ERIC Educational Resources Information Center
Moomaw, Sally; Davis, Jaumall A.
2010-01-01
Math and science and the related technology and engineering are natural pairings. These four disciplines form the acronym STEM (Science, Technology, Engineering, and Math) and can be readily combined into an integrated curriculum for early childhood classrooms. Many educators believe that children learn best when disciplines are interconnected. An…
ERIC Educational Resources Information Center
Khatri, Daryao
2011-01-01
Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences. This…
Co-Teaching Math Content and Math Pedagogy for Elementary Pre-Service Teachers: A Pilot Study
ERIC Educational Resources Information Center
Ford, Pari; Strawhecker, Jane
2011-01-01
With a national need to improve Science, Technology, Engineering and Mathematics Education (STEM), elementary pre-service teachers must be provided with ample opportunities to increase their own knowledge and confidence in STEM disciplines. This article describes a Math Block experience developed for a special population of non-traditional…
ERIC Educational Resources Information Center
Lee, Ahlam
2014-01-01
Many science, technology, engineering and math (STEM) studies have focused on issues related to underrepresented groups' participation in STEM disciplines. Most of these studies have targeted women and individuals from racial minorities as the underrepresented groups of interest, while little attention has been paid to people with disabilities.…
ERIC Educational Resources Information Center
Lee, Ahlam
2017-01-01
Background/Context: Because of the growing concern over the decline of bachelor degree recipients in the disciplines of science, technology, engineering, and math (STEM) in the U.S., several studies have been devoted to identifying the factors that affect students' STEM major choices. A majority of these studies have focused on factors relevant to…
ERIC Educational Resources Information Center
Lee, Ahlam
2015-01-01
Among the disciplines of science, technology, engineering, and math (STEM), much attention has been paid to the influences of math- and science-related learning contexts on students' STEM major selection. However, the technology and engineering learning contexts that are linked to STEM major selection have been overlooked. In response, a…
ERIC Educational Resources Information Center
Ghanbari, Sheena
2015-01-01
There has been some debate and research that suggests the arts are well-suited to be combined with science, technology, engineering, and math disciplines making the STEM acronym STEAM. STEM education is an educational and political priority in the United States and is valued as a means of strengthening national security and ensuring global…
ERIC Educational Resources Information Center
DeJarnette, Nancy K.
2012-01-01
Recent attention has been brought to light in the United States regarding low numbers of students pursing STEM (Science, Technology, Engineering and Math) disciplines and degree programs (National Science Board, 2010). There is a great need in America for talented scientists and engineers. Numerous programs abound for high school and middle school…
Effects of everyday romantic goal pursuit on women's attitudes toward math and science.
Park, Lora E; Young, Ariana F; Troisi, Jordan D; Pinkus, Rebecca T
2011-09-01
The present research examined the impact of everyday romantic goal strivings on women's attitudes toward science, technology, engineering, and math (STEM). It was hypothesized that women may distance themselves from STEM when the goal to be romantically desirable is activated because pursuing intelligence goals in masculine domains (i.e., STEM) conflicts with pursuing romantic goals associated with traditional romantic scripts and gender norms. Consistent with hypotheses, women, but not men, who viewed images (Study 1) or overheard conversations (Studies 2a-2b) related to romantic goals reported less positive attitudes toward STEM and less preference for majoring in math/science compared to other disciplines. On days when women pursued romantic goals, the more romantic activities they engaged in and the more desirable they felt, but the fewer math activities they engaged in. Furthermore, women's previous day romantic goal strivings predicted feeling more desirable but being less invested in math on the following day (Study 3).
Integrated STEM in secondary education: A case study
NASA Astrophysics Data System (ADS)
De Meester, Jolien; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet; Dehaene, Wim
2016-05-01
Despite many opportunities to study STEM (Science, Technology, Engineering & Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils' interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school's teachers and a STEM education research group of the University of Leuven. To examine the pupils' attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils' interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils' understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.
The STEM Lecture Hall: A Study of Effective Instructional Practices for Diverse Learners
ERIC Educational Resources Information Center
Reimer, Lynn Christine
2017-01-01
First-generation, low-income, underrepresented minority (URM) and female undergraduates are matriculating into science, technology, engineering, and math (STEM) majors at unprecedented levels. However, a disproportionate number of these students end up graduating in non-STEM disciplines. Attrition rates have been observed to spike in conjunction…
ERIC Educational Resources Information Center
US Commission on Civil Rights, 2010
2010-01-01
The Commission held a briefing entitled, "Encouraging Minority Students to Pursue Science, Technology, Engineering and Math Careers." In particular, the Commission examined why minority college students who begin their college studies intending to major in science, technology, engineering or math (STEM) leave these disciplines in disproportionate…
Fueling Interest in Science: An After-School Program Model that Works
ERIC Educational Resources Information Center
Koenig, Kathleen; Hanson, Margaret
2008-01-01
As our society becomes more technologically advanced and jobs require additional related skills, it is important that all girls, not just those interested in science, technology, engineering, and math (commonly referred to as the STEM disciplines), take advanced levels of science and math in high school. Evidence suggests that intervention…
Impact of Instructor Teaching Style and Content Course on Mathematics Anxiety of Preservice Teachers
ERIC Educational Resources Information Center
Van der Sandt, Suriza; O'Brien, Steve
2017-01-01
Integrative-STEM methodologies entail integrating multiple disciplines with active design-centric teaching and learning methods. If math anxiety is prevalent, for teachers or students, then both the level of integration and design thinking may be limited. This quantitative study of 160 preservice teachers investigated how math anxiety was impacted…
Advancing STEM Learning across the Educational Pipeline: Statewide Efforts in Ohio. Issue Brief
ERIC Educational Resources Information Center
American Youth Policy Forum, 2009
2009-01-01
This issue brief is focused on state efforts to improve education in science, technology, engineering, and math--collectively known as the "STEM" disciplines. The brief is largely based on a March, 2009 American Youth Policy Forum (AYPF) field trip to Columbus and Dayton, Ohio, and describes Ohio's success in advancing STEM education…
A Multicontextual Model for Broadening Participation in STEM Related Disciplines
ERIC Educational Resources Information Center
Brown, Edward E., Jr.
2011-01-01
This paper argues that the "pipeline", leading to the production and increase of undergraduate engineering and STEM (science, technology, engineering and math) related degrees by underrepresented student populations (which include female and AALANA (African American, Latin American and Native American) students), has become more of a "funnel".…
ERIC Educational Resources Information Center
Comella, Bonnie E.
2012-01-01
Over the past 20 years, many colleges and universities have developed diversity support programs aimed at improving underrepresented minority student success in undergraduate science, technology, engineering, and math (STEM) disciplines. Developing such programs is important for facilitating higher minority-graduation rates in STEM and broadening…
Adolescents' and Emerging Adults' Implicit Attitudes about STEM Careers: "Science Is Not Creative"
ERIC Educational Resources Information Center
Valenti, S. S.; Masnick, A. M.; Cox, B. D.; Osman, C. J.
2016-01-01
Although interest in science and math is often high in the elementary grades, interest in choosing science and math careers drops off beginning in junior high school for both genders, but especially for girls. By high school, a shift towards increased rigor is often accompanied by a lack of creativity in the way that scientific disciplines are…
The Blue Blazer Club: Masculine Hegemony in Science, Technology, Engineering, and Math Fields
ERIC Educational Resources Information Center
Page, Melanie C.; Bailey, Lucy E.; Van Delinder, Jean
2009-01-01
The under-representation of women in Science, Technology, Engineering, and Math (STEM) fields is of continuing concern, as is the lack of women in senior positions and leadership roles. During a time of increasing demand for science and engineering enterprise, the lack of women and minorities in these academic disciplines needs to be addressed by…
ERIC Educational Resources Information Center
Rhodes, Ashley; Rozell, Tim; Shroyer, Gail
2014-01-01
Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…
Re-enJEANeering STEM Education: Math Options Summer Camp
ERIC Educational Resources Information Center
Dave, Vibhuti; Blasko, Dawn; Holliday-Darr, Kathryn; Kremer, Jennifer Trich; Edwards, Robert; Ford, Melanie; Lenhardt, Lucy; Hido, Barbara
2010-01-01
Although the number of women majoring in engineering and engineering technology has increased in the last few decades, percentages lag behind those in other STEM disciplines. Young women often have misperceptions about the nature of engineering, and that leads to lack of interest. Engineering is often seen as men's work. They do not understand how…
ERIC Educational Resources Information Center
Eddy, Sarah L.; Brownell, Sara E.
2016-01-01
This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…
ERIC Educational Resources Information Center
Smith, Mary L.
2017-01-01
The purpose of this study was to examine undergraduate students majoring in science, technology, engineering, and math disciplines perception of traits an ideal mentor should possess, and to determine if these traits had positive results on their identification with science. With a large number of workers in STEM disciplines retiring, there is a…
Video games: a route to large-scale STEM education?
Mayo, Merrilea J
2009-01-02
Video games have enormous mass appeal, reaching audiences in the hundreds of thousands to millions. They also embed many pedagogical practices known to be effective in other environments. This article reviews the sparse but encouraging data on learning outcomes for video games in science, technology, engineering, and math (STEM) disciplines, then reviews the infrastructural obstacles to wider adoption of this new medium.
Improving Representational Competence with Concrete Models
ERIC Educational Resources Information Center
Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane
2016-01-01
Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…
77 FR 69505 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... application forms, parental consent forms, and pre and post parent/student surveys. Surveys are designed to... programs are designed to engage underrepresented rising 5th-8th grade students in a one-on-one virtual... mentoring opportunities in science, technology, engineering, and math (STEM) disciplines for female students...
ERIC Educational Resources Information Center
King, Michael D.
2012-01-01
Much current debate in 21st century education centers on the relevance of the humanities because of the emphasis on science, technology, engineering, and math (STEM) disciplines and their role in workforce preparation. For the educators the question becomes, What can the humanities offer students in the 21st century? This is the generation that…
Teaching Cell and Molecular Biology for Gender Equity
ERIC Educational Resources Information Center
Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel
2006-01-01
Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…
Research Ethics Education in the STEM Disciplines: The Promises and Challenges of a Gaming Approach.
Briggle, Adam; Holbrook, J Britt; Oppong, Joseph; Hoffmann, Joesph; Larsen, Elizabeth K; Pluscht, Patrick
2016-02-01
While education in ethics and the responsible conduct of research (RCR) is widely acknowledged as an essential component of graduate education, particularly in the STEM disciplines (science, technology, engineering, and math), little consensus exists on how best to accomplish this goal. Recent years have witnessed a turn toward the use of games in this context. Drawing from two NSF-funded grants (one completed and one on-going), this paper takes a critical look at the use of games in ethics and RCR education. It does so by: (a) setting the development of research and engineering ethics games in wider historical and theoretical contexts, which highlights their promise to solve important pedagogical problems; (b) reporting on some initial results from our own efforts to develop a game; and (c) reflecting on the challenges that arise in using games for ethics education. In our discussion of the challenges, we draw out lessons to improve this nascent approach to ethics education in the STEM disciplines .
An Elementary Approach to Teaching Wind Power
ERIC Educational Resources Information Center
Love, Tyler S.; Strimel, Greg
2013-01-01
Exposing students to the application of math and science through a design-based activity can make them more technologically literate and teach integration between the STEM disciplines at an early age. This article discusses an activity that originated as a portion of a green residential house project conducted by the authors with their high school…
Changing the Scholarly Sources Landscape with Geomorphology Undergraduate Students
ERIC Educational Resources Information Center
Blackburn, Heidi; Dere, Ashlee
2016-01-01
Science is a core discipline in academia yet the focus of most undergraduate technical writing is generally on the data and results, not the literature review. The Science, Technology, Engineering, and Math (STEM) librarian and a new geology professor at the University of Nebraska at Omaha (UNO) collaborated to develop an information literacy…
The Virtual Counseling Center: Its Niche, Resources, and Ongoing Research and Development Activity
ERIC Educational Resources Information Center
Horan, John J.
2010-01-01
Thomas Friedman's best sellers have raised awareness of our nation's need to remain competitive in science, technology, engineering, and math (STEM) disciplines. However, advances in these fields cannot occur without the proper cultivation of human potential. The usual costs of career assessment and planning systems preclude their scalability to…
Do We Need Remedial College Math Courses?
NASA Astrophysics Data System (ADS)
Hughes, Anne O.; Khatri, D.
2006-12-01
Entering college freshmen, in increasing numbers, in practically every public institution of higher learning are in need of one or two remedial math courses. This is particularly a big problem at the Historically Black Colleges and Universities where a large number of remedial math course sections are offered to meet the growing demand for such courses. For most of these students, graduation is delayed by at least a year. In addition, these students continue to be taught by teaching methodologies that did not work for them even in high schools resulting in disgust and hatred for math. This situation makes entry for these students into STEM areas difficult and is the perfect recipe for failure in STEM disciplines if they enroll in college level courses. The University of the District of Columbia (UDC) is no exception. A first attempt was made in summer 2006 to remedy this situation. The problem for this exploratory research study was to ascertain if a short, intensive six-week project in basic math and introductory algebra would produce a recognizable improvement in the math performance of entering UDC freshmen students as measured by the UDC math placement test. The results are eye opening. On the pre-test for basic math (005), the mean score for the group (N=10) was 35.6, with the passing score being 70. On the post-test, the mean increased to 63.4 showing an improvement of 78 percent. The authors will present the results of this research study at the conference
ERIC Educational Resources Information Center
Schnittka, Jessica; Schnittka, Christine
2016-01-01
The 21st century has brought an increasing demand for expertise in science, technology, engineering, and math (STEM). Although strides have been made towards increasing gender diversity in several of these disciplines, engineering remains primarily male dominated. In response, the U.S. educational system has attempted to make engineering…
ERIC Educational Resources Information Center
Gottfried, Michael; Estrada, Fernando; Sublett, Cameron
2015-01-01
Sexual minority students such as those identifying as lesbian, gay, or bisexual, as well as those identifying with emerging self-labels (e.g., queer) face a host of risk factors in high school that can potentially compromise educational excellence, particularly in rigorous academic disciplines. The current study advances the area of diversity…
ERIC Educational Resources Information Center
Diederich, Kirsten Bakke
2010-01-01
In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that…
NASA Astrophysics Data System (ADS)
Eddy, Sarah L.; Brownell, Sara E.
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college STEM on measures that have been correlated with retention. These include disparities in academic performance, engagement, self-efficacy, belonging, and identity. We argue that observable factors such as persistence, performance, and engagement can inform researchers about what populations are disadvantaged in a STEM classroom or program, but we need to measure underlying mechanisms to understand how these inequalities arise. We present a framework that helps connect larger sociocultural factors, including stereotypes and gendered socialization, to student affect and observable behaviors in STEM contexts. We highlight four mechanisms that demonstrate how sociocultural factors could impact women in STEM classrooms and majors. We end with a set of recommendations for how we can more holistically evaluate the experiences of women in STEM to help mitigate the underlying inequities instead of applying a quick fix.
Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.
Lauer, Jillian E; Lourenco, Stella F
2016-10-01
Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.
Using Game Development to Engage Students in Science and Technology
NASA Technical Reports Server (NTRS)
Wiacek, John
2011-01-01
Game design workshops, camps and activities engage K-12 students In STEM disciplines that use game engine and development tools. Game development will have students create games and simulations that Will inspire them to love technology while learning math, physics, and,logic. By using tools such as Gamemaker, Alice, Unity, Gamesalad and others, students will get a sense of confidence and accomplishment creating games and simulations.
NASA Astrophysics Data System (ADS)
Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar
2017-08-01
This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.
Woodward, Elliott; Lai, Yvonne; Egun, Christyanna; Fitzsimons, Michael G
2018-04-01
The field of medicine is built upon science, technology, engineering, and math (STEM), yet the United States is rapidly falling behind when it comes to educating the next generation in these disciplines, especially under-represented populations. The authors reflect on existing educational literature surrounding efforts to promote interest in STEM among students and under-represented populations. The authors advocate for greater efforts toward the development of youth programing. Cardiac anesthesia is uniquely positioned as a subspecialty to advance the goal of promoting interest in STEM in diverse groups of young students. The authors describe their development and implementation of a community outreach program to enhance interest in medicine through a cardiac dissection experience. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kincaid, Shannon D.
Women have historically been underrepresented in the fields of science, technology, engineering, and math (STEM fields). The underrepresentation of women in STEM may be attributable to a variety of factors. These may include different choices men and women typically make in response to incentives in STEM education. For example, STEM career paths may be less accommodating to people who are less resilient. Another factor may be that there are relatively few female STEM role models. Perhaps strong gender stereotypes discourage women from pursuing STEM education and STEM jobs. The factors that contribute to success and the barriers that impeded success must be identified before any steps can be taken to improve the educational outcomes for women in STEM disciplines. Consequently, relatively little is known about the role of resilience in academically successful adult women in rural community colleges enrolled in STEM disciplines and the mechanisms that underlie the performance deficits that occur as a result of stereotype threat effect. This mixed method study addressed those knowledge gaps by determining: (1) if high resilience is positively correlated to high grade point average for women enrolled in STEM disciplines in rural community colleges in North Carolina, and (2) if stereotype threat effect is a risk factor for these women. Quantitative data were collected by using "The Resilience Scale" (Wagnild & Young, 1987) and through examination of grade point average of students from Datatel data management software. Qualitative data were collected through semi-structured focus group interviews. Findings from this study indicate high resilience is positively correlated to high grade point average for women enrolled in STEM disciplines in rural community colleges in North Carolina, and stereotype threat effect was a risk factor for low-scoring women (i.e. those women who reported resilience scores less than 121 and grade point averages lower than 2.70) and was not a risk factor for high-scoring women (i.e. those women who reported resilience scores of 147 or higher and grade point averages of 2.70 or higher). Overall, qualitative data analysis revealed both high-scoring and low-scoring women in STEM disciplines were affected by stereotype threat effect. However, low-scoring women were negatively impacted by stereotype threat and high-scoring women were able to use pressures associated with stereotype threat as motivation for success. Based on results from this study four principal factors were found that influence the success of women in STEM disciplines. These factors include elimination of stereotype threat, enhancement of resilience of female students, expansion of female gender representation on community college campuses, and development of positive instructor-student and advisor-student relationships. While this study does not, and cannot, explain why gender differences in STEM exist, it does provide data and insight that will enable more informed policymaking for community college administrators in order to increase success of women in STEM disciplines. The findings provide definitive evidence of a need to encourage and support women in STEM education with a goal of gender parity.
NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.
NASA Astrophysics Data System (ADS)
Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.
2013-04-01
Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students' motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women's underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices. PMID:25741292
Geography literation to improve spatial intelligence of high school student
NASA Astrophysics Data System (ADS)
Utami, WS; Zain, IM
2018-01-01
Spatial intelligence is deeply related to success in the STEM disciplines (science,technology, engineering, and math). spatial intelligence as a transversal capacity which is useful for everyday life but which cannot be characterized in any specific and distinctive way, as are, for example, linguistic or mathematical ability. The ability of geographical literacy relates to spatial intelligence. test results prove that the ability of high-liter geography of high school students found in students who have a good spatial intelligence score
ERIC Educational Resources Information Center
Hübner, Nicolas; Wille, Eike; Cambria, Jenna; Oschatz, Kerstin; Nagengast, Benjamin; Trautwein, Ulrich
2017-01-01
Math achievement, math self-concept, and vocational interests are critical predictors of STEM careers and are closely linked to high school coursework. Young women are less likely to choose advanced math courses in high school, and encouraging young women to enroll in advanced math courses may therefore bring more women into STEM careers. We…
NASA Astrophysics Data System (ADS)
Figueroa, Tanya
Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on intergroup dynamics and limited the opportunities for learning among URM students. Interestingly, students describe peer dynamics that occasionally suggest racial undertones in interactions; however, many students were unaware of implications on their training experiences or were simply uncomfortable naming racism. Prevailing racial stereotypes even impacted students trained in welcoming and culturally respectful programs. The study expands studies on URM graduate students, socialization theory, and formal and informal structures in programs that can assure success in graduate school.
NASA Astrophysics Data System (ADS)
Michelsen, R. R. H.; Dominguez, R.; Marchetti, A. H.
2017-12-01
The Commonwealth of Virginia has a significant and growing Latinx population, however this population is underrepresented in the Science, Technology, Engineering, and Mathematics (STEM) workforce. Hispanic American participation in STEM degrees is low, making up only 4.5% of all Geoscience Bachelor's degrees in 2008. This student population faces challenges including a high poverty rate, lack of family members or mentors who have attended college, and lack of placement in or availability of advanced high school science and math courses. Latina girls face additional challenges such as family responsibilities and overcoming stereotypes about science and math abilities. We have developed a program that is designed to recruit Latina high schoolers, expose them to and engage them in STEM disciplines, and facilitate their matriculation into college. There are two components: a multi-year, week-long summer residential program at Randolph-Macon College (RMC), where the participants live and work together, and special events at our partners during the school year. The residential program consists of science and technology activities with RMC faculty, such as field work focusing on hydrology and space science laboratories. Students also travel to non-profit partners such as the Lewis Ginter Botanical Gardens and connect with Latinx scientists and engineers at local corporate partners such as WestRock, a paper/cardboard packaging company. The girls will return next summer for more in-depth research experiences and receive a college scholarship upon their completion of the program. During the school year, there will be monthly activities at our non-profit partners to keep the girls engaged and strengthen relationships in the cohort. Strengths of our program include 1) attention to engaging high schoolers' families with targeted programming for them on campus the first day of the program, 2) providing all materials in Spanish as well as English, and 3) a team consisting of academic, non-profit, and Fortune-500 corporate stakeholders. Here we report the successes of the first summer program as well as the attitudes of the participants towards STEM before and after the program.
ERIC Educational Resources Information Center
Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.
2015-01-01
Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…
NASA Astrophysics Data System (ADS)
Rodriguez Flecha, Samuel
The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students' career choice, future directions and recommendations are provided. In sum, positive experiences in STEM can favorably contribute to students' sense of competence and satisfaction.
ERIC Educational Resources Information Center
Deacon, Mary M.
2011-01-01
Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…
Math Machines: Using Actuators in Physics Classes
NASA Astrophysics Data System (ADS)
Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta
2018-01-01
Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.
Degol, Jessica L; Wang, Ming-Te; Zhang, Ya; Allerton, Julie
2018-05-01
Despite efforts to increase female representation in science, technology, engineering, and mathematics (STEM), females continue to be less motivated to pursue STEM careers than males. A short-term longitudinal study used a sample of 1449 high school students (grades 9-12; 49% females) to examine pathways from gender and mindset onto STEM outcomes via motivational beliefs (i.e., expectancy beliefs, task value, and cost). Mindset, motivational beliefs, and STEM career aspirations were assessed between the fall and winter months of the 2014-2015 school year and math grades were obtained at the conclusion of the same year. Student growth mindset beliefs predicted higher task values in math. Task values also mediated the pathway from a growth mindset to higher STEM career aspirations. Expectancy beliefs mediated the pathway between gender and math achievement. This mediated pathway was stronger for females than for males, such that females had higher math achievement than males when they endorsed a growth mindset. Findings suggest possible avenues for improving female's interest in STEM.
NASA Astrophysics Data System (ADS)
O'brien-gayes, P. T.
2012-12-01
The City of North Myrtle Beach SC has erected three small-scale wind turbines for educational purposes. These turbines are tied directly into the local power grid. This allows for a unique study opportunity through which to teach renewable energy strategies. The study focuses on inter-site variability spread out over four miles of beach. Each location is subject to different wind fields responding to local structures. The study focuses on inter-site variability to cross reference energy production with the wind and weather conditions. Public and K-12 outreach is a primary objective of the program. Using demonstration turbines and by analyzing the wind, weather and site conditions outreach efforts are focused on highlighting renewable energy concepts. This also allows focus on STEM disciplines and critical thinking in analyzing data to compare the sites and different turbine production. Engaging in the STEM disciplines the projects crosses over science, technology, engineering, and mathematical boundaries creating an interdisciplinary scientific experience for students. In addition, this allows for introduction of techniques and developing technologies. It also allows students to consider challenges and possible solutions to issues of increased power production and cost efficiency. Through connecting the touchstone of experiential learning; a hands-on experience actively engages students in experimental application and problem solving. By looking locally at renewable energy in Horry County South Carolina students are engaged in seeing how projects impact science and economic development in the region. The Congressional Research Service (CRS) Report for Congress reports a considerable need expand and enhance the o preparation of students, teachers and practitioners in the areas of science, technology, engineering and mathematics. "When compared to other nations, the math and science achievement of U.S. pupils and the rates of STEM degree attainment appear inconsistent with a nation considered the world leader in scientific innovation. …The U.S. ranked 28th in math literacy and 24th in science literacy. This is a national and state level issue particularly in historically economically depressed areas. The program is developing content and supporting materials for select regional schools to facilitate the awareness of renewable energy fields and need for a wide range of technical and other disciplinary expertise to accelerate the development of the "green economy". Bringing this technology and program into the classroom is a valuable resource for local schools. It helps link public, K-12, university, regional economic development interests towards a common and interdisciplinary goal of increasing need for our society and environment. Experiential education has been found to be a key factor in creating student experiences that inspire students to pursue in traditionally difficult courses. Combining information in the STEM disciplines through renewable energy applications helps support efforts to address future needs and professional development.
Use of The Math You Need When You Need It website outside of introductory geoscience courses
NASA Astrophysics Data System (ADS)
Baer, E. M.; Wenner, J. M.
2011-12-01
Web usage statistics and a recent survey of visitors to The Math You Need, When You Need It (TMYN) suggest that these web resources serve a significant number of students beyond those for whom they were originally intended. The web-based modules of TMYN are asynchronous online resources designed to help undergraduates learn quantitative concepts essential in a concurrent introductory geoscience course. In the past year, approximately 1,000 students accessed TMYN through associated geoscience courses; however, in that same time period,more than 40 times that number interacted significantly with the site according to Google Analytics. Of the nearly 220,000 total visitors, ~15% stayed on the site for longer than one minute and ~20% visited two or more pages within the site, suggesting that the content is engaging and useful to many of the visitors. In a pop-up survey of users, 81% of the nearly 350 respondents reported that they found what they were looking for. Although the nature of TMYN website users is difficult to discern definitively, daily, weekly and monthly use patterns indicate a predominance of academic users. Access to the site is lowest during the summer months and on Friday and Saturday, and is elevated on Sunday through Thursdays. Furthermore, in a pop-up survey of users who accessed more than one page, greater than half (56%) of the 346 respondents were students, 20% collegiate faculty and 9% K-12 teachers. Although the resources are specifically designed for geoscience students, 61% of survey respondents identified themselves as associated with other STEM disciplines. Thus, despite the decidedly geoscientific slant to these resources, survey data suggest that many STEM students and teachers are searching for the kinds of topics covered by TMYN. Furthermore, web use statistics indicate a substantial need for high quality web-based quantitative skill support materials for all STEM disciplines.
Retention in STEM: Understanding the Effectiveness of Science Posse
NASA Astrophysics Data System (ADS)
Godsoe, Kimberly
One of the major areas of debate in higher education is how to best support underrepresented racial minority students in their study of Science, Technology, Engineering, and Math. In 2008, Brandeis University began a new program in conjunction with the Posse Foundation for students interested in studying science at the college-level. The research used a mixed methods design. A detailed quantitative analysis was conducted to understand how being part of Science Posse impacted the probability of doing well in initial science classes, influenced perceptions of the difficulty of studying science, and predicted the probability of majoring in STEM at Brandeis. The qualitative data was drawn from 89 student interviews, including 38 Science Posse Scholars, 24 students from backgrounds similar to the Scholars, and 25 students from well-resourced families. The qualitative analysis demonstrated how students had been exposed to the sciences prior to enrollment, how they navigated the sciences at Brandeis, and how they demonstrated resilience when science becomes challenging. This research study had four key findings. The first was in the quantitative analysis which demonstrated that Science Posse Scholars experience strong feelings of doubt about their academic abilities; based on previous research, this should have resulted in their not declaring majors in STEM disciplines. Instead, Science Posse Scholars were more likely to earn a B+ or above in their entry level science courses and declare a major in a STEM discipline, even when factors such as math and verbal SAT scores were included in the analysis. The second finding was in the qualitative analysis, which demonstrated that the cohort model in which Science Posse Scholars participate was instrumental to their success. The third finding was that students who attended academically less rigorous high schools could succeed in the sciences at a highly selective research institution such as Brandeis without academic remediation. The fourth finding was that neither Science Posse Scholars nor underrepresented students agreed with the idea that competition in the sciences was positive. While well-resourced students described this competition as good as it fostered individual success, Science Posse Scholars and underrepresented students placed greater emphasis on group success.
Valla, Jeffrey M.; Ceci, Stephen J.
2014-01-01
Relative strength of math and verbal abilities and interests drive science, technology, engineering, and math (STEM) career choices more than absolute math ability alone. Having one dominant aptitude (e.g., for mathematics) increases the likelihood of a strong self-concept in that domain and decreases the likelihood of equivocation about career choices in comparison with individuals with equivalent mathematical aptitude who have comparable strength in non-math areas. Males are more likely than females to have an asymmetrical cognitive profile of higher aptitude in math relative to verbal domains. Together, these two points suggest that the academic and career pursuits of high math ability males may be attributable to their narrower options among STEM fields, whereas females’ more symmetrical cognitive profile means their math and verbal interests compete in the formation of their ability self-concept and, hence, in their broader career choices. Such equivocation about STEM careers is in fact already evident in girls with high math aptitude as early as junior high school. Thus, we argue that asymmetry in interests and aptitudes is an underappreciated factor in sex differences in career choice. To the extent this is true, focusing on strengthening young women’s STEM-related abilities and ability self-concepts to increase female STEM representation may be an unproductive approach; to increase representation, it may be more effective to focus on harvesting the potential of those girls and women whose breadth of interest and high ability spans social/verbal and spatial/numerical domains. The use of interventions that play to this greater breadth by socially contextualizing STEM is one potential solution. PMID:25076979
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
NASA Astrophysics Data System (ADS)
Hoepner, Cynthia Colon
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were highlighted throughout the study. First, AP Chemistry was described as a foundational course necessary for the challenges of STEM courses. AP Calculus was considered a course with practical benefits across STEM majors. Finally, AP Biology was found to be a gateway course, which inspired students to continue to pursue STEM majors in college. All three courses were strongly recommended to high school students considering a STEM major. The findings will help grow a larger and equally prepared pool of females and males and help sustain a more even distribution of women across STEM fields.
ERIC Educational Resources Information Center
Zheng, Xiaying; Stapleton, Laura M.; Henneberger, Angela K.; Woolley, Michael E.
2016-01-01
The science, technology, engineering, and math (STEM) workforce, and therefore STEM education, has become increasingly central to the U.S. economic growth and competitiveness over the past five decades. Nationally, the number of STEM workforce positions and the number of STEM postsecondary graduates have increased over time, but there is…
Writing in Math: A Disciplinary Literacy Approach
ERIC Educational Resources Information Center
Brozo, William G.; Crain, Sarah
2018-01-01
Mathematics teachers often resist generic literacy strategies because they do not seem relevant to math learning. Discipline-specific literacy practices that emerge directly from the math content and processes under study are more likely to be embraced by math teachers. Furthermore, national and state-level mathematics standards as well as Common…
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
NASA Astrophysics Data System (ADS)
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.
Careers in STEM Begin with Elementary Student Interest in Mathematics
ERIC Educational Resources Information Center
Brimmer, Linda Ertrachter
2017-01-01
I investigated why math capable students are not entering science, technology, engineering, and math (STEM) careers. To research the problem, I explored how highly effective elementary math teachers (HEMT) create student interest in mathematics using the self- efficacy (SE) theory and information and communication technology (ICT). The purpose of…
Home | National Inventors Hall of Fame
Math (STEM) based programming, connecting inquisitive minds with skills that will serve them for a , Technology, Engineering, and Math (STEM) thinking. REGISTER NOW "Camp Invention has been, and continues your child learns science, technology, engineering and math in a weeklong experience that taps into the
From Skeletons to Bridges & Other STEM Enrichment Exercises for High School Biology
ERIC Educational Resources Information Center
Riechert, Susan E.; Post, Brian K.
2010-01-01
The national Science, Technology, Engineering, and Math (STEM) Education Initiative favors a curriculum shift from the compartmentalization of math and science classes into discrete subject areas to an integrated, multidisciplinary experience. Many states are currently implementing programs in high schools that provide greater integration of math,…
NASA Astrophysics Data System (ADS)
Medeiros, Donald J.
The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task value. Male attitudes towards women's role in STEM fields may also require attention. Increasing attitudes seems best achieved through ensuring a highly satisfying experience with the program and their mentor. Study results suggest this requires more considerations than simply matching mentor and mentee race or gender. Reliability results of attitudinal scales provided guidance on assessment strategies.
Wang, Ming-Te; Ye, Feifei; Degol, Jessica Lauren
2017-08-01
Career aspirations in science, technology, engineering, and mathematics (STEM) are formulated in adolescence, making the high school years a critical time period for identifying the cognitive and motivational factors that increase the likelihood of future STEM employment. While past research has mainly focused on absolute cognitive ability levels in math and verbal domains, the current study tested whether relative cognitive strengths and interests in math, science, and verbal domains in high school were more accurate predictors of STEM career decisions. Data were drawn from a national longitudinal study in the United States (N = 1762; 48 % female; the first wave during ninth grade and the last wave at age 33). Results revealed that in the high-verbal/high-math/high-science ability group, individuals with higher science task values and lower orientation toward altruism were more likely to select STEM occupations. In the low-verbal/moderate-math/moderate-science ability group, individuals with higher math ability and higher math task values were more likely to select STEM occupations. The findings suggest that youth with asymmetrical cognitive ability profiles are more likely to select careers that utilize their cognitive strengths rather than their weaknesses, while symmetrical cognitive ability profiles may grant youth more flexibility in their options, allowing their interests and values to guide their career decisions.
ERIC Educational Resources Information Center
Goodwyn, Kamela Joy
2017-01-01
Small businesses with emphasis in science, technology, engineering and math (STEM) are catalytic in launching the United States' global presence and competitiveness into the twenty-first century through innovation and technology. The projected growth compared to non-STEM occupations, is almost twice as high for STEM occupations which further…
In Brief: Improving science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-09-01
Over the course of the next decade, 100,000 science, technology, engineering, and math (STEM) teachers should be recruited in the United States, and 1000 new STEM-focused schools should be created, according to a 16 September report, “Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America's future.” Noting that the United States lags behind other nations in STEM education at the elementary and secondary levels, the report, prepared by the President's Council of Advisors on Science and Technology, also recommends improving federal coordination and leadership on STEM education and supporting a state-led movement for shared standards in math and science. The release of the report coincides with President Barack Obama's announcement of the launch of Change the Equation, an organization that aims to help with math and science education. More information is available at http://www.whitehouse.gov/administration/eop/ostp and http://www.changetheequation.org/.
ERIC Educational Resources Information Center
Hansen, Michael; Gonzalez, Thomas
2014-01-01
Science, technology, engineering and math (STEM) advocates commonly emphasize an interdisciplinary, authentic, project-based, and technology-based approach to learning, though the strength of prior research varies. This study examines the association between a range of classroom activities and academic performance gains in math and science. Using…
Wang, Ming-Te; Eccles, Jacquelynne S; Kenny, Sarah
2013-05-01
The pattern of gender differences in math and verbal ability may result in females having a wider choice of careers, in both science, technology, engineering, and mathematics (STEM) and non-STEM fields, compared with males. The current study tested whether individuals with high math and high verbal ability in 12th grade were more or less likely to choose STEM occupations than those with high math and moderate verbal ability. The 1,490 subjects participated in two waves of a national longitudinal study; one wave was when the subjects were in 12th grade, and the other was when they were 33 years old. Results revealed that mathematically capable individuals who also had high verbal skills were less likely to pursue STEM careers than were individuals who had high math skills but moderate verbal skills. One notable finding was that the group with high math and high verbal ability included more females than males.
ERIC Educational Resources Information Center
Rinn, Anne N.; Miner, Kathi; Taylor, Aaron B.
2013-01-01
The purpose of the current study was to examine four family context variables (socioeconomic status, mother's level of education, father's level of education, and perceived family social support) as predictors of math self-concept among undergraduate STEM majors to better understand the gender differential in math self-concept. Participants…
ERIC Educational Resources Information Center
Trei, Kelli
2015-01-01
This study analyzes the requirements and preferences of 171 science, technology, engineering, and math (STEM) academic librarian positions in the United States as advertised in 2013. This analysis compares the STEM background experience preferences with the Carnegie rankings of the employing institution. The research examines the extent to which…
Middle school students' attitudes toward math and STEM career interests: A 4-year follow-up study
NASA Astrophysics Data System (ADS)
Schneider, Madalyn R.
The purpose of the current study is to examine middle school students' attitudes toward math, intent to pursue STEM-related education and occupations, and STEM interest from middle school to high school. The data used in this study are from a larger, on-going National Science Foundation (NSF) grant-funded study that is investigating middle school students' disengagement while using the Assistments system (Baker, Heffernan & San Pedro, 2012), a computer-based math tutoring system. The NSF grant study aims to explore how disengagement with STEM material can aid in the prediction of students' college enrollment as well as how it may interact with other factors affecting students' career choices (San Pedro, Baker, Bowers, Heffernan, 2013). Participants are students from urban and suburban schools in Massachusetts measured first in middle school and again four years later. Measures at Time 1 included: various items related to attitudes toward mathematics, occupations they could see themselves doing as adults, and the Brief Self-Control Scale (Tangney, Baumeister, & Luzio Boone, 2004). Measures at Time 2 included: items requesting the students' current mathematics and science courses and intended majors or occupations following high school graduation. Exploratory factor analysis, multiple regression and logistic regression analyses were used to test the following four hypotheses: I. There will be several distinct factors that emerge to provide information about middle school students' attitudes toward math; II. Students' attitudes toward math will correlate positively and significantly with students' intent to pursue STEM-related careers at Time 1 with a medium effect; III. Middle school attitudes toward mathematics will relate positively and significantly to level of high school mathematics and science courses with a medium effect; IV. Middle school intent to pursue STEM will correlate positively and significantly with high school intent to pursue STEM majors/careers with a medium effect. Results supported a 2-factor model of Attitudes toward Mathematics consisting of Math Self-Concept and Attitudes toward Assistments. Other significant findings include: a positive relationship between students' Attitudes toward Assistments and level of math class taken in high school; a positive relationship between students' Math Self-Concept and Self Control; a positive relationship between Self Control and students' endorsement of STEM careers while in middle school, and discrepancy between male and female students' endorsement of STEM careers as early as middle school. Although many of the study's primary hypotheses were not supported, the present study provides a framework and baseline for several important considerations. Limitations, including those related to the present study's small sample size, and future implications of the present study, which add to career development literature in STEM, are discussed in regard to both research and practice. Keywords: career development, middle school, attitudes, math, STEM, self-concept
Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields
NASA Astrophysics Data System (ADS)
Koch, Amanda Joy
A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and school-level features that influence undergraduate students' decisions to leave STEM majors, focusing on potential explanations for why females are more likely than males to leave. Persistence in STEM was examined in three samples: (a) persistence through the second year of college in a sample of high school seniors interested in STEM majors; (b) persistence through the fourth year of college in a sample of second year undergraduate STEM majors; and (c) persistence through the second, third, and fourth years of college in a sample of high school seniors interested in STEM majors. Differences between persistence in male-dominated and non-male-dominated STEM majors were also examined. In all samples, gender differences were found for most individual-level predictors, with males tending to score higher than females on measures such as SAT-Math, self-rated STEM ability, and high school extracurricular activities and awards in STEM. On the other hand, females earned better high school grades and had stronger relative non-STEM ability and achievement than males. Bivariate analyses indicated that those who persisted in STEM majors typically had higher scores than those who did not persist for SAT-Math, high school achievement, STEM course taking, undergraduate STEM grades, self-rated STEM ability, interest in STEM, extracurricular activities and awards in STEM, degree goals, and socioeconomic status. Multivariate analyses identified SAT-Math as one of the best predictors of persistence in high school samples, and undergraduate STEM GPA was one of the best predictors in the samples of second year undergraduates. In several samples, a significant cross-level interaction was found between gender and undergraduate females' college-level proportional representation in STEM; however, the effects were inconsistent across samples. Even when controlling for various individual- and school-level predictors, gender effects tended to remain significant, with females in most samples leaving STEM majors at higher rates than males.
ERIC Educational Resources Information Center
Pasha-Zaidi, Nausheen; Afari, Ernest
2016-01-01
The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…
ERIC Educational Resources Information Center
Taylor-Cox, Jennifer
2011-01-01
Reduce the number of discipline issues that arise in your math classroom with ideas from math education expert Jennifer Taylor-Cox. In this book, you'll learn a variety of ways to handle disruptive, disinterested, avoidant, and/or disrespectful students in K-12 math classrooms. Using realistic, case-by-case examples, the author reveals practical…
Age at Menarche and Choice of College Major: Implications for STEM Majors
ERIC Educational Resources Information Center
Brenner-Shuman, Anna; Waren, Warren
2013-01-01
Even though boys and girls in childhood perform similarly in math and spatial thinking, after puberty fewer young women pursue majors that emphasize abilities such as science, technology, engineering, and math (STEM) in college. If postpubertal feminization contributes to a lower likelihood of choosing STEM majors, then young women who enter…
Home - Defense Technology Security Administration
, engineering, and math (STEM) focused Girl Scout troops 2210 and 5064 into the Mark Center to showcase their to welcome science, technology, engineering, and math (STEM) focused Girl Scout troops 2210 and 5064
ERIC Educational Resources Information Center
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary
2018-01-01
Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…
NASA Astrophysics Data System (ADS)
Alexander, Lori L.
Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.
ERIC Educational Resources Information Center
Michael, Kurt Y.; Alsup, Philip R.
2016-01-01
Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…
Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields
ERIC Educational Resources Information Center
Koch, Amanda Joy
2013-01-01
A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and…
ERIC Educational Resources Information Center
Leaper, Campbell; Farkas, Timea; Brown, Christia Spears
2012-01-01
Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2011
2011-01-01
Efforts by federal and state governments to increase the STEM (science, technology, engineering and mathematics) workforce in support of innovation and competitiveness are frustrated by a shortage of adequately prepared and interested students. Less than half of 12th graders meet the math proficiency benchmark that indicates college readiness.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorenstein, David
The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, makes adjustments on a Remotely Operated Gardening Rover, or ROGR, which could tend plants on a deep-space habitat. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Teaching cell and molecular biology for gender equity.
Sible, Jill C; Wilhelm, Dayna E; Lederman, Muriel
2006-01-01
Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social studies of science into science education may be the necessary first step in helping female students persist in STEM disciplines. In 2003 and 2004, a sophomore Cell and Molecular Biology course at Virginia Tech (Blacksburg, VA) was taught integrating social studies of science with standard material. The course was successfully implemented, teaching students factual content while increasing awareness of the cultures of science and their self-confidence in engaging with the subject. Course evaluation data indicated that females in particular perceived greater gains in logical thinking and problem-solving abilities than females in a traditional cell biology course. Consistent with K-12 studies, males in this class were likely to view scientists as male only, whereas females viewed scientists as male and female. This pilot project demonstrates that social studies can be integrated successfully in a cell biology course. Longitudinal studies of this cohort of students will indicate whether this approach contributes to the retention of women in the field.
NASA Astrophysics Data System (ADS)
Langus, T. C.; Tempel, R. N.
2017-12-01
The Women in Science & Engineering (WiSE) program at the University of Nevada, Reno (UNR) aims to recruit and retain a diverse population of women in STEM fields. During the WiSE Program's 10 years in service, we have primarily functioned as a resource for 364 young women to expand their pre-professional network by building valuable relationships with like-minded women. More recently, we have introduced key changes to better benefit our WiSE scholars, establishing a new residence hall, the Living Learning Community (LLC). The introduction of the LLC, resident assistants, and academic mentors helped to provide support to a diverse culture of women with varying thoughts, values, attitudes, and identities. To evaluate the progress of our program, demographic data was statistically analyzed using SPSS to identify correlations between math preparation, performance in foundational courses, average time to graduation, and retention in STEM majors. Initial programmatic assessment indicates that students participating in WiSE are provided a more well-rounded experience while pursuing higher education. We have maintained a 90% retention rate of females graduating with bachelor's degrees in STEM disciplines (n=187), with many graduates completing advanced masters and doctoral degrees and seamlessly entering into post-graduate internships, professional, and industry careers. The success of the WiSE program is attributed to a focused initiative in fostering supportive classroom environments through common course enrollment, professional development, and engaging women in their community through service learning. As a continued focus, we aim to increase the inclusivity and representation of women at UNR in underrepresented fields such as physics, math, and the geosciences. Further program improvements will be based on ongoing research, including a qualitative approach to explore how providing gender equitable resources influences the persistence of women in STEM.
The Impact of Length of Engagement in After-School STEM Programs on Middle School Girls
NASA Astrophysics Data System (ADS)
Cupp, Garth Meichel
An underrepresentation of females exists in the STEM fields. In order to tackle this issue, work begins early in the education of young women to ensure they are interested and have the confidence to gain a career in the STEM fields. It is important to engage girls in STEM opportunities in and out of school to ignite their interest and build their confidence. Brigid Barron's learning ecology perspective shows that girls pursuing STEM outside of the classroom is critical to their achievement in the STEM pipeline. This study investigated the impact after-school STEM learning opportunities have on middle school girls by investigating (a) how the length of engagement in after-school programs can affect the confidence of female students in their science and math abilities; (b) how length of engagement in after-school programs can affect the interest of female students in attaining a career in STEM; (c) how length of engagement in after-school programs can affect interest in science and math classes; and (d) how length of engagement can affect how female students' view gender parity in the STEM workforce. The major findings revealed no statistical significance when comparing confidence in math or science abilities or the perception that gender plays a role in attaining a career in STEM. The findings revealed statistical significance in the areas when comparing length of engagement in the girls' interest in their math class and attaining a career in three of the four STEM fields: science, technology, and engineering. The findings showed that multiple terms of engagement in the after-school STEM programs appear to be an effective catalyst to maintain the interest of girls pursuing STEM-related careers, in addition to allowing their interest in a topic to provide a new lens for the way they see their math work during the school day. The implications of this study show that schools must engage middle school girls who are interested in STEM in a multitude of settings, including outside of the classroom in order to maintain engagement in the STEM pipeline.
ERIC Educational Resources Information Center
Shi, Qi
2017-01-01
Using data from the Educational Longitudinal Study: 2002, the present study examined the effects of demographic variables, high school math course-taking and high school GPA on ELL students' STEM course-taking, achievement and attainment in college. Regression analysis showed female ELL students were more likely to take more STEM courses and get…
NASA Astrophysics Data System (ADS)
Rehmat, Abeera Parvaiz
As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.
NASA Astrophysics Data System (ADS)
Strother, Elizabeth
The economic future of the United States depends on developing a workforce of professionals in science, technology, engineering and mathematics (Adkins, 2012; Mokter Hossain & Robinson, 2012). In California, the college population is increasingly female and underrepresented minority, a population that has historically chosen to study majors other than STEM. In California, community colleges provide a major inroad for students seeking to further their education in one of the many universities in the state. The recent passage of Senate Bill 1456 and the Student Success and Support Program mandate increased counseling services for all California community college students (California Community College Chancellors Office, 2014). This dissertation is designed to explore the perceptions of female, underrepresented minority college students who are majoring in an area of science, technology, engineering and math, as they relate to community college counseling services. Specifically, it aims to understand what counseling services are most effective, and what community college counselors can do to increase the level of interest in STEM careers in this population. This is a qualitative study. Eight participants were interviewed for the case study, all of whom are current or former community college students who have declared a major in a STEM discipline. The semi-structured interviews were designed to help understand what community college counselors can do to better serve this population, and to encourage more students to pursue STEM majors and careers. Through the interviews, themes emerged to explain what counseling services are the most helpful. Successful STEM students benefited from counselors who showed empathy and support. Counselors who understood the intricacies of educational planning for STEM majors were considered the most efficacious. Counselors who could connect students with enrichment activities, such as internships, were highly valued, as were counseling services that helped students learn to negotiate being a woman in male-dominated classes. The interviews shed light on the particular skills required to effectively counsel underrepresented minority females in STEM majors in the community college.
Knowledge Integration and Wise Engineering
ERIC Educational Resources Information Center
Chiu, Jennifer L.; Linn, M. C.
2011-01-01
Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…
How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom
ERIC Educational Resources Information Center
Milgram, Donna
2011-01-01
Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…
NASA Astrophysics Data System (ADS)
Nikischer, Andrea B.
This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and science students located in high-poverty, low-performing schools. I further argue that both federal and state accountability-based school reform efforts are failing to improve outcomes for students with proficiency and interest in STEM learning and STEM fields, and in fact, these reforms are harming top performing students and high school STEM opportunity structures. Recommendations for changes in policy and practice, and for further research, are provided.
NASA Astrophysics Data System (ADS)
Miller, Brianna M.
Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math and a high interest in engineering careers, especially among girls. Based on these findings it was recommended that the school district utilize its District Level Plan and the pre-existing structures of Career Day and the Science Fair to integrate STEM education as a means of improving OTL, TE, and thus SA.
The identification of Gender Bias in the U.S. Military
2018-03-01
Opinion Form SSA Social Security Administration STEM Science, Technology, Engineering, and Math U.S. United States USN United States Navy xvi THIS...in science, technology, engineering, and math (STEM) related fields, with lifestyle choice being cited by some as the reasoning for this disparity
Revising the economic imperative for US STEM education.
Donovan, Brian M; Moreno Mateos, David; Osborne, Jonathan F; Bisaccio, Daniel J
2014-01-01
Over the last decade macroeconomic studies have established a clear link between student achievement on science and math tests and per capita gross domestic product (GDP) growth, supporting the widely held belief that science, technology, engineering, and math(STEM) education are important factors in the production of economic prosperity. We critique studies that use science and math tests to predict GDP growth, arguing that estimates of the future economic value of STEM education involve substantial speculation because they ignore the impacts of economic growth on biodiversity and ecosystem functionality, which, in the long-term, limit the potential for future economic growth. Furthermore, we argue that such ecological impacts can be enabled by STEM education. Therefore, we contend that the real economic imperative for the STEM pipeline is not just raising standardized test scores, but also empowering students to assess, preserve, and restore ecosystems in order to reduce ecological degradation and increase economic welfare.
African American women making race work in science, technology, engineering, and math (STEM)
NASA Astrophysics Data System (ADS)
Galloway, Stephanie Nicole
African American women maintain distinctive social locations at the intersection of race, gender, and class (Crenshaw, 1991; Collins, 1986; 2000; Wing, 2003). However, their voices, interpretation of experiences, and concern with the use of formal education as a mechanism for racial uplift have not been priorities in feminist movements (hooks, 1981; 1989; Perkins, 1993; Smith, 1998; Spitzack & Carter, 1987). Alternatively, Black feminist thought (Collins, 1990; 2000) is a theory constructed by and for African American women. Given the consequences of pursuing formal education in the histories of African American women and the paucity of African American women represented in STEM fields, the purpose of this study was to (a) reveal how African American women conducting research in STEM disciplines accomplished their professional goals, (b) learn how the women negotiated their multiple identities (i.e. race, gender, and class), (c) link the history of educational experiences among African Americans with agendas for social justice, (d) understand how African American women in STEM align their personal accomplishments with broader agendas for activism in higher education, and (e) discover whether there is a collective identity that successful African American women in STEM share. Using Black feminist thought (Collins, 1986; 2000) and narrative analysis of semi- interviews with eight African American women in STEM, the findings from this study revealed: (a) the women in this study described the challenges of pursuing a career in STEM from a feminist perspective, identifying gender as more significant than race; (b) the women in this study experienced more positive interactions with Black male, White female, and White male mentors than with Black female mentors; (c) the women in this study described the use of empowering strategies for overcoming obstacles in their academic pathways; and (d) their collective academic identities were formed by early interactions with members of their academic communities and early exposure to the cultural norms of their academic disciplines. These findings have implications for how Black feminist thought explicates the complex, assorted experiences of highly successful African American women in STEM and how the social construction of academic identities evolves during the course of formalized education.
Early Childhood Training Workbook [and Videos].
ERIC Educational Resources Information Center
Magna Systems, Inc., Barrington, IL.
This early childhood training workbook and three accompanying video series provide instruction for early childhood caregivers and teachers in the areas of guidance and discipline, math, and diversity. The video series "Guidance and Discipline" demonstrates the ways in which teachers help children become self disciplined. The three videos…
NASA Astrophysics Data System (ADS)
Mawasha, P. Ruby; Lam, Paul C.; Vesalo, John; Leitch, Ronda; Rice, Stacey
In this article, it is postulated that the development of a successful training program for women in science, math, engineering, and technology (SMET) disciplines is dependent upon a combination of several factors, including (a) career orientation: commitment to SMET as a career, reasons for pursuing SMET as a career, and opportunity to pursue a SMET career; (b) knowledge of SMET: SMET courses completed, SMET achievement, and hands-on SMET activities; (c) academic and social support: diversity initiatives, role models, cooperative learning, and peer counseling; and (d) self-concept: program emphasis on competence and peer competition. The proposed model is based on the GET SMART (Girls Entering Technology, Science, Math and Research Training) workshop program to prepare and develop female high school students as competitive future SMET professionals. The proposed model is not intended to serve as an elaborate theory, but as a general guide in training females entering SMET disciplines.
STEm Minority Graduate Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, Kaen E
ABSTRACT The state of science, technology, engineering and math (STEM) education in the United States has seen some unfavorable assessments over the past decade. In early February, 2010 the House of Representatives heard testimony on undergraduate and graduate education. The message from the panel, which included experts from academia, STEM-based industries, and the National Science Foundation (NSF) was dire and required an urgent response. The experts along with the committee's chairperson, U. S. Representative Daniel Lipinski (D-IL) cited that the complexity of Science, Technology, Engineering, and Mathematics applications and coursework and the methodology utilized to teach these subjects are forcingmore » students out of these disciplines. As the National Academies described in its 2007 report Rising Above the Gathering Storm, successful STEM education is not just an academic pursuit it's a necessity for competing in the knowledge-based economy that the United States had a key role in creating. The potential for action is being made available again as the America COMPETES Act of 2007 is up for reauthorization. Its initial focus was on STEM education at the K-12 levels, but efforts at the undergraduate and graduate levels are needed to retain students to fill the jobs left vacant as baby boomers retire. The Educational Advancement Alliance, Inc. (EAA) has for two decades created programs that have not only addressed the issues of ensuring that students are aptly prepared for college but have focused its efforts over the past decade on increasing the number of students who pursue degrees in STEM disciplines. For the EAA, the introduction of the wonders of science begins at the elementary and middle school level via the Learning Lab, a state-of-the-art mobile science laboratory that visits students in grades 4-6 at the various schools throughout Philadelphia and The Math/Tech Academy which meets on Saturdays for students in grades 5-7. For the past two years the EAA has assisted college graduates in their quest to attain advanced degrees in STEM by providing fellowships. The EAA continued this effort by recruiting and providing fellowships to students who aspired to continue their education at the graduate level. The fellowships provided funding for tuition, fees, books, technology, and stipends to assist with room, board, and living expenses during the academic year and salary, transportation, and living expenses to those students who secured internships with the Department of Energy. Additionally the EAA designed and implemented needed support systems to ensure successful completion of the Masters degree programs, including but not limited to membership in professional associations, attendance at industry and academic conferences, and professional development workshops, and tutorial assistance if needed. This program assisted over 80 students directly and society-at-large by helping to educate and develop future physicists, engineers, biostatisticians, and researchers who will have the necessary skillsets to fill the increasing numbers of positions that require such expertise.« less
NASA Astrophysics Data System (ADS)
Small Griswold, J. D.
2016-12-01
Expanding Your Horizons in Science and Mathematics (EYH) are conferences created to promote and foster interest for girls in the areas of science and math. The conferences are held with hopes that girls who attend will be encouraged to consider careers in these disciplines. Since 2014, the University of Hawaii at Mānoa (UH Mānoa) has held three annual EYH-Hawaii events reaching 86,163, and 150 girls respectively. EYH - Hawaii hosted 11 workshops in 2014, 22 in 2015, and 20 in 2016, primarily with atmospheric sciences, oceanography, marine biology, geology and physics related topics. The education outreach activities outlined in this work have far reaching societal implications. The lack of women in the sciences has been a problem for over 50 years and Native Hawaiian and Pacific Islanders represent an event smaller fraction of women in science. It has been shown that mentoring programs, especially those focused on STEM fields, help young women and girls to envision themselves as chemists, physicists, mathematicians and other types of scientists such as those that study the earth and atmosphere which are fields that are not commonly discussed or highlighted in K-12 curriculum. EYH and related conferences for young women increase the likelihood that they will pursue science and math in secondary educational settings. This is essential in a world in which few girls are choosing science and math as potential careers. Here we compile survey results from the three EYH - Hawaii events to determine trends in attendance, interest, and overall impact. Each year attendees were surveyed regarding their overall experience at the conference, individual workshop experience, and personal demographic information. We especially highlight statistics related to the experience of students of Native Hawaiian and Pacific Island descent. Survey results discussed include: grade level, ethnicity/race, hometown, favorite and least favorite aspect and/or workshop of the conference, motivation for registering, likelihood of student to suggest the event to a friend, and desire to return next year. Additionally, survey results are presented for individual workshops and for students' likelihood to consider a career in STEM after attending EYH - Hawaii.
2011-01-28
NASA Administrator Charles Bolden visits with students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. During his visit, Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. Photo Credit:(NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden speaks to students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. During his talk, Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. Photo Credit (NASA/Paul E. Alers)
Math, Science, and Technology in the Early Grades
ERIC Educational Resources Information Center
Clements, Douglas H.; Sarama, Julie
2016-01-01
Do young children naturally develop the foundations of science, technology, engineering, and math (STEM)? And if so, should we build on these foundations by using STEM curricula in preschools? In this article, Douglas Clements and Julie Sarama argue that the answer to both these questions is yes. First, the authors show that young children possess…
TechXcite: Discover Engineering--A New STEM Curriculum
ERIC Educational Resources Information Center
Sallee, Jeff; Schmitt-McQuitty, Lynn; Swint, Sherry; Meek, Amanda; Ybarra, Gary; Dalton, Rodger
2015-01-01
TechXcite is an engineering-focused, discovery-based after-school science, technology, engineering, and math (STEM) program. The free curriculum is downloadable from http://techxcite.pratt.duke.edu/ and is comprised of eight Modules, each with four to five 45-minute activities that exercise the science and math learned in school by using…
NASA Astrophysics Data System (ADS)
Aldridge, Jacqueline Nouvelle
The first year experience is known to present an array of challenges for traditional college students. In particular, freshmen who major in a STEM discipline have their own unique set of challenges when they transition from high school science and math to college science and math; especially chemistry. As a result, students may encounter negative experiences which lower academic and social confidence. This project was designed as a pilot study intervention for a small group of freshmen biology students who were considered academically at-risk due their math SAT scores. The study occurred during the fall semester involving an enhanced active learning component based on the Peer-led Team Learning (PLTL) general chemistry supplemental pedagogy model, and a biology-focused First Year Experience (FYE). PLTL workshops took place in freshmen residence halls, creating a live-n-learn community environment. Mid-term and final chemistry grades and final math grades were collected to measure academic progress. Self-reporting surveys and journals were used to encourage participants to reconstruct their experiences and perceptions of the study. Descriptive analysis was performed to measure statistical significance between midterm and final grade performance, and a general inductive qualitative method was used to determine academic and social confidence as well as experiences and perceptions of the project. Findings of this project revealed a statistically significant improvement between chemistry midterm and final grades of the sample participants. Although academic confidence did not increase, results reveal that social confidence progressed as the majority of students developed a value for studying in groups.
NASA Astrophysics Data System (ADS)
LeGrand, Julie
The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (p<.05), although these differences are not the same at each grade level or for each scientific discipline. Significant gender differences in mathematics are present only at the elementary school level.
Speaking Out on Gender: Reflections on Women's Advancement in the STEM Disciplines
NASA Astrophysics Data System (ADS)
Wachs, Faye Linda; Nemiro, Jill
Faculty at Cal Poly Pomona initiated a campus-wide study to assess the experiences of women in the STEM (Science, Technology, Engineering, and Math) disciplines and to explore what factors were perceived as critical to advancement by successful women on campus. Focus groups with female faculty and administrators at various stages in their career were conducted to address questions of retention, tenure, promotion, and overall job satisfaction. Workload, work-family conflict, and climate emerge as key factors in faculty satisfaction and attributions of success. Ironically, the type of mentoring relationships and professional development cited as key by senior women were rendered improbable for junior female faculty by increasing workloads and work-family conflict. Gender schemas (Valian, 2004) continue to play a role in the increase in workloads and the type of work women are more likely to be asked to do. Women in departments that recognized and accommodated faculty needs, and included faculty in the decision making process, reported much higher levels of satisfaction and productivity than those in inflexible departments. Understanding these issues is critical to overcoming the effects of discrimination such as the continuing shortage of female faculty, especially at the top ranks. Addressing how gender schemas shape the type of work women do within departments and the relative valuation of that work in the RTP (retention, tenure, promotion) process is critical to creating an institutional climate in which female faculty can succeed.
ERIC Educational Resources Information Center
Moin, Laura J.; Dorfield, Jennifer K.; Schunn, Christian D.
2005-01-01
Responding to the increasing math and science teacher shortage in the United States, this study intended to determine which science, engineering, and math (SEM) majors during which years in their undergraduate education and from which academic performance levels are most interested in K-12 teaching. Results may aid policymakers and practitioners…
Ethical Reasoning in STEM Disciplines
ERIC Educational Resources Information Center
Tekerek, Mehmet; Karakaya, Ferhat; Tekerek, Betül
2016-01-01
In this study, it was aimed to determine ethical reasoning of lecturers in STEM disciplines in terms of several independent variables (gender, working another institution, age, academic title, academic discipline, service period). This study was designed as a survey research. Lecturers in STEM disciplines in Kahramanmaras Sutçuimam University were…
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2014-01-01
The "Next Generation Science Standards" (NGSS) focus attention on integrating engineering and math in science instruction. The dinosaur trackway project described in this article shows that it is possible to assign engineering applications to students in disciplines other than physics and to integrate math and engineering applications in…
STEM Careers Are Out of This World--No Need to Fear Science, Technology, Engineering, or Math
NASA Technical Reports Server (NTRS)
Griffin, Amanda; Manning, Kelvin
2012-01-01
At NASA, we fully support the President's Educate to Innovate Program in the hopes that American students move from the middle of the pack to the top in the next decade; and that we are expanding STEM education and career opportunities for underrepresented groups, including minorities and females. The first goal we have implemented to help accomplish this is to Strengthen NASA and the Nation's future workforce - Many of you in the audience could be our potential workforce, and the co-op and intern program at NASA is helping students like you. The second goal is to Attract and retain students in STEM disciplines-To compete effectively for the minds, imaginations and career ambitions of young people like you, throughout NASA, we regularly send educators and NASA speakers into classrooms to work directly with you, encouraging you to follow in the footsteps of NASA engineers and scientists. The Third goal is to Engage Americans in NASA's mission- To get young people involved in NASA's mission, we have many exciting programs for college students like the Lunabotics Mining Competition and the Cubes Satellites sent to space
ERIC Educational Resources Information Center
Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore
2015-01-01
TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…
Architecture: A Nexus of Creativity, Math, and Spatial Ability
ERIC Educational Resources Information Center
Senne, Jessica; Coxon, Steve V.
2016-01-01
The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…
How to Make STEM Education Cool for Students
ERIC Educational Resources Information Center
Steel, David
2012-01-01
Of all U.S. high school students who graduated in 2011, only 45 percent were ready for college-level math and a mere 30 percent were ready for science, according to ACT, a college-entrance testing agency. These data reflect the great challenge facing the United States in preparing students for science, technology, engineering, and math (STEM)…
The Role of Informal Science in the State Education Agenda. Issue Brief
ERIC Educational Resources Information Center
Thomasian, John
2012-01-01
Many governors have launched initiatives to raise student proficiency in math and science and encourage youth to pursue careers in STEM fields (i.e., science, technology, engineering, and math). Individuals with strong STEM skills play vital roles in technological innovation and economic growth and are rewarded with more secure jobs and higher…
ERIC Educational Resources Information Center
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-01-01
The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…
STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America
ERIC Educational Resources Information Center
Drew, David E.
2011-01-01
One study after another shows American students ranking behind their international counterparts in the STEM fields--science, technology, engineering, and math. Business people such as Bill Gates warn that this alarming situation puts the United States at a serious disadvantage in the high-tech global marketplace of the twenty-first century, and…
ERIC Educational Resources Information Center
McIntosh, Ronald D.
2008-01-01
Professional learning communities (PLCs) are designed to increase and improve the time teachers spend working with one another planning curriculum for mathematics, reading, writing, history, English, and other disciplines offered by their school. These meetings help to improve test scores in math and English. Teachers have coupled their subject…
NASA Astrophysics Data System (ADS)
Snead-McDaniel, Kimberly
An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of this trend are not quite evident; one variable to consider is that undergraduate minority students are failing in STEM disciplines at various levels of education from elementary to postsecondary. The failure of female and minority students to enter STEM disciplines in higher education have led various initiatives to establish programs to promote STEM disciplines among these groups. Additional funding for minority STEM programs have led to a increase in undergraduate minority students entering STEM disciplines, but the minority students' graduation rate in STEM disciplines is approximately 7% lower than the graduation of nonminority students in STEM disciplines. This phenomenological qualitative research study explores the lived experiences of underrepresented minority undergraduate college students participating in an undergraduate minority-mentoring program. The following nine themes emerged from the study: (a) competitiveness, (b) public perception, (c) dedication, (d) self-perception, (e) program activities, (f) time management, (g) exposure to career and graduate opportunities, (h) rigor in the curriculum, and (i) peer mentoring. The themes provided answers and outcomes to better support a stronger minority representation in STEM disciplines.
#WomenInSTEM: Using Science & Math to Power the Globe
Jordan, Rhonda
2018-01-16
Growing up, Dr. Rhonda Jordan always enjoyed math and science. After completing her master's in electrical engineering at Columbia University she co-founded a startup in Tanzania that provides access to power for residents who are not connected to the electrical grid.This video is part of the Energy Department's #WomenInSTEM video series. At the Energy Department, we're committed to supporting a diverse talent pool of STEM innovators ready to address the challenges and opportunities of our growing clean energy economy.
Love of Science Began at Early Age for Air Force Captain | DoDLive
advice: "I emphasize early math, as much math as you can take." So what does the future hold avoidance technologies program, Capt. Heather Stickney, Force of the Future, math, science, STEM, Wright
NASA Astrophysics Data System (ADS)
Gonzales, Ashleigh
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
Guo, Jiesi; Parker, Philip D; Marsh, Herbert W; Morin, Alexandre J S
2015-08-01
Drawing on the expectancy-value model, the present study explored individual and gender differences in university entry and selection of educational pathway (e.g., science, technology, engineering, and mathematics [STEM] course selection). In particular, we examined the multiplicative effects of expectancy and task values on educational outcomes during the transition into early adulthood. Participants were from a nationally representative longitudinal sample of 15-year-old Australian youths (N = 10,370). The results suggest that (a) both math self-concept and intrinsic value interact in predicting advanced math course selection, matriculation results, entrance into university, and STEM fields of study; (b) prior reading achievement has negative effects on advanced math course selection and STEM fields through math motivational beliefs; and (c) gender differences in educational outcomes are mediated by gender differences in motivational beliefs and prior academic achievement, while the processes underlying choice of educational pathway were similar for males and females. (c) 2015 APA, all rights reserved).
Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.
Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J
2009-01-01
University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.
2013-06-21
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from University of Colorado describe a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann
2013-06-21
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from University of Colorado describe a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, University of Colorado Boulder graduate students Daniel Zukowski, left, and Heather Hava describe a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in a deep-space habitat. The system is being developed by the students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Daniel Zukowski, a University of Colorado Boulder graduate student, describes a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS, seen on the right. The system is being developed by the graduate students participating in the eXploration HABitation X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
ERIC Educational Resources Information Center
Borman, Trisha; Margolin, Jonathan; Garland, Marshall; Rapaport, Amie; Park, So Jung; LiCalsi, Christina
2017-01-01
Nationwide, Hispanic students continue to be underrepresented among students who complete a four-year degree in science, technology, engineering, and math (STEM) fields (National Center for Education Statistics, 2016) and among workers in STEM fields. This discrepancy is a concern, especially in light of the projected growth in employment in STEM…
ERIC Educational Resources Information Center
Wang, Ming-Te; Degol, Jessica L.
2017-01-01
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences…
ERIC Educational Resources Information Center
Epstein, Diana; Miller, Raegen T.
2011-01-01
One can't throw a stone without hitting a STEM initiative these days, but most science, technology, engineering, and math initiatives--thus the STEM acronym--overlook a fundamental problem. In general, the workforce pipeline of elementary school teachers fails to ensure that the teachers who inform children's early academic trajectories have the…
NASA Astrophysics Data System (ADS)
Quinnell, R.; Thompson, R.; LeBard, R. J.
2013-09-01
Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.
Sandia National Laboratories: About Sandia: Community Involvement:
DOE Regional Science Bowls - New Mexico DOE Regional Science Bowls - California Family Math Night Family Science Night Science, Technology, Engineering, and Math Programs About Education Programs a national concern. Encouraging students to pursue science, technology, engineering, and math (STEM
ERIC Educational Resources Information Center
Fett, Paula
2010-01-01
In recent years, "math and science" has been the mantra for many educators and business leaders who warn of an urgent need to encourage the pursuit of these and other technological disciplines or risk losing ground in the global economy. Simply emphasizing the need for "math and science" expertise does not, however, encourage…
NASA Astrophysics Data System (ADS)
Lado, Longun Moses
This study examined the influence of a set of relevant independent variables on students' decision to major in math or science disciplines, on the one hand, or arts or humanities disciplines, on the other. The independent variables of interest in the study were students' attitudes toward science, their gender, their socioeconomic status, their age, and the strength and direction of parents' and peers' influences on their academic decisions. The study answered five research questions that concerned students' intention in math or science, the association between students' attitudes and their choice to major in math or science, the extent to which parents' and peers' perspectives influence students' choice of major, and the influence of a combination of relevant variables on students' choice of major. The scholarly context for the study was literature relating to students' attitudes toward science and math, their likelihood of taking courses or majoring in science or math and various conditions influencing their attitudes and actions with respect to enrollment in science or math disciplines. This literature suggested that students' experiences, their gender, parents' and peers' influence, their socio-economic status, teachers' treatment of them, school curricula, school culture, and other variables may influence students' attitudes toward science and math and their decision regarding the study of these subjects. The study used a questionnaire comprised of 28 items to elicit information from students. Based upon cluster sampling of secondary schools, the researcher surveyed 1000 students from 10 secondary schools and received 987 responses. The researcher used SPSS to analyze students' responses. Descriptive statistics, logistic regression, and multiple regression analyses to provide findings that address the study's research questions. The following are the major findings from the study: (1) The instrument used to measure students' attitudes toward science and mathematics was not highly reliable, perhaps contributing to an attenuation of the relationship between attitude toward science and mathematics and choice of a science or mathematics major (rather than an arts or humanities major). (2) Far more students than the researcher had anticipated provided responses indicating that they planned to major in a science or mathematics discipline rather than an arts or humanities discipline. (3) Students' attitudes towards math and science were more favorable than the researcher anticipated based on findings from previous related studies. This result suggests the possibility of social desirability bias in students' responses. (4) Three significant predicator variables contributed to a significant logistic regression equation in which choice of science or mathematics major was the dependent variable: gender (negative association), attitude toward science and math (positive association), and peer influence 1 (positive association). Gender was the strongest predictor. (5) Five significant predictor variables contributed to a significant multiple linear regression equation in which attitude toward science and mathematics was the dependent variable: peer influence 1 (positive association), parent influence 1 (positive association), parent influence 2 (positive association), books in home (positive association), and peer influence 2 (positive association). The results reveal that among the targeted variables (gender, attitude, peer influence 1, peer influence 2, parent influence 1, parent influence 2, books in home, and age) only gender, peer influence 1, and attitude were significant predictors of students' major in math or science.
NASA Astrophysics Data System (ADS)
Weir, Michael J.
In the United States, undergraduate underrepresented minority (URM) students tend to change out of declared majors in science, technology, engineering and math (STEM) disciplines at a rate of nearly sixty percent prior to earning a post secondary degree. This phenomenon contributes to a general concern that the United States is not producing enough STEM trained skilled workers to meet future employment needs of industry and government. Although there has been research developed to examine how to increase the numbers of URM students enrolling in STEM programs at higher education institutions, retention of these students remains critical. One area of increasing focus for researchers is to understand how multiple factors impact the college experience of URM students and how those factors may contribute to the student decision to persist in earning a STEM disciple degree. This research study is a phenomenological mixed method study that examines how students experience the phenomenon of advising and the influence of the advising experience of undergraduate URM students on their likelihood of persisting in STEM at a northeast US technology oriented post secondary institution. Persistence, from the perspective of the student, is driven by cognitive psychological attributes such as confidence, motivation and self-efficacy. Utilizing a Social Cognitive theoretical framework, this study examines how three distinct undergraduate URM student populations enrolled in; an Academic Services Program, Honors College, and the general undergraduate population at this institution experience advising and how their experiences may influence their propensity to persist in earning a STEM oriented degree.
Advancing participation of blind students in Science, Technology, Engineering, and Math
NASA Astrophysics Data System (ADS)
Beck-Winchatz, Bernhard; Riccobono, Mark A.
2008-12-01
Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.
Naval Sea Systems Command > Home
Parties Vehicles for Partnering STEM Programs FIRST LEGO League Robotics Program Carderock Math Contest Educational Partnership Agreements Math Clubs Seaplane Challenge Calculator-Controlled Robot Program Students - 'Fun Twist on Math' May 24, 2018 More SOCIAL MEDIA Facebook Logo Join us live as we commission
and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math
NASA Astrophysics Data System (ADS)
Wagner, Judson
Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.
STEM Education-An Exploration of Its Impact on Female Academic Success in High School
NASA Astrophysics Data System (ADS)
Ybarra, Michael E.
The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.
ERIC Educational Resources Information Center
Afterschool Alliance, 2010
2010-01-01
The 21st Century's information economy has been creating more jobs that require not only a college education but also a fair amount of expertise in the fields of science, technology, engineering and math--collectively known as STEM. The last several decades have seen the industrial- and manufacturing-based economy shift to a service economy fueled…
Math Achievement: A Role Strain and Adaptation Approach
ERIC Educational Resources Information Center
Williams, Krystal L.; Burt, Brian A.; Hilton, Adriel A.
2016-01-01
Purpose: This study aims to better understand how students' academic strains and multilevel strengths relate to their math achievement, with a particular emphasis on underrepresented students of color and girls given the need to broaden science, technology, engineering and math (STEM) participation for these groups. Design/methodology/approach:…
75 FR 48658 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... individuals who teach science, technology, engineering, and math (STEM). TEACH.gov is an essential component... among minority individuals, and particularly in teaching science, technology, engineering, and math...
NASA Astrophysics Data System (ADS)
Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho
2016-04-01
STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.
ERIC Educational Resources Information Center
Matson, Eric; DeLoach, Scott; Pauly, Robyn
2004-01-01
The "Robot Roadshow Program" is designed to increase the interest of elementary school children in technical disciplines, specifically math and science. The program focuses on children from schools categorized as rural or underserved, which often have limited access to advanced technical resources. We developed the program using robots…
Girls and science: A qualitative study on factors related to success and failure in science
NASA Astrophysics Data System (ADS)
Johnson, Paula Denise
This qualitative study sought to determine how girls perceived factors that contribute to their success in science programs designed to maximize their achievement. The sample consisted of 20 students in 9th and 12th grades attending a school of choice. Respondents were interviewed using a structured interview protocol. The National Council for Research on Women study (Thom, 2001) found that girls are more successful in math and science programs that incorporate a cooperative, hands-on approach than in programs that stress competition and individual learning. This finding was supported by this study among 20 high school girls in a school whose mission is to improve the access of girls who study and choose careers in STEM (science, technology, engineering, and mathematics) disciplines. Related studies on the subject of the underrepresentation of girls and women in science and related disciplines raise the question why so few girls choose STEM careers. Qualitative inductive analysis was used to discover critical themes that emerged from the data. The initial results were presented within the context of the following five themes: (1) learning styles, (2) long-term goals, (3) subject matter, (4) classroom climate/environment, and (5) evaluation. After further analysis, the researcher found that factors cited by the girls as contributing to their success in science programs specifically designed to maximize their achievement were: (a) cooperative learning, (b) a custom-tailored curriculum, and (c) positive influences of mentors.
NREL Model Car Competitions | NREL
skills in both math and science. The goals of the competition include: Generating enthusiasm for science , technology, engineering, and math (STEM) Improving students' understanding of scientific concepts and
NASA Astrophysics Data System (ADS)
Hernandez, Jennifer F.
Science, technology, engineering, and math (STEM) education is part of a national movement to prepare students for the demands of a 21st century workforce. STEM uses an integrated, real-world problem solving approach to increase the levels of collaboration, communication, critical, and creative thinking in students. If expectations for students have increased to stay competitive in a global market, teachers must be equipped to meet the needs of the new 21st century learners in their classrooms. To that end, professional learning for educators is essential to ensure they are equipped with the tools necessary for success. While there are many approaches to teacher development, professional learning teams, based on the work of Garmston and Wellman, focus on teachers' instructional delivery, targeted student learning needs, planning, implementing new strategies, collaboration, and reflective dialogue. The purpose of the study is to improve instructional practice providing quality STEM instruction to students and increase teacher self-efficacy---a teachers' perception of his or her ability to instruct students in the STEM disciplines. Theoretical implications of a study on an elementary STEM learning team could affect the way schools deliver STEM professional learning opportunities to teachers and the way students are delivered a quality STEM education. Research has shown that Model I behavior would limit the change process of professional learning through a surface inspection of the issues; however model II behaviors would benefit the teachers, students and organization because teachers would be collaborating on specific objectives to develop a knowledge base and skill set to meet students' needs. Extending professional development by engaging stakeholders in a collaborative process to build model II behaviors will create an organizational structure that facilitates learning.
ERIC Educational Resources Information Center
Couturier, Lara K.; Cullinane, Jenna
2015-01-01
This call to action is based on a simple but important premise: The nation cannot allow college placement policies, processes, and instruments to undermine promising efforts to increase student success in mathematics and increase attainment of STEM credentials. Efforts to redesign math pathways hold great promise for improving the teaching and…
Women's Choice in College STEM Majors: Impact of Ability Tilt on Women Students' Educational Choice
ERIC Educational Resources Information Center
Willis, Audie Jane
2017-01-01
This quantitative study explored the impact of ability and ability tilt on the choice of an academic program in STEM majors for female college students who have not been identified as profoundly or highly gifted. A math tilt would be an ability tilt slanting toward math. The career development theory that provided a framework for this study was…
ERIC Educational Resources Information Center
Wang, Xueli
2012-01-01
This study draws upon social cognitive career theory and higher education literature to propose and test a conceptual framework for understanding the selection of postsecondary STEM fields of study by recent high school graduates who attend four-year institutions. Results suggest that high school math achievement, exposure to math and science…
A GRE Test for the STEM Disciplines: Developing an Assessment "of" and "for" Learning
ERIC Educational Resources Information Center
Payne, David G.; Briel, Jacqueline B.; Hawthorn, John; Riedeburg, Karen
2006-01-01
Plans are described for creating a Graduate Record Examination (GRE) test for the STEM (science, technology, engineering, and mathematics) disciplines. Previous work showed that a quantitative measure for the STEM disciplines exacerbated group differences beyond those reflected in the current GRE General Test. A test development approach is…
Implicit Social Cognitions Predict Sex Differences in Math Engagement and Achievement
ERIC Educational Resources Information Center
Nosek, Brian A.; Smyth, Frederick L.
2011-01-01
Gender stereotypes about math and science do not need to be endorsed, or even available to conscious introspection, to contribute to the sex gap in engagement and achievement in science, technology, engineering, and mathematics (STEM). The authors examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants.…
ERIC Educational Resources Information Center
Berland, Leema K.; Steingut, Rebecca
2016-01-01
Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistencies…
NASA Astrophysics Data System (ADS)
Lyford, M. E.; Myers, J. D.; Mayes, R. L.
2009-12-01
Numerous educational studies have documented serious shortcomings in student's quantitative reasoning (QR), understanding of science and ability to connect these to their daily lives. These have driven many reform efforts in teacher professional development. Historically, most of these efforts have focused on science or math and rarely on the science-society connection. For the past two years, a Wyoming Department of Education funded Math-Science Partnership (MSP) professional development program has created a collaboration of university and community college faculty and middle and high school teachers to address QR, science and social relevance in the context of energy and the environment. This professional development project is designed to: 1) improve teacher content knowledge (both in the sciences and math); 2) demonstrate the many social contexts in which science and QR are relevant and can be taught; 3) model effective science and QR classroom activities for teachers; 4) provide teachers with the opportunity to develop and test their own classroom materials; 5) foster the development of professional learning communities across the state; and 6) initiate discussions about curriculum across disciplinary boundaries. Over the course of four summer meetings, participants investigate a series of issues centered on energy and the environment, including transportation, electricity, biogeochemical cycles, Peak Oil, carbon sequestration and climate change. Each issue is approached in an interdisciplinary manner, where relevant aspects from the life sciences, earth sciences, chemistry and physics are addressed. An introductory presentation on the general theme kicks off each meeting to introduce the problem. Subsequent sessions are lead by faculty from the various scientific disciplines as well as math. During their sessions, university and community college faculty model active learning exercises for each issue. These activities weave together the relevant disciplinary scientific concepts, societal connections, and the quantitative skills students need to understand the issues from the perspective of an engaged but questioning citizen of a democracy. The project encourages multidisciplinary teams of teachers (science and math) from a school or district to work together to develop curricula that may span across courses and across grade levels within a school. During the meetings, teachers work in teams to develop activities tied to energy and the environment which they present to the entire group for feedback. During the course of the school year, teachers implement their activities and share their experiences with the whole group through online-meetings. To date, the program has worked with three teacher cohorts of 25-30 teachers each. Teachers in the program are drawn from both the math and science areas thereby initiating cross-disciplinary discourses that are rarely accommodated by current school organizational structures.
Hip Hop Dance Experience Linked to Sociocognitive Ability.
Bonny, Justin W; Lindberg, Jenna C; Pacampara, Marc C
2017-01-01
Expertise within gaming (e.g., chess, video games) and kinesthetic (e.g., sports, classical dance) activities has been found to be linked with specific cognitive skills. Some of these skills, working memory, mental rotation, problem solving, are linked to higher performance in science, technology, math, and engineering (STEM) disciplines. In the present study, we examined whether experience in a different activity, hip hop dance, is also linked to cognitive abilities connected with STEM skills as well as social cognition ability. Dancers who varied in hip hop and other dance style experience were presented with a set of computerized tasks that assessed working memory capacity, mental rotation speed, problem solving efficiency, and theory of mind. We found that, when controlling for demographic factors and other dance style experience, those with greater hip hop dance experience were faster at mentally rotating images of hands at greater angle disparities and there was a trend for greater accuracy at identifying positive emotions displayed by cropped images of human faces. We suggest that hip hop dance, similar to other more technical activities such as video gameplay, tap some specific cognitive abilities that underlie STEM skills. Furthermore, we suggest that hip hop dance experience can be used to reach populations who may not otherwise be interested in other kinesthetic or gaming activities and potentially enhance select sociocognitive skills.
Efforts to Recruit Secondary STEM Teachers at Columbus State University
NASA Astrophysics Data System (ADS)
Webster, Zodiac T.; MaSST Preparation Council
2006-12-01
Physics as a discipline is not alone in having difficulty finding qualified teachers. Under-qualified teachers are present in high school Mathematics, Chemistry, Biology, and Earth-science classrooms as well. Columbus State University (CSU) has formed the Mathematics and Science Secondary Teachers (MaSST) Preparation Council to recruit more majors into our existing secondary teaching programs: Mathematics, Biology, Chemistry, and Geology. College of Education and College of Science faculty are working together to create a higher profile for these majors at our institution within the state of Georgia. In addition, we are planning an aggressive campaign to recruit from within by implementing a peer-tutoring program using outstanding students who have completed introductory math and science courses. Our group’s organization and initiatives can serve as a model for other institutions concerned about recruiting more high-school teachers.
2013-06-21
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana listens as a student from University of Colorado describes a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, describes a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS seen on the right. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Stemming on STEM: A STEM Education Framework for Students with Disabilities
ERIC Educational Resources Information Center
Hwang, Jiwon; Taylor, Jonte C.
2016-01-01
There has been increased attention paid to science, technology, engineering, and mathematics also known as STEM. The focus on STEM has been both educational and occupational. Unfortunately, students with disabilities perform below their peers without disabilities in math and science. The authors discuss issues related to STEM and students with…
ERIC Educational Resources Information Center
Thompson, Ross; Wylie, Judith; Hanna, Donncha
2016-01-01
Due to the empirical nature of the discipline, psychology students, during the course of their degree, are required to become proficient with a range of quantitative methods. Unfortunately many of these students experience high levels of maths anxiety, which can have a damaging effect on this aspect of their educational development. The first…
2011-01-28
NASA Administrator Charles Bolden speaks to students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va., as U.S. Sen. Mark Warner, D-Va., U.S. Rep. Bobby Scott, D-Va., seated, look on. During his talk, Administrator Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden, left, holds a box of spiders as MathScience Innovation Center Instructor Rhonda Hawley describes them during a visit to the "Spider Room" at the center, Friday, Jan. 28. 2011, at the center in Richmond, Va. Earlier, Bolden spoke to students from Albert Hill Middle School, where he highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden, right, shares a laugh with U.S. Sen. Mark Warner, D-Va., center and U.S. Rep. Bobby Scott, D-Va., prior to an event at the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. Bolden later spoke to students from Albert Hill Middle School highlighting the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
ERIC Educational Resources Information Center
Oslund, Christy
2013-01-01
The STEM fields (Science, Technology, Engineering and Math) attract many students with autism, ADD, affective disorders and related invisible disabilities who are highly intelligent and analytical, but who, upon entering higher education, may find that they struggle with independent living and a different way of learning. This is a preparation…
NASA Astrophysics Data System (ADS)
Simmons, Jamie Munn
Experiential opportunities at the secondary level give students the "intimate and necessary relation between the processes of actual experience and education" (Dewey, 1938, p. 19- 20). Career and Technical Education classes (CTE) and co-curricular experiences, one type of experiential learning, underpin and cultivate student curiosity and often channel interests into STEM-related post-secondary disciplines and career choices. There is little existent research on the characteristics of exemplary experiential learning opportunities and the impact on stakeholders. This study is intended to identify the qualities and characteristics of an exemplary secondary experience through the lived experiences of the stakeholders; students, STEM-related teachers, and CTE/STEM Administrators. A qualitative research design was used to examine characteristics and implications for students of four STEM-related programs throughout Virginia. Conclusions from the study include fundamental principles for providing exemplary experiential STEM-related learning opportunities. These principles include: providing hands-on, real world learning opportunities for students, providing learning opportunities that will enhance student ownership in their learning, providing unique and comprehensive career exploration opportunities for students, providing a schedule for teachers that will give them time to plan, deliver, and manage exemplary experiential learning opportunities, providing continual teacher and administrator in-service training relative to planning and implementing exemplary experiential learning opportunities, investing appropriate funds for providing exemplary experiential learning opportunities. Establishing and maintaining active partnerships with business/industry and colleges/universities, and maintaining active advisory communities, providing appropriate staff to support the provision of exemplary experiential learning opportunities is needed. The need for adequate funding, improving perception of CTE and STEM programs, and small class sizes was also recommended.
Return of the Lambkins: Practice Makes Perfect at Colorado Science Bowl |
study and potential careers in science, technology, engineering, and math (STEM). "Science Bowl school students to explore math and science. Now, the competition attracts approximately 15,000 students
NASA Astrophysics Data System (ADS)
Rabalais, Mark E.
The purpose of this study is to examine the relationship between exposure to the arts and performance in Science, Technology, Engineering, and Math (STEM) subjects. STEAM, an integration of arts-based instruction into science and math related fields, is viewed as an alternative to traditional STEM academies. The literature briefly examines the current state of STEM programs and the deficiencies in graduate quality and quantity and the call from employers for a more innovative workforce. Advocates for STEAM argue for arts as a means to improve creativity, collaboration, risk-taking and exploration. Arguments against arts in STEM are grounded in political opinions concerning arts funding and logistical complications of implementing STEAM. However, some schools and STEM programs have embraced the STEAM premise and have begun to integrate arts into the traditional curriculum. The 2009 National Assessment of Educational Progress (NAEP) dataset was utilized to determine a correlation between the number of arts credits earned and mathematics/science achievement. Results from the NAEP dataset indicated a correlation between the amount of arts credits and increased achievement scores in science and math. The same correlation was found when controlling for demographic factors such as gender, race, and socio-economic status (SES). Overall, the arts' greatest impact was on students identified as "at-risk" or underrepresented in STEM fields. Controlling for these variable groups, one can note the quantifiable differences in scores. Overall, findings of the study provide empirical support for the addition of arts in STEM.
Degol, Jessica L.
2016-01-01
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences in cognitive capacity and motivation are also influenced by broader sociocultural factors. After reviewing research from the fields of psychology, sociology, economics, and education over the past 30 years, we summarize six explanations for US women’s underrepresentation in math-intensive STEM fields: (a) cognitive ability, (b) relative cognitive strengths, (c) occupational interests or preferences, (d) lifestyle values or work-family balance preferences, (e) field-specific ability beliefs, and (f) gender-related stereotypes and biases. We then describe the potential biological and sociocultural explanations for observed gender differences on cognitive and motivational factors and demonstrate the developmental period(s) during which each factor becomes most relevant. We then propose evidence-based recommendations for policy and practice to improve STEM diversity and recommendations for future research directions. PMID:28458499
Wang, Ming-Te; Degol, Jessica L
2017-03-01
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences in cognitive capacity and motivation are also influenced by broader sociocultural factors. After reviewing research from the fields of psychology, sociology, economics, and education over the past 30 years, we summarize six explanations for US women's underrepresentation in math-intensive STEM fields: (a) cognitive ability, (b) relative cognitive strengths, (c) occupational interests or preferences, (d) lifestyle values or work-family balance preferences, (e) field-specific ability beliefs, and (f) gender-related stereotypes and biases. We then describe the potential biological and sociocultural explanations for observed gender differences on cognitive and motivational factors and demonstrate the developmental period(s) during which each factor becomes most relevant. We then propose evidence-based recommendations for policy and practice to improve STEM diversity and recommendations for future research directions.
ERIC Educational Resources Information Center
Pantic, Zorica
2007-01-01
Between 1994 and 2003, employment in science, technology, engineering and math (STEM) fields grew by a remarkable 23 percent, compared with 17 percent in non-STEM fields, according to federal data. The Bureau of Labor Statistics predicts continued strong growth in STEM job openings through 2014, with emphasis on life sciences, environmental…
Factors That Promote Anxiety toward Math on High School Students
ERIC Educational Resources Information Center
Escalera-Chávez, Milka Elena; Moreno-García, Elena; García-Santillán, Arturo; Rojas-Kramer, Carlos Alberto
2017-01-01
Regardless of the social or economic status of a student, it is a fact that math is always present. This discipline is considered as a competitive tool for achieving a more productive life. However, the gap in academic achievement is big. Consequently, in the last decades the research on education has set attention on this point. Therefore, this…
ERIC Educational Resources Information Center
Ray, Darrell L.
2013-01-01
Students often enter biology programs deficient in the math and computational skills that would enhance their attainment of a deeper understanding of the discipline. To address some of these concerns, I developed a series of spreadsheet simulation exercises that focus on some of the mathematical foundations of scientific inquiry and the benefits…
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
ERIC Educational Resources Information Center
Stocker, James D., Jr.; Kubina, Richard M., Jr.
2017-01-01
Fluency, a combination of response accuracy and speed, enables students to work efficiently through academic tasks. Students with disabilities and math deficits often struggle to learn math facts fluently. Although issues with fluency frequently coexist with a disability, problems gaining fluency also stem from a lack of practice and appropriate…
EPA-RTP STEM Outreach Program recognized for Excellence in Volunteer Experience and Mobilization
EPA-RTP’s Science, Technology, Engineering and Math (STEM) Outreach Program was recently awarded two US2020 STEM Mentoring Awards – one for Excellence in Volunteer Experience, and a second for Volunteer Mobilization.
Adolescent Literacy in the Academic Disciplines: General Principles and Practical Strategies
ERIC Educational Resources Information Center
Jetton, Tamara L., Ed.; Shanahan, Cynthia, Ed.
2012-01-01
From leading authorities in both adolescent literacy and content-area teaching, this book addresses the particular challenges of literacy learning in each of the major academic disciplines. Chapters focus on how to help students successfully engage with texts and ideas in English/literature, science, math, history, and arts classrooms. The book…
ERIC Educational Resources Information Center
Jackson, J. Kasi; Latimer, Melissa; Stoiko, Rachel
2017-01-01
This study sought to understand predictors of faculty satisfaction with promotion and tenure processes and reasonableness of expectations in the context of a striving institution. The factors we investigated included discipline (high-consensus [science and math] vs. low-consensus [humanities and social sciences]); demographic variables; and…
Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta
2016-01-01
The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
Who Teaches the "STE" in STEM?
ERIC Educational Resources Information Center
Bartholomew, Scott
2015-01-01
STEM (Science, Technology, Engineering, and Math) is a buzzword in America (Ames, 2013; Woodruff, 2013). With recent pushes from the federal government (Obama, 2013) the educational landscape is changing, with an increased emphasis on STEM (Noddings, 2013; Obama, 2013). However, a clear definition of who teaches each aspect of STEM does not exist…
Understanding STEM: Current Perceptions
ERIC Educational Resources Information Center
Brown, Ryan; Brown, Joshua; Reardon, Kristin; Merrill, Chris
2011-01-01
In many ways, the push for STEM (science, technology, engineering, and mathematics) education appears to have grown from a concern for the low number of future professionals to fill STEM jobs and careers and economic and educational competitiveness. The proponents of STEM education believe that by increasing math and science requirements in…
SPARCT: A STEM Professional Academy to Reinvigorate the Culture of Teaching
ERIC Educational Resources Information Center
Frost, Laura; Greene, Jackie; Huffman, Tanya; Johnson, Brian; Kunberger, Tanya; Goodson, Ludwika
2018-01-01
In an attempt to address declining persistence rates of university STEM majors (Science, Teaching, Engineering, and Math), concerns regarding retention rates and waning STEM faculty participation in faculty development, we report on a year-long professional development program called the STEM Professional Academy to Reinvigorate the Culture of…
ERIC Educational Resources Information Center
Craig, Cheryl J.; Verma, Rakesh; Stokes, Donna; Evans, Paige; Abrol, Bobby
2018-01-01
This research examines the influence of parents on students' studying the STEM disciplines and entering STEM careers. Cases of two graduate students (one female, one male) and one undergraduate student (male) are featured. The first two students in the convenience sample are biology and physics majors in a STEM teacher education programme; the…
ERIC Educational Resources Information Center
Franz-Odendaal, Tamara A.; Blotnicky, Karen; French, Frederick; Joy, Phillip
2016-01-01
To enhance understanding of factors that might improve STEM career participation, we assessed students' self-perceptions of competency and interest in science/math, engagement in STEM activities outside of school, and knowledge of STEM career requirements. We show that the primary positive influencer directing students to a STEM career is high…
Plumbing the STEM Pipeline: Exploring Areas of Influence for Promoting STEM Education
NASA Astrophysics Data System (ADS)
Linger, Matthew
The U.S. has enjoyed several decades of science, technology, engineering and math (STEM) success but that is changing as U.S. students show less interest in advanced learning in STEM fields. Consequently, U.S. students are less scientifically and mathematically literate than past generations, a state that may negatively impact their chances of educational and career success. The reasons for the decline in STEM interest are unclear as many U.S. students still go on to earn STEM degrees and work in STEM fields. Often, these are students who showed a particular capacity for STEM subjects, identified through existing research as earning higher than average SAT scores, especially SAT-math, or high science and math achievement test scores. This study looked at these and other factors as a means to determine what impact they have on U.S. students' interest in pursuing a STEM line of study. The study aimed to determine in what way the U.S. educational system can positively influence high school students toward pursuing a STEM college education. The High School Longitudinal Study of 2009 (HSLS:09) was used as the data source. More than 21,000 students were part of the observations. Factor analysis was used to turn related variables into larger constructs. Constructs and original HSLS:09 variables were analyzed through logistic regression analysis with STATA software. Few high school level instructional and non-instructional interventions were found to have an impact on a student's career choice in 9 th grade of his or her choice of college major in 12th grade. On the contrary, student attitudinal variables were shown to be most influential.
Influence of students' STEM self-efficacy on STEM and physics career choice
NASA Astrophysics Data System (ADS)
Halim, Lilia; Rahman, Norshariani Abd; Ramli, Nor Aidillina Mohd; Mohtar, Lilia Ellany
2018-01-01
Interest towards STEM and STEM careers is declining worldwide. Among the STEM related careers, the physics discipline has been the most affected in terms of numbers and imbalance of gender. This study investigates the role of self-efficacy in STEM towards STEM careers and Physics career based on gender and types of school. Findings showed that there is a positive and significant correlation between students' STEM self-efficacy and interest towards all disciplines in STEM and Physics career. Boys showed high level of self-efficacy in engineering discipline while the girls' associate more with science. Students from boarding schools showed higher self-efficacy and interest towards STEM careers compared to students from public schools. An implication of the study is that self-efficacy and interest in STEM careers are enhanced through engagement with STEM activities in and outside of school. Emphasis should be given to the role of counselors in making STEM careers relevant to students.
2011-01-28
NASA Administrator Charles Bolden, right, counts down along with others as U.S. Sen. Mark Warner, D-Va., readies to launch a paper rocket as U.S. Rep. Bobby Scott, D-Va., third right, looks on, Friday, Jan. 28, 2011, at the MathScience Innovation Center in Richmond, Va. Earlier, Bolden, spoke to students from Albert Hill Middle School where he highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
ERIC Educational Resources Information Center
Ashley, Michael; Cooper, Katelyn M.; Cala, Jacqueline M.; Brownell, Sara E.
2017-01-01
Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to…
ERIC Educational Resources Information Center
Flynn, Daniel T.
2016-01-01
Persistence studies in science, technology, engineering, and math (STEM) fields indicate that the pipeline to degree attainment is "leaky" and underrepresented minorities are not persisting in the STEM fields. Those students who do not persist in the STEM fields either migrate to other fields of study or drop out of higher education…
Dragons, Ladybugs, and Softballs: Girls' STEM Engagement with Human-Centered Robotics
ERIC Educational Resources Information Center
Gomoll, Andrea; Hmelo-Silver, Cindy E.; Šabanovic, Selma; Francisco, Matthew
2016-01-01
Early experiences in science, technology, engineering, and math (STEM) are important for getting youth interested in STEM fields, particularly for girls. Here, we explore how an after-school robotics club can provide informal STEM experiences that inspire students to engage with STEM in the future. Human-centered robotics, with its emphasis on the…
ERIC Educational Resources Information Center
Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund
2017-01-01
Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, right, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, describes a computerized SmartPot, or SPOT, which could be used to grow plants in a deep-space habitat. The SPOTs could be tended by a Remotely Operated Gardening Rover, or ROGR, seen on the left. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, makes adjustments on a Remotely Operated Gardening Rover, or ROGR, which could tend to plants grown in one of the SmartPots, or SPOTS seen on the right. The system is being developed by the graduate students participating in the eXploration HABitat X-Hab Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
Recurrent Prefixes, Roots, and Suffixes: A Morphemic Approach to Disciplinary Literacy
ERIC Educational Resources Information Center
Mountain, Lee
2015-01-01
Students in a content-area reading course examined the vocabulary of each of their disciplines, focusing on recurrent roots and affixes. They wanted to become teachers of math, science, English, music, and history; therefore, they needed to learn discipline-specific morphemes so they could help their future students figure out new words in their…
Predicting College Readiness in STEM: A Longitudinal Study of Iowa Students
NASA Astrophysics Data System (ADS)
Rickels, Heather Anne
The demand for STEM college graduates is increasing. However, recent studies show there are not enough STEM majors to fulfill this need. This deficiency can be partially attributed to a gender discrepancy in the number of female STEM graduates and to the high rate of attrition of STEM majors. As STEM attrition has been associated with students being unprepared for STEM coursework, it is important to understand how STEM graduates change in achievement levels from middle school through high school and to have accurate readiness indicators for first-year STEM coursework. This study aimed to address these issues by comparing the achievement growth of STEM majors to non-STEM majors by gender in Science, Math, and Reading from Grade 6 to Grade 11 through latent growth models (LGMs). Then STEM Readiness Benchmarks were established in Science and Math on the Iowas (IAs) for typical first-year STEM courses and validity evidence was provided for the benchmarks. Results from the LGM analyses indicated that STEM graduates start at higher achievement levels in Grade 6 and maintain higher achievement levels through Grade 11 in all subjects. In addition, gender differences were examined. The findings indicate that students with high achievement levels self-select as STEM majors, regardless of gender. In addition, they suggest that students who are not on-track for a STEM degree may need to begin remediation prior to high school. Results from the benchmark analyses indicate that STEM coursework is more demanding and that students need to be better prepared academically in science and math if planning to pursue a STEM degree. In addition, the STEM Readiness Benchmarks were more accurate in predicting success in STEM courses than if general college readiness benchmarks were utilized. Also, students who met the STEM Readiness Benchmarks were more likely to graduate with a STEM degree. This study provides valuable information on STEM readiness to students, educators, and college admissions officers. Findings from this study can be used to better understand the level of academic achievement necessary to be successful as a STEM major and to provide guidance for students considering STEM majors in college. If students are being encouraged to purse STEM majors, it is important they have accurate information regarding their chances of success in STEM coursework.
ERIC Educational Resources Information Center
Dika, Sandra L.; D'Amico, Mark M.
2016-01-01
Representation of diverse groups in science, technology, engineering, and mathematics (STEM) fields is a persistent concern in the United States. Although there have been some strides toward more diverse representation, significant problems of underrepresentation remain in particular STEM fields: physical sciences, engineering, math, and computer…
Do High School STEM Courses Prepare Non-College Bound Youth for Jobs in the STEM Economy?
ERIC Educational Resources Information Center
Bozick, Robert; Srinivasan, Sinduja; Gottfried, Michael
2017-01-01
Our study assesses whether high school science, technology, engineering, and mathematics (STEM) courses provide non-college bound youth with the skills and training necessary to successfully transition from high school into the STEM economy. Specifically, our study estimates the effects that advanced math, advanced science, engineering, and…
Calling STEM Experts: How Can Experts Contribute to Students' Increased STEM Engagement?
ERIC Educational Resources Information Center
Gamse, Beth C.; Martinez, Alina; Bozzi, Laurie
2017-01-01
Encouraging student interest in science, technology, engineering, and math (STEM) is an urgent priority in the USA and abroad. How most effectively to generate and sustain student interest in and preparation for STEM education and careers remains a vexing question, as the content areas, target ages, instructional approaches, and specific purposes…
The Influence of Proactive Personality and Coping on Commitment to STEM Majors
ERIC Educational Resources Information Center
Major, Debra A.; Holland, Jonathan M.; Oborn, Kurt L.
2012-01-01
Despite increasing demand for workers in fields that are grounded in science, technology, engineering, and math (STEM), retention rates are low among relevant college majors. Using Web-based survey data from 290 STEM majors, the authors investigated links among personality, coping strategies, and STEM major commitment. Proactive personality was…
ERIC Educational Resources Information Center
Banerjee, Pallavi Amitava
2017-01-01
Science, technology, engineering, and mathematics (STEM) skills are very valuable for economic growth. However, the number of young people pursuing STEM learning trajectories in the United Kingdom was lower than the predicted demand during the last decade. Several STEM enrichment and enhancement activities were thus funded by the government,…
Understanding the STEM Pipeline. Working Paper 125
ERIC Educational Resources Information Center
Sass, Tim R.
2015-01-01
I investigate the determinants of high school completion and college attendance, the likelihood of taking science, technology, engineering or math (STEM) courses in the first year of college and the probability of earning a degree in a STEM field. The focus is on women and minorities, who tend to be underrepresented in STEM fields. Tracking four…
Comparison of normalized gain and Cohen's d for analyzing gains on concept inventories
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Talbot, Robert M.; Nasim Thompson, Amreen; Van Dusen, Ben
2018-06-01
Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The metrics are normalized gain (g ), which is the most common method used in physics education research and other discipline based education research fields, and Cohen's d , which is broadly used in education research and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes (LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math concept inventories from 89 courses at 17 institutions from across the United States. We compared the two metrics across all the concept inventories. The results showed that the two metrics lead to different inferences about student learning and equity due to the finding that g is biased in favor of high pretest populations. We discuss recommendations for the analysis and reporting of findings on student learning data.
2018 WINTER TRI-Association Small Business Advisory Panel (TRIAD) Conference
2018-01-30
Senior Staff Officer, Deputy Assistant Secretary, Acquisition – SAF/ AQC, Pentagon; Branch Chief, Math & Science Division of the Air Force Office...encourage the pursuit of careers in science, technology, engineering and math (STEM). CAROL WOODEN Director of Supplier Diversity, Corporate Supply
Hip Hop Dance Experience Linked to Sociocognitive Ability
Bonny, Justin W.; Lindberg, Jenna C.; Pacampara, Marc C.
2017-01-01
Expertise within gaming (e.g., chess, video games) and kinesthetic (e.g., sports, classical dance) activities has been found to be linked with specific cognitive skills. Some of these skills, working memory, mental rotation, problem solving, are linked to higher performance in science, technology, math, and engineering (STEM) disciplines. In the present study, we examined whether experience in a different activity, hip hop dance, is also linked to cognitive abilities connected with STEM skills as well as social cognition ability. Dancers who varied in hip hop and other dance style experience were presented with a set of computerized tasks that assessed working memory capacity, mental rotation speed, problem solving efficiency, and theory of mind. We found that, when controlling for demographic factors and other dance style experience, those with greater hip hop dance experience were faster at mentally rotating images of hands at greater angle disparities and there was a trend for greater accuracy at identifying positive emotions displayed by cropped images of human faces. We suggest that hip hop dance, similar to other more technical activities such as video gameplay, tap some specific cognitive abilities that underlie STEM skills. Furthermore, we suggest that hip hop dance experience can be used to reach populations who may not otherwise be interested in other kinesthetic or gaming activities and potentially enhance select sociocognitive skills. PMID:28146562
NASA Astrophysics Data System (ADS)
Holmes, Mark H.
2006-10-01
To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.
NASA Astrophysics Data System (ADS)
Rao, Deepa
This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit booklet that I designed can be found in the supplemental materials to this thesis.
ERIC Educational Resources Information Center
Ejiwale, James A.
2014-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
Spinning Your Own Story - Marketing the Geosciences to the Public
NASA Astrophysics Data System (ADS)
Sturm, D.; Jones, T. S.
2006-12-01
Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga system, increased goodwill with the local newspaper, and increased participation in the after- school program from students in the metro area.
The experiences of African American graduate students: A cultural transition
NASA Astrophysics Data System (ADS)
Joseph, Joretta
Historically Black Colleges and Universities (HBCU) have long been an intellectual resource for the African American community. HBCUs have provided and continue to provide an educational pathway for many Black students, particularly women who seek graduate and advanced degrees. However, despite the overwhelmingly positive presence of HBCU in the African American community, the academic training of students who graduate from HBCUs may be perceived as insufficient by predominantly White graduate institutions (PWIs). As a result, African American students who are not well integrated into their respective departmental communities and cultures at PW/is are likely to leave graduate school. Thus the continuing loss of talented people, potential research, role models for society, and the next generation of African American students in the fields of math, engineering, and the sciences (STEM) create a segregated and limited university environment. Studies in the field that attempt to provide insight in to experiences of underrepresented students are ultimately beneficial. However, often such studies do not address the process of adapting to the culture of a predominantly white institution (PWI), particularly within white and male dominated fields such as mathematics and the sciences. Research has also indicated that the first two years at a predominantly white graduate institution is the crucial transitional period for students of color, and it is this transitional moment in time that is the focus of this study. I consider how students make the transition from HBCU to majority institutions, and what impact this transition has on their persistence and commitment to their discipline. The limited amount of research that does address the experiences of minority doctoral students in math and science is usually coupled with the experiences of women. However, race and gender are not linear or additive. It cannot be assumed that the same factors that effect the under representation of women of color have are the same factors that effect the under representation of Euro-American Women and men of color. This study takes those distinctions into account. The methodology of this study relies on extensive interview data (among other sources), to fully examine the transition process of six African-American women engaged in graduate work in mathematics or science at predominantly white institutions. I examine each participant's story as a case study, outlining moderating influences and perspectives on their acculturation to the STEM disciplines and to majority institutions.
The persistence of Black males in the STEM fields at Texas State University
NASA Astrophysics Data System (ADS)
Day, Beverly Woodson
For the past five years, enrollment in the College of Science and Engineering by first-time undergraduate students has steadily increased. However, retaining the students through their first-year and their persistence to their second year of college and beyond has been problematic. The purpose of this study is to add to the knowledge of why Black students, specifically Black men, are not persisting at Texas State University in the STEM majors. It will also determine if specific factors like the SAT scores, parent's education, high school rank, college GPA, college science and math courses (physics, math, biology and chemistry), college credits earned and average GPA in all science and math college courses predict college preparation and college performance for all students and for Black male students.
State of STEM (SoSTEM) Address
2014-01-29
White House innovation expert Cristin Dorgelo speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2011
2011-01-01
A strong economy requires a highly educated workforce, especially in science, technology, engineering, and math (STEM) fields. In the United States, STEM degree production has stagnated, despite employment projections forecasting a 17% growth in the field over the next decade. Two key criteria influence progression through the STEM education…
ERIC Educational Resources Information Center
Knowles, J. Geoff
2017-01-01
This research analyzed the effects of teacher professional development and lesson implementation in integrated Science, Technology, Engineering, and Math (STEM) on: (1.) Teacher self-efficacy and their confidence to teach specific STEM subjects; (2.) Teaching outcome expectancy beliefs concerning the impact of actions by teachers on student…
Impact of Environmental Power Monitoring Activities on Middle School Student Perceptions of STEM
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Periathiruvadi, Sita
2013-01-01
Middle school is a crucial stage in student development as students prepare for a fast changing future. The science, technology, engineering and mathematics (STEM) skills that students acquire in middle school lay the foundation for a successful career in STEM. Moreover, most STEM occupations require competencies in science, math and logical…
ERIC Educational Resources Information Center
Nikischer, Andrea B.
2013-01-01
This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and…
Integrated STEM Curriculum: Improving Educational Outcomes for Head Start Children
ERIC Educational Resources Information Center
Aldemir, Jale; Kermani, Hengameh
2017-01-01
In this study, the researchers aimed to design, plan and implement a Science, Technology, Engineering and Math (STEM) model to support Pre-K children's skills and knowledge in STEM as well as to improve Pre-K teachers' attitudes and professional skills to plan and integrate STEM concepts in their daily classroom activities. Four classrooms from a…
ERIC Educational Resources Information Center
Belcher, Aaron Heath
2017-01-01
The purpose of this disquisition is to disseminate an improvement initiative in a public high school that addressed female Science, Technology, Engineering and Math (STEM) disparity in STEM classes. In this high school current instructional and career guidance practices were inadequate in providing female STEM students opportunities to experience…
Women in STEM: A Gender Gap to Innovation. ESA Issue Brief #04-11
ERIC Educational Resources Information Center
Beede, David; Julian, Tiffany; Langdon, David; McKittrick, George; Khan, Beethika; Doms, Mark
2011-01-01
The science, technology, engineering and math (STEM) workforce is crucial to America's innovative capacity and global competitiveness. Yet women are vastly underrepresented in STEM jobs and among STEM degree holders despite making up nearly half of the U.S. workforce and half of the college-educated workforce. That leaves an untapped opportunity…
Toward a STEM + Arts Curriculum: Creating the Teacher Team
ERIC Educational Resources Information Center
Wynn, Toni; Harris, Juliette
2012-01-01
The acronym STEM--the teaching of science, technology, engineering, and math--now a familiar term in education, is evolving into STEAM--STEM plus "A" for art. Educational researcher Martin Storksdieck's studies have shown that infusing art into STEM allows for "a different way of perceiving and knowing and dealing with the world, as a means to…
ERIC Educational Resources Information Center
Lado, Longun Moses
2011-01-01
This study examined the influence of a set of relevant independent variables on students' decision to major in math or science disciplines, on the one hand, or arts or humanities disciplines, on the other. The independent variables of interest in the study were students' attitudes toward science, their gender, their socioeconomic status, their…
Students' Attitude towards STEM Education
ERIC Educational Resources Information Center
Popa, Roxana-Alexandra; Ciascai, Liliana
2017-01-01
STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…
ERIC Educational Resources Information Center
Lee, Ahlam
2013-01-01
Many STEM studies have focused on traditional learning contexts, such as math- and science-related learning factors, as pre-college learning predictors for STEM major choices in colleges. Few studies have considered a progressive learning activity embedded within STEM contexts. This study chose computer-based learning activities in K-12 math…
Improving Math Success in Higher Education Institutions
ERIC Educational Resources Information Center
Bisk, Richard
2013-01-01
Many students begin higher education unprepared for college-level work in mathematics and must take non-credit developmental courses. Furthermore, many are "math-phobic" and avoid courses, majors and careers that involve quantitative work. Yet science, technology, engineering and mathematics (STEM) fields are among the few job-growth…
Maths anxiety and medication dosage calculation errors: A scoping review.
Williams, Brett; Davis, Samantha
2016-09-01
A student's accuracy on drug calculation tests may be influenced by maths anxiety, which can impede one's ability to understand and complete mathematic problems. It is important for healthcare students to overcome this barrier when calculating drug dosages in order to avoid administering the incorrect dose to a patient when in the clinical setting. The aim of this study was to examine the effects of maths anxiety on healthcare students' ability to accurately calculate drug dosages by performing a scoping review of the existing literature. This review utilised a six-stage methodology using the following databases; CINAHL, Embase, Medline, Scopus, PsycINFO, Google Scholar, Trip database (http://www.tripdatabase.com/) and Grey Literature report (http://www.greylit.org/). After an initial title/abstract review of relevant papers, and then full text review of the remaining papers, six articles were selected for inclusion in this study. Of the six articles included, there were three experimental studies, two quantitative studies and one mixed method study. All studies addressed nursing students and the presence of maths anxiety. No relevant studies from other disciplines were identified in the existing literature. Three studies took place in the U.S, the remainder in Canada, Australia and United Kingdom. Upon analysis of these studies, four factors including maths anxiety were identified as having an influence on a student's drug dosage calculation abilities. Ultimately, the results from this review suggest more research is required in nursing and other relevant healthcare disciplines regarding the effects of maths anxiety on drug dosage calculations. This additional knowledge will be important to further inform development of strategies to decrease the potentially serious effects of errors in drug dosage calculation to patient safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Udoaka, Vicky L.
2017-01-01
School systems across the United States have launched the Science, Technology, Engineering and Math recruitment initiatives to interest students in related majors and careers. While an overall interest of high school students in Science, Technology, Engineering and Math majors and careers has increased by over twenty-five percent in the past two…
The School Counselor and STEM Career Development
ERIC Educational Resources Information Center
Falco, Lia D.
2017-01-01
There is an increasing concern that the demand for science, technology, engineering, and math (STEM) workers in the United States will exceed the supply. In the United States, very few students, and underrepresented students in particular, are pursuing STEM educational and occupational goals that underscores the need for school counselors to…
ERIC Educational Resources Information Center
Rothwell, Jonathan
2013-01-01
Workers in STEM (science, technology, engineering, and math) fields play a direct role in driving economic growth. Yet, because of how the STEM economy has been defined, policymakers have mainly focused on supporting workers with at least a bachelor's (BA) degree, overlooking a strong potential workforce of those with less than a BA. This report…
Social Group Membership Increases STEM Engagement among Preschoolers
ERIC Educational Resources Information Center
Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.
2017-01-01
The American educational system currently yields disappointing levels of science, technology, engineering, and math (STEM) engagement and achievement among students. One way to remedy this may be to increase children's motivation in STEM from an early age. This study examined whether a social cue--being part of an experimental "minimal…
Examining the Impact of Afterschool STEM Programs
ERIC Educational Resources Information Center
Krishnamurthi, Anita; Ballard, Melissa; Noam, Gil G.
2014-01-01
Afterschool programs that provide strong science, technology, engineering and math (STEM) learning experiences are making an impact on participating youth not only become excited and engaged in these fields but develop STEM skills and proficiencies, come to value these fields and their contributions to society, and--significantly--begin to see…
Major Selection and Persistence for Women in STEM
ERIC Educational Resources Information Center
Shapiro, Casey A.; Sax, Linda J.
2011-01-01
The U.S. federal government identifies many science, technology, engineering, and math (STEM) majors as "areas of national need" that are "crucial to national innovation, competitiveness, and well-being and in which not enough students complete degrees." Underrepresentation of women in STEM in the United States has economic…
State of STEM (SoSTEM) Address
2014-01-29
NASA associate administrator for education and former astronaut Leland Melvin speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
Defense Advanced Research Projects Agency (DARPA) Gill Pratt speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
Lipstick and Labcoats: Undergraduate Women's Gender Negotiation in STEM Fields
ERIC Educational Resources Information Center
Goldman, Emily Grey
2012-01-01
Although women have made significant progress in the work force and in education, gender gaps still exist in many industries and occupations, including science, technology, engineering, and math (STEM) fields. This research aimed to understand how undergraduate women negotiate gender within STEM fields, looking specifically at these women's…
STEM Engagement and Robotics Workshops in the Community
NASA Technical Reports Server (NTRS)
Pontius, Nicholas S.
2013-01-01
It is my objective to inspire and engage students and the public in science, technology, engineering, and math (STEM) through hands on STEM activities during the City of Palmdale's Thursday Nights on the Square (TNOTS) as well as various robotics workshops throughout the AV and the San Bernardino County.
Changing the Face of STEM with Stormwater Research
ERIC Educational Resources Information Center
Musavi, Mohamad; Friess, Wilhelm A.; James, Cary; Isherwood, Jennifer C.
2018-01-01
Background: The University of Maine Stormwater Management and Research Team (SMART) program began in 2014 with the goal of creating a diverse science-technology-engineering-math (STEM) pathway with community water research. The program engages female and underrepresented minority high school students in locally relevant STEM research. It focuses…
Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules
ERIC Educational Resources Information Center
Etheredge, Jessica; Moody, Dana; Cooper, Ashley
2014-01-01
This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…
Women in STEM: The Effect of Undergraduate Research on Persistence
ERIC Educational Resources Information Center
Wilker, Jodi Christine
2017-01-01
The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women…
Stemming the Diffusion of Responsibility: A Longitudinal Case Study of America's Chemistry Teachers
ERIC Educational Resources Information Center
Rushton, Gregory T.; Ray, Herman E.; Criswell, Brett A.; Polizzi, Samuel J.; Bearss, Clyde J.; Levelsmier, Nicholas; Chhita, Himanshu; Kirchhoff, Mary
2014-01-01
National initiatives to expand the aggregate science, technology, engineering, and math (STEM) workforce reflect America's goals to increase global competitiveness. However, the aggregation of STEM stakeholders may elicit a "diffusion of responsibility" because individuals assume others are already acting. Here, we perform a longitudinal…
2013-02-13
NASA Deputy Administrator Lori Garver listens to a question during the first-ever State of Science, Technology, Engineering and Math Event (SoSTEM) held at the Eisenhower Executive Office Building, Wednesday, Feb. 13, 2013 in Washington. Garver was part of a panel that took questions from a crowd of STEM students. Photo Credit: (NASA/Bill Ingalls)
STEM Learning in Afterschool: An Analysis of Impact and Outcomes
ERIC Educational Resources Information Center
Afterschool Alliance, 2011
2011-01-01
This document summarizes evaluation reports from afterschool science, technology, engineering and math (STEM) programs across the United States and identifies common trends and strengths that afterschool learning brings to STEM education. Like many programs nationwide, several of the programs highlighted in this paper were designed specifically to…
Deconstruction Geography: A STEM Approach
ERIC Educational Resources Information Center
Gehlhar, Adam M.; Duffield, Stacy K.
2015-01-01
This article will define the engineering design process used to create an integrated curriculum at STEM Center Middle School, and it features the planning, implementation, and revision of the Deconstruction Geography unit. The Science Technology Engineering and Math (STEM) Center opened in the fall of 2009 as a way to relieve overcrowding at the…
Lipstick and Labcoats: Undergraduate Women's Gender Negotiation in STEM Fields
ERIC Educational Resources Information Center
Goldman, Emily Grey
2010-01-01
While women have made significant progress in the work force and in education, gender gaps still exist in many industries and occupations, including science, technology, engineering, and math (STEM) fields. This research aims to understand how undergraduate women negotiate gender within STEM fields, looking specifically at these women's…
NASA Astrophysics Data System (ADS)
Hogue, Barbara A.
Research into women's underrepresentation in science, technology, engineering, and mathematics (STEM) disciplines has become a topic of interest due to the increasing need for employees with technical expertise and a shortage of individuals to fill STEM jobs. The discrepancy in women's representation between STEM and other fields cannot adequately be explained by factors such as women's need to balance work and family (medicine and law are both extremely demanding careers), women's fear of competition (admissions into medical and law schools are highly competitive), or women's inability to excel in science (e.g., entry into medicine requires excellent achievement in the basic sciences). The purpose of this study is to gain a deeper understanding of the role and/or impact a sense of belonging has inside and outside of STEM classrooms. Research questions focused on the role and/or impact of belonging contributes to students' self-efficacy beliefs as a STEM major. Bandura's self-efficacy theory serves as the theoretical framework. Data sources include close-ended surveys of 200 sophomore- and junior-level college students majoring in a STEM discipline. A quantitative exploratory approach allowed participants' responses to be analyzed using both correlation and multiple regression analyses to understand whether a student's sense of belonging is associated with his or her self-efficacy beliefs. Findings suggested that positive support systems impact students' self-efficacy and play a role in fostering students' motivation and decision to major in STEM disciplines. This study contributes to positive social change by providing empirical evidence faculty and administrators may use to promote university-based STEM support programs reflecting the impact belonging has on students' self-efficacy and potentially increasing the number of students majoring in STEM disciplines.
NASA Astrophysics Data System (ADS)
Ohern, J.
2016-02-01
Within the Science, technology, engineering, and math (STEM) disciplines, a disparity between male and female involvement persists on the order of about 3:1. While roughly 40% of men with STEM degrees go on to pursue STEM jobs, just 26% of women with STEM degrees hold jobs within the STEM field. There are a number of contributing factors to these disparities, but one pernicious factor is the issue of sexual harassment and discrimination. For the marine sciences this is an especially concerning issue because our field research frequently takes place hundreds of miles offshore. Despite education and policy initiatives, sexual harassment pervades many research vessels and is often never addressed, discouraging female involvement and limiting the opportunities available to women. Ethical dilemmas develop when administrators do not want to risk limited field schedules and funding while investigations are conducted and harassment issues resolved. Additionally, scientists and staff often collaborate between institutions, benefitting science but blurring the lines of responsibility. In one such case, administrators within a federal research office declined to report sexual harassment taking place between contracted crew members on their research vessel. The lengthy review process and lack of culpability discourages reporting of sexual harassment and allows problematic situations to occur. This case study reviews the reporting mechanisms currently in place, the barriers to reporting, and the proposed methods for more effectively resolving discriminatory workplaces. Collaboration within marine science is an absolute necessity, and our research benefits from diverse working groups. As marine scientists we have an ethical responsibility to ensure safe working environments for both the scientists and the staff who make our research possible.
ERIC Educational Resources Information Center
Haruna, Umar Ibrahim
2015-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
Winston Churchill Memorial Trust Fellowship Report
ERIC Educational Resources Information Center
Bramsen, Neil
2014-01-01
In March and April 2014, the author travelled overseas on a 2013 Churchill Fellowship to study education programs that successfully engage and enthuse primary and middle school students in maths, engineering and science (MES) or science, technology, engineering and maths (STEM) learning in schools, universities and institutions in the United…
Math and Science Education for the California Workforce: It Starts with K-12
ERIC Educational Resources Information Center
EdSource, 2008
2008-01-01
Workforce projections worldwide show a growing need for people with strong backgrounds in math and science. As the eighth largest economy in the world, California benefits particularly from enterprises in the "STEM" fields (science, technology, engineering, and mathematics). How well California's current public school students are…
Gender Contentedness in Aspirations to Become Engineers or Medical Doctors
ERIC Educational Resources Information Center
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2017-01-01
Medical doctor and engineer are highly esteemed STEM professions. This study investigates academic and motivational characteristics of a sample of high school students in Thailand who aspire to become medical doctors or engineers. We used logistic regression to compare maths performance, gender typicality, gender contentedness, and maths and…
Naval Medical R and D News, January 2018, Volume X, Issue 1
2018-01-01
high school science, technology, engineering, and math (STEM) teachers toured the Naval Health Research Center (NHRC), Jan. 12, to see a working...lab into the classroom to promote hands-on science education. The teachers, whose subjects ranged from math and chemistry to biomedical sciences, came
Profiles of State-Supported Residential Math and Science Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2009-01-01
Unless we sharply increase the training of homegrown math and science talents, we may suffer negative economic and technological consequences. One means of addressing this challenge has been through specialty schools devoted to science, technology, engineering, and mathematics (STEM) training. In 1980, the North Carolina School of Science and…
ERIC Educational Resources Information Center
Hughes, Bill
2009-01-01
The United States' poor performance in teaching math and science eliminates many of the best and brightest school children from the ranks of future scientists and engineers. With little chance to learn in school how science and math skills might translate into professionally useful knowledge, students are unable to make informed choices about…
Developmental biology, the stem cell of biological disciplines.
Gilbert, Scott F
2017-12-01
Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.
The Effects of an Academic Environment Intervention on Science Identification among Women in STEM
ERIC Educational Resources Information Center
Ramsey, Laura R.; Betz, Diana E.; Sekaquaptewa, Denise
2013-01-01
Academic environments can feel unwelcoming for women in science, technology, engineering, and math (STEM) fields. Two studies examined academic environments of female undergraduates majoring in STEM fields at a university in the United States. In Study 1, we compared women in STEM who are in a welcoming environment to those in a traditional STEM…
ERIC Educational Resources Information Center
Nakamoto, Jonathan; Bojorquez, Juan Carlos
2017-01-01
The purpose of this study was to assess the impact of the Pathways to STEM Initiative (PSI) on students and science teachers and to describe the level of PSI implementation. One group of middle schools participated in PSI, which included project-based science, technology, engineering, and math (STEM) coursework; extra-curricular STEM opportunities…
ERIC Educational Resources Information Center
Gottfried, Michael A.; Sublett, Cameron
2018-01-01
Over the most recent two decades, federal policy has urged high schools to embed applied science, technology, engineering, and mathematics (STEM) courses into the curriculum to reinforce concepts learned in traditional math and science classes as well as to motivate students' interests and long-term pursuits in STEM areas. While prior research has…
ERIC Educational Resources Information Center
Hinojosa, Trisha; Rapaport, Amie; Jaciw, Andrew; Zacamy, Jenna
2016-01-01
The number of jobs in science, technology, engineering, and math (STEM) is growing rapidly and is expected to increase by approximately 1 million in the United States between 2012 and 2022 (Vilorio, 2014). People of many racial/ethnic minorities, however, including Hispanic people, are underrepresented among recipients of STEM degrees and among…
Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs
ERIC Educational Resources Information Center
Wu-Rorrer, Ray
2017-01-01
The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…
ERIC Educational Resources Information Center
Borgerding, Lisa A.
2015-01-01
A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…
NASA Astrophysics Data System (ADS)
Parson, Laura J.
A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate participants reported being challenged by difficult and intimidating aspects of the teaching and learning environment. Second, undergraduate participants reported challenges meeting some of the characteristics of successful math and physics students (e.g., taking risks, asking questions, putting school first) and preferred a collectivistic environment. Third, participants described challenges from conflicting STEM academic expectations and institutional policies, which made it harder for them to meet STEM expectations. Findings indicate that efforts to reduce the "chilly" climate have been unsuccessful, largely because discourses that motivate the chilly climate have not changed. Those discourses are evidence of a masculine STEM institution, which also creates a male ideal that female students are expected to meet, further exacerbating their discomfort in the STEM environment. The masculinized nature of a STEM institution is reinforced by neoliberal policies that emphasize the importance of meeting gendered ideal STEM student characteristics. The result is that while women persist, they face stress, anxiety, and discomfort. Recommendations to improve the chilly climate include: revising the STEM institution from one that is masculine to one that is inclusive of women; and, to create a STEM educational environment that supports, validates, and gives women an equal voice.
NASA Astrophysics Data System (ADS)
Caliendo, Julia C.
Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.
NASA Astrophysics Data System (ADS)
Miller-Ricks, Karen A.
Educational reform efforts in Science, Technology, Engineering, Math (STEM) place emphasis on teachers as conduits for student achievement. The purpose of this study was to use TIMSS 2011 data to examine relationships between Science-Technology-Society (STS) instructional practices (student-centered instruction established to promote learning through real-world applications) teacher preparedness, and student achievement and identify variations of achievement between and among eighth-grade science and math classes. The research was framed by both Harper's Anti-Deficit Achievement Theory and Bronfenbrenner's Ecological Systems Theory (BEST). 501 U.S. schools contributed to the TIMSS 2011 data from both the teacher questionnaires and student booklets. Chi-Square, Spearman Correlation, and 2-level hierarchical linear modeling (HLM) were used to analyze data about teachers' preparedness to teach science and math, frequency of using STS instructional practices, and student achievement. The chi-square null hypothesis for math teachers was rejected, providing the assumption that there was an association between the frequency of using STS instruction in math and teacher preparedness. However, the chi-square null hypothesis for science teachers failed to be rejected, providing the assumption that there was no significant association between the frequency of using STS instruction in science and science teacher preparedness. The Spearman Correlation revealed statistically positively significant differences between STS instruction and science achievement, as well as between teacher preparedness and science achievement. The HLM results suggested that 33% of the variance of mathematics achievement was at the individual level and 66% was at the group level. The results for science teachers suggested that 54% of the variance of science achievement was at the individual level and 46% of the variance was at the group level. The data findings support the conclusion that secondary STEM teachers who are more prepared to teach within the STEM content domains and implement STS instructional practices into lessons have higher achievement scores.
D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E
2016-12-01
Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.
ERIC Educational Resources Information Center
Ahmed, Hanaa Ouda Khadri
2016-01-01
STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…
ERIC Educational Resources Information Center
Perry, Paula Christine
2013-01-01
Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…
The Role of Identity Development, Values, and Costs in College STEM Retention
ERIC Educational Resources Information Center
Perez, Tony; Cromley, Jennifer G.; Kaplan, Avi
2014-01-01
The current short-term longitudinal study investigated the role of college students' identity development and motivational beliefs in predicting their chemistry achievement and intentions to leave science, technology, engineering, and math (STEM) majors. We collected 4 waves of data over 1 semester from 363 diverse undergraduate STEM students…
ERIC Educational Resources Information Center
Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob
2009-01-01
Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…
Creating STEM Kits for the Classroom
ERIC Educational Resources Information Center
Carroll, Kimberly; Scott, Catherine
2017-01-01
The Next Generation Science Standards (NGSS) bring new attention to the role of STEM (science, technology, engineering, and math) in the preK-3 curriculum. However, research indicates that early-childhood preservice teachers feel ill-prepared to teach STEM due to a lack of content knowledge and pedagogical content knowledge. The goal of teacher…
State of STEM (SoSTEM) Address
2014-01-29
Environmentalist and third-year law student at Elon University School of Law Tyrone Davis speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin
2015-01-01
Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…
Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education
ERIC Educational Resources Information Center
Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.
2016-01-01
Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…
State of STEM (SoSTEM) Address
2014-01-29
NASA Astronaut Joe Acaba, left, is interviewed by National Geographic Kids reporter Trevor Jehl ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
NASA Astronaut Joe Acaba, left, is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
Black Undergraduate Women and Their Sense of Belonging in STEM at Predominantly White Institutions
ERIC Educational Resources Information Center
Dortch, Deniece; Patel, Chirag
2017-01-01
Because little work exists on the sense of belonging focusing on just Black undergraduate women in science, technology, engineering, and math (STEM), especially at highly selective predominantly white institutions (PWIs), this study takes a phenomenological approach to understand the lived experiences of Black undergraduate women in STEM by…
Applied STEM Coursework, High School Dropout Rates, and Students with Learning Disabilities
ERIC Educational Resources Information Center
Plasman, Jay Stratte; Gottfried, Michael A.
2018-01-01
Applied science, technology, engineering, and math (STEM) coursetaking is becoming more commonplace in traditional high school settings to help students reinforce their learning in academic STEM courses. Throughout U.S. educational history, vocational education has been a consistent focus for schools to keep students on the school-to-career…
Fitting the Framework: The STEM Institute and the 4-H Essential Elements
ERIC Educational Resources Information Center
Sallee, Jeff; Peek, Gina G.
2014-01-01
Extension and 4-H youth development programs are addressing a shortage of scientists, engineers, and other related professionals by promoting science, technology, engineering, and math (STEM). This case study illustrates how the Oklahoma 4-H Youth Development program trained youth-adult teams to design and implement STEM projects. The STEM…
A Journey from STEM to STEAM: A Middle School Case Study
ERIC Educational Resources Information Center
Hunter-Doniger, Tracey; Sydow, Lindsey
2016-01-01
This article examines the initial journey of a middle school in South Carolina from a STEM (science, technology, engineering, and math) curriculum to a STEAM (STEM + art) curriculum. This is the first of a three-year longitudinal study that investigated the perceptions of the effectiveness, relative importance, and sustainability of a STEAM…
Technology Student Characteristics: Course Taking Patterns as a Pathway to STEM Disciplines
ERIC Educational Resources Information Center
Asunda, Paul A.; Kim, Eun Sook; Westberry, Richard
2015-01-01
Rising concern about America's ability to maintain its competitive position in the global economy has renewed interest in STEM education. The power and the promise of STEM education is based on the need for technological literacy. Technology education is a discipline devoted to the delivery of technological literacy for all. Nevertheless, a…
ERIC Educational Resources Information Center
McDonald, Christine V.
2016-01-01
Recent global educational initiatives and reforms have focused on increasing the number of students pursuing STEM subjects, and ensuring students are well-prepared, and suitably qualified to engage in STEM careers. This paper examines the contributions of the four disciplines--Science, Technology, Engineering and Mathematics--to the field of STEM…
ERIC Educational Resources Information Center
Wasserman, Nicholas H.; Rossi, Dara
2015-01-01
The recent trend to unite mathematically related disciplines (science, technology, engineering, and mathematics) under the broader umbrella of STEM education has advantages. In this new educational context of integration, however, STEM teachers need to be able to distinguish between sufficient proof and reasoning across different disciplines,…
ERIC Educational Resources Information Center
Sriram, Rishi; Diaz, Crystal
2016-01-01
The future of the U.S. scientific workforce depends on graduating college students in science, technology, engineering, and math (STEM) fields. The completion rate of STEM students is a national concern, especially among students of color. This qualitative study examines the experiences of students of color in a living-learning program for STEM…
Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent
2013-04-01
Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.
ERIC Educational Resources Information Center
Sayman, Donna M.
2013-01-01
This qualitative study sought to understand the experiences of Latinas enrolled in residential state schools of science, technology, engineering, and math (STEM). Goals of the study focused on understanding experiences and identifying factors such as decisions to enroll, barriers and supports, and issues contributing to retention. These schools…
"I Was Scared to Be the Stupid": Latinas in Residential Academies of Science and Math
ERIC Educational Resources Information Center
Sayman, Donna
2015-01-01
This study examines the experiences of Latinas in state residential academies of science, technology, engineering, and math (STEM). Goals of this project focused on understanding their experiences and identifying factors leading to the decision to enroll, along with issues contributing to retention. These schools represent powerful opportunities…
The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science
ERIC Educational Resources Information Center
Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.
2013-01-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…
ERIC Educational Resources Information Center
Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe
2017-01-01
The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…
ERIC Educational Resources Information Center
Lips, Dan; McNeill, Jena Baker
2009-01-01
The authors express reservations about additional federal funding for the National Science Foundation, including new funding for science, technology, engineering, and math (STEM) education programs, provided by the American Recovery and Reinvestment Act of 2009. For more than 50 years, American political, business, military, and academic leaders…
Students Designing Video Games about Immunology: Insights for Science Learning
ERIC Educational Resources Information Center
Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie
2011-01-01
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…
The Importance of Early Attitudes toward Mathematics and Science
ERIC Educational Resources Information Center
Ing, Marsh; Nylund-Gibson, Karen
2017-01-01
Background/Context: Given the importance of increasing student participation in science, technology, engineering, and math (STEM), there is a need to understand how factors such as student's attitudes toward math and science in middle and high school are linked to their later college and career choices. Purpose/Objective/Research Question/Focus of…
The Effects of Motivation on Student Performance on Science Assessments
ERIC Educational Resources Information Center
Glenn, Tina Heard
2013-01-01
Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly…
NASA Astrophysics Data System (ADS)
Keller, John; Rebar, Bryan
2012-11-01
The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.
Gender compatibility, math-gender stereotypes, and self-concepts in math and physics
NASA Astrophysics Data System (ADS)
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.
ERIC Educational Resources Information Center
Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin
2016-01-01
Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…
NASA Astrophysics Data System (ADS)
Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.
2010-12-01
NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.
Engaging Diverse Learners through the Provision of STEM Education Opportunities. Briefing Paper
ERIC Educational Resources Information Center
Howard-Brown, Beth; Martinez, Danny; Times, Chris
2012-01-01
Science, technology, engineering, and mathematics (STEM) are viewed as fundamental elements in the preparation of our next generation. This is evidenced by President Obama's goal of "moving our nation from the middle to the top of the pack in math and science education" and his focus on (a) hiring additional STEM teachers; (b) enhancing…
Ecocritically (Re)Considering STEM Integrated Ecological Inquiry in Teacher Education
ERIC Educational Resources Information Center
Lupinacci, John; Happel-Parkins, Alison
2017-01-01
The acronym STEM is a ubiquitous term for seemingly anything in--or related to--the fields of science, technology, engineering, and mathematics, and the current dominant educational STEM discourse in teacher education is often organized around questions of how to integrate math and science into the other content areas or vice versa. The purpose of…
ERIC Educational Resources Information Center
Kvenild, Cassandra; Shepherd, Craig E.; Smith, Shannon M.; Thielk, Emma
2017-01-01
In a climate of increased interest in science, technology, engineering, and math (STEM), school libraries have unique opportunities to grow collections and cultivate partnerships in the sciences. At the federal level and in many states, STEM initiatives encourage hands-on exposure to technologies and open the door for student-led discovery of…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an Autism Spectrum Disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influenced the STEM pipeline between high school and…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an autism spectrum disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influence the STEM pipeline between high school and…
Unique Challenges for Women of Color in STEM Transferring from Community Colleges to Universities
ERIC Educational Resources Information Center
Reyes, Marie-Elena
2011-01-01
In this article, Marie-Elena Reyes presents the issues faced by women of color in the fields of science, technology, engineering, and math (STEM) as they transfer from community colleges to universities. Community colleges offer a great potential for diversifying and increasing participation of underrepresented groups in STEM. Many women of color…
ERIC Educational Resources Information Center
Stevenson, Heidi J.
2014-01-01
The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…
Girl Power! How Parents Can Support Girls' Academic Success in Stem
ERIC Educational Resources Information Center
Gadzikowski, Ann
2015-01-01
Helping daughters recognize science, technology, engineering, and math (STEM) in their daily lives, even in tasks like feeding the dog, baking a cake, or packing a suitcase, supports and encourages their STEM interests and abilities. Often young girls, even those who are very bright, aren't accustomed to thinking of themselves as being good at…
Retention Models for STEM Majors and Alignment to Community Colleges: A Review of the Literature
ERIC Educational Resources Information Center
Snyder, Jennifer; Cudney, Elizabeth A.
2017-01-01
During the last decade, there have been numerous reports detailing the importance of increasing science, technology, engineering, and math (STEM) majors in the United States. Simultaneously, an increasing number of studies are being developed to predict a student's success and completion of a STEM degree, recognizing that retention is a…
ERIC Educational Resources Information Center
Bubnick, Laura; Enneking, Katie; Egbers, Julie
2016-01-01
Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…
Developing STEM Leaders Through Space Science Education and Public Outreach
NASA Astrophysics Data System (ADS)
Gibbs, M. G.; Veenstra, D.
2012-08-01
Capitol College, located in Laurel, Maryland, established the Center for Space Science Education and Public Outreach with the mission to assist in educating future leaders in the science, technology, engineering and math (STEM). This presentation shares emerging best practices through innovative methods to create awareness regarding STEM outreach programs and activities related workforce development and career pathways.
Where's Spot? Finding STEM Opportunities for Young Children in Moments of Dramatic Tension
ERIC Educational Resources Information Center
McClure, Elisabeth; Guernsey, Lisa; Ashbrook, Peggy
2017-01-01
The potential for integrated science, technology, engineering, and math (STEM) learning really is all around us. The moments of intense drama children experience when they test out a new design are the engines that drive STEM practices; it's what keeps scientists, programmers, engineers, and mathematicians up at night, wanting to try "just…
Patterns of Persistence in Intended College Major with a Focus on STEM Majors
ERIC Educational Resources Information Center
Shaw, Emily J.; Barbuti, Sandra
2010-01-01
In this study, we examined patterns of persisting in and switching from an intended college major (chosen in high school) in the third year of college. We focused on science, technology, engineering, and math (STEM) major persistence because of the national effort to increase those entering STEM careers. Results showed differences in persistence…
Beyond Smash and Crash: Gender-Friendly Tech Ed
ERIC Educational Resources Information Center
McCarthy, Ray
2009-01-01
In order to increase participation in science, technology, engineering, and math (STEM) fields and careers, one of the problems that needs to be addressed is gender equity of study and careers in STEM fields. In general, women represent less than 30% of all STEM students in college. Furthermore, less than one third of professional engineers and…
Reimagining the Role of School Libraries in STEM Education: Creating Hybrid Spaces for Exploration
ERIC Educational Resources Information Center
Subramaniam, Mega M.; Ahn, June; Fleischmann, Kenneth R.; Druin, Allison
2012-01-01
In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education,…
ERIC Educational Resources Information Center
Holmquist, Stephanie Kaye
2014-01-01
The demand for STEM trained workers continues to increase not only in the United States, but globally. Reports have indicated that the United States is not doing a good job encouraging students to pursue STEM oriented degrees. In particular, it has become increasingly important to emphasize STEM connections at an early level in order to encourage…
ERIC Educational Resources Information Center
Brooks, Hannah
2017-01-01
In most STEM industries, teamwork is essential. Engineers, scientists, statisticians, and medical professionals, for example, must communicate with one another and work together. Someday, students may enter the STEM (science, technology, engineering, and math) workforce, where they also will need to collaborate effectively. This article describes…
Alternative Certification Programs & Pre-Service Teacher Preparedness
ERIC Educational Resources Information Center
Koehler, Adrie; Feldhaus, Charles Robert; Fernandez, Eugenia; Hundley, Stephen
2013-01-01
This explanatory sequential mixed methods research study investigated motives and purpose exhibited by professionals transitioning from careers in science, technology, engineering and math (STEM) to secondary education. The study also analyzed personal perceptions of teaching preparedness, and explored barriers to successful teaching. STEM career…
Co-Constructed Failure Narratives in Mathematics Tutoring
ERIC Educational Resources Information Center
DeLiema, David
2017-01-01
The ideas students have about what causes math failure are known to impact motivation. This paper throws light on how attributions of failure are negotiated during math tutoring, between 4th/5th graders and volunteer tutors, at a non-profit STEM-based after-school program. The study employs methods of interaction analysis on a small number of…
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
ERIC Educational Resources Information Center
Avery, Zanj Kano
2010-01-01
The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…
Breda, Thomas; Hillion, Mélina
2016-07-29
Discrimination against women is seen as one of the possible causes behind their underrepresentation in certain STEM (science, technology, engineering, and mathematics) subjects. We show that this is not the case for the competitive exams used to recruit almost all French secondary and postsecondary teachers and professors. Comparisons of oral non-gender-blind tests with written gender-blind tests for about 100,000 individuals observed in 11 different fields over the period 2006-2013 reveal a bias in favor of women that is strongly increasing with the extent of a field's male-domination. This bias turns from 3 to 5 percentile ranks for men in literature and foreign languages to about 10 percentile ranks for women in math, physics, or philosophy. These findings have implications for the debate over what interventions are appropriate to increase the representation of women in fields in which they are currently underrepresented. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Finkel, Liza
2017-02-01
Despite decades of efforts to increase the participation of women and people from underrepresented minority groups (URM) in science and math majors and careers, and despite the increasing diversification of the US population as a whole (Planty et al in National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education, Washington, DC, 2008), participation in STEM majors and STEM careers (including STEM teaching) remains stubbornly male and white (Landivar in American Community Survey Reports, ACS-24, U.S. Census Bureau, Washington, DC, 2013; National Science Foundation and National Center for Science and Engineering Statistics in Special Report NSF 15-311, Arlington, VA, 2015). This paper describes a project with two central goals: (1) to provide opportunities for URM high school students to engage in authentic science and math inquiry with the support of skilled college undergraduate mentors in the hope that these experiences will encourage these high school students to choose and persist in pursuing careers in STEM fields and, even if they do not choose those careers, to feel confident making complex, science or math-based decisions in their everyday lives and (2) to help the mentors (young people, mostly STEM majors) see teaching as a vital, intellectually challenging career that can provide them the opportunity to work for social justice in their communities. While it is unlikely that any one experience will help young people overcome the long odds that face them as they consider either path, our analysis suggests that projects of this kind can make a meaningful contribution to the effort.
NASA Astrophysics Data System (ADS)
Hinds, Beverley Fiona
The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired and encouraged to participate in STEM by both internal and external factors. Highly effective afterschool STEM programs increase interest, knowledge and skills in STEM. The capacity for building a STEM identity was expanded as explored/measured by the components of recognition, competence, and performance (Carlone & Johnson, 2007). The learning environment conditions and support for building a STEM identity enhance the pursuit of STEM-related fields for African-American middle school girls. Application of these factors add to the potential for a decrease in the gap of representation of African-American women engaged in STEM. Future studies may explore how African-American middle schools girls interested in STEM construct identity as it relates to STEM, racial, and gender identity development and how the mentoring experience in afterschool STEM programs impacts the career choices of pre-teaching students.
The STEM Lecture Hall: A Study of Effective Instructional Practices for Diverse Learners
NASA Astrophysics Data System (ADS)
Reimer, Lynn Christine
First-generation, low-income, underrepresented minority (URM) and female undergraduates are matriculating into science, technology, engineering, and math (STEM) majors at unprecedented levels. However, a disproportionate number of these students end up graduating in non-STEM disciplines. Attrition rates have been observed to spike in conjunction with introductory STEM courses in chemistry, biology, and physics. These "gateway" courses tend to be housed in large, impersonal lecture halls. First-generation and URM students struggle in this environment, possibly because of instructors' reliance on lecture-based content delivery and rote memorization. Recent social psychological studies suggest the problem may be related to cultural mismatch, or misalignment between independent learning norms typical of American universities and interdependent learning expectancies for first-generation and URM students. Value-affirming and utility-value interventions yield impressive academic achievement gains for these students. These findings overlap with a second body of literature on culturally responsive instruction. Active gateway learning practices that emphasize interactive instruction, frequent assessment, and epistemological instruction can be successful because of their propensity to incorporate values affirming and utility-value techniques. The present study observed instruction for gateway STEM courses over a three-year period at the University of California, Irvine (N = 13,856 undergraduates in 168 courses). Exploratory polychoric factor analysis was used to identify latent variables for observational data on gateway STEM instructional practices. Variables were regressed on institutional student data. Practices implemented in large lecture halls fall into three general categories: Faculty-Student Interaction, Epistemological Instruction, and Peer Interaction . The present study found that Faculty-Student Interaction was negatively associated with student outcomes for female and first-generation students; and Epistemological Instruction was negatively associated with student outcomes for Hispanic students. More importantly, Peer Interaction was positively associated with student outcomes for female, first-generation, and Hispanic students. Study implications and limitations are discussed with reference to the research literature.
ERIC Educational Resources Information Center
Myers, Bianca; Starobin, Soko S.; Chen, Yu; Baul, Tushi; Kollasch, Aurelia
2015-01-01
This study examined the influence of community college students' engagement on their intention to transfer and major in a STEM (science, technology, engineering, and math) field. The STEM Student Success Literacy Survey was used to collect data among all 15 community colleges in Iowa. The authors developed a measurement model for community college…
ERIC Educational Resources Information Center
Nkhata, Bentry
2013-01-01
In spite of the large overlap in the goals of CTE and STEM education, there is little evidence of the role(s) CTE delivery systems, programs, curricula, or pedagogical strategies can play in advancing STEM education. Because of their responsibilities, especially for organizational and instructional leadership, school district CTE directors could…
ERIC Educational Resources Information Center
White, Laurel Ann
2017-01-01
This study examined course enrollments for female and male Latino and Caucasian students with disabilities (SWD) in Science, Technology, Engineering, and Math (STEM) to establish baseline data in one region of the state of Washington. The study analyzed five academic years of STEM course enrollment in one high school Career and Technical Education…
ERIC Educational Resources Information Center
Gilliam, Melissa; Jagoda, Patrick; Fabiyi, Camille; Lyman, Phoebe; Wilson, Claire; Hill, Brandon; Bouris, Alida
2017-01-01
This project developed and studied "The Source," an alternate reality game (ARG) designed to foster interest and knowledge related to science, technology, engineering, and math (STEM) among youth from populations underrepresented in STEM fields. ARGs are multiplayer games that engage participants across several media such as shared…
ERIC Educational Resources Information Center
Patton, Madeline
2015-01-01
After years of working in the background to build the capacity of two-year college science, technology, engineering and math (STEM) faculty and the skills of technicians, the Advanced Technological Education (ATE) program is gaining recognition as a source of STEM workforce expertise. The ATE program's effective mentoring of STEM educators and its…
ERIC Educational Resources Information Center
Kenney, Meghan
2013-01-01
Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory School District,…
2013-02-13
Bobak Ferdowsi, Flight Director, Mars Curiosity Rover, answers questions from Scholastic News young reporter Emily Shao prior to the start of the first-ever State of Science, Technology, Engineering and Math Event (SoSTEM) held at the Eisenhower Executive Office Building, Wednesday, Feb. 13, 2013 in Washington. Ferdowsi was part of a panel that took questions from a crowd of STEM students. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Wheeler, Erin R.
2012-01-01
There is a national effort to increase the number of undergraduate students graduating in science, math, engineering, and technology (STEM) (National Science Foundation, 2007). The majority of students initially populating these STEM majors ultimately switch to and graduate from non-STEM majors (Seymour & Hewitt, 2000; Seymour, 2002). The…
ERIC Educational Resources Information Center
Hoepner, Cynthia Colon
2010-01-01
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country.…
ERIC Educational Resources Information Center
Kasza, Paul; Slater, Timothy F.
2017-01-01
Specialized secondary schools in the United States focusing on Science, Technology, Engineering, and Math (STEM) are becoming commonplace in the United States. Such schools are generally referred to by U.S. teachers as Academies. In a purposeful effort to provide a resource to educators building new STEM Academies, this study provides both a…
ERIC Educational Resources Information Center
Medeiros, Donald J.
2011-01-01
The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college…
ERIC Educational Resources Information Center
Byrd, Daniel; Shorette, Rob
2016-01-01
California is at a crossroads in terms of STEM and health workforce development. On the one hand, California has more available entry-level STEM jobs than any other state in the country and a steadily growing health workforce, giving large segments of its population access to stable careers. On the other hand, California's public colleges and…
NASA Astrophysics Data System (ADS)
Craig, Cheryl J.; Verma, Rakesh; Stokes, Donna; Evans, Paige; Abrol, Bobby
2018-04-01
This research examines the influence of parents on students' studying the STEM disciplines and entering STEM careers. Cases of two graduate students (one female, one male) and one undergraduate student (male) are featured. The first two students in the convenience sample are biology and physics majors in a STEM teacher education programme; the third is enrolled in computer science. The narrative inquiry research method is used to elucidate the students' academic trajectories. Incidents of circumstantial and planned parent curriculum making surfaced when the data was serially interpreted. Other themes included: (1) relationships between (student) learners and (teacher) parents, (2) invitations to inquiry, (3) modes of inquiry, (4) the improbability of certainty, and (5) changed narratives = changed lives. While policy briefs provide sweeping statements about parents' positive effects on their children, narrative inquiries such as this one illuminate parents' inquiry moves within home environments. These actions became retrospectively revealed in their adult children's lived narratives. Nurtured by their mothers and/or fathers, students enter STEM disciplines and STEM-related careers through multiple pathways in addition to the anticipated pipeline.
Physics First: Impact on SAT Math Scores
NASA Astrophysics Data System (ADS)
Bouma, Craig E.
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.
NASA Astrophysics Data System (ADS)
Wilson, Zakiya S.; Holmes, Lakenya; Degravelles, Karin; Sylvain, Monica R.; Batiste, Lisa; Johnson, Misty; McGuire, Saundra Y.; Pang, Su Seng; Warner, Isiah M.
2012-02-01
In the United States, less than half of the students who enter into science, technology, engineering, and mathematics (STEM) undergraduate curricula as freshmen will actually graduate with a STEM degree. There is even greater disparity in the national STEM graduation rates of students from underrepresented groups with approximately three-fourths of minority students leaving STEM disciplines at the undergraduate level. A host of programs have been designed and implemented to model best practices in retaining students in STEM disciplines. The Howard Hughes Medical Institute (HHMI) Professors Program at Louisiana State University, under leadership of HHMI Professor Isiah M. Warner, represents one of these programs and reports on a mentoring model that addresses the key factors that impact STEM student attrition at the undergraduate level. By integrating mentoring and strategic academic interventions into a structured research program, an innovative model has been developed to guide STEM undergraduate majors in adopting the metacognitive strategies that allow them to excel in their programs of study, as they learn to appreciate and understand science more completely. Comparisons of the persistence of participants and nonparticipants in STEM curricular, at the host university and with other national universities and colleges, show the impact of the model's salient features on improving STEM retention through graduation for all students, particularly those from underrepresented groups.
Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools
ERIC Educational Resources Information Center
Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald
2007-01-01
If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…
ERIC Educational Resources Information Center
Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela
2017-01-01
In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…
Gender Gap Trends on Mathematics Exams Position Girls and Young Women for STEM Careers
ERIC Educational Resources Information Center
Beekman, John A.; Ober, David
2015-01-01
Nine years of results on 4.2 million of Indiana's Indiana Statewide Testing for Educational Progress (ISTEP) mathematics (math) exams (grades 3-10) taken after the implementation of No Child Left Behind have been used to determine gender gaps and their associated trends. Sociocultural factors were investigated by comparing math gender gaps and gap…
ERIC Educational Resources Information Center
Gottfried, Michael; Bozick, Robert
2012-01-01
Academic math and science courses have been long shown to increase learning and educational attainment, but are they sufficient on their own to prepare youth for the challenges and rigor of the STEM workforce? Or, are there distinctive benefits to complementing these traditional academic courses with applied ones? Answers to these questions are…
ERIC Educational Resources Information Center
Brown, Pamela; Borrego, Maura
2013-01-01
The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…
ERIC Educational Resources Information Center
Johnson, Patrick; O'Keeffe, Lisa
2016-01-01
In August 2008, the Mathematics Learning Centre at the University of Limerick initiated a mathematics bridging course, entitled "Head Start Maths", to provide mathematics revision for adult learners about to embark on science or technology degree programmes. The aim of Head Start Maths was to revise mathematics fundamentals before the…
Individual differences in nonverbal number skills predict math anxiety.
Lindskog, Marcus; Winman, Anders; Poom, Leo
2017-02-01
Math anxiety (MA) involves negative affect and tension when solving mathematical problems, with potentially life-long consequences. MA has been hypothesized to be a consequence of negative learning experiences and cognitive predispositions. Recent research indicates genetic and neurophysiological links, suggesting that MA stems from a basic level deficiency in symbolic numerical processing. However, the contribution of evolutionary ancient purely nonverbal processes is not fully understood. Here we show that the roots of MA may go beyond symbolic numbers. We demonstrate that MA is correlated with precision of the Approximate Number System (ANS). Individuals high in MA have poorer ANS functioning than those low in MA. This correlation remains significant when controlling for other forms of anxiety and for cognitive variables. We show that MA mediates the documented correlation between ANS precision and math performance, both with ANS and with math performance as independent variable in the mediation model. In light of our results, we discuss the possibility that MA has deep roots, stemming from a non-verbal number processing deficiency. The findings provide new evidence advancing the theoretical understanding of the developmental etiology of MA. Copyright © 2016 Elsevier B.V. All rights reserved.
Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2012-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
Researching Undergraduate Social Science Research
ERIC Educational Resources Information Center
Rand, Jane
2016-01-01
The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…
EPA’s STEM Outreach Program in RTP began in 2004, with the aim of supporting EPA’s mission of protecting human health and the environment by increasing awareness, providing education, and inspiring the public, especially K-12 students.
A Novel Group Engagement Score for Virtual Learning Environments
ERIC Educational Resources Information Center
Castellanos, Jorge; Haya, Pablo A.; Urquiza-Fuentes, Jaime
2017-01-01
STEM (Science, Technology, Engineering, and Math) education is currently receiving much attention from governments and educational institutions. Our work is based on active learning and video-based learning approaches to support STEM education. Here, we aimed to increase students' engagement through reflective processes that embrace video…
Assessing Admission Interviews at Residential STEM Schools
ERIC Educational Resources Information Center
Jones, Brent M.
2011-01-01
Seventeen state-sponsored residential math and science schools have been created across the country to direct talented teens toward STEM careers. Admission is selective, based on competitive grades, standardized test scores, and references. Most of the schools also require preadmission interviews. However, selection interviews may be challenged as…
Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching
ERIC Educational Resources Information Center
Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.
2017-01-01
Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…
Citizen Science as a REAL Environment for Authentic Scientific Inquiry
ERIC Educational Resources Information Center
Meyer, Nathan J.; Scott, Siri; Strauss, Andrea Lorek; Nippolt, Pamela L.; Oberhauser, Karen S.; Blair, Robert B.
2014-01-01
Citizen science projects can serve as constructivist learning environments for programming focused on science, technology, engineering, and math (STEM) for youth. Attributes of "rich environments for active learning" (REALs) provide a framework for design of Extension STEM learning environments. Guiding principles and design strategies…
Engineering Encounters: Catch Me if You Can!
ERIC Educational Resources Information Center
Lott, Kimberly; Wallin, Mark; Roghaar, Deborah; Price, Tyson
2013-01-01
A science, technology, engineering, and math (STEM) activity is any activity that integrates the use of science, technology, engineering, and mathematics to solve a problem. Traditionally, STEM activities are highly engaging and may involve competition among student teams. Young children are natural engineers and often times spontaneously build…
ERIC Educational Resources Information Center
Kahler, Jim; Valentine, Nancy
2011-01-01
America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…
ERIC Educational Resources Information Center
Brett, James T.
2007-01-01
Key New England industries including information technology, defense technology, biotechnology, environmental services, health care and university research rely upon people with skills in science, technology, engineering and math (STEM) fields. Yet, just 20 percent of New England high school students who took the SATs in 2005 indicated a desire to…
Engineering Encounters: Building a Spaghetti Structure
ERIC Educational Resources Information Center
Llewellyn, Douglas; Pray, Sandra; DeRose, Rob; Ottman, William
2016-01-01
This column presents ideas and techniques to enhance science teaching. In this month's issue an upper elementary Science, technology, engineering, and math (STEM) challenge brings an engineer into the classroom while emphasizing cooperation, communication, and creativity. STEM activities come in various shapes and sizes. Some are quite involved…
The Relationship Between Mathematics and Physics at Pre-O-Level Stage
ERIC Educational Resources Information Center
Education in Science, 1976
1976-01-01
Presented are recommendations of English mathematicians and physicists for ensuring that there is an optimum match in the math/physics interface in secondary schools. Recommendations stress the need for increased cooperation between the disciplines. (SL)
NASA Space Imaging is a Great Resource to Teach Science Topics in Professional Development Courses
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.; Edwards, S.; Ofman, L.; Brosius, J. W.; Gordon, D.; St Cyr, O. C.; Krotkov, N. A.; Fatoyinbo, T. E.
2013-12-01
Our multi- component project aims to develop and test NASA educational resource materials, provide training for pre- and in-service elementary school teachers in STEM disciplines needed in Washington DC area. We use physics and math in a hands-on enquiry based setting and make extensive use of imagery from NASA space missions (SDO, SOHO, STEREO) to develop instructional modules focusing on grades, PK-8. Our two years of effort culminated in developing three modules: The Sun - the nearest star Students learn about the Sun as the nearest star. Students make outdoor observations during the day and all year round. At night, they observe and record the motion of the moon and stars. Students learn these bodies move in regular and predictable ways. Electricity & Magnetism - From your classroom to the Sun Students investigate electricity and magnetism in the classroom and see large scale examples of these concepts on the Sun's surface, interplanetary space, and the Earth's magnetosphere as revealed from NASA space missions. Solar Energy The Sun is the primary source of energy for Earth's climate system. Students learn about wavelength and frequency and develop skills to do scientific inquiry, including how to use math as a tool. They use optical, UV, EUV, and X-ray images to trace out the energetic processes of the Sun. Each module includes at least one lesson plan, vocabulary, activities and children book for each grade range PK-3; 4-5; 6-8
ERIC Educational Resources Information Center
Griffin, Patricia A.
2015-01-01
STEM Schools purport to prepare students to learn and work in the 21st Century by providing students with innovative learning experiences through the interdisciplinary integration of science, technology, engineering, and math (Tsupros, 2009). Advocates of STEM and innovative school models argue that the traditional school system does not and…
ERIC Educational Resources Information Center
Wickersham, Kelly; Wang, Xueli
2016-01-01
Transfer in science, technology, engineering, and math (STEM) fields from community colleges to 4-year institutions holds great policy significance in alleviating the female underrepresentation in the STEM pipeline, with proportionately more female students attending community colleges. Considering the knowledge gap on this often overlooked topic,…
ERIC Educational Resources Information Center
Hughes, Bill; Mona, Lynn; Wilson, Greg; McAninch, Steve; Seamans, Jeff; Stout, Heather
2017-01-01
Science, Technology, Engineering, and Math (STEM) have developed broad prevalence in the American (U.S.) education system over the last decade. Academic, government, and business experts emphasize that attracting K-12-university students to STEM subject matter is crucial for expanding the innovation capacity of the U.S. and preparing citizens for…
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, listens to a question during the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, speaks at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Wai, Jonathan; Lubinski, David; Benbow, Camilla P.; Steiger, James H.
2010-01-01
Two studies examined the relationship between precollegiate advanced/enriched educational experiences and adult accomplishments in science, technology, engineering, and mathematics (STEM). In Study 1, 1,467 13-year-olds were identified as mathematically talented on the basis of scores [greater than or equal to] 500 (top 0.5%) on the math section…
ERIC Educational Resources Information Center
Lopez, Carlos; Jones, Stephanie J.
2017-01-01
There are a limited number of individuals who possess the skills to fulfill the workforce demand in STEM (science, technology, engineering, and math) in the United States. Therefore, community colleges and 4-year institutions must be able to identify academic and social factors that impact students' participation in the areas of STEM. These…
NASA Astrophysics Data System (ADS)
Heaverlo, Carol Ann
Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.
Improving numeracy through values affirmation enhances decision and STEM outcomes
Peters, Ellen; Tompkins, Mary Kate; Schley, Dan; Meilleur, Louise; Sinayev, Aleksander; Tusler, Martin; Wagner, Laura; Crocker, Jennifer
2017-01-01
Greater numeracy has been correlated with better health and financial outcomes in past studies, but causal effects in adults are unknown. In a 9-week longitudinal study, undergraduate students, all taking a psychology statistics course, were randomly assigned to a control condition or a values-affirmation manipulation intended to improve numeracy. By the final week in the course, the numeracy intervention (statistics-course enrollment combined with values affirmation) enhanced objective numeracy, subjective numeracy, and two decision-related outcomes (financial literacy and health-related behaviors). It also showed positive indirect-only effects on financial outcomes and a series of STEM-related outcomes (course grades, intentions to take more math-intensive courses, later math-intensive courses taken based on academic transcripts). All decision and STEM-related outcome effects were mediated by the changes in objective and/or subjective numeracy and demonstrated similar and robust enhancements. Improvements to abstract numeric reasoning can improve everyday outcomes. PMID:28704410
Engagement in Science and Engineering through Animal-Based Curricula
ERIC Educational Resources Information Center
Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.
2018-01-01
One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…
ERIC Educational Resources Information Center
Maltby, Jennifer L.; Brooks, Christopher; Horton, Marjorie; Morgan, Helen
2016-01-01
Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation…
Re-engineering Engineering Education
ERIC Educational Resources Information Center
Gordon, Bernard M.; Silevitch, Michael B.
2009-01-01
In 2005, leaders gathered by the National Association of Manufacturers declared yet another "STEM" emergency. In the face of global competition, they argued, the number of bachelor's degrees awarded annually to U.S. students in science, math and engineering must double by 2015. In fact, the need for STEM talent is even more critical…
STEM Equality and Diversity Toolkit
ERIC Educational Resources Information Center
Collins, Jill
2011-01-01
In 2008, the Centre for Science Education at Sheffield Hallam University teamed up with VT Enterprise (now Babcock International) in their submission of a successful bid to deliver the national STEM (Science, Technology, Engineering and Maths) Subject Choice and Careers Project. An integral part of the bid was the promotion of equality and…
Using Motorsports Design Concepts to Further STEM Education
ERIC Educational Resources Information Center
Hylton, Pete
2010-01-01
Few career paths are as dynamic, exciting, and engaging to potential Science, Technology, Engineering and Math (STEM) students as those in motorsports. Secondary school students, looking forward to their initial driver's licenses and their first cars, are captivated by the speed and color of the sport. Indiana University Purdue University…
Siemens Foundation and the STEM Challenge
ERIC Educational Resources Information Center
Harper-Taylor, Jeniffer
2010-01-01
For more than 12 years, the Siemens Foundation has found unique ways to partner with organizations to support educational initiatives in science, technology, engineering and mathematics (STEM) in the United States. Its focus is clear--to educate the next generation of innovators by supporting math and science education from grade school to grad…
STEM and Career Exploratory Classes
ERIC Educational Resources Information Center
Chase, Darrell
2010-01-01
Districts face increasing pressure to improve students' mastery of curriculum in the fields of science, technology, engineering and mathematics (STEM). Yet the number of students enrolling in science and math courses drops dramatically in middle and high school. At Sylvester Middle School, Chinook Middle School and Cascade Middle School of the…
Latino Parents' Educational Values and STEM Beliefs
ERIC Educational Resources Information Center
Hernandez, Diley; Rana, Shaheen; Alemdar, Meltem; Rao, Analía; Usselman, Marion
2016-01-01
Purpose: This paper aims to provide a snapshot of K-12 Latino families' beliefs about education, their awareness and interest in science, technology, engineering and math (STEM) careers and their perceived educational challenges. It builds on the existent body of literature by dispelling pervasive notions that Latino parents do not value…
Using Toolkits to Achieve STEM Enterprise Learning Outcomes
ERIC Educational Resources Information Center
Watts, Carys A.; Wray, Katie
2012-01-01
Purpose: The purpose of this paper is to evaluate the effectiveness of using several commercial tools in science, technology, engineering and maths (STEM) subjects for enterprise education at Newcastle University, UK. Design/methodology/approach: The paper provides an overview of existing toolkit use in higher education, before reviewing where and…
Making STEM Accessible and Effective through NASA Robotics Programs
ERIC Educational Resources Information Center
West, Jonathan; Vadiee, Nader; Sutherland, Emery; Kaye, Bradley; Baker, Kyle
2018-01-01
There is no question that Science, Math, Engineering, and Technology (STEM) education is critical to the future of our students and workforce. As technology advances, computer programming skills are becoming a necessity in almost all fields. However, teaching programming and other advanced technologies is very difficult, especially in…
Perfectionism Moderates Stereotype Threat Effects on STEM Majors' Academic Performance
ERIC Educational Resources Information Center
Rice, Kenneth G.; Lopez, Frederick G.; Richardson, Clarissa M. E.; Stinson, Jennifer M.
2013-01-01
Using a randomized, between-subjects experimental design, we tested hypotheses that self-critical perfectionism would moderate the effects of subtle stereotype threat (ST) for women and students in underrepresented racial/ethnic groups who are pursuing traditional degrees in science, technology, engineering, or math (STEM). A diverse sample of…
Think3d!: Improving Mathematics Learning through Embodied Spatial Training
ERIC Educational Resources Information Center
Burte, Heather; Gardony, Aaron L.; Hutton, Allyson; Taylor, Holly A.
2017-01-01
Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a…
Think3d!: Training Spatial Thinking Fundamental to STEM Education
ERIC Educational Resources Information Center
Taylor, Holly A.; Hutton, Allyson
2013-01-01
This article describes the initial implementation of an innovative program for elementary-age children involving origami and pop-up paper engineering to promote visuospatial thinking. While spatial ability measures correlate with science, technology, engineering, and math (STEM) success, a focus on spatial thinking is all but missing in elementary…
Sci-Fi, Storytelling, and New-Media Literacy
ERIC Educational Resources Information Center
Subramaniam, Mega; Ahn, June; Waugh, Amanda; Druin, Allison
2012-01-01
Understanding how to better engage young students in science, technology, engineering, and math (STEM) is essential. The constraints of U.S. K-12 schools (e.g. insufficient institutional supports, lack of technology access, testing pressures, etc.) often make it difficult to create truly engaging STEM curricula with which students can deeply…
The Empire Strikes Back--Putting the "E" into STEM
ERIC Educational Resources Information Center
Loughran, Melissa
2017-01-01
The challenge schools face when creating a science, technology, engineering and mathematics (STEM) program is how to incorporate the "E" into the curriculum. The author's school was meeting the National (U. K.) Curriculum Science, Technology and Maths learning objectives, so how could they justify adding another subject into the mix…
ERIC Educational Resources Information Center
Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla
2015-01-01
Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…
Innovative Allies: Spatial and Creative Abilities
ERIC Educational Resources Information Center
Coxon, Steve V.
2012-01-01
Spatial and creative abilities are important for innovations in science, technology, engineering, and math (STEM) fields, but talents are rarely developed from these abilities by schools, including among gifted children and adolescents who have a high potential to become STEM innovators. This article provides an overview of each ability and makes…
STEM Education: Proceed with Caution
ERIC Educational Resources Information Center
Williams, P. John
2011-01-01
The STEM (science, technology, engineering and mathematics) movement has developed from a non-educational rationale. Although some think it may enliven the delivery of maths and science in classrooms, the social and economic rationales are those that have initiated this movement. Spurred on by the global financial crisis, it is hoped that…
Integrated STEM: A New Primer for Teaching Technology Education
ERIC Educational Resources Information Center
Asunda, Paul A.; Mativo, John
2017-01-01
Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…
STEM Girls Night In at Goddard
2016-11-05
Girls Night In was held at Goddard on Nov 4-5, 2016. This is a pilot program which reinvigorates, inspires, and engages high school girls who may be struggling or not fully engaged in STEM (Science, Technology Engineering and Math) education. The program allowed NASA women to share and demonstrate the work they do, provide the girls an opportunity to completely immerse themselves in Goddard science, technology, engineering and math as well as provide them activities that will challenge and promote knowledge and discovery. Goddard invites other NASA centers tolearn from this pilot program and work towards a simultaneous multicenter event in the future. Participating schools were: DuVal, Crossland, Flowers, High Point, Northwestern and Oxon Hill
STEM Girls Night In at Goddard
2016-11-04
Girls Night In was held at Goddard on Nov 4-5, 2016. This is a pilot program which reinvigorates, inspires, and engages high school girls who may be struggling or not fully engaged in STEM (Science, Technology Engineering and Math) education. The program allowed NASA women to share and demonstrate the work they do, provide the girls an opportunity to completely immerse themselves in Goddard science, technology, engineering and math as well as provide them activities that will challenge and promote knowledge and discovery. Goddard invites other NASA centers tolearn from this pilot program and work towards a simultaneous multicenter event in the future. Participating schools were: DuVal, Crossland, Flowers, High Point, Northwestern and Oxon Hill
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
Programming experience promotes higher STEM motivation among first-grade girls.
Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N
2017-08-01
The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)
NASA Astrophysics Data System (ADS)
Klima, K.; Hoss, F.; Welle, P.; Larkin, S.
2013-12-01
Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form 2011-2013 as base material, we have been developing online publically available Pennsylvania lesson plans meeting Next Generation Science Standards or Common Core Math Standards. The teacher curricula database will greatly increase our ability to correct misconceptions and fill gaps in lessons taught to thousands of students. This talk will share more about the SUCCEED program and the teacher curricula database efforts.
ERIC Educational Resources Information Center
Adams, Vicki
2012-01-01
Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…
ERIC Educational Resources Information Center
Gasbarra, Paul; Johnson, Jean
2008-01-01
Hispanics are one of the largest and fastest-growing minority groups in the United States. Projections indicate a need for an increase of 20% of practicing engineers by 2010. Despite the growing number of STEM (Science, Technology, Engineering and Math) careers in the American economy, education statistics suggest that too few Hispanic students…
ERIC Educational Resources Information Center
Gillian-Daniel, Donald L.; Walz, Kenneth A.
2016-01-01
Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2014-01-01
Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…
ERIC Educational Resources Information Center
Gentile, Lisa; Caudill, Lester; Fetea, Mirela; Hill, April; Hoke, Kathy; Lawson, Barry; Lipan, Ovidiu; Kerckhove, Michael; Parish, Carol; Stenger, Krista; Szajda, Doug
2012-01-01
To help undergraduates make connections among disciplines so they are able to approach, evaluate, and contribute to the solutions of important global problems, our campus has been focused on interdisciplinary research and education opportunities across the science, technology, engineering, and mathematics (STEM) disciplines. This paper describes…
Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering
ERIC Educational Resources Information Center
Burrows, Andrea; Lockwood, Meghan; Borowczak, Mike; Janak, Edward; Barber, Brian
2018-01-01
This article showcases STEM as an interdisciplinary field in which the disciplines strengthen and support each other (not as separate science, technology, engineering, and mathematics disciplines). The authors focus on an open-ended, complex problem--water quality--as the primary teaching and learning task. The participants, middle school female…
ERIC Educational Resources Information Center
McCoy, Dorian L.; Luedke, Courtney L.; Winkle-Wagner, Rachelle
2017-01-01
For this multisite qualitative case study, framed in Bourdieu's social reproduction theory, we examined mentoring experiences among Students of Color majoring in science, technology, engineering and mathematics (STEM) disciplines at both a predominantly White institution and a historically Black institution. Findings revealed that faculty served…
Gender Differences in Career Satisfaction among Postsecondary Faculty in Stem Disciplines
ERIC Educational Resources Information Center
Martin, Cynthia L.
2011-01-01
While years of effort to attract more women into higher education careers in science, technology, engineering, and mathematics (collectively known as STEM disciplines) has shown some success, retaining women faculty once they are hired has been much less successful. Their retention is essential in order to maintain diversity among faculty.…
Latino Faculty in STEM Disciplines: Motivation to Engage in Research Activities
ERIC Educational Resources Information Center
Lechuga, Vicente M.
2012-01-01
The scarcity of underrepresented faculty members in the science, technology, engineering, and mathematics (STEM) disciplines is an issue of great concern to education researchers and scholars alike. Despite their low representation, many minority faculty are able to remain motivated, even when facing barriers due to their ethnicity. I present…
Who Decides Higher Education Policy? MPS, VCS, STEM and HASS
ERIC Educational Resources Information Center
Tight, Malcolm
2012-01-01
In the UK, and in many other countries, policy makers and funding bodies emphasise the importance of the STEM disciplines (science, technology, engineering and mathematics), as opposed to the HASS disciplines (humanities, arts and social sciences), in higher education. Yet an examination of the biographies of UK members of parliament (MPs)…
Leaper, Campbell; Farkas, Timea; Brown, Christia Spears
2012-03-01
Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse sample of 579 girls ages 13-18 years (M = 15) in the U.S. completed questionnaires measuring their academic achievement, ability beliefs, values, and experiences. Social and personal factors were hypothesized to predict motivation (expectancy-value) differently in math/science (M/S) and English. Social factors included perceived M/S and English support from parents and peers. Personal factors included facets of gender identity (felt conformity pressure, gender typicality, gender-role contentedness), gender-related attitudes, and exposure to feminism. In addition, grades, age, parents' education, and ethnicity were controlled. Girls' M/S motivation was positively associated with mother M/S support, peer M/S support, gender-egalitarian beliefs, and exposure to feminism; it was negatively related to peer English support. Girls' English motivation was positively associated with peer English support as well as felt pressure from parents; it was negatively related to peer M/S support and felt peer pressure. The findings suggest that social and personal factors may influence girls' motivation in domain-specific ways.
NASA Technical Reports Server (NTRS)
Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie
2012-01-01
The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.
NASA Astrophysics Data System (ADS)
Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.
2015-12-01
The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.
Family-friendly research and workplace initiative announced
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-10-01
A new U.S. National Science Foundation (NSF) initiative aims to increase the participation of women and girls in the fields of science, technology, engineering, and math (STEM) over the next 10 years by providing more flexible research policies, promoting flexible workplace options, and supporting STEM careers for women, Obama administration officials announced on 26 September. Currently, women earn about 41% of STEM doctoral degrees awarded by U.S. educational institutions but make up only about 28% of tenure-track faculty in U.S. colleges and universities, the officials said. "Unfortunately, too many young women drop out of promising careers in science, engineering, and math because of conflicts between their desire to start families and the need to rapidly ramp up their careers," said John Holdren, director of the White House Office of Science and Technology Policy (OSTP). "The way to help women stay in the STEM jobs pipeline is to create and support more flexible workplace policies that allow a women's career—or a man's, for that matter, but as we know, it's more common for women to give up STEM careers for family reasons—to thrive even as time is allowed for important family responsibilities."
ERIC Educational Resources Information Center
Hinds, Beverley Fiona
2014-01-01
The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh-grade African-American girls who participated in the program as it relates to…
State of STEM (SoSTEM) Address
2014-01-29
Montgomery Blair High School Student Newspaper “Silver Chips” Online Editor-in-Chief Aanchal Johri, right, and Photo Editor Emma Howells, left, from Silver Spring, MD. interview NASA Astronaut Joe Acaba at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, talks with NASA's 2013 astronaut candidates at the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
Hultman, Charles Scott; Friedstat, Jonathan S
2014-01-01
Who and what have been the most influential innovators and innovations in plastic surgery? This historical paper attempts to determine our most important contributors and contributions. We conducted an anonymous, 7-question, web-based survey of all members of the American Council of Academic Plastic Surgeons (ACAPS) and the Southeastern Society of Plastic and Reconstructive Surgeons (SESPRS). We asked respondents to list their top 5 most influential surgeons, the most important publications or bodies of work, and the most important innovations in plastic surgery, past and present. Of the 86 nominees from ACAPS, the 15 most influential surgeons of the past century were Tessier, Buncke, Murray, Millard, Gillies, Mathes, Jurkiewicz, Taylor, Converse, Blair, Kleinert, Edgerton, McCraw, Peacock, and Brown, in that order. The most 10 influential surgeons of the current era are Rohrich, McCarthy, Wei, Lee, Siemionow, Allen, Coleman, Guyuron, Serletti, and Nahai. Of the 112 nominees from SESPRS, the 15 most influential surgeons of the past century were Gillies, Millard, Tessier, Buncke, Murray, Jurkiewicz, Hartrampf, Mathes, Taylor, Bostwick, McCraw, Furlow, Converse, Peacock, and Blair, in that order. The 10 most influential surgeons of the current era are Rohrich, Nahai, Wei, McCarthy, Coleman, MacKinnon, McGrath, Rubin, Guyuron, and Hammond. Pooled from both lists, the 10 most influential publications or bodies of work were Hartrampf's TRAM flap, Millard's cleft lip repair, McCraw/Mathes/Nahai's myocutaneous flaps, Furlow's cleft palate repair, Tessier's cleft classification and craniofacial repairs, Ramirez's components separation, Buncke's replantation/toe-to-thumb transfer, McCarthy's mandibular distraction osteogenesis, Taylor's free flap and angiosome concepts, and Murray's kidney transplant. The top 10 innovations of the 20th century were myocutaneous flaps, microsurgery, craniofacial surgery, skin grafts, transplantation, liposuction, bioimplants, distraction osteogenesis, angiosome anatomy, and rigid fixation. The 10 most important, current innovations are hand/face transplantation, fat grafting, stem cells, neurotoxins and soft-tissue fillers, biologic scaffolds, information technology, tissue engineering and regenerative medicine, negative pressure wound therapy, perforator flaps, and noninvasive imaging. Plastic surgery includes a rich history of both incremental and disruptive innovation, which has endowed our discipline with a competitive advantage over other medical and surgical subspecialties. Based upon our past success in managing change, there may be no limit, or no line on the horizon, as to what is possible, provided that we pursue innovation in a systematic way that combines creativity and discipline.
NASA Astrophysics Data System (ADS)
Dishauzi, Karen M.
Extensive research exists on female, African American, and Hispanic students pursuing Science, Technology, Engineering and Mathematics (STEM) field disciplines. However, little research evaluates students with disabilities and career decision-making relating to STEM field disciplines. This study explored the career decision-making experiences and self-efficacy for students with disabilities. The purpose of this research study was to document experiences and perceptions of students with disabilities who pursue, and may consider pursuing, careers in the STEM field disciplines by exploring the career decision-making self-efficacy of students with disabilities. This study documented the level of influence that the students with disabilities had or may not have had encountered from parents, friends, advisors, counselors, and instructors as they managed their decision-making choice relating to their academic major/career in the STEM or non-STEM field disciplines. A total of 85 respondents of approximately 340 students with disabilities at one Midwestern public university completed a quantitatively designed survey instrument. The Career Decision-Making Self-Efficacy Scale-Short Form by Betz and Hackett was the instrument used, and additional questions were included in the survey. Data analysis included descriptive statistics and analysis of variance. Based upon the results, college students with disabilities are not currently being influenced by individuals and groups of individuals to pursue the STEM field disciplines. This is a cohort of individuals who can be marketed to increase enrollment in STEM programs at academic institutions. This research further found that gender differences at the institution under study did not affect the career decision-making self-efficacy scores. The men did not score any higher in confidence in career decision-making than the women. Disability type did not significantly affect the relationship between the Career Decision-Making Self-Efficacy Total Scores or college major choice. Of the three disability types represented more frequently, the Mental Health disability was found to be a growing disability at the institution under study. This research was found to be beneficial in the documentation of specific levels of influence perceived by students with disabilities from parents, friends, advisors, counselors, and instructors that related to their career decision-making and academic major choices.
Marginalized Student Access to Technology Education
ERIC Educational Resources Information Center
Kurtcu, Wanda M.
2017-01-01
The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the…
A Conceptual Framework for Integrated STEM Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Knowles, J. Geoff
2016-01-01
The global urgency to improve STEM education may be driven by environmental and social impacts of the twenty-first century which in turn jeopardizes global security and economic stability. The complexity of these global factors reach beyond just helping students achieve high scores in math and science assessments. Friedman (The world is flat: A…
An Unexpected Outcome: Afterschool STEM Enrichment Empowers Facilitators, Too!
ERIC Educational Resources Information Center
Masarik, Michelle
2017-01-01
One of the goals of afterschool programming is to empower students by increasing their sense of autonomy and giving them room to chart their own course of discovery. Long before STEM (science, technology, engineering, and math) became part of the educational vernacular, afterschool practitioners were using science content and scientific practices…
An Online, Interactive Renewable Energy Laboratory
ERIC Educational Resources Information Center
O'Leary, D. A.; Shattuck, J.; Kubby, J.
2012-01-01
An undergraduate introductory science, technology, engineering, and math (STEM) class can be a jarring disappointment to new students expecting to work with cutting-edge, real-world technology. Their cell phones are often more technically advanced and real-world than the tools used in a class lab. Not surprisingly, many complain that the STEM labs…
Differences in STEM Baccalaureate Attainment by Ethnicity
ERIC Educational Resources Information Center
Koledoye, Kimberly; Joyner, Sheila; Slate, John R.
2011-01-01
In this study, we examined the extent to which differences were present in the science, technology, engineering, and math (STEM) baccalaureate attainment of Black students and of Hispanic students at 82 Texas 4-year colleges from 2008 to 2009. A custom download of data files was conducted on the Integrated Postsecondary Education Data System in…
Conditions and Decisions of Urban Elementary Teachers Regarding Instruction of STEM Curriculum
ERIC Educational Resources Information Center
Smith, Erica L.; Parker, Carolyn A.; McKinney, David; Grigg, Jeffrey
2018-01-01
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision-making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their…
Toad-Ally Cool Math and Science Integration
ERIC Educational Resources Information Center
Brkich, Katie; Allen, Melony; Huffling, Lacey; Matthews, Catherine
2017-01-01
"Hop to It," a week-long herpetology-focused summer STEM camp for rising fourth-, fifth-, and sixth-grade girls, provided young females with authentic, hands-on science experiences, allowing them to develop the habits of thought and processes of action used by STEM field experts while also engaging and sustaining their interest in the…
Success Factors Impacting Latina/o Persistence in Higher Education Leading to STEM Opportunities
ERIC Educational Resources Information Center
Peralta, Claudia; Caspary, Melissa; Boothe, Diane
2013-01-01
This study investigates how Latina/Latino youth resist, conform to, and persist in schooling, and explores their preparation for an education in science, technology, engineering and math (STEM) fields. Using Latino Critical Race Theory as a framework, evidence of the "sticky mess" of racial inequalities (Espinoza and Harris in"…
"They Sit Selfishly." Beginning STEM Educators' Expectations of Young Adolescent Students
ERIC Educational Resources Information Center
Jordan, Robert; DiCicco, Mike; Sabella, Laura
2017-01-01
To meet the demand for certified math and science teachers, alternative certification programs attempt to provide fast-track training and licensure of STEM-area educators (Goldhaber, Kreig, Theobald, & Brown, 2014). Teachers prepared in programs with a middle level specialization have been shown to participate in effective practices such as…
2013-01-19
School children react to food shrinking in a vacuum chamber during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)
Camp Invention ASL: Inclusive, Relevant, Family-Focused Science
ERIC Educational Resources Information Center
Santini, Joseph
2017-01-01
Among the fields that particularly lack images of diverse participants are those of science, technology, engineering, and math, fields captured under the acronym STEM. Often in STEM fields, images and experiences of deaf and hard of hearing children, children of color, and young women are rare or absent altogether, with the result that these…
How Community Colleges Are Closing the Skills Gap through CTE and STEM Funding Innovations
ERIC Educational Resources Information Center
Lowry, Kimberly; Thomas-Anderson, Tricia
2017-01-01
This chapter summarizes funding trends to support career and technical education (CTE) and science, technology, engineering, and math (STEM) programs at community colleges compared to funding for similar programs at 4-year colleges and universities. Examples of intramural and extramural funding strategies as well as lessons learned and…
ERIC Educational Resources Information Center
Wimsatt, Mary Jo
2012-01-01
Science, Technology, Engineering, and Math (STEM) education is currently commanding an ever-greater share of our national dialogue about education. Very few STEM initiatives focus on studies involving in-service teachers; most education research involves preservice teacher candidates. This researcher used a 54 question survey to examine in-service…
ERIC Educational Resources Information Center
Reeve, Edward M.
2015-01-01
Science, Technology, Engineering, and Mathematics (STEM) is a term seen almost daily in the news. In 2009, President Obama launched the Educate to Innovate initiative to move American students from the middle to the top of the pack in science and math achievement over the next decade (The White House, n.d.). Learning about the attributes of STEM…
A Randomized Trial of a Science, Technology, Engineering, and Mathematics Mentoring Program
ERIC Educational Resources Information Center
Sowers, Jo-Ann; Powers, Laurie; Schmidt, Jessica; Keller, Thomas E.; Turner, Alison; Salazar, Amy; Swank, Paul R.
2017-01-01
Individuals with disabilities are underrepresented in science, technology, engineering, and math (STEM) fields. The purpose of this study was to experimentally evaluate the impact of a STEM mentor intervention and differences between students matched with mentors with or without disabilities on career planning outcomes. An independent groups ×…
What Motivates Introductory Geology Students to Study for an Exam?
ERIC Educational Resources Information Center
Lukes, Laura A.; McConnell, David A.
2014-01-01
There is a need to understand why some students succeed and persist in STEM fields and others do not. While numerous studies have focused on the positive results of using empirically validated teaching methods in introductory science, technology, engineering, and math (STEM) courses, little data has been collected about the student experience in…
ERIC Educational Resources Information Center
Farinde, Abiola A.; Lewis, Chance W.
2012-01-01
African American women are underrepresented in STEM (science, technology, engineering and math) fields (Catsambis, 1994). The socialization and "under-education" of African American female students engenders ideas of inferiority, while the presence of an inferior race, sex and class, in one body, may produce an ideology of mediocrity.…
Building a Science, Technology, Engineering, and Math Education Agenda: An Update of State Actions
ERIC Educational Resources Information Center
Thomasian, John
2011-01-01
STEM--science, technology, engineering, and mathematics--is critical to and supportive of many education reforms being undertaken today, from adoption of common internationally benchmarked standards to better teacher preparation to enhanced coordination across the entire K-20 education system. In fact, STEM is not a separate reform movement at…
Engineering Encounters: From STEM to STEAM
ERIC Educational Resources Information Center
Cook, Kristin; Bush, Sarah; Cox, Richard
2017-01-01
Teaching STEAM (science, technology, engineering, art, and math) in elementary school could be even more promising than teaching STEM. This is due to its ability to cross multiple subject areas and its appeal to multiple types of learners. Intentional integration of the arts in science and engineering lessons has the potential to more deeply…
Hopes and Goals Survey for Use in STEM Elementary Education
ERIC Educational Resources Information Center
Douglas, K. Anna; Strobel, Johannes
2015-01-01
This study reports the development and validation studies of the Hopes and Goals Survey, an assessment designed to measure the level of hope of elementary students from diverse backgrounds, and its relation to science, technology, engineering, and math (STEM) studies and career. Data collected from students attending urban elementary schools were…
ERIC Educational Resources Information Center
Merisotis, Jamie P.; Kee, Arnold M.
2006-01-01
The Model Institutions for Excellence (MIE) Grant, funded by the National Science Foundation and National Aeronautics and Space Administration, enhanced student pathways into science, technology, engineering, and math (STEM). It achieved these results through 10 years of sustained investment and collaborative leadership. Components of the MIE…
ERIC Educational Resources Information Center
Paulsen, Christine Andrews; Andrews, Jessica Rueter
2014-01-01
This article describes a transmedia learning experience for early school-aged children. The experience represented an effort to transition a primarily television-based series to a primarily web-based series. Children watched new animation, completed online activities designed to promote STEM (science, technology, engineering, and math)…
Examining Urban Students' Constructions of a STEM/Career Development Intervention over Time
ERIC Educational Resources Information Center
Blustein, David L.; Barnett, Michael; Mark, Sheron; Depot, Mark; Lovering, Meghan; Lee, Youjin; Hu, Qin; Kim, James; Backus, Faedra; Dillon-Lieberman, Kristin; DeBay, Dennis
2013-01-01
Using consensual qualitative research, the study examines urban high school students' reactions to a science, technology, engineering, and math (STEM) enrichment/career development program, their resources and barriers, their perspectives on the impact of race and gender on their career development, and their overall views of work and their…
Robotic Construction Kits as Computational Manipulatives for Learning in the STEM Disciplines
ERIC Educational Resources Information Center
Sullivan, Florence R.; Heffernan, John
2016-01-01
This article presents a systematic review of research related to the use of robotics construction kits (RCKs) in P-12 learning in the STEM disciplines for typically developing children. The purpose of this review is to configure primarily qualitative and mixed methods findings from studies meeting our selection and quality criterion to answer the…
ERIC Educational Resources Information Center
Hardy, Precious; Aruguete, Mara
2014-01-01
Retention is a major problem in most colleges and universities. High dropout rates, especially in the STEM disciplines (science, technology, engineering and mathematics), have proved intractable despite the offering of supplemental instruction. A broad model of support systems that includes psychological factors is needed to address retention in…
ERIC Educational Resources Information Center
Hicks, Terence; Wood, J. Luke
2016-01-01
Purpose: Given that a relatively large percentage of college students entering historically black colleges and universities (HBCUs) are first-generation students and considering the low completion rate among this group in the science, technology, engineering and mathematics (STEM) discipline, the purpose of this preliminary meta-synthesis study is…
Sales-Pardo, Marta; Radicchi, Filippo; Otis, Shayna; Woodruff, Teresa K.; Nunes Amaral, Luís A.
2012-01-01
Many studies demonstrate that there is still a significant gender bias, especially at higher career levels, in many areas including science, technology, engineering, and mathematics (STEM). We investigated field-dependent, gender-specific effects of the selective pressures individuals experience as they pursue a career in academia within seven STEM disciplines. We built a unique database that comprises 437,787 publications authored by 4,292 faculty members at top United States research universities. Our analyses reveal that gender differences in publication rate and impact are discipline-specific. Our results also support two hypotheses. First, the widely-reported lower publication rates of female faculty are correlated with the amount of research resources typically needed in the discipline considered, and thus may be explained by the lower level of institutional support historically received by females. Second, in disciplines where pursuing an academic position incurs greater career risk, female faculty tend to have a greater fraction of higher impact publications than males. Our findings have significant, field-specific, policy implications for achieving diversity at the faculty level within the STEM disciplines. PMID:23251502
ERIC Educational Resources Information Center
Son, Elena
2015-01-01
The under-preparation in math at the high school and college levels, as well as the low participation of ethnically and linguistically diverse individuals in STEM fields are concerning because their preparation for work in these areas is essential for the U.S. to remain competitive in the innovative knowledge economy. While there is now a…
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, right, is interviewed by National Geographic Kids reporter Trevor Jehl ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy is interviewed by TIME for Kids reporter Kristen Rigsby, ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
NASA associate administrator for education and former astronaut Leland Melvin, left, watches as astronauts, Rick Mastracchio, screen left, and Michael Hopkins, deliver a message from the International Space Station (ISS) to attendees of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
State of STEM (SoSTEM) Address
2014-01-29
Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science & Technology Policy, left, is interviewed by TIME for Kids reporter Grace Clark ahead of the annual White House State of Science, Technology, Engineering, and Math (SoSTEM) address, Wednesday, Jan. 29, 2014, in the South Court Auditorium in the Eisenhower Executive Office Building on the White House complex in Washington. Photo Credit: (NASA/Bill Ingalls)
Behavior: My Problem or Yours?
ERIC Educational Resources Information Center
Trede, Mildred
1991-01-01
Activities are described for learning about problem classroom behaviors, the impact of one's manner of attire on one's behavior, and personal responsibility for one's behavior. Learning activities include role playing, making math puzzles, writing personal anecdotes, drawing a persuasive cartoon concerning smoking and discipline, and making bar…
This Rock 'n' Roll Video Teaches Math
ERIC Educational Resources Information Center
Niess, Margaret L.; Walker, Janet M.
2009-01-01
Mathematics is a discipline that has significantly advanced through the use of digital technologies with improved computational, graphical, and symbolic capabilities. Digital videos can be used to present challenging mathematical questions for students. Video clips offer instructional possibilities for moving students from a passive mode of…
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine. PMID:24860688
Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J
2014-01-01
This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics will be critical to assuring their success as leaders in the era of big data and personalized medicine.
Small-Group Learning in Undergraduate STEM Disciplines: Effect of Group Type on Student Achievement
ERIC Educational Resources Information Center
Micari, Marina; Pazos, Pilar; Streitwieser, Bernhard; Light, Gregory
2010-01-01
Small-group learning in the science, technology, engineering, and mathematics (STEM) disciplines has been widely studied, and it is clear that this method offers many benefits to students. Less attention has been paid to the ways in which small learning groups differ from one another, and how these differences may affect student learning and…
ERIC Educational Resources Information Center
Levine, Mindy; Serio, Nicole; Radaram, Bhasker; Chaudhuri, Sauradip; Talbert, William
2015-01-01
There continues to be a persistent, widespread gender gap in multiple STEM disciplines at all educational and professional levels: from the self-reported interest of preschool aged students in scientific exploration to the percentages of tenured faculty in these disciplines, more men than women express an interest in science, a confidence in their…
The Current Status of STEM Education Research
ERIC Educational Resources Information Center
Brown, Josh
2012-01-01
This paper explores the current Science, Technology, Engineering and Mathematics (STEM) education research base through an analysis of articles from eight journals focused on the STEM disciplines. Analyzed are both practitioner and research publications to determine the current scope of STEM education research, where current STEM education…
ERIC Educational Resources Information Center
Morton, Terrell Roderick
2017-01-01
Research and reports promote targeted interventions such as the undergraduate research experience to address issues with Black student retention and matriculation in Science, Technology, Engineering, and Math (STEM). The effectiveness of these interventions are purported to be their ability to foster strong associations between Black students and…
College Admissions Viewbooks and the Grammar of Gender, Race, and STEM
ERIC Educational Resources Information Center
Osei-Kofi, Nana; Torres, Lisette E.
2015-01-01
Numerous reports on the US economy argue that American higher education institutions must prepare a greater number of workers for employment in science, technology, engineering, and math (STEM), in order for the US to remain globally competitive. To do so, addressing the underrepresentation of women and people of color who pursue degrees in STEM…
Addressing the STEM Workforce Challenge: Missouri. BHEF Research Brief
ERIC Educational Resources Information Center
Business-Higher Education Forum (NJ1), 2012
2012-01-01
While states and the federal government have put efforts in place to increase the size of the workforce trained in science, technology, engineering, and math (STEM) to meet innovation demands, there continues to be a nationwide shortage of students who are interested in and prepared for such careers. Missouri is no exception to this problem, one…
A Mixed Methods Study on Evaluations of Virginia's STEM-Focused Governor's Schools
ERIC Educational Resources Information Center
Stith, Krista M.
2017-01-01
Significant emphasis is currently placed on STEM education as a vehicle to encourage American youth to enter science, technology, engineering, and math-related professions. Gifted students are a natural resource of future innovators for these fields; however gifted programs are largely overlooked for program support. Since 1973, the Virginia…
Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science
ERIC Educational Resources Information Center
Gorena, Jacquelyn L.
2015-01-01
STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…
ERIC Educational Resources Information Center
Lesk, Cherish Christina Clark
2017-01-01
Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use…
ERIC Educational Resources Information Center
Kruse, Tracy; Starobin, Soko S.; Chen, Yu; Baul, Tushi; Santos Laanan, Frankie
2015-01-01
This quantitative study examined how social capital and finances influenced community college students' intent to transfer to a four-year institution within STEM (science, technology, engineering, and math) fields. Focusing on the community college students enrolled in a rural midwestern state, the authors employed a structural equation modeling…
Changing academic culture to improve undergraduate STEM education.
Suchman, Erica L
2014-12-01
Improving undergraduate science, technology, engineering, and math (STEM) education requires faculty with the skills, resources, and time to create active learning environments that foster student engagement. Current faculty hiring, promotion, and tenure practices at many universities do not measure, reward, nor encourage faculty pursuit of these skills. A cultural change is needed to foster improvement. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Cosby, Missy; Horton, Akesha; Berzina-Pitcher, Inese
2017-01-01
The MSUrbanSTEM fellowship program aims to support science, technology, engineering, and mathematics (STEM) educators teaching in an urban context. In this chapter, we used a multiple case studies methodology to examine the qualitatively different ways three urban mathematics educators implemented a yearlong project in their mathematics classrooms…
2013-01-19
NASA Astronaut and Associate Administrator for Education, Leland Melvin, talks to school children during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)
2013-01-19
School children are given a hands-on experience with a mock spacesuit during a Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Leland Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)
2013-01-19
School children are taught to build their own spacecraft and habitat during a Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Leland Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)
STEM Pilot Project Grant Program: Report to the Legislature, December 2016
ERIC Educational Resources Information Center
Noahr, Lorrell; Black, Scott; Rogers, Justin
2016-01-01
As our world becomes more and more steeped in technology, educating our students in that and related areas becomes crucial. Science, technology, engineering and math (STEM) education focuses on helping students become the next generation of professionals who will create the new ideas, new products and new industries of the future. Teaching STEM…
Reconceptualizing St®E(A)M(S) Education for Teacher Education
ERIC Educational Resources Information Center
Krug, Don; Shaw, Ashley
2016-01-01
This article examines science, technology, engineering, and math (STEM) education as represented in North American educational contexts. In this article we will argue that the dominant view of STEM education as currently circulated and practiced in the United States and Canada is not much more than an acronym of discrete disciplinary areas. We…
ERIC Educational Resources Information Center
Heinrich, Sara; Collins, Belva C.; Knight, Victoria; Spriggs, Amy D.
2016-01-01
Effects of an embedded simultaneous prompting procedure to teach STEM (science, technology, engineering, math) content to three secondary students with moderate intellectual disabilities in an inclusive general education classroom were evaluated in the current study. Students learned discrete (i.e., geometric figures, science vocabulary, or use of…
STEM Pilot Project Grant Program: Report to the Legislature, June 2016
ERIC Educational Resources Information Center
Noahr, Lorrell; Black, Scott; Rogers, Justin
2016-01-01
The Washington State Legislature established the Science, Technology, Engineering, & Math (STEM) Pilot Program in the 2015-2017 capital budget (Chapter 3, Laws of 2015, 3rd Sp. Session, Section 5026) and provided $12,500,000 for this pilot grant program. Grants awarded under this program constitute the districts' local funding for purposes of…
The Malleability of Spatial Ability under Treatment of a FIRST LEGO League-Based Robotics Unit
ERIC Educational Resources Information Center
Coxon, Steven Vincent
2012-01-01
Spatial ability is important to science, technology, engineering, and math (STEM) success, but spatial talents are rarely developed in schools. Likewise, the gifted may become STEM innovators, but they are rarely provided with pedagogy appropriate to develop their abilities in schools. A stratified random sample of volunteer participants (n = 75)…
The Experience and Persistence of College Students in STEM Majors
ERIC Educational Resources Information Center
Xu, Yonghong Jade
2018-01-01
In this study, an online survey was constructed based on the extant literature on college student success. The survey was used to collect data from a sample of college students in science, technology, engineering, and math (STEM) majors in order to examine their learning experiences and to identify the factors that may influence their persistence…
ERIC Educational Resources Information Center
Windchief, Sweeney; Brown, Blakely
2017-01-01
In order to address the disparity of American Indian/Alaska Native (AI/AN) doctorates in science, technology, engineering, and math (STEM), culturally congruent mentorship program development is needed. Because traditional Western academic paradigms are typically constrained to a non-Indigenous perspective, the authors question how American Indian…
Knowledge Construction in Computer Science and Engineering When Learning through Making
ERIC Educational Resources Information Center
Charlton, Patricia; Avramides, Katerina
2016-01-01
This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…
ERIC Educational Resources Information Center
Choi, Bailey
2016-01-01
Science Technology Engineering and Math (STEM) education has become a top priority, particularly for low-income Latino students, who are vastly underrepresented in STEM fields, largely due to various inequities in the PK-20 pipeline (Villareal, Cabrera, & Friedrich, 2012). Implementing effective science instruction in preschool has been…
ERIC Educational Resources Information Center
Buddin, Richard; Croft, Michelle
2014-01-01
For several decades, policymakers have embraced the goal of preparing students for college and careers, particularly for careers in the area of mathematics and science. The recent emphasis on these STEM (science, technology, engineering, and mathematics) subjects is due to the growth of STEM occupations and the perceived shortage of qualified…
Attitudes about High School Physics in Relationship to Gender and Ethnicity: A Mixed Method Analysis
ERIC Educational Resources Information Center
Hafza, Rabieh Jamal
2012-01-01
There is an achievement gap and lack of participation in science, technology, engineering, and math (STEM) by minority females. The number of minority females majoring in STEM related fields and earning advanced degrees in these fields has not significantly increased over the past 40 years. Previous research has evaluated the relationship between…
ERIC Educational Resources Information Center
DeChenne, Sue Ellen; Enochs, Larry
2010-01-01
An instrument to measure the teaching self-efficacy of science, technology, engineering, and mathematics (STEM) GTAs is adapted from a general college teaching instrument (Prieto Navarro, 2005) for the specific teaching environment of the STEM GTAs. The construct and content validity and reliability of the final instrument are indicated. The final…
An Assessment of Factors Relating to High School Students' Science Self-Efficacy
ERIC Educational Resources Information Center
Gibson, Jakeisha Jamice
2017-01-01
This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…
ERIC Educational Resources Information Center
Newman, Jane L.; Dantzler, John; Coleman, April N.
2015-01-01
The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…
ERIC Educational Resources Information Center
Stevenson, Gregory V.
2017-01-01
Rationale: Former President Barack Obama's $3.9 trillion for the 2015 fiscal year budget request included a $2.9 billion investment in Science, Technology, Engineering and Math (STEM) education. Research then showed that the national spending for cybersecurity has exceeded $10.7 billion in the 2015 fiscal year. Nonetheless, the number of…
Moving beyond Cultural Barriers: Successful Strategies of Female Technology Education Teachers
ERIC Educational Resources Information Center
McCarthy, Raymond R.; Berger, Joseph
2008-01-01
Women are underrepresented in Science, Technology, Engineering, and Math (STEM) fields of study and careers with a subset of STEM--Technology Education--possibly one of the least integrated fields for women as students and as professionals. What accounts for this situation and what are potential remedies? The purpose of this study was to learn…
Push and Pull: The Influence of Race/Ethnicity on Agency in Doctoral Student Career Advancement
ERIC Educational Resources Information Center
Jaeger, Audrey J.; Mitchall, Allison; O'Meara, KerryAnn; Grantham, Ashley; Zhang, Jingjing; Eliason, Jennifer; Cowdery, Kelly
2017-01-01
This study examined and enriched our understanding of the career choice process for doctoral students of color in science, technology, engineering, and math (STEM) fields. In addition, it explored the challenges facing all doctoral students in STEM in understanding and making meaning of diversity as it relates to individual perspectives and…
ERIC Educational Resources Information Center
Alexis, Frank; Casco, M.; Martin, J.; Zhang, G.
2017-01-01
The goal of study abroad programs is to educate and train future global leaders. This article examines the effectiveness of Clemson University's Singapore Study Abroad program in meeting this goal by exposing students to global perspectives of science technology, engineering and math (STEM) research and learning through an international summer…
Increasing the Competitive Edge in Math and Science
ERIC Educational Resources Information Center
Kettlewell, Janet S., Ed.; Henry, Ronald J., Ed.
2009-01-01
The U. S. is losing its competitive edge in science, technology, engineering, and mathematics (STEM). Thomas Friedman warns that America is not producing enough young people in STEM fields that are essential for entrepreneurship and innovation in the 21st century (The World Is Flat: A Brief History of the Twenty-First Century, 2005). Blue ribbon…
SHINE for Girls: Innovating STEM Curriculum with Dance
ERIC Educational Resources Information Center
Hally, Tara; Sinha, Kirin
2018-01-01
SHINE for Girls, a nonprofit with the mission of empowering young women to value their own potential and capabilities within STEM fields, employs a unique curriculum that blends math with dance. They were selected as part of HundreED's 100 Global Education Innovations for 2017. In this article, Tara Hally, Director of Programming, and Kirin Sinha,…
Disciplinary Literacy from a Speech-Language Pathologist's Perspective
ERIC Educational Resources Information Center
Ehren, Barbara J.; Murza, Kimberly A.; Malani, Melissa D.
2012-01-01
Disciplinary literacy is an increasingly popular focal area in adolescent literacy. In disciplinary literacy, the discourse features of specific knowledge domains (e.g., literature, history, science, and math) assume major importance in understanding and constructing meaning in each discipline. Because language plays a significant role in…
Interdisciplinary Lessons in Musical Acoustics: The Science-Math-Music Connection
ERIC Educational Resources Information Center
Rogers, George L.
2004-01-01
The National Standards for Arts Education encourages teachers to help students make connections between music and other disciplines. Many state curriculum guides likewise encourage educators to integrate curricula and find common ground between different subjects. Music--particularly vocal music--offers ample opportunities to find relationships…
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from the University of Colorado Boulder demonstrated a robotic capability for growing a variety of plants in a deep-space habitat. Daniel Zukowski, a University of Colorado Boulder graduate student, right, and Morgan Simpson of the NASA Ground Processing Directorate, check computer displays during a presentation of the team's entry in the eXploration HABitat X-Hab Academic Innovation Challenge. In their concept called "Plants Anywhere: Plants Growing in Free Habitat Spaces," their approach calls for robotically tended plants to be scattered in any available space in a deep-space habitat instead of an area set aside just for vegetation. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.
2009-12-01
With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.
Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2011-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
NASA Astrophysics Data System (ADS)
Mills, Leila A.
This study examines middle school students' perceptions of a future career in a science, math, engineering, or technology (STEM) career field. Gender, grade, predispositions to STEM contents, and learner dispositions are examined for changing perceptions and development in career-related choice behavior. Student perceptions as measured by validated measurement instruments are analyzed pre and post participation in a STEM intervention energy-monitoring program that was offered in several U.S. middle schools during the 2009-2010, 2010-2011 school years. A multiple linear regression (MLR) model, developed by incorporating predictors identified by an examination of the literature and a hypothesis-generating pilot study for prediction of STEM career interest, is introduced. Theories on the career choice development process from authors such as Ginzberg, Eccles, and Lent are examined as the basis for recognition of career concept development among students. Multiple linear regression statistics, correlation analysis, and analyses of means are used to examine student data from two separate program years. Study research questions focus on predictive ability, RSQ, of MLR models by gender/grade, and significance of model predictors in order to determine the most significant predictors of STEM career interest, and changes in students' perceptions pre and post program participation. Analysis revealed increases in the perceptions of a science career, decreases in perceptions of a STEM career, increase of the significance of science and mathematics to predictive models, and significant increases in students' perceptions of creative tendencies.
ERIC Educational Resources Information Center
Brown, Ryan, Ed.; Ernst, Jeremy, Ed.; Clark, Aaron, Ed.; DeLuca, Bill, Ed.; Kelly, Daniel, Ed.
2017-01-01
This professional development activity on STEM Education is designed to keep Technology and Engineering teachers up to date regarding current and important issues in the discipline. This article describes why there is a focus on STEM Education, defines STEM Education, and discusses curriculum integration and its elements.
Drawing Women In: Engaging in Science and Engineering Disciplines
NASA Astrophysics Data System (ADS)
Greene, Senta
2013-03-01
Recent data on the participation of women in the scientific, technological, engineering, and mathematical (STEM) disciplines shows a landscape that is somewhat different from our expectations in the past. For example, women who earn bachelors' degrees in physics go on to earn PhDs, be hired to faculty positions, and achieve promotions at the same rate as their male counterparts. However, such gains do not foretell equal participation of women in physics since, although girls make up about half of high school physics classes, the fraction of bachelor's degrees earned by women has been flat at around 20% for about a decade. This remains true even with significantly increased awareness of the need to attract more women to STEM fields and despite various interventions to attract and retain talented women. This talk will present an overview of data on women's participation in STEM disciplines, provide possible explanations for the continued failure to attract women to some STEM fields, and give a brief description of some current interventions.
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
Knowing the "Right Stuff": Attrition, Gender, and Scientific Literacy.
ERIC Educational Resources Information Center
McDade, Laurie A.
1988-01-01
For undergraduate women, attrition from chemistry and mathematics disciplines because of their noncompetitive performance involves abandoning their original goals. Male students explain their attrition as pragmatic moves toward more rewarding fields and do not, unlike women, question their talents as "math wiz kids." Reasons for this difference…
Technology Framework. For Grades Five through Twelve.
ERIC Educational Resources Information Center
KnowledgeContext, Santa Cruz, CA.
While California has frameworks defining what concepts are necessary for understanding science, math, history-social science, and other disciplines, there has been no such framework for technology. The framework presented in this paper proposes a strategy for thriving in a future that will be strongly influenced by technology. That strategy is…
Multiplying Is More than Math--It's Also Good Management
ERIC Educational Resources Information Center
Foster, Elise; Wiseman, Liz
2015-01-01
Studying more than 400 educational leaders, the authors propose a new model for leadership and management rooted in the belief that there is latent intelligence inside schools and educational organizations. Their findings suggest two dramatically different types of leaders, Multipliers and Diminishers. The five disciplines that distinguish…
ERIC Educational Resources Information Center
Hurley, Marlene M.; Normandia, Bruce
2005-01-01
This article provides a science lesson for the middle school level, the metric system is used for all methods of measurement. The example lesson utilizes edible fruit as the real-world focus and offers ideas for additional lessons and the integration of disciplines beyond mathematics. This lesson requires students to handle, examine, and possibly…
Developing Creative Behavior in Elementary School Students with Robotics
ERIC Educational Resources Information Center
Nemiro, Jill; Larriva, Cesar; Jawaharlal, Mariappan
2017-01-01
The School Robotics Initiative (SRI), a problem-based robotics program for elementary school students, was developed with the objective of reaching students early on to instill an interest in Science, Technology, Engineering, and Math disciplines. The purpose of this exploratory, observational study was to examine how the SRI fosters student…
A Provably Necessary Symbiosis
ERIC Educational Resources Information Center
Hochberg, Robert; Gabric, Kathleen
2010-01-01
The "new biology" of the 21st century is increasingly dependent on mathematics, and preparing high school students to have both strong science and math skills has created major challenges for both disciplines. Researchers and educators in biology and mathematics have been working long hours on a project to create high school teaching modules…