained and found that overall students were comfortable with the math and geology concepts presented in the modules, and most felt that the modules were worth their time; however they did not wish to complete any more modules. The only observed difference in gains was that students in the course led by the author of the modules had larger gains in knowledge versus those in the course led by another instructor. This difference may have been the result of differences in teaching style, such as the module author's mention and linking of the modules with lecture materials throughout the course. We believe that spreadsheet-based modules are a good tool for teaching math and geology concepts, as overall the students were confident in their new knowledge. We also found that the use of Excel within the module did not affect the learning outcomes. The one downside of this study was that after completing the modules the students did not wish to do any more, which may have to do with a strong tendency towards math avoidance.
ERIC Educational Resources Information Center
Lewis, Karyn L.; Stout, Jane G.; Pollack, Steven J.; Finkelstein, Noah D.; Ito, Tiffany A.
2016-01-01
A number of cultural, social, environmental, and biological factors have been suggested to explain women's relatively lower representation in physics and other science, technology, engineering, and math (STEM) fields. Given its persistence, the causes of gender disparities are likely to be complex and multiply determined. In this review paper, we…
ERIC Educational Resources Information Center
Cross, Tina R.
2002-01-01
Presents an activity in which race cars are designed and constructed out of edible materials. Students explore relationships between speed, distance, and time using both math and science. Includes a chart that shows alignment with the National Science Education Standards. (DDR)
Likelihood of women vs. men to receive bachelor's degrees in physics at Stanford, 1900-1929.
NASA Astrophysics Data System (ADS)
Nero, Anthony
2005-04-01
Work by K. Tolley indicates that girls in mid to late 19th century U.S. high schools were more likely to study mathematics and natural philosophy (i.e., physics and astronomy) than were boys (who pursued the classics).* She also found that after the turn of the century women were more likely than men to receive bachelor's degrees in math and biological sciences at Stanford, but her sampling of every fifth year yielded too few data to be conclusive about physics. Reexamination of graduation lists at Stanford, yielding data for each year from 1900 to 1929, shows that, while absolute numbers were small, women were as likely as men to receive bachelor's degrees in physics during the first decade of the century, in the second decade they were notably more likely, and in the third their likelihood decreased substantially, while that of men rose to exceed that of women. (Women were much more likely to receive bachelor's degrees in math, exceeding the likelihood for men by an order of magnitude during the second and third decades.) *K. Tolley, The Science Education of American Girls: A Historical Perspective (Routledge, N.Y.), 2003.
NASA Astrophysics Data System (ADS)
Lyons, M.; Siegel, Edward Carl-Ludwig
2011-03-01
Weiss-Page-Holthaus[Physica A,341,586(04); http://arxiv.org/abs/cond-mat/0403295] number-FACTORIZATION VIA BEQS BEC VS.(?) Shor-algorithm, strongly-supporting Watkins' [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] Intersection of number-theory "pure"-maths WITH (Statistical)-Physics, as Siegel[AMS Joint.Mtg.(02)-Abs.973-60-124] Benford logarithmic-law algebraic-INVERSION to ONLY BEQS with d=0 digit P (d = 0) > = oogapFULBEC ! ! ! SiegelRiemann - hypothesisproofviaRayleigh [ Phil . Trans . CLXI (1870) ] - Polya [ Math . Ann . (21) ] - [ Random - WalksElectric - Nets . , MAA (81) ] - nderson [ PRL (58) ] - localization - Siegel [ Symp . Fractals , MRSFallMtg . (89) - 5 - papers ! ! ! ] FUZZYICS = CATEGORYICS : [ LOCALITY ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > (GLOBALITY) FUNCTOR / SYNONYM / concomitancetonoise = / Fluct . - Dissip . theorem / FUNCTOR / SYNONYM / equivalence / proportionalityto = > generalized - susceptibilitypower - spectrum [ FLAT / FUNCTIONLESS / WHITE ]- MORPHISM / CROSSOVER / AUTMATHCAT / DIM - CAT / ANTONYM- > HYPERBOLICITY/ZIPF-law INEVITABILITY) intersection with ONLY BEQS BEC).
College Students Perceptions of Web-Based Leaning in Basic Mathematics Subject
NASA Astrophysics Data System (ADS)
Husna, H.; Septia, T.; Cesaria, A.
2018-04-01
With the emergence of the Internet, e-learning has increasingly become the promising solution that continues to grow day after day. Considering students’ perception toward e-learning is important in successful development of e-learning in higher education, since attitude of user towards application of information technology is one of the most effective factors. This study aims to determine students' perceptions of using basic math textbook for physics with web-based. Students' perceptions are closely related to their achievement. The learning media in accordance with the desire of students will make them motivated. This research is qualitative data analysis was done descriptively. The data obtained in this study comes from researchers as the main instrument, the data questionnaire and interview data is unstructured. The results are students' perceptions of using basic math textbook for physics with web-based are in the positive category.
Monthly Progress Report No. 60 for April 1948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.
Integrating Computational Chemistry into the Physical Chemistry Curriculum
ERIC Educational Resources Information Center
Johnson, Lewis E.; Engel, Thomas
2011-01-01
Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…
Rethinking Undergraduate Physical Chemistry Curricula
ERIC Educational Resources Information Center
Miller, Stephen R.
2016-01-01
A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…
Edwards, Jane U; Mauch, Lois; Winkelman, Mark R
2011-02-01
To support curriculum and policy, a midwest city school district assessed the association of selected categories of nutrition and physical activity (NUTR/PA) behaviors, fitness measures, and body mass index (BMI) with academic performance (AP) for 800 sixth graders. Students completed an adapted Youth Risk Behavior Surveillance Survey (NUTR/PA behaviors), fitness assessments (mile run, curl-ups, push-ups, height, and weight) with results matched to standardized scores (Measures of Academic Progress [MAP]), meal price status, and gender. Differences in mean MAP scores (math and reading) were compared by selected categories of each variable utilizing 1-way analysis of variance. Associations were determined by stepwise multiple regression utilizing mean MAP scores (for math and for reading) as the dependent variable and NUTR/PA behaviors, fitness, and BMI categories as independent variables. Significance was set at α = 0.05. Higher MAP math scores were associated with NUTR (more milk and breakfast; less 100% fruit juice and sweetened beverages [SB]) and PA (increased vigorous PA and sports teams; reduced television), and fitness (higher mile run performance). Higher MAP reading scores were associated with NUTR (fewer SB) and PA (increased vigorous PA, reduced television). Regression analysis indicated about 11.1% of the variation in the mean MAP math scores and 6.7% of the mean MAP reading scores could be accounted for by selected NUTR/PA behaviors, fitness, meal price status, and gender. Many positive NUTR/PA behaviors and fitness measures were associated with higher MAP scores supporting the school district focus on healthy lifestyles. Additional factors, including meal price status and gender, contribute to AP. © 2011, Fargo Public School.
NASA Astrophysics Data System (ADS)
Stevens, Stacy Mckimm
There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.
Profile of laboratory instruction in secondary school level chemistry and indication for reform
NASA Astrophysics Data System (ADS)
Wang, Mei
This study is a profile of the laboratory component of instruction in secondary school level chemistry. As one of several companion studies, the purpose of the study is to investigate present practices related to instruction as a means of producing reform that improve cognitive and non-cognitive learning outcomes. Five hundred-forty students, from 18 chemistry classes taught by 12 teachers in ten high schools were involved in this study. Three schools included public and private schools, urban school, suburban schools, and rural schools. Three levels or types of chemistry courses were offered in these schools: school regular chemistry for college bound students, Chemistry in the Community or "ChemCom" for non-college bound students, and a second year of chemistry or advanced placement chemistry. Laboratory sessions in each of these three levels of courses were observed, videotaped, and later analyzed using the Modified Revised Science Teachers Behaviors Inventory (MR-STBI). The 12 chemistry teachers, eight science supervisors, and selected students were interviewed to determine their professional backgrounds and other factors that might influence how they teach, how they think, and how they learn. The following conclusions developed from the research are: (1) The three levels of chemistry courses are offered across high schools of varying sizes and locations. (2) Teachers perceive that students come to chemistry classes poorly prepared to effectively carry out laboratory experiences and/or investigations. (3) While students indicated that they are able to effectively use math skills in analyzing the results of chemistry laboratory experiments, teachers, in general, are not satisfied with the level at which students are prepared to use these skills, or to use writing skills. (4) Students working in pairs, is the typical approach. Group cooperation is sometimes used in carrying out the laboratory component of chemistry instruction in the ChemCom and AP chemistry courses. (5) Computers and other technology were not observed in use commonly in laboratory component of instruction in any levels of chemistry courses. (6) The results of MR-STBI (Modified Revised Science Teachers Behavior Inventory) indicates that the rank order of use of the teaching behaviors in laboratory based instruction among the three types of chemistry courses are similar. (7) A summary of recommended practices for use in teaching each of the three levels of high school chemistry courses is presented in Chapter 5.
Analysis of Student Performance in Peer Led Undergraduate Supplements
NASA Astrophysics Data System (ADS)
Gardner, Linda M.
Foundations of Chemistry courses at the University of Kansas have traditionally accommodated nearly 1,000 individual students every year with a single course in a large lecture hall. To develop a more student-centered learning atmosphere, Peer Led Undergraduate Supplements (PLUS) were introduced to assist students, starting in the spring of 2010. PLUS was derived from the more well-known Peer-Led Team Learning with modifications to meet the specific needs of the university and the students. The yearlong investigation of PLUS Chemistry began in the fall of 2012 to allow for adequate development of materials and training of peer leaders. We examined the impact of academic achievement for students who attended PLUS sessions while controlling for high school GPA, math ACT scores, credit hours earned in high school, completion of calculus, gender, and those aspiring to be pharmacists (i.e., pre-pharmacy students). In a least linear squares multiple regression, PLUS participants performed on average one percent higher on exam scores for Chemistry 184 and four tenths of a percent on Chemistry 188 for each PLUS session attended. Pre-pharmacy students moderated the effect of PLUS attendance on chemistry achievement, ultimately negating any relative gain associated by attending PLUS sessions. Evidence of gender difference was demonstrated in the Chemistry 188 model, indicating females experience a greater benefit from PLUS sessions. Additionally, an item analysis studied the relationship between PLUS material to individual items on exams. The research discovered that students who attended PLUS session, answered the items correctly 10 to 20 percent more than their comparison group for PLUS interrelated items and no difference to 10 percent for non-PLUS related items. In summary, PLUS has a positive effect on exam performance in introductory chemistry courses at the University of Kansas.
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.
Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects.
Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children
Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob
2016-01-01
Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
Understanding Solubility through Excel Spreadsheets
NASA Astrophysics Data System (ADS)
Brown, Pamela
2001-02-01
This article describes assignments related to the solubility of inorganic salts that can be given in an introductory general chemistry course. Le Châtelier's principle, solubility, unit conversion, and thermodynamics are tied together to calculate heats of solution by two methods: heats of formation and an application of the van't Hoff equation. These assignments address the need for math, graphing, and computer skills in the chemical technology program by developing skill in the use of Microsoft Excel to prepare spreadsheets and graphs and to perform linear and nonlinear curve-fitting. Background information on the value of understanding and predicting solubility is provided.
ERIC Educational Resources Information Center
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
Predicting fire frequency with chemistry and climate
Richard P. Guyette; Michael C. Stambaugh; Daniel C. Dey; Rose-Marie Muzika
2012-01-01
A predictive equation for estimating fire frequency was developed from theories and data in physical chemistry, ecosystem ecology, and climatology. We refer to this equation as the Physical Chemistry Fire Frequency Model (PC2FM). The equation was calibrated and validated with North American fire data (170 sites) prior to widespread industrial influences (before ...
ERIC Educational Resources Information Center
Kozliak, Evguenii I.
2004-01-01
A molecular approach for introducing entropy in undergraduate physical chemistry course and incorporating the features of Davies' treatment that meets the needs of the students but ignores the complexities of statistics and upgrades the qualitative, intuitive approach of Lambert for general chemistry to a semiquantitative treatment using Boltzmann…
Using Physics Principles in the Teaching of Chemistry.
ERIC Educational Resources Information Center
Gulden, Warren
1996-01-01
Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…
Hearing shapes of drums: Mathematical and physical aspects of isospectrality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraud, Olivier; Thas, Koen; LPT
2010-07-15
In a celebrated paper ''Can one hear the shape of a drum?'' M. Kac [Am. Math. Monthly 73, 1 (1966)] asked his famous question about the existence of nonisometric billiards having the same spectrum of the Laplacian. This question was eventually answered positively in 1992 by the construction of noncongruent planar isospectral pairs. This review highlights mathematical and physical aspects of isospectrality.
1989-06-15
Hamiltonian Formulation of the Kadomtsev - Petviashvili and Benjamin-Ono Equations , A.S. Fokas and P.M. Santini, J. Math. Phys. 29 (3) 604-617 (1988...Prototypes are the so-called Kadomtsev -Petviashvilli and Davey-Stewartson equations . These equations arise in a variety of physical instances such as water...plasma physics. Moreover the study of solutions to some of the underlying nonlinear evolution equations has led naturally to the investigation and new
The Center for Nonlinear Phenomena and Magnetic Materials
1992-09-30
ORGANIZATION Howard University REPORT NUMBER ComSERCIWashington DC 20059 AFOSR- ,, ? 9 v 5 4 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10... University . Visualization - Improved Marching Cubes. January 27, 1992: Dr. Gerald Chachere, Math Dept., Howard University . "An algorithm for box...James Gates, Physics Department, Howard University . "Introduction to Strings Part I". February 5, 1992: Dr. James Gates, Physics Department, Howard
NASA Astrophysics Data System (ADS)
Lim, Gloria
Women have been underrepresented in many STEM fields including physics. The gap appears to be largely attributable to a lack of women pursuing physics in college, and little is known about the characteristics and career interests of women who do plan to major in physics. Using nationwide data on first-time, full-time college students, this study set out to: (1) document national trends in plans to major in physics among women entering college; (2) document the career aspirations of women who intend to major in physics; and (3) explore the characteristics of women who intend to major in physics and how this population has evolved across time. The results show that women's interest in physics has been consistently low in the past four decades. The most popular career aspiration among women who plan to major in physics is research scientist, although this career aspiration is declining in popularity. Further, this study identifies a distinctive profile of the average female physics student as compared to women in other STEM fields and women across all majors. Women who plan to pursue a physics major tend to be confident in their math abilities, value college as an opportunity to learn, plan to attend graduate school, and are less likely than women in other fields to have a social activist orientation. The paper concludes with implications for scholars, educators, administrators, and policymakers as they seek to recruit more women in to the physics field. This research is supported by the National Science Foundation, HRD No. 1135727. Part of this work was also completed with the support of a Fulbright Fellowship in Finland.
ERIC Educational Resources Information Center
Beeken, Paul
2014-01-01
Graphing is an essential skill that forms the foundation of any physical science. Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations. Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary…
Physicist scorns syllabus that 'ill-equips' students
NASA Astrophysics Data System (ADS)
Randall, Ian
2017-03-01
Quantum physicist Michelle Simmons from the University of New South Wales has criticized the Australian school physics curriculum for reducing maths-based teaching and over-emphasizing essay-based questions - a move she says has left students “ill-equipped” on reaching university.
The Inner Clock: A New Timepiece for Learning.
ERIC Educational Resources Information Center
Brooks, Andree
1980-01-01
The author suggests the use of chronobiology--the body's 24-hour cycle rhythms--to chart children's physical, emotional, and mental reactions in order to more realistically and productively structure learning activities. This exercise also involves math and science skills. (KC)
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
Physical Chemistry, Science (Experimental): 5318.60.
ERIC Educational Resources Information Center
Mary, Charlotta B.; Feuer, Jerold
Performance objectives are stated for this secondary school instructional unit concerned with aspects of physical chemistry, involving the physical properties of matter, and laws and theories regarding chemical interaction. Lists of films and state-adopted and other texts are presented. Included are enrollment guidelines; an outline summarizing…
ERIC Educational Resources Information Center
Raabe, Richard; Gentile, Lisa
2008-01-01
A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the…
ERIC Educational Resources Information Center
O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.
2015-01-01
An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…
ERIC Educational Resources Information Center
Krell, Moritz; Reinisch, Bianca; Krüger, Dirk
2015-01-01
In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…
ERIC Educational Resources Information Center
Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa
2007-01-01
The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…
ERIC Educational Resources Information Center
Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir
2007-01-01
We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…
NASA Astrophysics Data System (ADS)
Potter, Wendell H.; Lynch, Robert B.
2013-01-01
The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Gender roles and science beliefs and their relationship to science interest
NASA Astrophysics Data System (ADS)
Paolucci, Judith Jean
This study investigated adolescents' views about the nature of science (NOS) and conceptions of their gender identities, and revealed whether these conceptions and views are related to their science interest. Participants were 566 high school students enrolled in chemistry courses at three high schools in a New England state. A questionnaire was used to assess participants' science interest, gender role perceptions, and views about science, as well as to provide background and math and science achievement data. The study found that while student scores of NOS understanding did not differ by gender, some significant differences were noted on the student responses to statements about science. Students with higher-than-average science interest scores responded to these statements differently than students with lower science interest scores; their responses tended to more closely match statements about NOS taken from current reform documents. The study also found that math and science achievement, masculinity scores, and NOS scores accounted for a greater variance of science interest for girls than for boys, though all three also contributed significantly and positively to the regression equation for boys. These predictor variables predicted membership to the lower or higher science interest groups, but could not predict students' career aspiration groups. Thus, other mediating factors not considered in this study may translate high science interest to science career aspiration. The results of this study coed prior research, which found that science and math achievement and masculinity are positively and significantly related to science interest for boy boys and girls. Moreover, the study found that achievement in math and science courses is a greater predictor of science interest for girls than for boys. The results of this study provide a rationale for incorporating the nature of science into the science curriculum. Moreover, since the science interest of boys was also found to be related to NOS understanding, these curricular changes may positively affect all students.
Bartholomew, John B; Jowers, Esbelle M; Errisuriz, Vanessa L; Vaughn, Sharon; Roberts, Gregory
2017-10-01
Active learning is designed to pair physical activity with the teaching of academic content. This has been shown to be a successful strategy to increase physical activity and improve academic performance. The existing designs have confounded academic lessons with physical activity. As a result, it is impossible to determine if the subsequent improvement in academic performance is due to: (1) physical activity, (2) the academic content of the active learning, or (3) the combination of academic material taught through physical activity. The Texas I-CAN project is a 3-arm, cluster randomized control trial in which 28 elementary schools were assigned to either control, math intervention, or spelling intervention. As a result, each intervention condition serves as an unrelated content control for the other arm of the trial, allowing the impact of physical activity to be separated from the content. That is, schools that perform only active math lessons provide a content control for the spelling schools on spelling outcomes. This also calculated direct observations of attention and behavior control following periods of active learning. This design is unique in its ability to separate the impact of physical activity, in general, from the combination of physical activity and specific academic content. This, in combination with the ability to examine both proximal and distal outcomes along with measures of time on task will do much to guide the design of future, school-based interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Is There Such a Thing As a "Perfect" Parent?
... socially, emotionally, intellectually and physically. A child's maturity level may be different for the various qualities he is developing, including social skills, athletic abilities and learning capabilities. He might be strong in math but weak in writing (or vice versa), or ...
ERIC Educational Resources Information Center
Online-Offline, 1998
1998-01-01
This theme issue on recreation includes annotated listings of Web sites, CD-ROMs, computer software, videos, books, magazines, and professional resources that deal with recreation for K-8 language arts, art/architecture, music/dance, science, math, social studies, and health/physical education. Sidebars discuss fun and games, recess recreation,…
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
Girls Talk Math - Engaging Girls Through Math Media
NASA Astrophysics Data System (ADS)
Bernardi, Francesca; Morgan, Katrina
2017-11-01
``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.
Saevarsson, Elvar Smari; Gudmundsdottir, Sigridur Lara; Kantomaa, Marko; Arngrimsson, Sigurbjorn A; Sveinsson, Thorarinn; Skulason, Sigurgrimur; Johannsson, Erlingur
2018-06-13
The associations between body fat levels and physical activity with academic performance are inconclusive and were explored using longitudinal data. We enrolled 134/242 adolescents aged 15, who were studied at the age of nine and agreed to be followed up from April to May 2015 for the Health behaviours of Icelandic youth study. Accelerometers measured physical activity, body mass indexes were calculated and dual-energy X-ray absorptiometry scans assessed the participants' body composition at nine and 15. Their language and maths skills were compared to a growth model that estimated the academic performances of children born in 1999. Higher than normal body fat levels between the ages of nine and 15 were negatively associated with maths performance, but the same association was not found for Icelandic language studies. These were Pearson's r = - 0.24 (p = 0.01) for body mass index and Pearson's r = -0.34 (p = 0.01) for the percentage of body fat. No associations were found with changes in physical activity. Children who put on more body fat than normal between the ages of nine and 15 had an increased risk of adverse academic performance that was independent of changes in physical activity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pouw, Wim T. J. L.; van Gog, Tamara; Zwaan, Rolf A.; Paas, Fred
2016-01-01
We investigated whether augmenting instructional animations with a body analogy (BA) would improve 10- to 13-year-old children’s learning about class-1 levers. Children with a lower level of general math skill who learned with an instructional animation that provided a BA of the physical system, showed higher accuracy on a lever problem-solving reaction time task than children studying the instructional animation without this BA. Additionally, learning with a BA led to a higher speed–accuracy trade-off during the transfer task for children with a lower math skill, which provided additional evidence that especially this group is likely to be affected by learning with a BA. However, overall accuracy and solving speed on the transfer task was not affected by learning with or without this BA. These results suggest that providing children with a BA during animation study provides a stepping-stone for understanding mechanical principles of a physical system, which may prove useful for instructional designers. Yet, because the BA does not seem effective for all children, nor for all tasks, the degree of effectiveness of body analogies should be studied further. Future research, we conclude, should be more sensitive to the necessary degree of analogous mapping between the body and physical systems, and whether this mapping is effective for reasoning about more complex instantiations of such physical systems. PMID:27375538
ERIC Educational Resources Information Center
Maron, Marta Katarzyna
2011-01-01
This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…
Quantum Chemistry, 5th Edition by Ira N. Levine
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
2000-12-01
Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.
ERIC Educational Resources Information Center
Thomsen, Dietrick E.
1976-01-01
Presented is an insight into man's idea about physics and being a physicist in the days when Heisenberg, P. A. M. Dirac, Louis de Broglic and other famous physicists were young men. Heisenberg is compared to Newton, inventing new math as he needed it. Emphasis is placed on the fact that he was not a Nazi sympathizer. (EB)
From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation
NASA Astrophysics Data System (ADS)
Hansen, Lee D.; McCarlie, V. Wallace
2004-11-01
Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.
Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes
2015-01-01
The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.
The Application of Physical Organic Chemistry to Biochemical Problems.
ERIC Educational Resources Information Center
Westheimer, Frank
1986-01-01
Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)
Molecule by molecule, the physics and chemistry of life: SMB 2007.
Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C
2007-04-01
Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.
Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science
NASA Astrophysics Data System (ADS)
Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.
2009-12-01
We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy, physics, math, and engineering. In addition, learning science through inquiry and experimentation lends tangible examples to abstract principles. Our curricula (available on-line for sharing) are comprised of (1) modular classroom lesson plans, (2) teacher tutorials, and (3) hands-on laboratory experiments. Each set of summer classes has a theme; the first set of summer classes centered on factors that affect climate on any planet. For example, students measured solar activity by counting sunspots and learned about the greenhouse effect by conducting experiments with colored bottles. The second summer focused on how the electromagnetic spectrum is fundamental to remote sensing. During our summer 2009 program the Lunar Reconnaissance Orbiter launched, and with its many instruments served as a shining example of how the electromagnetic spectrum is used to study planetary bodies. Thus, NASA archived and student-collected data sets used in a PBL setting provide the basic foundation for helping students learn science and math concepts, while the UB programs ensure sustainability by providing a fountain of youth who want to learn.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.
2015-12-01
Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C-0932 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. Dittrich, T.M. 2011. Taking advantage of STEM (science, technology, engineering, and math) popularity to enhance student/public engagement. Abstract ED44A-03 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.
NASA Astrophysics Data System (ADS)
Komperda, Regis
The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a general chemistry course taught by four instructors at a single university using a common textbook. The quantitative analysis of student data was supported by investigating the instructor's approach to teaching using instructor responses to a modified version of the Approaches to Teaching Inventory (ATI), semi-structured interview questions, and information available in the course syllabus. The results of the SEM analysis indicate that incoming math ability, as measured by ACT math scores, has the largest effect on student academic achievement in introductory chemistry courses. Of the three presence factors, cognitive presence has the largest direct effect on academic achievement and student satisfaction. Teaching presence has a direct effect on satisfaction similar in size to the effect of cognitive presence. The relationship between social presence and student outcomes is found to be relatively small. Given the role that both teaching and social presence play in influencing cognitive presence, these results suggest that classroom teachers should emphasize the development of a learning environment with a large degree of cognitive presence where students take ownership of their own learning process. This type of learning environment can be supported by specific instructor behaviors such as facilitating discussions and implementing group work focused on collaboration and developing shared understandings.
Chemical Laws, Idealization and Approximation
NASA Astrophysics Data System (ADS)
Tobin, Emma
2013-07-01
This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.
Maximizing the Adjacent Possible in Automata Chemistries.
Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter
2016-01-01
Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.
The role of a posteriori mathematics in physics
NASA Astrophysics Data System (ADS)
MacKinnon, Edward
2018-05-01
The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
The Physics Teacher: The Four States of Matter—Solid, Squishy, Liquid, and Gas
NASA Astrophysics Data System (ADS)
Clark, Roy W.
2007-04-01
The featured article offers several demonstrations of substances that seem to be neither solid nor liquid, but somewhere in between. The authors suggest laboratory experiments that can be performed by beginning physics students, and suggest theoretical explanations for the strange viscosity behaviors. The subject is chemistry much more than physics, and it may require chemistry textbook authors to rethink the popular definitions of physical and chemical change. This reviewer then comments on the historical origins of squishiness, and on its unfortunate neglect, in their author's opinion, by general chemistry texts. The subject is properly called rheology, and is of considerable significance to industrial chemists.
Metrology in physics, chemistry, and biology: differing perceptions.
Iyengar, Venkatesh
2007-04-01
The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.
Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept
NASA Astrophysics Data System (ADS)
Elena, Ivanova
2016-08-01
One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.
Dilution physics modeling: Dissolution/precipitation chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Reid, H.C.; Trent, D.S.
This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less
ERIC Educational Resources Information Center
Kalyn, Brenda
2006-01-01
Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…
ERIC Educational Resources Information Center
Fitzgerald, Mike
2004-01-01
In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…
ERIC Educational Resources Information Center
Reyes, Laurie Hart; Padilla, Michael J.
1985-01-01
Examines recent data on sex-related differences in science and mathematics achievement, discussing meta-analyses findings on attitudes, career choice, life/physical science preferences, and motivation. Indicates that spatial visualization appears to be very important and that girls more often attribute success to luck rather than skill. (DH)
The Multiple Component Alternative for Gifted Education.
ERIC Educational Resources Information Center
Swassing, Ray
1984-01-01
The Multiple Component Model (MCM) of gifted education includes instruction which may overlap in literature, history, art, enrichment, languages, science, physics, math, music, and dance. The model rests on multifactored identification and requires systematic development and selection of components with ongoing feedback and evaluation. (CL)
People Interview: Materials unite physics and chemistry
NASA Astrophysics Data System (ADS)
2011-05-01
INTERVIEW Materials unite physics and chemistry Mark Miodownik is a materials scientist at King's College, London. David Smith talks to him about his career and his fascinating experiences of giving last year's Royal Institution Christmas Lectures.
Molecule by molecule, the physics and chemistry of life: SMB 2007
Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C
2007-01-01
Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference. PMID:17372599
NASA Astrophysics Data System (ADS)
2002-03-01
UK Awards: Teacher of Physics Awards Institute Matters: Institute of Physics Education Conference UK Awards: Top SHAP students win prizes Competition: International creative essay competition UK Awards: Kelvin Medal Particle Physics Resources: New poster from PPARC Australia: Physics Students's Day at Adventure World UK Awards: Bragg Medal winners in a FLAP ASE Annual Meeting: Particle Physics at ASE 2002 UK Grants: PPARC Awards AAPT Winter Meeting: Physics First - but do you need maths? UK In-Service Training: The Particle Physics Institutes for A-level teachers Physics on Stage 2: Not too entertaining this time, please! Scotland: A reasoned approach wins reasonable funding Institute Matters: New education manager Germany: Physics gets real: curriculum change for better teaching Research Frontiers: Let there be light - if you hang on a minute
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Teaching thermal physics in the paradigms project
NASA Astrophysics Data System (ADS)
Roundy, David
2011-10-01
Thermal physics is probably the most disliked course in the physics major curriculum, with students feeling that they are being led through a mathematical maze, leading to an unsatisfactory conclusion. Classical thermodynamics involves scary derivatives, while statistical mechanics leads to lengthy summations and is difficult to apply to interacting systems. It is unsurprising that students find themselves failing to see the physics for the math. In this talk, I will discuss my experiences teaching the Energy and Entropy paradigm, and will introduce materials we have developed to aide student understanding of partial derivatives and their relationship to experimental observables.
A Course in Biophysics: An Integration of Physics, Chemistry, and Biology
ERIC Educational Resources Information Center
Giancoli, Douglas C.
1971-01-01
Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)
Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties
ERIC Educational Resources Information Center
DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam
2015-01-01
Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…
West German Education in the Global Village
1993-04-01
GeschichwlEdbode) with additional studies in religion (Refigiotarehre), art (K/auterfehumg), music ( Musik ), physical education (Leiberuebumgen...chemistry (OChmie) and bioklgy (Bioiogie) instead of general science. Additional studies include religion, art, music , physical education...religion, English, history, biology and chemistry, music , and physical education but adds a required choice between three different major course
ERIC Educational Resources Information Center
Bektas, Oktay
2015-01-01
This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…
Student Use of Energy Concepts from Physics in Chemistry Courses
ERIC Educational Resources Information Center
Nagel, Megan L.; Lindsey, Beth A.
2015-01-01
This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical and…
Using a flipped classroom in an algebra-based physics course
NASA Astrophysics Data System (ADS)
Smith, Leigh
2013-03-01
The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.
An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry
NASA Astrophysics Data System (ADS)
Shiozaki, Toru
2017-01-01
We report an efficient program for computing the eigenvalues and symmetry-adapted eigenvectors of very large quaternionic (or Hermitian skew-Hamiltonian) matrices, using which structure-preserving diagonalisation of matrices of dimension N > 10, 000 is now routine on a single computer node. Such matrices appear frequently in relativistic quantum chemistry owing to the time-reversal symmetry. The implementation is based on a blocked version of the Paige-Van Loan algorithm, which allows us to use the Level 3 BLAS subroutines for most of the computations. Taking advantage of the symmetry, the program is faster by up to a factor of 2 than state-of-the-art implementations of complex Hermitian diagonalisation; diagonalising a 12, 800 × 12, 800 matrix took 42.8 (9.5) and 85.6 (12.6) minutes with 1 CPU core (16 CPU cores) using our symmetry-adapted solver and Intel Math Kernel Library's ZHEEV that is not structure-preserving, respectively. The source code is publicly available under the FreeBSD licence.
ERIC Educational Resources Information Center
Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.
2017-01-01
A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…
Chemistry, College Level. Annotated Bibliography of Tests.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ. Test Collection.
Most of the 30 tests cited in this bibliography are those of the American Chemical Society. Subjects covered include physical chemistry, organic chemistry, inorganic chemistry, analytical chemistry, and other specialized areas. The tests are designed only for advanced high school, and both bachelor/graduate degree levels of college students. This…
Basic Studies in Plasma Physics
1998-01-31
Process in One Dimension, (with B. Derrida and E. Speer), Jour. Stat. Phys., 1997, to appear. [16] Comment on "Phase Separation in Two-Dimensional Fluids...Short version to appear in January 1997 in Physics Today ; the long version is to appear in Jour. Stat. Phys., 87, 463-468, 1997. [25] Microscopic...SIAM J. Math. Anal. 27, 110-134, 1996. [31] Microscopic-Shock Profiles: Exact Solution of a Non-Equilibrium System, (with B. Derrida , S. Janowsky and
Remarks on the foundations of geometry and immersion theory
NASA Astrophysics Data System (ADS)
Odon, P. I.; Capistrano, A. J. S.
2010-04-01
In this paper, we deal with the evolution of physics and maths, and how one is intrinsically connected to the other. Euclid and his book Elements, and the importance of the fifth postulate for geometry led to the discovery of non-Euclidean geometries. We point out how these geometries play an essential role in immersion theory and Nash's theorem, and its importance for physics when applied to the brane-world theory.
ERIC Educational Resources Information Center
Harron, Jason; Langdon, John; Gonzalez, Jennifer; Cater, Scott
2017-01-01
The term forensic science may evoke thoughts of blood-spatter analysis, DNA testing, and identifying molds, spores, and larvae. A growing part of this field, however, is that of digital forensics, involving techniques with clear connections to math and physics. This article describes a five-part project involving smartphones and the investigation…
In Their Own Words: Dealing with Dyslexia | NIH MedlinePlus the Magazine
... occurs in people of all backgrounds and intellectual levels. People with dyslexia can be very bright. They are often capable or even gifted in areas such as art, computer science, design, drama, electronics, math, mechanics, music, physics, sales, and sports. Some of ...
A World of Discovery Online: Science Fairs.
ERIC Educational Resources Information Center
Joseph, Linda C.
1996-01-01
K-12 students and teachers can use the Internet for planning science fair activities--for project ideas, resources, and interactive Web sites. Lists 26 science Web sites specializing in question answering, activities, experiments, optics, math, dissection, inventions, physics, space, genetics, cockroaches and worms, and Twinkies (sponge cakes).…
Movement and Learning in Elementary School
ERIC Educational Resources Information Center
Lindt, Suzanne F.; Miller, Stacia C.
2017-01-01
Incorporating movement into elementary school lessons in reading, math, and other subjects can boost students' interest and academic learning while also helping them meet recommendations for daily involvement in physical activity. In a recent study, researchers found that students in classrooms where movement was integrated into regular lessons,…
NASA Astrophysics Data System (ADS)
Behroozi, F.
2018-04-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses, the catenary equation is usually introduced as an example of hyperbolic functions or discussed as an application of the calculus of variations. We present a new derivation of the catenary equation that is suitable for introductory physics and mathematics courses.
Connecting Physics Bachelors to Their Dream Jobs
NASA Astrophysics Data System (ADS)
Bhattacharya, Shouvik
2013-01-01
People who earn bachelor’s degrees in physics are highly employable. Employers value the skills that physics bachelor’s recipients acquire and develop over their four years of a college education, such as complex problem solving, advanced mathematics, teamwork and programming. The Career Pathways Project of the American Institute of Physics (AIP) aims to better prepare physics undergraduates for the science, technology, engineering, and math (STEM) workforce. This presentation will include a discussion of common features among departments visited by the AIP’s Career Pathways team, ideas for a career workshop for physics undergraduates, and advice on how to make the most out of a job fair and how to start effective online professional networking.
Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122
Quantum Dots: An Experiment for Physical or Materials Chemistry
ERIC Educational Resources Information Center
Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.
2005-01-01
An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.
ERIC Educational Resources Information Center
Discover, 1983
1983-01-01
Highlights major accomplishments, developments, and research in the sciences during 1982, focusing on the space sciences, astronomy, medicine, biology, psychology, chemistry, physics, environment, and zoology. Includes a brief statement of the 1982 Nobel Prize winners' research in medicine, chemistry, and physics. (JN)
Working memory, math performance, and math anxiety.
Ashcraft, Mark H; Krause, Jeremy A
2007-04-01
The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.
Biology--Chemistry--Physics, Students' Guide, A Three-Year Sequence, Parts I and II.
ERIC Educational Resources Information Center
Scott, Arthur; And Others
Parts I and II of the students' guide to the three-year integrated biology, chemistry, and physics course being prepared by the Portland Project Committee are contained in this guide. A committee reviewed and selected material developed by the national course improvement groups--Physical Science Study Committee, Chemical Bond Approach, Chemical…
ERIC Educational Resources Information Center
Gaubatz, Julie
2013-01-01
Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
Female teachers' math anxiety affects girls' math achievement.
Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C
2010-02-02
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
ERIC Educational Resources Information Center
Goldwasser, M. R.; Leal, O.
1979-01-01
Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)
The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Chen, Edward C. M.; Sjoberg, Stephen L.
1980-01-01
Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)
Contrail: A Module from Physical Chemistry On-Line Project
ERIC Educational Resources Information Center
Chen, Franklin; Zielinski, Theresa Julia; Long, George
2007-01-01
The impact of contrails on Earth's climate is researched to understand the active area. It is suggested that the process of contrail formation involves combustion, cooling and ice formation, which are good comprehensive learning exercise for physical chemistry students.
1985 Employment Outlook: Undergraduate Studies.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1984
1984-01-01
Provides data (obtained from an American Chemical Society survey) on undergraduate studies in chemistry. Lists and discusses chemistry, elective chemistry, and supporting courses (such as writing and physics) considered to be important by professional chemists. Also recommends that undergraduates pursue studies in biochemistry, polymer chemistry,…
Students’ epistemic understanding of mathematical derivations in physics
NASA Astrophysics Data System (ADS)
Sirnoorkar, Amogh; Mazumdar, Anwesh; Kumar, Arvind
2017-01-01
We propose an epistemic measure of physics in terms of the ability to discriminate between the purely mathematical, physical (i.e. dependent on empirical inputs) and nominal (i.e. empty of mathematical or physical content) propositions appearing in a typical derivation in physics. The measure can be relevant in understanding the maths-physics link hurdles among college students. To illustrate the idea, we construct a tool for a familiar derivation (involving specific heats of an ideal gas), and use it for a sample of students from three different institutes. The reliability of the tool is examined. The results indicate, as intuitively expected, that epistemic clarity correlates with content clarity. Data yield several significant trends on the extent and kinds of epistemic pitfalls prevalent among physics undergraduates.
Factors that encourage females to pursue physical science careers: Testing five common hypotheses
NASA Astrophysics Data System (ADS)
Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard
2012-03-01
There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.
Blockbusters: Ideas for the Block Center.
ERIC Educational Resources Information Center
Adams, Polly K.; Nesmith, Jaynie
1996-01-01
Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…
Strategic Goals Implementation Plan V2.0
2008-01-01
newest ATARS ground station. (Sep 08) (DDR&E) 3.1.6 Take proactive steps to transition technology programs. DUSD(AS&C) • Proactive steps taken to...increases emphasis on math as gateway to physical science and engineering. • Expanded footprint of S&E education in Middle School. 3.3.4 Support
Technology Literacy: A Key to the New Basic Skills.
ERIC Educational Resources Information Center
Brown, Richard
The United States needs a vocational educational system that delivers, in an applied technological setting, the new basic skills that industry needs, as well as a general education system that provides creative instruction in applied math, physics, and science. To be effective, technological training should encompass, along with machine-specific…
ERIC Educational Resources Information Center
Flowers, Jim; Rose, M. Annette
1998-01-01
Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)
Tense, Aspect and the Verbs of Motion.
ERIC Educational Resources Information Center
Pahomov, George S.
1979-01-01
To help students learn the imperfect and perfect aspects of Russian verbs, principles of math and physics can be utilized. This Orbit-Trajectory-Stasis method presents verbs of motion by avoiding tense, and suggests new verbal configurations for exploring both conceptual and concrete aspects. Appendices further illustrate the approach. (PMJ)
ERIC Educational Resources Information Center
Demski, Jennifer
2009-01-01
Algebra, geometry, earth science, physics--these require patience and perseverance to master. That kind of academic stamina is hard to advertise to kids nurtured on the instant engagement and gratification of modern digital technology. And there's little hope they'll be sustained by an intrinsic interest in math and science; they have to be shown…
ERIC Educational Resources Information Center
Jimenez, Bree Ann; Stanger, Carol
2017-01-01
A survey was conducted with 86 teachers across 10 states regarding their students' ease of use of physical manipulatives incorporated with implementing evidence-based early numeracy instruction. The majority of respondents indicated significant student accessibility barriers. Specifically, 75% of respondents had students with tactile defensiveness…
ERIC Educational Resources Information Center
Lee, Jihyun
2009-01-01
The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…
Success in everyday physics: The role of personality and academic variables
NASA Astrophysics Data System (ADS)
Norvilitis, Jill M.; Reid, Howard M.; Norvilitis, Bret M.
2002-05-01
Two studies examined students' intuitive physics ability and characteristics associated with physics competence. In Study 1, although many students did well on a physics quiz, more than 25% of students performed below levels predicted by chance. Better performance on the physics quiz was related to physics grades, highest level of math taken, and students' perceived scholastic competence, but was not related to a number of other hypothesized personality variables. Study 2 further explored personality and academic variables and also examined students' awareness of their own physics ability. Results indicate that the personality variables were again unrelated to ability, but narcissism may be related to subjects' estimates of knowledge. Also, academic variables and how important students think it is to understand the physical world are related to both measured and estimated physics proficiency.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.
2005-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
1988-09-01
surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular
Integrating Computational Chemistry into a Course in Classical Thermodynamics
ERIC Educational Resources Information Center
Martini, Sheridan R.; Hartzell, Cynthia J.
2015-01-01
Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…
ERIC Educational Resources Information Center
Newton, D. P.
1984-01-01
A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)
Bergwik, Staffan
2014-06-01
This essay explores the gendered lifestyle of early twentieth-century physics and chemistry and shows how that way of life was produced through linking science and home. In 1905, the Swedish physical chemist Svante Arrhenius married Maja Johansson and established a scientific household at the Nobel Institute for Physical Chemistry in Stockholm. He created a productive context for research in which ideas about marriage and family were pivotal. He also socialized in similar scientific sites abroad. This essay displays how scholars in the international community circulated the gendered lifestyle through frequent travel and by reproducing gendered behavior. Everywhere, husbands and wives were expected to perform distinct duties. Shared performances created loyalties across national divides. The essay thus situates the physical sciences at the turn of the twentieth century in a bourgeois gender ideology. Moreover, it argues that the gendered lifestyle was not external to knowledge making but, rather, foundational to laboratory life. A legitimate and culturally intelligible lifestyle produced the trust and support needed for collaboration. In addition, it enabled access to prestigious facilities for Svante Arrhenius, ultimately securing his position in international physical chemistry.
Responding to Students' Learning Preferences in Chemistry
NASA Astrophysics Data System (ADS)
Lewthwaite, Brian; Wiebe, Rick
2014-04-01
This paper reports on a teacher's and his students' responsiveness to a new tetrahedral-oriented (Mahaffy in J Chem Educ 83(1):49-55, 2006) curriculum requiring more discursive classroom practices in the teaching of chemistry. In this instrumental case study, we identify the intentions of this learner-centered curriculum and a teacher's development in response to this curriculum. We also explore the tensions this teacher experiences as students subsequently respond to his adjusted teaching. We use a Chemistry Teacher Inventory (Lewthwaite and Wiebe in Res Sci Educ 40(11):667-689, 2011; Lewthwaite and Wiebe in Can J Math Sci Technol Educ 12(1):36-61, 2012; Lewthwaite in Chem Educ Res Pract. doi:10.1039/C3RP00122A, 2014) to assist the teacher in monitoring how he teaches and how he would like to improve his teaching. We also use a student form of the instrument, the Chemistry Classroom Inventory and Classroom Observation Protocol (Lewthwaite and Wiebe 2011) to verify the teacher's teaching and perception of student preferences for his teaching especially in terms of the discursive processes the curriculum encourages. By so doing, the teacher is able to use both sets of data as a foundation for critical reflection and work towards resolution of the incongruence in data arising from students' preferred learning orientations and his teaching aspirations. Implications of this study in regards to the authority of students' voice in triggering teachers' pedagogical change and the adjustments in `teachering' and `studenting' required by such curricula are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Grout, Ray W
This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less
Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L
2016-01-01
Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Principals in Partnership with Math Coaches
ERIC Educational Resources Information Center
Grant, Catherine Miles; Davenport, Linda Ruiz
2009-01-01
One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis
2013-01-01
Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.
ERIC Educational Resources Information Center
Ståhl, Marie; Hussénius, Anita
2017-01-01
This study examined the Swedish national tests in chemistry for implicit and explicit values. The chemistry subject is understudied compared to biology and physics and students view chemistry as their least interesting science subject. The Swedish national science assessments aim to support equitable and fair evaluation of students, to concretize…
When approximate number acuity predicts math performance: The moderating role of math anxiety
Libertus, Melissa E.
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939
Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago
2017-12-01
Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Braham, Emily J; Libertus, Melissa E
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
Mineral Physics Research on Earth's Core and UTeach Outreach Activities at UT Austin
NASA Astrophysics Data System (ADS)
Lin, J.; Wheat, A. J.
2011-12-01
Comprehension of the alloying effects of major candidate light elements on the phase diagram and elasticity of iron addresses pressing issues on the composition, thermal structures, and seismic features of the Earth's core. Integrating this mineral physics research with the educational objectives of the CAREER award was facilitated by collaboration with the University of Texas at Austin's premier teaching program, UTeach. The UTeach summer outreach program hosts three one-week summer camps every year exposing K-12th graders to university level academia, emphasizing math and science initiatives and research. Each week of the camp either focuses on math, chemistry, or geology. Many of the students were underrepresented minorities and some required simultaneous translation; this is an effect of the demographics of the region, and caused some language barrier challenges. The students' opportunity to see first-hand what it is like to be on a university campus, as well as being in a research environment, such as the mineral physics lab, helps them to visualize themselves in academia in the future. A collection of displayable materials with information about deep-Earth research were made available to participating students and teachers to disseminate accurate scientific knowledge and enthusiasm. These items included a diamond anvil cell and diagrams of the diamond crystal structure, the layers of the Earth, and the phases of carbon to show that one element can have very different physical properties purely based on differences in structure. The students learned how advanced X-ray and optical laser spectroscopies are used to study properties of planetary materials in the diamond anvil cell. Stress was greatly placed on the basic mathematical relationship between force, area, and pressure, the fundamental principle involved with diamond anvil cell research. Undergraduate researchers from the lab participated in the presentations and hands-on experiments, and answered any questions the young students had about college life and studies. Outreach benefits include effective and organized collaborations with the UTeach program, which prepares undergraduates at UT-Austin to teach secondary science courses, as well as positive connections made with Austin-area science teachers, providing them with alternative knowledge and experience to share with their students in the classroom. The CAREER award offers an excellent venue to connect the PI's research and educational activities, and has made constructive impacts on the PI's career development and on his continuation in this frontier research. The students who visited the lab wrote thank you cards, some expressing great interest in being scientists, geophysicists, and chemical engineers, as well as drawings of diamond anvil cells and the pressure/area relationship, showing excellent comprehension of the subject matter. Program improvements may lie in also outreaching to teachers to create stronger relationships in an effort to enrich curricula and keep students aware of research and degree options as the time to enter college nears.
Delayed Reaction: The Tardy Embrace of Physical Organic Chemistry by the German Chemical Community.
Weininger, Stephen J
2018-02-01
The emergence of physical organic chemistry, which focuses on the mechanisms and structures of organic reactions and molecules using the tools of physical chemistry, was a major development in twentieth-century chemistry. It first flourished in the interwar period, in the UK and then in the US. Germany, by contrast, did not embrace the field until almost a half century later. The great success of classical organic chemistry, especially in synthesis, encouraged indifference to the new field among German chemists, as did their inductivist research philosophy, as enunciated by Walter Hückel's ground-breaking textbook (1931). This author also resisted new concepts and representations, especially those of the American theoretician, Linus Pauling. The arrival of the Nazi regime reinforced such resistance. Postwar conditions initiated a reaction against this conservative, nationalistic attitude, especially in the American Occupation Zone. Exposure to American textbooks and visiting lecturers influenced attitudes of younger chemists. The accompanying shift towards a more explanatory, less hierarchical mode of pedagogy was consonant with larger social and political developments.
IN MY OPINION: Taking part matters
NASA Astrophysics Data System (ADS)
Stone, Christine
2000-09-01
For a week last July, the University of Leicester played host to the 31st International Physics Olympiad. Sixty-three countries sent teams of five students, accompanied by two Leaders who were professors or teachers. The students faced two five-hour exams, one theory and one practical, woven into a week of visits and fun. The International Physics Olympiad has been held since 1967. The idea originated at a conference of the Czechoslovak Physical Society in Prague and the first competition was in Warsaw with teams from Bulgaria, Czechoslovakia, Hungary, Poland and Romania participating. The competition has grown in size and scope over the decades, and in 1991 it was awarded the medal of the International Commission on Physics Education. The citation reads `the International Physics Olympiad has become an achievement of world wide impact, and physics educators from various countries around the world have attested to the strong influence it has had in stimulating interests in physics among both students and teachers in their countries'. The British Physics Olympiad team was chosen from Year 13 students who had come through the selection procedure. Schools are invited to challenge their best pupils with a preliminary paper, sat and marked at school. Students gaining above a given threshold are encouraged to sit a second, three-hour paper, which is centrally marked and graded. From among the Gold-medal winners in this exam, the team of five is selected. Amid the pressures of A-levels, some practical and theory tuition is fitted in before the competition. The different countries use a variety of selection methods and coaching. The Australians managed a week of scientific and cultural education in Vienna prior to arriving at Leicester, and several teams talked of pre-competition work-camps. How much Physics can be crammed into a week? Countries that have institutions selecting pupils highly gifted in Maths and Science have a great start, as do those with the most demanding syllabuses for pre-university exams. In years gone by, some of our most gifted students happened to be taught by some of our most able teachers, and together they tackled the old Scholarship-level papers. The old O-level work gave students a solid grounding in classical mechanics, electricity and magnetism, with lots of sums on which to anchor the concepts. Those who enjoyed this aspect of the science could launch into A-level studies of Maths, Physics, Chemistry and/or Further Maths, and relish the challenges hidden in the syllabuses. Advanced level aims have changed. Mathematical elements have been played down; traditional proofs and applications may be referred to but are no longer required learning for the candidates. The modular system allows less repetitive revision and consolidation of ideas so that students are not required to immerse themselves in the subject in the same way as a generation ago. Does this matter? The `new way' hopes to attract some students into Physics and Engineering who would have been intimidated by the rigour and commitment required to do well in the old system. The single-minded student has a wealth of information available to further his or her studies and will not be limited by the dictates of any syllabus. However, without the need to meet exam requirements, many of our most able students have been deprived of the pleasure of advancing their knowledge so far at school, and must wait for a degree course to take up the story. (We should worry if many of these potential scientists get deflected from Physics.) The change in A-level targets inevitably means that the UK is slipping down the IPhO medal table, but in the Olympic tradition it is the taking part that matters. The 31st Olympiad was won by the People's Republic of China, with five gold medals out of five. Heartiest congratulations to them and to Russia, who came second with two gold, two silver and a bronze. The other gold medals went to Hungary (2), India (2), Taiwan (2), Bulgaria (1) and Switzerland (1). The UK team won two bronze medals. Who will be lucky enough to go to IPhO 2001, to be held in Turkey next summer, and will the teams include more than 13 girls? All the very able young people gathered in Leicester had a wealth of experiences beyond Physics. Friendships made may last a lifetime and, funding permitting, the UK may be lucky enough to welcome some of them back as students or graduate students. For further information on IPhO see: www.star.le.ac.uk/IPhO-2000 or contact Dr C Isenberg at Physics Laboratory, University of Kent at Canterbury, Canterbury CT2 7NR (e-mail C.Isenberg@ukc.ac.uk).
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
Measurement of math beliefs and their associations with math behaviors in college students.
Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara
2014-12-01
Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.
A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses
NASA Astrophysics Data System (ADS)
Mack, Michael Ryan
Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
The relative role of "A" level chemistry, physics and biology in the medical course.
Tomilson, R W; Clack, G B; Pettingale, K W; Anderson, J; Ryan, K C
1977-03-01
The performance of 209 students in the 2nd MBBS, first clinical year and final MBBS examinations has been compared retrospectively with their grades in chemistry, physics and biology at "A" level. The mean grade has also been determined for students from different social classes and secondary education. Significant differences in marks for biology were found between successful and not so successful students, especially in the pre-clinical part of the course. Significnat differences in marks and significant correlations were also found for physics but not to any great extent for chemistry. The relative role of these three basic sciences in the medical course is discussed. The suggestion is made that there is a need for a re-appraisal of the privleged position of chemistry and an unquestioned science requirement for entry to medical school.
A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry
ERIC Educational Resources Information Center
Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.
2017-01-01
In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…
Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress in the fields of nuclear chemistry, isolation and chemical properties of synthetic elements, chemical separation of isotopes, radiation chemistry, organic chemistry, chemistry of aquecus systems, electrochemistry of corrosion, nonaqueous systems at high temperature, and chemical physics for the year ending June 20, 1961, is reported. Separate abstracts were prepared for each topic. (M.C.G.)
A latent profile analysis of math achievement, numerosity, and math anxiety in twins
Hart, Sara A.; Logan, Jessica A.R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2015-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math. PMID:26957650
A latent profile analysis of math achievement, numerosity, and math anxiety in twins.
Hart, Sara A; Logan, Jessica A R; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A
2016-02-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math.
Ethnic Differences in Physical Fitness, Blood Pressure and Blood Chemistry in Women (AGES 20-63)
NASA Technical Reports Server (NTRS)
Ayers, G. W.; Wier, L. T.; Jackson, A. S.; Stuteville, J. E.; Keptra, Sean (Technical Monitor)
1999-01-01
This study examined the role of ethnicity on the aerobic fitness, blood pressure, and selected blood chemistry values of women. One hundred twenty-four females (mean age 41.37 +/- 9.0) were medically Examined at the NASA/Johnson Space Center occupational health clinic. Ethnic groups consisted of 23 Black (B), 18 Hispanic (H) and 83 Non-minority (NM). Each woman had a maximum Bruce treadmill stress test (RER greater than or = 1.1) and a negative ECG. Indirect calorimetry, skinfolds, self-report physical activity (NASA activity scale), seated blood pressure, and blood chemistry panel determined VO2max, percent fat, level of physical activity, blood pressure and blood chemistry values. ANOVA revealed that the groups did not differ (p greater than 0.05) in age, VO2 max, weight, percent fat, level of physical activity, total cholesterol, or HDL-C. However, significant differences (p greater than 0.05) were noted in BMI, diastolic blood pressure, and blood chemistries. BMI was 3.17 higher in H than in NM; resting diastolic pressures were 5.69 and 8.05 mmHg. lower in NM and H than in B; triglycerides were 48.07 and 37.21 mg/dl higher in H than in B and NM; hemoglobin was .814 gm/dl higher in NM than B; fasting blood sugar was 15.41 mg/dl higher in H than NM; The results of this study showed that ethnic groups differed in blood pressure and blood chemistry values but not aerobic fitness or physical activity. There was an ethnic difference in BMI but not percent fat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.
Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study
ERIC Educational Resources Information Center
Topcu, Mustafa Sami
2013-01-01
The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…
ERIC Educational Resources Information Center
Gammon, Richard H.
This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics are covered: the physical conditions in interstellar space in comparison with those of the earth, particularly in regard to gas density,…
A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Clifford, Ben; Ochiai, E. I.
1980-01-01
Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy
ERIC Educational Resources Information Center
Dionisio, Madalena S. C.; Diogo, Herminio P.; Farinha, J. P. S.; Ramos, Joaquim J. Moura
2005-01-01
A laboratory experiment for undergraduate physical chemistry courses that uses the experimental technique of dielectric relaxation spectroscopy to study molecular mobility in a crystal is proposed. An experiment provides an excellent opportunity for dealing with a wide diversity of important basic concepts in physical chemistry.
EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Eastman, Michael P.
1982-01-01
Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…
ERIC Educational Resources Information Center
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2015-01-01
The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…
NASA Astrophysics Data System (ADS)
McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.
This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.
NASA Astrophysics Data System (ADS)
Isalie, J.; Codben, Druid; Seidwinder, Gruald; Heiller, Ereich; Young, Muddlekent; Stuntley, Hugene; Siegel, L. E. E.; Deliesie, Charlatan
2014-03-01
Ageism discrimination sociological-dysfunctionality crowdlynching shames physics pretentions of intellectual honesty and ethics! Extension to other departments:philo.,psych.,geo.,maths shames claims of honest education:BU,HU,NEU,UW,SDSU,ICTP/SISSA. Defrauding overdebted students, would be ``sciences'' become alas mere séances! Witness:70 year old Edward Siegel,PhD(70) firsts:multiband Hubbard-model decades pre-``Emery'' with Rosen/Feynman[IBM Conf.Comp./Math.(86)] trendy/ hyped ``Q-computing'' in ANN AI, google search-engine Page-Brin adaption; pre-trendy nanophysics [PSS(a) 11, 45(72);Scripta Met.13,913(79)];decade-earlier GMR discoverer[JMMM 7,312(78)] pre ``Fert''-``Gruenberg'' decade-earlier acoustic-emission F =ma rediscovery in Bak/BNL-hyped SOC; FUZZYICS Aristotle SoO rediscovery eliminating jargonial-obfuscation plaguing physics via implementation of Cohen-Stewart[Collapse of Chaos:Discovering Simplicity in ``Complex'' World] called for compl-icity/ simple-xity both simultaneously automaticallybig-`data'disambiguation via HoT;AMS Joint Mtg.(02) proofs:FLT;P ≠NPBSD conj.,Riemann-hypothesis as BEC; Benford's-law inversion discovering digits = bosons; (87) Majorana-fermion & HDM discoverer in complex-quantum-statistics in fractal-dimensions; ``it's a jack-in-the-box'' universe cosmology.
NASA Astrophysics Data System (ADS)
Mikula, Brendon D.; Heckler, Andrew F.
2017-06-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.
PEOPLE IN PHYSICS: Newton's apple
NASA Astrophysics Data System (ADS)
Sandford Smith, Daniel
1997-03-01
This essay has a long history. It was triggered at university by one of my tutors describing the dispute between Robert Hooke and Isaac Newton. He conjured up an image of Newton sitting at his desk doing calculations while Hooke went down mineshafts trying to detect a change in the strength of gravity. To someone who was finding the maths content of a physics degree somewhat challenging this was a symbolic image. I believe that the story of Newton and the apple illustrates the complex nature of scientific discovery.
ERIC Educational Resources Information Center
Dika, Sandra L.; D'Amico, Mark M.
2016-01-01
Representation of diverse groups in science, technology, engineering, and mathematics (STEM) fields is a persistent concern in the United States. Although there have been some strides toward more diverse representation, significant problems of underrepresentation remain in particular STEM fields: physical sciences, engineering, math, and computer…
Taking Math Beyond Counting in Preschool: Thinking About the Same Object, Different State!
ERIC Educational Resources Information Center
Chafel, Judith A.; Olmsted, Judith
In order to help preschool children understand mathematical principles, five different learning activities designed to help them think about physical transformation or change are described. Introductory remarks focus on Piaget's concept of transformation and on various strategies teachers can use to help children consider changes in the state of…
The CERES Compendium of Career Education Infusion Activities. Grades 7-12. Revised.
ERIC Educational Resources Information Center
Ceres Unified School District, CA.
This compendium of career education activities serves as a guideline for teachers intending to infuse career education into their present activities. The eleven major subject areas are art, language arts, math, music, science, social studies, drivers education, English as a second language, health, physical education, and Spanish. Each subject…
Careers for the 70's in Heating and Air Conditioning
ERIC Educational Resources Information Center
Toner, James P.
1974-01-01
In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…
Career Education in Appalachian Maryland: Awareness. Elementary Supplemental Activities Level 1.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore. Div. of Vocational-Technical Education.
Career education activities for use in Grade 1 are presented in the document. Behavioral objectives for the following subject areas are provided: art, homemaking, language arts, math, music, physical education, resource people, science, social studies, and workshop abilities. The bulk of the document consists of eight units of activities focusing…
Career Education in Appalachian Maryland: Awareness. Elementary Supplemental Activities Level 5.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore. Div. of Vocational-Technical Education.
Career education activities for use in Grade 5 are presented in the document. Behavioral objectives for the following subject areas are provided: art, homemaking, language arts, math, music, physical education, resource people, science, social studies, and workshop abilities. The bulk of the document consists of six units of activities focusing on…
Career Education in Appalachian Maryland: Awareness. Elementary Supplemental Activities Level 3.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore. Div. of Vocational-Technical Education.
Career education activities for use in Grade 3 are presented in the document. Behavioral objectives for the following subject areas are provided: art, homemaking, language arts, math, music, physical education, resource people, science, social studies, and workshop abilities. The bulk of the document consists of seven units of activities focusing…
Career Education in Appalachian Maryland: Awareness. Elementary Supplemental Activities Level 2.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore. Div. of Vocational-Technical Education.
Career education activities for use in Grade 2 are presented in the document. Behavioral objectives for the following subject areas are provided: art, homemaking, language arts, math, music, physical education, resource people, science, social studies, and workshop abilities. The bulk of the document consists of nine units of activities focusing…
Career Education in Appalachian Maryland: Awareness. Elementary Supplemental Activities Level 4.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore. Div. of Vocational-Technical Education.
Career education activities for use in Grade 4 are presented in the document. Behavioral objectives for the following subject areas are provided: art, homemaking, language arts, math, music, physical education, resource people, science, social studies, and workshop abilities. The bulk of the document consists of six units of activities focusing on…
International Conference on Numerical Grid Generation in Computational Fluid Dynamics
1989-04-30
Joseph M. Juarez DFVLR SM -TS The Aerospace Corp. Bunsenstr-10 PO Box 92957 M5/559 D-3406 Gottingen Los Angeles CA 90009 F R Germany Klaus A. Hoffmann...Washington, D.C. 20332 Troy, NY 12180 Per Nielsen R. Raghunath Graduate Student Research Fellow Laboratory for Applied Math. Physic NOAA / AOML
Proposing a Mathematical Software Tool in Physics Secondary Education
ERIC Educational Resources Information Center
Baltzis, Konstantinos B.
2009-01-01
MathCad® is a very popular software tool for mathematical and statistical analysis in science and engineering. Its low cost, ease of use, extensive function library, and worksheet-like user interface distinguish it among other commercial packages. Its features are also well suited to educational process. The use of natural mathematical notation…
Mentoring At-Risk Middle School Students to Reduce Communication Apprehension
ERIC Educational Resources Information Center
Jones, Kevin T.; Procopio, Claire H.
2017-01-01
Research has demonstrated the efficacy of mentoring at-risk students in a number of fields from physical education to math and science. While separate research has found that many at-risk students lack effective communication skills, little research has explored the potential of communication mentoring in improving at-risk students' communication…
ERIC Educational Resources Information Center
Segal, Ayelet
2011-01-01
Can action support cognition? Can direct touch support performance? Embodied interaction involving digital devices is based on the theory of grounded cognition. Embodied interaction with gestural interfaces involves more of our senses than traditional (mouse-based) interfaces, and in particular includes direct touch and physical movement, which…
Science Modelling in Pre-Calculus: How to Make Mathematics Problems Contextually Meaningful
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-01-01
"Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum" [National Council of Teachers of Mathematics (NCTM), "Principles and Standards for School Mathematics", NCTM, Reston, VA, 2000]. Commonly used pre-calculus textbooks provide a…
Stereotyped: Investigating Gender in Introductory Science Courses
ERIC Educational Resources Information Center
Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa
2013-01-01
Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and…
Now Hear This: Using Recorded Models in the Instrumental Music Classroom
ERIC Educational Resources Information Center
Chaffin, Charles R.
2011-01-01
Most teachers agree that a demonstration can be more effective than a verbal description. Math teachers model multiplication exercises, and physical education teachers model how to throw a ball. Likewise, music teachers model correct embouchure. Modeling can help students understand music concepts that are difficult to explain verbally, and visual…
What Determines GCSE Marking Accuracy? An Exploration of Expertise among Maths and Physics Markers
ERIC Educational Resources Information Center
Suto, W. M. Irenka; Nadas, Rita
2008-01-01
Examination marking utilises a variety of cognitive processes, and from a psychological perspective, the demands that different questions place on markers will vary considerably. To what extent does marking accuracy vary among markers with differing backgrounds and experiences? More fundamentally, what makes some questions harder to mark…
Assessing Students' Proficiency in Math and Science
ERIC Educational Resources Information Center
Judd, Thomas P.; Keith, Bruce
2007-01-01
The U.S. Military Academy (USMA) at West Point is responsible for developing in its graduates literacy in the sciences that renders them capable of solving complex real-world problems. Throughout their careers as officers in the military, graduates will be called upon to view the physical world in a disciplined and objective manner, with an…
Broad & Balanced Accountability
ERIC Educational Resources Information Center
Rothstein, Richard; Jacobsen, Rebecca
2009-01-01
From the time of the Founding Fathers to the late 20th century, U.S. citizens have expected their schools to teach math and reading--and also social studies, history, science, the arts and music, character development, citizenship education, work skills, and emotional and physical health and fitness. Yet because No Child Left Behind (NCLB) and its…
Characteristics of the Navy Laboratory Warfare Center Technical Workforce
2013-09-29
Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information
Something That Works for Me. 100 Teaching Practices Used in Our Schools. Grades K-12. No. 1.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
The teaching practices presented in this manual address the following curriculum areas: language arts, art, music, guidance, physical education, special education, human relations, library skills, social studies, science, class management, math, reading, spelling, English as a second language, typing, foreign languages, humanities, English,…
An exploration of gender participation patterns in science competitions
NASA Astrophysics Data System (ADS)
Arámbula Greenfield, Teresa
This study investigated participation in a state-level science competition over most of its 35-year history. Issues examined included whether different gender patterns occurred with respect to entry rate, project topic (life science, physical science, earth science, and math), and project type (research or display). The study also examined to what extent the identified patterns reflected or contradicted nationwide patterns of girls' academic performance in science over roughly the same time period. It was found that although girls initially participated in the fair less frequently than boys, for the past 20 years their participation rate has been greater than that of boys. Examination of topic preferences over the years indicates that both girls and boys have traditionally favored life science; however, boys have been and continue to be more likely to prepare physical, earth, and math/computer science projects than girls. Another gender difference is that girls are generally less likely than boys to prepare projects based on experimental research as opposed to library research. The study provides some suggestions for teachers and teacher educators for addressing these disparities.Received: 4 February 1994; Revised: 12 January 1995;
Ideograms for Physics and Chemistry
NASA Astrophysics Data System (ADS)
García Risueño, Pablo; Syropoulos, Apostolos; Vergés, Natàlia
2016-12-01
Ideograms (symbols that represent a word or idea) have great communicative value. They refer to concepts in a simple manner, easing the understanding of related ideas. Moreover, ideograms can simplify the often cumbersome notation used in the fields of Physics and physical Chemistry. Nonetheless only a few ideograms- like and - have been defined to date. In this work we propose that the scientific community follows the example of Mathematics—as well as that of oriental languages—and bestows a more important role upon ideograms. To support this thesis we propose ideograms for essential concepts in Physics and Chemistry. They are designed to be intuitive, and their goal is to make equations easier to read and understand. Our symbols are included in a publicly available [InlineEquation not available: see fulltext.]package ( svrsymbols).
Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work
ERIC Educational Resources Information Center
Bull, Heather
2009-01-01
Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…
NASA Astrophysics Data System (ADS)
Baer, E. M.; Whittington, C.; Burn, H.
2008-12-01
The geological sciences are fundamentally quantitative. However, the diversity of students' mathematical preparation and skills makes the successful use of quantitative concepts difficult in introductory level classes. At Highline Community College, we have implemented a one-credit co-requisite course to give students supplemental instruction for quantitative skills used in the course. The course, formally titled "Quantitative Geology," nicknamed "MathPatch," runs parallel to our introductory Physical Geology course. MathPatch teaches the quantitative skills required for the geology class right before they are needed. Thus, students learn only the skills they need and are given opportunities to apply them immediately. Topics include complex-graph reading, unit conversions, large numbers, scientific notation, scale and measurement, estimation, powers of 10, and other fundamental mathematical concepts used in basic geological concepts. Use of this course over the past 8 years has successfully accomplished the goals of increasing students' quantitative skills, success and retention. Students master the quantitative skills to a greater extent than before the course was implemented, and less time is spent covering basic quantitative skills in the classroom. Because the course supports the use of quantitative skills, the large number of faculty that teach Geology 101 are more comfortable in using quantitative analysis, and indeed see it as an expectation of the course at Highline. Also significant, retention in the geology course has increased substantially, from 75% to 85%. Although successful, challenges persist with requiring MathPatch as a supplementary course. One, we have seen enrollments decrease in Geology 101, which may be the result of adding this co-requisite. Students resist mandatory enrollment in the course, although they are not good at evaluating their own need for the course. The logistics utilizing MathPatch in an evening class with fewer and longer class meetings has been challenging. Finally, in order to better serve our students' needs, we began to offer on-line sections of MathPatch; this mode of instruction is not as clearly effective, although it is very popular. Through the new The Math You Need project, we hope to improve the effectiveness of the on-line instruction so it can provide comparable results to the face-to-face sections of this class.
A Physical Chemistry Experiment in Polymer Crystallization Kinetics
ERIC Educational Resources Information Center
Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.
2012-01-01
A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…
75 FR 18784 - FY 2010 NIST Center for Neutron Research (NCNR) Comprehensive Grants Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... extensive publications and invited lectures in condensed matter physics, chemistry, material science... science, particularly in the areas of macromolecular science, condensed matter physics, and chemistry (20... these topics must be in compliance with any statutory requirements imposed upon the Department of Health...