NASA Astrophysics Data System (ADS)
Rezeki, S.; Setyawan, A. A.; Amelia, S.
2018-01-01
Mathematical understanding ability is a primary goal of Indonesian national education goals. However, various sources has shown that Indonesian students’ mathematical understanding ability is still relatively low. This study used quasi-experimental research design to examine the effectiveness of the application of Missouri Mathematics Project (MMP) on students’ mathematical understanding ability. The participants of the study were seventh grade students in Pekanbaru, Riau Province, Indonesia. They were selected purposively and represented as high, medium, and low-quality schools. The result of this study indicated that there was a significant effect of MMP on the overall students’ mathematical understanding ability and in all categories, except for low school level.
ERIC Educational Resources Information Center
An, Song; Capraro, Mary Margaret; Tillman, Daniel A.
2013-01-01
This article presents exploratory research investigating the way teachers integrate music into their regular mathematics lessons as well as the effects of music-mathematics interdisciplinary lessons on elementary school students' mathematical abilities of modeling, strategy and application. Two teachers and two classes of first grade and third…
NASA Astrophysics Data System (ADS)
Chotimah, Siti; Bernard, M.; Wulandari, S. M.
2018-01-01
The main problems of the research were the lack of reasoning ability and mathematical disposition of students to the learning of mathematics in high school students in Cimahi - West Java. The lack of mathematical reasoning ability in students was caused by the process of learning. The teachers did not train the students to do the problems of reasoning ability. The students still depended on each other. Sometimes, one of patience teacher was still guiding his students. In addition, the basic ability aspects of students also affected the ability the mathematics skill. Furthermore, the learning process with contextual approach aided by VBA Learning Media (Visual Basic Application for Excel) gave the positive influence to the students’ mathematical disposition. The students are directly involved in learning process. The population of the study was all of the high school students in Cimahi. The samples were the students of SMA Negeri 4 Cimahi class XIA and XIB. There were both of tested and non-tested instruments. The test instrument was a description test of mathematical reasoning ability. The non-test instruments were questionnaire-scale attitudes about students’ mathematical dispositions. This instrument was used to obtain data about students’ mathematical reasoning and disposition of mathematics learning with contextual approach supported by VBA (Visual Basic Application for Excel) and by conventional learning. The data processed in this study was from the post-test score. These scores appeared from both of the experimental class group and the control class group. Then, performing data was processed by using SPSS 22 and Microsoft Excel. The data was analyzed using t-test statistic. The final result of this study concluded the achievement and improvement of reasoning ability and mathematical disposition of students whose learning with contextual approach supported by learning media of VBA (Visual Basic Application for Excel) was better than students who got conventional learning.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
ERIC Educational Resources Information Center
Popovic, Gorjana; Lederman, Judith S.
2015-01-01
The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…
Huang, Qi; Zhang, Xiao; Liu, Yingyi; Yang, Wen; Song, Zhanmei
2017-09-01
A growing body of recent research has shown that parent-child mathematical activities have a strong effect on children's mathematical learning. However, this research was conducted predominantly in Western societies and focused mainly on mothers' involvement in such activities. This study aimed to examine both mother-child and father-child numeracy activities in Hong Kong Chinese families and both parents' unique roles in predicting young Chinese children's mathematics ability. A sample of 104 Hong Kong Chinese children aged approximately 5 years and their mothers and fathers participated in this study. Mothers and fathers independently reported the frequency of their own numeracy activities with their children. Children were assessed individually using two measures of mathematical ability. Hierarchical regression models were used to investigate the contribution of parent-child numeracy activities to children's mathematical ability. Mothers' participation in number skill activities and fathers' participation in number game and application activities significantly predicted their children's mathematical performance even after controlling for background variables and children's language ability. This study extends previous research with a sample of Chinese kindergarten children and shows that parent-child numeracy activities are related to young children's mathematical ability. The findings highlight the important roles that mothers and fathers play in their young children's mathematical learning. © 2017 The British Psychological Society.
ERIC Educational Resources Information Center
Wu, Zhonghe; An, Shuhua
2016-01-01
This study examined the effects of using the Model-Strategy-Application with Reasoning Approach (MSAR) in teaching and learning mathematics in linguistically and culturally diverse elementary classrooms. Through learning mathematics via the MSAR, students from different language ability groups gained an understanding of mathematics from creating…
Applications: Students, the Mathematics Curriculum and Mathematics Textbooks
ERIC Educational Resources Information Center
Kilic, Cigdem
2013-01-01
Problem posing is one of the most important topics in a mathematics education. Through problem posing, students gain mathematical abilities and concepts and teachers can evaluate their students and arrange adequate learning environments. The aim of the present study is to investigate Turkish primary school teachers' opinions about problem posing…
NASA Astrophysics Data System (ADS)
Jupri, A.
2017-09-01
The responsibility to promote the growth of deductive reasoning ability of school students through learning mathematics is in the hand of mathematics teachers and particularly primary school mathematics teachers. However, how we can make sure whether teachers are able to do so. To investigate this issue, we conducted a three-step of an exploratory survey study. First, we designed tasks from the Varignon’s theorem. Second, we administered an individual written test involving twenty master students of primary education program, in which they are prospective of and primary school mathematics teachers. Finally, we address the results in the light of Van Hiele theory. The results showed that participated students lack of deductive reasoning ability in the context of geometry. For further research, we wonder whether the designed tasks are also applicable to assess student deductive reasoning ability if the students have acquired appropriate teaching.
NASA Astrophysics Data System (ADS)
Priatna, Nanang
2017-08-01
The use of Information and Communication Technology (ICT) in mathematics instruction will help students in building conceptual understanding. One of the software products used in mathematics instruction is GeoGebra. The program enables simple visualization of complex geometric concepts and helps improve students' understanding of geometric concepts. Instruction applying brain-based learning principles is one oriented at the efforts of naturally empowering the brain potentials which enable students to build their own knowledge. One of the goals of mathematics instruction in school is to develop mathematical communication ability. Mathematical representation is regarded as a part of mathematical communication. It is a description, expression, symbolization, or modeling of mathematical ideas/concepts as an attempt of clarifying meanings or seeking for solutions to the problems encountered by students. The research aims to develop a learning model and teaching materials by applying the principles of brain-based learning aided by GeoGebra to improve junior high school students' mathematical representation ability. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2x3 factorial model. Based on analysis of the data, it is found that the increase in the mathematical representation ability of students who were treated with mathematics instruction applying the brain-based learning principles aided by GeoGebra was greater than the increase of the students given conventional instruction, both as a whole and based on the categories of students' initial mathematical ability.
Activities for Students: Connecting Spatial Reasoning Ideas in Mathematics and Chemistry
ERIC Educational Resources Information Center
Raje, Sonali; Krach, Michael; Kaplan, Gail
2013-01-01
Concepts in mathematics are often universally applicable to other fields. A critical aspect for success in high school or college is the ability to transfer content knowledge from one discipline to another. This is especially true for material learned in the sciences and mathematics. Several studies have suggested that strong mathematical skills…
Reflectiveness/Impulsiveness and Mathematics Achievement
ERIC Educational Resources Information Center
Cathcart, W. George; Liedtke, Werner
1969-01-01
Report of research to test the hypothesis that reflective students would be higher achievers in mathematics than impulsive pupils. An achievement test was developed to measure understanding of mathematical concepts and applications, ability to solve verbal problems and recall basic facts. Data suggest that reflective students obtain better…
ERIC Educational Resources Information Center
Contreras, Jose
2007-01-01
In this article, I model how a problem-posing framework can be used to enhance our abilities to systematically generate mathematical problems by modifying the attributes of a given problem. The problem-posing model calls for the application of the following fundamental mathematical processes: proving, reversing, specializing, generalizing, and…
Diagnostic Testing in Mathematics: An Extension of the PIAT?
ERIC Educational Resources Information Center
Algozzine, Bob; McGraw, Karen
1980-01-01
The article addresses the usefulness of the Peabody Individual Achievement Test (PIAT) in assessing various levels of arithmetic performance. The mathematics subtest of the PIAT is considered in terms of purpose; mathematical abilities subsections (foundations, basic facts, applications); diagnostic testing (the error analysis matrix); and poor…
The MACSI Summer School: A Case Study in Outreach in Mathematics
ERIC Educational Resources Information Center
Charpin, J. P. F.; Hanrahan, P.; Mason, J. F.; O'Brien, S. B. G.; O'Sullivan, M.
2012-01-01
To encourage the study of mathematics in Ireland, the Mathematics Applications Consortium for Science and Industry (MACSI) organizes a summer school once a year. The different aspects of this summer school are presented. Students are selected depending on their motivation, academic abilities, gender and geographical origins. Instruction and…
Brain stimulation, mathematical, and numerical training: Contribution of core and noncore skills.
Looi, C Y; Cohen Kadosh, R
2016-01-01
Mathematical abilities that are correlated with various life outcomes vary across individuals. One approach to improve mathematical abilities is by understanding the underlying cognitive functions. Theoretical and experimental evidence suggest that mathematical abilities are subserved by "core" and "noncore" skills. Core skills are commonly regarded as the "innate" capacity to attend to and process numerical information, while noncore skills are those that are important for mathematical cognition, but are not exclusive to the mathematical domain such as executive functions, spatial skills, and attention. In recent years, mathematical training has been combined with the application of noninvasive brain stimulation to further enhance training outcomes. However, the development of more strategic training paradigms is hindered by the lack of understanding on the contributory nature of core and noncore skills and their neural underpinnings. In the current review, we will examine the effects of brain stimulation with focus on transcranial electrical stimulation on core and noncore skills, and its impact on mathematical and numerical training. We will conclude with a discussion on the theoretical and experimental implications of these studies and directions for further research. © 2016 Elsevier B.V. All rights reserved.
Mathematics for the Workplace. Applications from Medical Laboratory Technology. A Teacher's Guide.
ERIC Educational Resources Information Center
Wallace, Johnny M.; Jones, Dallas
This module presents a real-world context in which mathematics skills are used as part of a daily routine. The context is the medical laboratory technology field, and the module aims to help students develop the ability to use mathematics computations while performing tasks similar to those performed by a medical technologist. Materials in the…
ERIC Educational Resources Information Center
Schoer, Volker; Ntuli, Miracle; Rankin, Neil; Sebastiao, Claire; Hunt, Karen
2010-01-01
Internationally, performance in school Mathematics has been found to be a reliable predictor of performance in commerce courses at university level. Based on the predictive power of school-leaving marks, universities use results from school-leaving Mathematics examinations to rank student applicants according to their predicted abilities. However,…
ERIC Educational Resources Information Center
Wallace, Johnny M.; Stewart, Grover
This module presents a real-world context in which mathematics skills (geometry and trigonometry) are used as part of a daily routine. The context is the machine tool technology field, and the module aims to help students develop the ability to analyze diagrams in order to make mathematical computations. The modules, which features applications…
Multiplayer Activities That Develop Mathematical Coordination.
ERIC Educational Resources Information Center
Bricker, Lauren J.; Tanimoto, Steven L.; Rothenberg, Alex I.; Hutama, Danny C.; Wong, Tina H.
Four computer applications are presented that encourage students to develop "mathematical coordination"--the ability to manipulate numerical variables in cooperation with other students so as to achieve a definite goal. The programs enable a form of computer-supported cooperative learning (CSCL). This paper describes the rationale and…
Buring, Shauna M.; Papas, Elizabeth
2013-01-01
Objective. To assess doctor of pharmacy (PharmD) students’ mathematics ability by content area before and after completing a required pharmaceutical calculations course and to analyze changes in scores. Methods. A mathematics skills assessment was administered to 2 cohorts of pharmacy students (class of 2013 and 2014) before and after completing a pharmaceutical calculations course. The posttest was administered to the second cohort 6 months after completing the course to assess knowledge retention. Results. Both cohorts performed significantly better on the posttest (cohort 1, 13% higher scores; cohort 2, 15.9% higher scores). Significant improvement on posttest scores was observed in 6 of the 10 content areas for cohorts 1 and 2. Both cohorts scored lower in percentage calculations on the posttest than on the pretest. Conclusions. A required, 1-credit-hour pharmaceutical calculations course improved PharmD students’ overall ability to perform fundamental and application-based calculations. PMID:23966727
Hegener, Michael A; Buring, Shauna M; Papas, Elizabeth
2013-08-12
To assess doctor of pharmacy (PharmD) students' mathematics ability by content area before and after completing a required pharmaceutical calculations course and to analyze changes in scores. A mathematics skills assessment was administered to 2 cohorts of pharmacy students (class of 2013 and 2014) before and after completing a pharmaceutical calculations course. The posttest was administered to the second cohort 6 months after completing the course to assess knowledge retention. Both cohorts performed significantly better on the posttest (cohort 1, 13% higher scores; cohort 2, 15.9% higher scores). Significant improvement on posttest scores was observed in 6 of the 10 content areas for cohorts 1 and 2. Both cohorts scored lower in percentage calculations on the posttest than on the pretest. A required, 1-credit-hour pharmaceutical calculations course improved PharmD students' overall ability to perform fundamental and application-based calculations.
ERIC Educational Resources Information Center
Hunt, Jessica H.
2014-01-01
The purpose of this study was to examine the effects of a Tier 2 supplemental intervention focused on rational number equivalency concepts and applications on the mathematics performance of third-grade students with and without mathematics difficulties. The researcher used a pretest-posttest control group design and random assignment of 19…
NASA Astrophysics Data System (ADS)
Karlimah
2018-05-01
This study examines the application of classical music backsound in mathematics learning. The method used is quasi experimental design nonequivalent pretest-posttest control group in elementary school students in Tasikmalaya city, Indonesia. The results showed that classical music contributed significantly to the mathematical intelligence of elementary school students. The mathematical intelligence shown is in the cognitive ability ranging from the level of knowledge to evaluation. High level mathematical intelligence is shown by students in reading and writing integers with words and numbers. The low level of mathematical intelligence exists in projecting the story into a mathematical problem. The implication of this research is the use of classical music backsound on learning mathematics should pay attention to the level of difficulty of mathematics material being studied.
NASA Astrophysics Data System (ADS)
Angraini, L. M.; Kartasasmita, B.; Dasari, D.
2017-02-01
This study examined the university students’ mathematically critical thinking ability through Concept Attainment Model learning. The Kolmogorov-Smirnov test, Levene test, t test, ANOVA one and two ways were used to analyse the data. The results of this study showed that (1) there is no difference grade on the student’s mathematical critical thinking ability between experimental group and conventional group as a whole, (2) there is no difference on the students’ mathematical critical thinking ability of experimental classes based on their mathematical early ability (3) there is no interaction between the learning that is used with the students’ mathematical early ability on the students’ mathematical critical thinking ability.
ERIC Educational Resources Information Center
Vaughn, Brandon K.; Wang, Pei-Yu
2009-01-01
The emergence of technology has led to numerous changes in mathematical and statistical teaching and learning which has improved the quality of instruction and teacher/student interactions. The teaching of statistics, for example, has shifted from mathematical calculations to higher level cognitive abilities such as reasoning, interpretation, and…
The relationship between learning mathematics and general cognitive ability in primary school.
Cowan, Richard; Hurry, Jane; Midouhas, Emily
2018-06-01
Three relationships between learning mathematics and general cognitive ability have been hypothesized: The educational hypothesis that learning mathematics develops general cognitive skills, the psychometric hypothesis that differences in general cognitive ability cause differences in mathematical attainment, and the reciprocal influence hypothesis that developments in mathematical ability and general cognitive ability influence each other. These hypotheses are assessed with a sample of 948 children from the Twins Early Development Study who were assessed at 7, 9, and 10 years on mathematics, English, and general cognitive ability. A cross-lagged path analysis with mathematics and general cognitive ability measures supports the reciprocal influence hypothesis between 7 and 9 and between 9 and 10. A second analysis including English assessments only provides evidence of a reciprocal relationship between 7 and 9. Statement of Contribution What is already known on this subject? The correlations between mathematical attainment, literacy, and measures of general cognitive skills are well established. The role of literacy in developing general cognitive skills is emerging. What the present study adds? Mathematics contributes to the development of general cognitive skills. General cognitive ability contributes to mathematical development between 7 and 10. These findings support the hypothesis of reciprocal influence between mathematics and general cognitive ability, at least between 7 and 9. © 2017 The British Psychological Society.
ERIC Educational Resources Information Center
Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan
2016-01-01
Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…
NASA Astrophysics Data System (ADS)
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin
2013-01-01
Previous research has found a relationship between individual differences in children’s precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the present study we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of two years. Additionally, at the last time point, we tested children’s informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3; Ginsburg & Baroody, 2003). We found that children’s numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned, non-symbolic system of quantity representation and the system of mathematical reasoning that children come to master through instruction. PMID:24076381
Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2013-12-01
Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fasni, N.; Turmudi, T.; Kusnandi, K.
2017-09-01
This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.
ERIC Educational Resources Information Center
McTiernan, Aoife; Holloway, Jennifer; Healy, Olive; Hogan, Michael
2016-01-01
A randomized controlled trial was used to evaluate the impact of a frequency-building curriculum to increase the fluency of component mathematics skills in a sample of 28 males aged 9-11 years. Assessments of mathematical ability were conducted before and after the training period to evaluate the impact of learning component skills fluently on…
Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: a twin study
Greven, Corina U.; Kovas, Yulia; Willcutt, Erik G.; Petrill, Stephen A.; Plomin, Robert
2013-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Methods Data came from more than 6,000 12-year-old twin pairs from the U.K. population-representative Twins Early Development Study. Parents rated each twin’s behaviour using a DSM-IV-based 18-item questionnaire of inattentive and hyperactive-impulsive ADHD symptoms. Mathematics tests based on the U.K. National Curriculum were completed by each twin. The twins also completed standardised tests of reading and general cognitive ability. Multivariate twin model fitting was applied. Results Inattentive and hyperactive-impulsive ADHD symptoms were highly heritable (67% and 73%, respectively). Mathematics ability was moderately heritable (46%). Mathematics ability and inattentiveness showed a significantly greater phenotypic correlation (rp=−0.26) and genetic correlation (rA=−0.41) than mathematics ability and hyperactivity-impulsivity (rp=−0.18; rA=−0.22). The genetic correlation between inattentiveness and mathematics ability was largely independent from hyperactivity-impulsivity, and was only partially accounted for by genetic influences related to reading and general cognitive ability. Conclusions Results revealed the novel finding that mathematics ability shows significantly stronger phenotypic and genetic associations with inattentiveness than with hyperactivity-impulsivity. Genetic associations between inattentiveness and mathematics ability could only partially be accounted for by hyperactivity-impulsivity, reading and general cognitive ability. Results suggest that mathematics ability is associated with ADHD symptoms largely because it shares genetic risk factors with inattentiveness, and provide further evidence for considering inattentiveness and hyperactivity-impulsivity separately. DNA markers for ADHD symptoms (especially inattentiveness) may also be candidate risk factors for mathematics ability and vice versa. PMID:23731013
Greven, Corina U; Kovas, Yulia; Willcutt, Erik G; Petrill, Stephen A; Plomin, Robert
2014-01-01
Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Data came from more than 6,000 twelve-year-old twin pairs from the UK population-representative Twins Early Development Study. Parents rated each twin's behaviour using a DSM-IV-based 18-item questionnaire of inattentive and hyperactive-impulsive ADHD symptoms. Mathematics tests based on the UK National Curriculum were completed by each twin. The twins also completed standardised tests of reading and general cognitive ability. Multivariate twin model fitting was applied. Inattentive and hyperactive-impulsive ADHD symptoms were highly heritable (67% and 73% respectively). Mathematics ability was moderately heritable (46%). Mathematics ability and inattentiveness showed a significantly greater phenotypic correlation (r(p) = -.26) and genetic correlation (r(A) = -.41) than mathematics ability and hyperactivity-impulsivity (r(p) = -.18; r(A) = -.22). The genetic correlation between inattentiveness and mathematics ability was largely independent from hyperactivity-impulsivity, and was only partially accounted for by genetic influences related to reading and general cognitive ability. Results revealed the novel finding that mathematics ability shows significantly stronger phenotypic and genetic associations with inattentiveness than with hyperactivity-impulsivity. Genetic associations between inattentiveness and mathematics ability could only partially be accounted for by hyperactivity-impulsivity, reading and general cognitive ability. Results suggest that mathematics ability is associated with ADHD symptoms largely because it shares genetic risk factors with inattentiveness, and provide further evidence for considering inattentiveness and hyperactivity-impulsivity separately. DNA markers for ADHD symptoms (especially inattentiveness) may also be candidate risk factors for mathematics ability and vice versa. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
Diverse opportunities in defence
NASA Astrophysics Data System (ADS)
Brown, Gareth
2016-08-01
Working at the UK's defence laboratory gives Gareth Brown the ability to apply his physics and mathematics knowledge to real-world applications - and not necessarily in the ways you might expect. This article is Crown copyright
Bäuml, J G; Meng, C; Daamen, M; Baumann, N; Busch, B; Bartmann, P; Wolke, D; Boecker, H; Wohlschläger, A; Sorg, C; Jaekel, Julia
2017-03-01
Mathematic abilities in childhood are highly predictive for long-term neurocognitive outcomes. Preterm-born individuals have an increased risk for both persistent cognitive impairments and long-term changes in macroscopic brain organization. We hypothesized that the association of childhood mathematic abilities with both adulthood general cognitive abilities and associated fronto-parietal intrinsic networks is altered after preterm delivery. 72 preterm- and 71 term-born individuals underwent standardized mathematic and IQ testing at 8 years and resting-state fMRI and full-scale IQ testing at 26 years of age. Outcome measure for intrinsic networks was intrinsic functional connectivity (iFC). Controlling for IQ at age eight, mathematic abilities in childhood were significantly stronger positively associated with adults' IQ in preterm compared with term-born individuals. In preterm-born individuals, the association of children's mathematic abilities and adults' fronto-parietal iFC was altered. Likewise, fronto-parietal iFC was distinctively linked with preterm- and term-born adults' IQ. Results provide evidence that preterm birth alters the link of mathematic abilities in childhood and general cognitive abilities and fronto-parietal intrinsic networks in adulthood. Data suggest a distinct functional role of intrinsic fronto-parietal networks for preterm individuals with respect to mathematic abilities and that these networks together with associated children's mathematic abilities may represent potential neurocognitive targets for early intervention.
NASA Astrophysics Data System (ADS)
Wardono; Mariani, S.
2018-03-01
Indonesia as a developing country in the future will have high competitiveness if its students have high mathematics literacy ability. The current reality from year to year rankings of PISA mathematics literacy Indonesian students are still not good. This research is motivated by the importance and low ability of the mathematics literacy. The purpose of this study is to: (1) analyze the effectiveness of PMRI learning with media Schoology, (2) describe the ability of students' mathematics literacy on PMRI learning with media Schoology which is reviewed based on seven components of mathematics literacy, namely communication, mathematizing, representation, reasoning, devising strategies, using symbols, and using mathematics tool. The method used in this research is the method of sequential design method mix. Techniques of data collection using observation, interviews, tests, and documentation. Data analysis techniques use proportion test, appellate test, and use descriptive analysis. Based on the data analysis, it can be concluded; (1) PMRI learning with media Schoology effectively improve the ability of mathematics literacy because of the achievement of classical completeness, students' mathematics literacy ability in PMRI learning with media Schoology is higher than expository learning, and there is increasing ability of mathematics literacy in PMRI learning with media Schoology of 30%. (2) Highly capable students attain excellent mathematics literacy skills, can work using broad thinking with appropriate resolution strategies. Students who are capable of achieving good mathematics literacy skills can summarize information, present problem-solving processes, and interpret solutions. low-ability students have reached the level of ability of mathematics literacy good enough that can solve the problem in a simple way.
Indicators that influence prospective mathematics teachers representational and reasoning abilities
NASA Astrophysics Data System (ADS)
Darta; Saputra, J.
2018-01-01
Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.
Pattern of mathematic representation ability in magnetic electricity problem
NASA Astrophysics Data System (ADS)
Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.
2018-03-01
The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.
Mobile phone application for mathematics learning
NASA Astrophysics Data System (ADS)
Supandi; Ariyanto, L.; Kusumaningsih, W.; Aini, A. N.
2018-03-01
This research was aimed to determine the role of the use of Mobile Phone Application (MPA) in Mathematics learning. The Pre and Post-test Quasy Experiment method was applied. The Pre-test was performed to understand the initial capability. In contrast, the Post-test was selected to identify changes in student ability after they were introduced to the application of Mobile Technology. Student responses to the use of this application were evaluated by a questionnaire. Based on the questionnaire, high scores were achieved, indicating the student's interest in this application. Also, learning results showed significant improvement in the learning achievement and the student learning behaviour. It was concluded that education supported by the MPA application gave a positive impact on learning outcomes as well as learning atmosphere both in class and outside the classroom.
Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics
NASA Astrophysics Data System (ADS)
Widakdo, W. A.
2017-09-01
Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
ERIC Educational Resources Information Center
Minarni, Ani; Napitupulu, E. Elvis
2017-01-01
Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…
Concept mapping learning strategy to enhance students' mathematical connection ability
NASA Astrophysics Data System (ADS)
Hafiz, M.; Kadir, Fatra, Maifalinda
2017-05-01
The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.
Number sense in infancy predicts mathematical abilities in childhood.
Starr, Ariel; Libertus, Melissa E; Brannon, Elizabeth M
2013-11-05
Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language.
Number sense in infancy predicts mathematical abilities in childhood
Starr, Ariel; Libertus, Melissa E.; Brannon, Elizabeth M.
2013-01-01
Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language. PMID:24145427
Developing entrepreneurship ability of pre-service mathematics teachers through GSSM
NASA Astrophysics Data System (ADS)
Rohaeti, E. E.; Afrilianto, M.; Primandhika, R. B.
2018-01-01
This research aimed to describe mathematical entrepreneurship ability of 136 mathematics education students through Gerakan STKIP Siliwangi Mengajar (GSSM) that was conducted in 7 districts (of 17 villages) in West Java. GSSM was a programme that combines devotion to the society and college student internships activity at several schools within three months. The data was obtained through observation towards the activities performed by the students during GSSM. The questionnaire to measure the mathematical entrepreneurship ability of students. The results showed that 1) there were three activities that encourage the mathematical entrepreneurship ability of students; such as tutoring post, teaching practices in school and entrepreneurial activities in society, 2) through those three activities, students can develop their entrepreneurial spirit well and grow creativity, innovation and calculation take risk ability, 3) there was medium-association between student mathematical concept mastery that supports entrepreneurship with their mathematical entrepreneurship ability.
Improving students’ understanding of mathematical concept using maple
NASA Astrophysics Data System (ADS)
Ningsih, Y. L.; Paradesa, R.
2018-01-01
This study aimed to improve students’ understanding of mathematical concept ability through implementation of using Maple in learning and expository learning. This study used a quasi-experimental research with pretest-posttest control group design. The sample on this study was 61 students in the second semester of Mathematics Education of Universitas PGRI Palembang, South Sumatera in academic year 2016/2017. The sample was divided into two classes, one class as the experiment class who using Maple in learning and the other class as a control class who received expository learning. Data were collective through the test of mathematical initial ability and mathematical concept understanding ability. Data were analyzed by t-test and two ways ANOVA. The results of this study showed (1) the improvement of students’ mathematical concept understanding ability who using Maple in learning is better than those who using expository learning; (2) there is no interaction between learning model and students’ mathematical initial ability toward the improvement of students’ understanding of mathematical concept ability.
Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages
2011-01-01
important application of metabolic network modeling is the ability to quantitatively model metabolic enzyme inhibition and predict bacterial growth...describe the extensions of this framework to model drug- induced growth inhibition of M. tuberculosis in macrophages.39 Mathematical framework Fig. 1 shows...starting point, we used the previously developed iNJ661v model to represent the metabolic Fig. 1 Mathematical framework: a set of coupled models used to
NASA Astrophysics Data System (ADS)
Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.
2016-02-01
This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.
NASA Astrophysics Data System (ADS)
Sumarna, Nana; Sentryo, Izlan
2017-08-01
This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.
NASA Astrophysics Data System (ADS)
Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani
2017-05-01
The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.
Cognitive correlates of performance in advanced mathematics.
Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin
2012-03-01
Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Apipah, S.; Kartono; Isnarto
2018-03-01
This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.
Analysis of creative mathematical thinking ability by using model eliciting activities (MEAs)
NASA Astrophysics Data System (ADS)
Winda, A.; Sufyani, P.; Elah, N.
2018-05-01
Lack of creative mathematical thinking ability can lead to not accustomed with open ended problem. Students’ creative mathematical thinking ability in the first grade at one of junior high school in Tangerang City is not fully developed. The reason of students’ creative mathematical thinking ability is not optimally developed is so related with learning process which has done by the mathematics teacher, maybe the learning design that teacher use is unsuitable for increasing students’ activity in the learning process. This research objective is to see the differences in students’ ways of answering the problems in terms of students’ creative mathematical thinking ability during the implementation of Model Eliciting Activities (MEAs). This research use post-test experimental class design. The indicators for creative mathematical thinking ability in this research arranged in three parts, as follow: (1) Fluency to answer the problems; (2) Flexibility to solve the problems; (3) Originality of answers. The result of this research found that by using the same learning model and same instrument from Model Eliciting Activities (MEAs) there are some differences in the way students answer the problems and Model Eliciting Activities (MEAs) can be one of approach used to increase students’ creative mathematical thinking ability.
Fuhs, Mary Wagner; McNeil, Nicole M
2013-01-01
Recent findings by Libertus, Feigenson, and Halberda (2011) suggest that there is an association between the acuity of young children's approximate number system (ANS) and their mathematics ability before exposure to instruction in formal schooling. The present study examined the generalizability and validity of these findings in a sample of preschoolers from low-income homes. Children attending Head Start (N = 103) completed measures to assess ANS acuity, mathematics ability, receptive vocabulary, and inhibitory control. Results showed only a weak association between ANS acuity and mathematics ability that was reduced to non-significance when controlling for a direct measure of receptive vocabulary. Results also revealed that inhibitory control plays an important role in the relation between ANS acuity and mathematics ability. Specifically, ANS acuity accounted for significant variance in mathematics ability over and above receptive vocabulary, but only for ANS acuity trials in which surface area conflicted with numerosity. Moreover, this association became non-significant when controlling for inhibitory control. These results suggest that early mathematical experiences prior to formal schooling may influence the strength of the association between ANS acuity and mathematics ability and that inhibitory control may drive that association in young children. © 2012 Blackwell Publishing Ltd.
Visual short term memory related brain activity predicts mathematical abilities.
Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah
2017-07-01
Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Student teachers’ mathematical questioning and courage in metaphorical thinking learning
NASA Astrophysics Data System (ADS)
Hendriana, H.; Hidayat, W.; Ristiana, M. G.
2018-01-01
This study was designed in the form of experiments with control group design and post-test only which aimed to examine the role of metaphorical thinking learning in the mathematical questioning ability of student teachers based on the level of mathematical courage. The population of this study was student teachers of mathematics education study program in West Java Province, while the sample of this study was 152 student teachers which were set purposively and then randomly to be included in the experimental class and control class. Based on the results and discussion, it was concluded that: (a) the mathematical questioning ability of student teachers who received Metaphorical Thinking learning was better than those who received conventional learning seen from mathematical courage level; (b) learning and mathematical courage level factors affected the achievement of student teachers’ mathematical questioning ability. In addition, there was no interaction effect between learning and mathematical courage level (high, medium, and low) simultaneously in developing student teachers’ mathematical questioning ability; (c) achievement of mastering mathematical questioning ability of student teacher was still not well achieved on indicator of problem posing in the form of non-routine question and open question.
Multimedia Modules for Electromagnetics Education.
ERIC Educational Resources Information Center
De Los Santos Vidal, Oriol; Iskander, Magdy F.
1997-01-01
Multimedia technology is an invaluable teaching and learning resource. One advantage of technology based education is the ability to combine practical applications, visualization of complex mathematical and abstract subjects, virtual labs, and guided use of simulation software. This article describes several multimedia tutorials for…
Oostermeijer, Meike; Boonen, Anton J. H.; Jolles, Jelle
2014-01-01
The scientific literature shows that constructive play activities are positively related to children’s spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children’s constructive play and their performance on mathematical word problems is, however, not reported yet. The aim of the present study was to investigate whether spatial ability acted as a mediator in the relation between constructive play and mathematical word problem-solving performance in 128 sixth-grade elementary school children. This mediating role of spatial ability was tested by utilizing the current mediation approaches suggested by Preacher and Hayes (2008). Results showed that 38.16% of the variance in mathematical word problem-solving performance is explained by children’s constructive play activities and spatial ability. More specifically, spatial ability acted as a partial mediator, explaining 31.58% of the relation between constructive play and mathematical word problem-solving performance. PMID:25101038
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed. PMID:28428762
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed.
Mathematical biodescriptors of proteomics maps: background and applications.
Basak, Subhash C; Gute, Brian D
2008-05-01
This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.
ERIC Educational Resources Information Center
Costa, H. M.; Nicholson, B.; Donlan, C.; Van Herwegen, J.
2018-01-01
Background: Different domain-specific and domain-general cognitive precursors play a key role in the development of mathematical abilities. The contribution of these domains to mathematical ability changes during development. Primary school-aged children who show mathematical difficulties form a heterogeneous group, but it is not clear whether…
NASA Astrophysics Data System (ADS)
Nugraheni, L.; Budayasa, I. K.; Suwarsono, S. T.
2018-01-01
The study was designed to discover examine the profile of metacognition of vocational high school student of the Machine Technology program that had high ability and field independent cognitive style in mathematical problem solving. The design of this study was exploratory research with a qualitative approach. This research was conducted at the Machine Technology program of the vocational senior high school. The result revealed that the high-ability student with field independent cognitive style conducted metacognition practices well. That involved the three types of metacognition activities, consisting of planning, monitoring, and evaluating at metacognition level 2 or aware use, 3 or strategic use, 4 or reflective use in mathematical problem solving. The applicability of the metacognition practices conducted by the subject was never at metacognition level 1 or tacit use. This indicated that the participant were already aware, capable of choosing strategies, and able to reflect on their own thinking before, after, or during the process at the time of solving mathematical problems.That was very necessary for the vocational high school student of Machine Technology program.
NASA Astrophysics Data System (ADS)
Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli
2017-05-01
This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.
ERIC Educational Resources Information Center
Campos, Daniel G.
2010-01-01
I articulate Charles S. Peirce's philosophy of mathematical education as related to his conception of mathematics, the nature of its method of inquiry, and especially, the reasoning abilities required for mathematical inquiry. The main thesis is that Peirce's philosophy of mathematical education primarily aims at fostering the development of the…
Calling for Research Collaborations and the Use of Dis/ability Studies in Mathematics Education
ERIC Educational Resources Information Center
Tan, Paulo; Kastberg, Signe
2017-01-01
In this commentary, the authors find that despite discussions of "mathematics for all," opportunities that support the development of mathematical reasoning and understanding of mathematics as a human endeavor often do not exist for mathematics learners identified in schools as having dis/abilities. Indeed, mathematics for all is…
Pimperton, Hannah; Nation, Kate
2010-06-01
Poor comprehenders are children who show significant deficits in their reading comprehension performance, despite average, or above-average word reading ability. To date, there have been no in-depth studies of the mathematical performance profiles of such children. This study aimed to explore the mathematical profiles of poor comprehenders. Given that language impairment is associated with difficulties with mathematics, and that poor comprehenders tend to have oral language weaknesses, we hypothesized that poor comprehenders would show relative weaknesses in aspects of mathematical performance. From a sample of 109 children aged 7-8 years, we selected 14 poor comprehenders and 14 controls with age-appropriate reading comprehension ability. The groups were matched on non-verbal ability, multiple measures of reading accuracy, and chronological age. We compared the performance of the group of poor comprehenders with that of the matched controls on two standardized measures of mathematical ability, one measuring procedural arithmetic prowess and the other tapping higher-level mathematical reasoning. Although there were no group differences in performance on the arithmetic measure, the poor comprehenders showed significantly lower scores than the controls on the mathematical reasoning task. The poor comprehenders exhibited impaired verbal ability relative to controls, with these differences in verbal ability associated with the group differences found on the test of mathematical reasoning. Poor comprehenders' deficits are not limited to the domain of literacy; their underlying profile of impairments also seems to selectively impact on certain components of mathematical ability.
University Students' Problem Posing Abilities and Attitudes towards Mathematics.
ERIC Educational Resources Information Center
Grundmeier, Todd A.
2002-01-01
Explores the problem posing abilities and attitudes towards mathematics of students in a university pre-calculus class and a university mathematical proof class. Reports a significant difference in numeric posing versus non-numeric posing ability in both classes. (Author/MM)
ERIC Educational Resources Information Center
Lince, Ranak
2016-01-01
Mathematical ability of students creative thinking is a component that must be mastered by the student. Mathematical creative thinking plays an important role, both in solving the problem and well, even in high school students. Therefore, efforts are needed to convey ideas in mathematics. But the reality is not yet developed the ability to…
ERIC Educational Resources Information Center
Lee, Hye Jung; Kim, Jihyun
2016-01-01
The objective of this study is to examine the structural relationships among variables that predict the mathematical ability of young children, namely young children's mathematical attitude, exposure to private mathematical learning, mothers' view about their children's mathematical learning, and mothers' mathematical attitude. To this end, we…
ERIC Educational Resources Information Center
Cranfield, Corvell
2013-01-01
The construct of mathematical identity has recently been widely used in mathematics education with the intention to understand how students relate to and engage (or disengage) with mathematics. Grootenboer and Zevenbergen (2008) define mathematical identity as the students' knowledge, abilities, skills, beliefs, dispositions, attitudes and…
Guillaume, Mathieu; Nys, Julie; Mussolin, Christophe; Content, Alain
2013-11-01
It is largely admitted that processing numerosity relies on an innate Approximate Number System (ANS), and recent research consistently observed a relationship between ANS acuity and mathematical ability in childhood. However, studies assessing this relationship in adults led to contradictory results. In this study, adults with different levels of mathematical expertise performed two tasks on the same pairs of dot collections, based either on numerosity comparison or on cumulative area comparison. Number of dots and cumulative area were congruent in half of the stimuli, and incongruent in the other half. The results showed that adults with higher mathematical ability obtained lower Weber fractions in the numerical condition than participants with lower mathematical ability. Further, adults with lower mathematical ability were more affected by the interference of the continuous dimension in the numerical comparison task, whereas conversely higher-expertise adults showed stronger interference of the numerical dimension in the continuous comparison task. Finally, ANS acuity correlated with arithmetic performance. Taken together, the data suggest that individual differences in ANS acuity subsist in adulthood, and that they are related to mathematical ability. © 2013.
NASA Astrophysics Data System (ADS)
Warsito; Darhim; Herman, T.
2018-01-01
This study aims to determine the differences in the improving of mathematical representation ability based on progressive mathematization with realistic mathematics education (PMR-MP) with conventional learning approach (PB). The method of research is quasi-experiments with non-equivalent control group designs. The study population is all students of class VIII SMPN 2 Tangerang consisting of 6 classes, while the sample was taken two classes with purposive sampling technique. The experimental class is treated with PMR-MP while the control class is treated with PB. The instruments used are test of mathematical representation ability. Data analysis was done by t-test, ANOVA test, post hoc test, and descriptive analysis. The result of analysis can be concluded that: 1) there are differences of mathematical representation ability improvement between students treated by PMR-MP and PB, 2) no interaction between learning approach (PMR-MP, PB) and prior mathematics knowledge (PAM) to improve students’ mathematical representation; 3) Students’ mathematical representation improvement in the level of higher PAM is better than medium, and low PAM students. Thus, based on the process of mathematization, it is very important when the learning direction of PMR-MP emphasizes on the process of building mathematics through a mathematical model.
Development of a Mathematical Ability Test: A Validity and Reliability Study
ERIC Educational Resources Information Center
Dündar, Sefa; Temel, Hasan; Gündüz, Nazan
2016-01-01
The identification of talented students accurately at an early age and the adaptation of the education provided to the students depending on their abilities are of great importance for the future of the countries. In this regard, this study aims to develop a mathematical ability test for the identification of the mathematical abilities of students…
A Cognitive Analysis of Students’ Mathematical Communication Ability on Geometry
NASA Astrophysics Data System (ADS)
Sari, D. S.; Kusnandi, K.; Suhendra, S.
2017-09-01
This study aims to analyze the difficulties of mathematical communication ability of students in one of secondary school on “three-dimensional space” topic. This research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and the sample was thirty students that was chosen by purposive sampling technique. Data of mathematical communication were collected through essay test. Furthermore, the data were analyzed with a descriptive way. The results of this study indicate that the percentage of achievement of student mathematical communication indicators as follows 1) Stating a situation, ideas, and mathematic correlation into images, graphics, or algebraic expressions is 35%; 2) Stating daily experience into a mathematic language / symbol, or a mathematic model is 35%; and 3) Associating images or diagrams into mathematical ideas is 53.3%. Based on the percentage of achievement on each indicator, it can be concluded that the level of achievement of students’ mathematical communication ability is still low. It can be caused the students were not used to convey or write their mathematical ideas systematically. Therefore students’ mathematical communication ability need to be improved.
NASA Astrophysics Data System (ADS)
Hidayat, W.; Wahyudin; Prabawanto, S.
2018-01-01
This study aimed to investigate the role factors of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) instruction in improving mathematical creative reasoning ability from students’ who is a candidate for a math teacher. The study was designed in the form of experiments with a pretest-posttest control group design that aims to examine the role of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) learning on improving students’ mathematical creative reasoning abilities. The population in this research was the student of mathematics teacher candidate in Cimahi City, while the sample of this research was 90 students of the candidate of the teacher of mathematics specified purposively then determined randomly which belong to experiment class and control class. Based on the results and discussion, it was concluded that: (1) Improvement the ability of mathematical creative reasoning of students’ who was a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction is better than those who received direct instruction is reviewed based on the whole; (2) There was no different improvement the ability of mathematical creative reasoning of students’ who is a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction and direct instruction was reviewed based on the type of Adversity Quotient (Quitter / AQ Low, Champer / AQ Medium, and the Climber / AQ High); (3) Learning factors and type of Adversity Quotient (AQ) affected the improvement of students’ mathematical creative reasoning ability. In addition, there was no interaction effect between learning and AQ together in developing of students’ mathematical creative reasoning ability; (4) mathematical creative reasoning ability of students’ who is a candidate for math teacher had not been achieved optimally on the indicators novelty.
NASA Astrophysics Data System (ADS)
Sumarsih; Budiyono; Indriati, D.
2018-04-01
This research aims to understand the students’ weaknesses in mathematical reasoning ability in junior secondary school. A set of multiple choice tests were used to measure this ability involve components mathematical communication, basic skills, connection, and logical thinking. A total of 259 respondents were determined by stratified cluster random sampling. Data were analyzed using one-way Anova test with Fobs = 109.5760 and F = 3.0000. The results show that students’ ability from schools with high National Exam in mathematics category was the best and followed by medium and low category. Mathematical connection is the most difficult component performed by students. In addition, most students also have difficulty in expressing ideas and developing logical arguments.
Mathematics creative thinking levels based on interpersonal intelligence
NASA Astrophysics Data System (ADS)
Kuncorowati, R. H.; Mardiyana; Saputro, D. R. S.
2017-12-01
Creative thinking ability was one of student’s ability to determine various alternative solutions toward mathematics problem. One of indicators related to creative thinking ability was interpersonal intelligence. Student’s interpersonal intelligence would influence to student’s creativity. This research aimed to analyze creative thinking ability level of junior high school students in Karanganyar using descriptive method. Data was collected by test, questionnaire, interview, and documentation. The result showed that students with high interpersonal intelligence achieved third and fourth level in creative thinking ability. Students with moderate interpersonal intelligence achieved second level in creative thinking ability and students with low interpersonal intelligence achieved first and zero level in creative thinking ability. Hence, students with high, moderate, and low interpersonal intelligence could solve mathematics problem based on their mathematics creative thinking ability.
NASA Astrophysics Data System (ADS)
Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.
2017-09-01
The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.
ERIC Educational Resources Information Center
Galli, Silvia; Chiesi, Francesca; Primi, Caterina
2011-01-01
Given that basic mathematical ability is a requirement to succeed in "non-mathematical" majors, e.g. degrees for Psychology, Education, and Health Sciences with compulsory introductory stats courses, assessing this ability can be useful to promote achievement. The aim of the present study was to develop a scale to measure the…
NASA Astrophysics Data System (ADS)
Nisa, I. M.
2018-04-01
The ability of mathematical communication is one of the goals of learning mathematics expected to be mastered by students. However, reality in the field found that the ability of mathematical communication the students of grade XI IPA SMA Negeri 14 Padang have not developed optimally. This is evident from the low test results of communication skills mathematically done. One of the factors that causes this happens is learning that has not been fully able to facilitate students to develop mathematical communication skills well. By therefore, to improve students' mathematical communication skills required a model in the learning activities. One of the models learning that can be used is Problem Based learning model Learning (PBL). The purpose of this study is to see whether the ability the students' mathematical communication using the PBL model better than the students' mathematical communication skills of the learning using conventional learning in Class XI IPA SMAN 14 Padang. This research type is quasi experiment with design Randomized Group Only Design. Population in this research that is student of class XI IPA SMAN 14 Padang with sample class XI IPA 3 and class XI IPA 4. Data retrieval is done by using communication skill test mathematically shaped essay. To test the hypothesis used U-Mann test Whitney. Based on the results of data analysis, it can be concluded that the ability mathematical communication of students whose learning apply more PBL model better than the students' mathematical communication skills of their learning apply conventional learning in class XI IPA SMA 14 Padang at α = 0.05. This indicates that the PBL learning model effect on students' mathematical communication ability.
The etiology of mathematical and reading (dis)ability covariation in a sample of Dutch twins.
Markowitz, Ezra M; Willemsen, Gonneke; Trumbetta, Susan L; van Beijsterveldt, Toos C E M; Boomsma, Dorret I
2005-12-01
The genetic etiology of mathematical and reading (dis)ability has been studied in a number of distinct samples, but the true nature of the relationship between the two remains unclear. Data from the Netherlands Twin Register was used to determine the etiology of the relationship between mathematical and reading (dis)ability in adolescent twins. Ratings of mathematical and reading problems were obtained from parents of over 1500 twin pairs. Results of bivariate structural equation modeling showed a genetic correlation around .60, which explained over 90% of the phenotypic correlation between mathematical and reading ability. The genetic model was the same for males and females.
2010-01-01
Background The Generalist Genes Hypothesis is based upon quantitative genetic findings which indicate that many of the same genes influence diverse cognitive abilities and disabilities across age. In a recent genome-wide association study of mathematical ability in 10-year-old children, 43 SNP associations were nominated from scans of pooled DNA, 10 of which were validated in an individually genotyped sample. The 4927 children in this genotyped sample have also been studied at 7, 9 and 12 years of age on measures of mathematical ability, as well as on other cognitive and learning abilities. Results Using these data we have explored the Generalist Genes Hypothesis by assessing the association of the available measures of ability at age 10 and other ages with two composite 'SNP-set' scores, formed from the full set of 43 nominated SNPs and the sub-set of 10 SNPs that were previously found to be associated with mathematical ability at age 10. Both SNP sets yielded significant associations with mathematical ability at ages 7, 9 and 12, as well as with reading and general cognitive ability at age 10. Conclusions Although effect sizes are small, our results correspond with those of quantitative genetic research in supporting the Generalist Genes Hypothesis. SNP sets identified on the basis of their associations with mathematical ability at age 10 show associations with mathematical ability at earlier and later ages and show associations of similar magnitude with reading and general cognitive ability. With small effect sizes expected in such complex traits, future studies may be able to capitalise on power by searching for 'generalist genes' using longitudinal and multivariate approaches. PMID:20602751
NASA Astrophysics Data System (ADS)
Angraini, L. M.; Kusumah, Y. S.; Dahlan, J. A.
2018-05-01
This study aims to see the enhancement of mathematical analogical reasoning ability of the university students through concept attainment model learning based on overall and Prior Mathematical Knowledge (PMK) and interaction of both. Quasi experiments with the design of this experimental-controlled equivalent group involved 54 of second semester students at the one of State Islamic University. The instrument used is pretest-postest. Kolmogorov-Smirnov test, Levene test, t test, two-way ANOVA test were used to analyse the data. The result of this study includes: (1) The enhancement of the mathematical analogical reasoning ability of the students who gets the learning of concept attainment model is better than the enhancement of the mathematical analogical reasoning ability of the students who gets the conventional learning as a whole and based on PMK; (2) There is no interaction between the learning that is used and PMK on enhancing mathematical analogical reasoning ability.
The Laws of Nature and the Effectiveness of Mathematics
NASA Astrophysics Data System (ADS)
Dorato, Mauro
In this paper I try to evaluate what I regard as the main attempts at explaining the effectiveness of mathematics in the natural sciences, namely (1) Antinaturalism, (2) Kantism, (3) Semanticism, (4) Algorithmic Complexity Theory. The first position has been defended by Mark Steiner, who claims that the "user friendliness" of nature for the applied mathematician is the best argument against a naturalistic explanation of the origin of the universe. The second is naturalistic and mixes the Kantian tradition with evolutionary studies about our innate mathematical abilities. The third turns to the Fregean tradition and considers mathematics a particular kind of language, thus treating the effectiveness of mathematics as a particular instance of the effectiveness of natural languages. The fourth hypothesis, building on formal results by Kolmogorov, Solomonov and Chaitin, claims that mathematics is so useful in describing the natural world because it is the science of the abbreviation of sequences, and mathematically formulated laws of nature enable us to compress the information contained in the sequence of numbers in which we code our observations. In this tradition, laws are equivalent to the shortest algorithms capable of generating the lists of zeros and ones representing the empirical data. Along the way, I present and reject the "deflationary explanation", which claims that in wondering about the applicability of so many mathematical structures to nature, we tend to forget the many cases in which no application is possible.
ERIC Educational Resources Information Center
Schonberger, Ann Koch
This three-volume report deals with the hypothesis that males are more successful at solving mathematical and spatial problems than females. The general relationship between visual spatial abilities and mathematical problem-solving ability is also investigated. The research sample consisted of seventh graders. Each pupil took five spatial tests…
Discovery learning model with geogebra assisted for improvement mathematical visual thinking ability
NASA Astrophysics Data System (ADS)
Juandi, D.; Priatna, N.
2018-05-01
The main goal of this study is to improve the mathematical visual thinking ability of high school student through implementation the Discovery Learning Model with Geogebra Assisted. This objective can be achieved through study used quasi-experimental method, with non-random pretest-posttest control design. The sample subject of this research consist of 62 senior school student grade XI in one of school in Bandung district. The required data will be collected through documentation, observation, written tests, interviews, daily journals, and student worksheets. The results of this study are: 1) Improvement students Mathematical Visual Thinking Ability who obtain learning with applied the Discovery Learning Model with Geogebra assisted is significantly higher than students who obtain conventional learning; 2) There is a difference in the improvement of students’ Mathematical Visual Thinking ability between groups based on prior knowledge mathematical abilities (high, medium, and low) who obtained the treatment. 3) The Mathematical Visual Thinking Ability improvement of the high group is significantly higher than in the medium and low groups. 4) The quality of improvement ability of high and low prior knowledge is moderate category, in while the quality of improvement ability in the high category achieved by student with medium prior knowledge.
Seeking Mathematics Success for College Students: A Randomized Field Trial of an Adapted Approach
ERIC Educational Resources Information Center
Gula, Taras; Hoessler, Carolyn; Maciejewski, Wes
2015-01-01
Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental…
Contribution of Auditory Learning Style to Students’ Mathematical Connection Ability
NASA Astrophysics Data System (ADS)
Karlimah; Risfiani, F.
2017-09-01
This paper presents the results of the research on the relation of mathematical concept with mathematics, other subjects, and with everyday life. This research reveals study result of the students who had auditory learning style and correlates it with their ability of mathematical connection. In this research, the researchers used a combination model or sequential exploratory design method, which is the use of qualitative and quantitative research methods in sequence. The result proves that giving learning facilities which are not suitable for the class whose students have the auditory learning style results in the barely sufficient math connection ability. The average mathematical connection ability of the auditory students was initially in the medium level of qualification. Then, the improvement in the form of the varied learning that suited the auditory learning style still showed the average ability of mathematical connection in medium level of qualification. Nevertheless, there was increase in the frequency of students in the medium level of qualification and decrease in the very low and low level of qualification. This suggests that the learning facilities, which are appropriate for the student’s auditory learning style, contribute well enough to the students’ mathematical connection ability. Therefore, the mathematics learning for students who have an auditory learning style should consist of particular activity that is understanding the concepts of mathematics and their relations.
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2016-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects and domain-specific effects were indexed by prior grade mathematics achievement and mathematical cognition measures of prior grade number knowledge, addition skills, and fraction knowledge. Use of functional data analysis enabled grade-by-grade estimation of overall domain-general and domain-specific effects on subsequent mathematics achievement, the relative importance of individual domain-general and domain-specific variables on this achievement, and linear and non-linear across-grade estimates of these effects. The overall importance of domain-general abilities for subsequent achievement was stable across grades, with working memory emerging as the most important domain-general ability in later grades. The importance of prior mathematical competencies on subsequent mathematics achievement increased across grades, with number knowledge and arithmetic skills critical in all grades and fraction knowledge in later grades. Overall, domain-general abilities were more important than domain-specific knowledge for mathematics learning in early grades but general abilities and domain-specific knowledge were equally important in later grades. PMID:28781382
Effects of General and Broad Cognitive Abilities on Mathematics Achievement
ERIC Educational Resources Information Center
Taub, Gordon E.; Keith, Timothy Z.; Floyd, Randy G.; Mcgrew, Kevin S.
2008-01-01
This study investigated the direct and indirect effects of general intelligence and 7 broad cognitive abilities on mathematics achievement. Structural equation modeling was used to investigate the simultaneous effects of both general and broad cognitive abilities on students' mathematics achievement. A hierarchical model of intelligence derived…
Gene-environment interaction in the etiology of mathematical ability using SNP sets.
Docherty, Sophia J; Kovas, Yulia; Plomin, Robert
2011-01-01
Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a 'SNP set' composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative.
Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M
2018-04-24
Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.
The influence of attention on mathematical knowledge of teachers and lecturers: a comparison
NASA Astrophysics Data System (ADS)
Klymchuk, Sergiy; Thomas, Michael O. J.
2011-10-01
This article reports on some findings from the project 'Analysing the Transition from Secondary to Tertiary Education in Mathematics'. One of the key variables in the school to university transition is the teacher/lecturer, and here, we deal with the data analysing secondary teachers' and tertiary lecturers' responses to four mathematics questions. Elsewhere, we consider knowledge, preparedness, teaching style, etc., but this article tracks the ability to use mathematical procedures. We hypothesize that this is a function of what we pay attention to, as described in Mason's discipline of noticing. The results reveal that many teachers and lecturers fail to notice the necessary conditions for problems that imply that procedures are not always applicable. Possible reasons for this along with implications for student learning are discussed.
Preservice Agricultural Education Teachers' Mathematics Ability
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2012-01-01
The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…
Why Do Spatial Abilities Predict Mathematical Performance?
ERIC Educational Resources Information Center
Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia
2014-01-01
Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823
Complexity analysis and mathematical tools towards the modelling of living systems.
Bellomo, N; Bianca, C; Delitala, M
2009-09-01
This paper is a review and critical analysis of the mathematical kinetic theory of active particles applied to the modelling of large living systems made up of interacting entities. The first part of the paper is focused on a general presentation of the mathematical tools of the kinetic theory of active particles. The second part provides a review of a variety of mathematical models in life sciences, namely complex social systems, opinion formation, evolution of epidemics with virus mutations, and vehicular traffic, crowds and swarms. All the applications are technically related to the mathematical structures reviewed in the first part of the paper. The overall contents are based on the concept that living systems, unlike the inert matter, have the ability to develop behaviour geared towards their survival, or simply to improve the quality of their life. In some cases, the behaviour evolves in time and generates destructive and/or proliferative events.
ERIC Educational Resources Information Center
Berends, Mark; Donaldson, Kristi
2011-01-01
In this paper, the authors examine differences between school types in the uses of ability grouping, instructional differences, and relationship of ability grouping to student mathematics achievement. Specifically, they address the following questions with teacher reports of students' mathematics placement in middle school: (1) Does the use of…
ERIC Educational Resources Information Center
Tucker, Stephen I.; Moyer-Packenham, Patricia S.; Westenskow, Arla; Jordan, Kerry E.
2016-01-01
The purpose of this study was to explore relationships between app affordances and user abilities in second graders' interactions with mathematics virtual manipulative touchscreen tablet apps. The research questions focused on varying manifestations of affordance-ability relationships during children's interactions with mathematics virtual…
ERIC Educational Resources Information Center
Kim, Sun Hee; Kim, Soojin
2010-01-01
What should we do to educate the mathematically gifted and how should we do it? In this research, to satisfy diverse mathematical and cognitive demands of the gifted who have excellent learning ability and task tenacity in mathematics, we sought to apply mathematical modeling. One of the objectives of the gifted education in Korea is cultivating…
ERIC Educational Resources Information Center
Van Harpen, Xianwei Y.; Presmeg, Norma C.
2013-01-01
The importance of students' problem-posing abilities in mathematics has been emphasized in the K-12 curricula in the USA and China. There are claims that problem-posing activities are helpful in developing creative approaches to mathematics. At the same time, there are also claims that students' mathematical content knowledge could be highly…
Do High Ability Students Have Mathematics Anxiety?
ERIC Educational Resources Information Center
Yeo, Kai Kow Joseph
2004-01-01
This exploratory study investigates the level of mathematics anxiety among 116 high ability Secondary Two students. These students were from the top 10% of the Secondary Two students in Singapore. Mathematics Anxiety was measured using the Fennema-Sherman Mathematics Anxiety Scale (MAS) (Fennema & Sherman, 1978) which consisted of twelve items…
Gender Differences in Mathematics: Does the Story Need to Be Rewritten?
ERIC Educational Resources Information Center
Brunner, Martin; Krauss, Stefan; Kunter, Mareike
2008-01-01
Empirical studies of high school mathematics typically report small gender differences in favor of boys. The present article challenges this established finding by comparing two competing structural conceptions of mathematical ability. The standard model assumes mathematical ability alone to account for the interindividual differences observed on…
ERIC Educational Resources Information Center
Gniewosz, Burkhard; Watt, Helen M. G.
2017-01-01
This study examines whether and how student-perceived parents' and teachers' overestimation of students' own perceived mathematical ability can explain trajectories for adolescents' mathematical task values (intrinsic and utility) controlling for measured achievement, following expectancy-value and self-determination theories. Longitudinal data…
Mathematical Teaching Strategies: Pathways to Critical Thinking and Metacognition
ERIC Educational Resources Information Center
Su, Hui Fang Huang; Ricci, Frederick A.; Mnatsakanian, Mamikon
2016-01-01
A teacher that emphasizes reasoning, logic and validity gives their students access to mathematics as an effective way of practicing critical thinking. All students have the ability to enhance and expand their critical thinking when learning mathematics. Students can develop this ability when confronting mathematical problems, identifying possible…
ERIC Educational Resources Information Center
Bourne, Victoria J.
2014-01-01
Research methods and statistical analysis is typically the least liked and most anxiety provoking aspect of a psychology undergraduate degree, in large part due to the mathematical component of the content. In this first cycle of a piece of action research, students' mathematical ability is examined in relation to their performance across…
Costa, H M; Nicholson, B; Donlan, C; Van Herwegen, J
2018-04-01
Different domain-specific and domain-general cognitive precursors play a key role in the development of mathematical abilities. The contribution of these domains to mathematical ability changes during development. Primary school-aged children who show mathematical difficulties form a heterogeneous group, but it is not clear whether this also holds for preschool low achievers (LAs) and how domain-specific and domain-general abilities contribute to mathematical difficulties at a young age. The aim of this study was to explore the cognitive characteristics of a sample of preschool LAs and identify sub-types of LAs. 81 children were identified as LAs from 283 preschoolers aged 3 to 5 years old and were assessed on a number of domain-general and domain-specific tasks. Cluster analysis revealed four subgroups of LAs in mathematics: (1) a weak processing sub-type; (2) a general mathematical LAs sub-type; (3) a mixed abilities sub-type; and (4) a visuo-spatial deficit sub-type. Whilst two of the groups showed specific domain-general difficulties, none showed only domain-specific difficulties. Current findings suggest that preschool LAs constitute a heterogeneous group and stress the importance of domain-general factors for the development of mathematical abilities during the preschool years. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability
Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin
2017-01-01
Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865
A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.
Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin
2017-02-03
Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.
ERIC Educational Resources Information Center
Perkins, D. N.; Simmons, Rebecca
This paper examines the cognitive structures and processes that mediate mathematical and scientific ability. Ability is divided into achieved abilities and precursor abilities. Identified concepts in the area of achieved ability include expertise, understanding, and problem-solving. Other abilities can be seen as precursors to such achieved…
A program to assess a thermal discharge on Trinity Bay, Texas
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B.; Whitehead, V. S.
1972-01-01
The application of a two dimensional mathematical model to the analysis of the thermal discharge to verify its ability to predict the temperature distribution of Trinity Bay in the vicinity of the water outfall. Basic data consist of aerial thermal infrared and in situ measurements.
Interest in mathematics and science among students having high mathematics aptitude
NASA Astrophysics Data System (ADS)
Ely, Jane Alice
The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.
ERIC Educational Resources Information Center
Widyatiningtyas, Reviandari; Kusumah, Yaya S.; Sumarmo, Utari; Sabandar, Jozua
2015-01-01
The study reported the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students' prior mathematical ability to student's mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from…
ERIC Educational Resources Information Center
Guven, Yildiz
2009-01-01
The aim of this study is to assess the factors that are related to preschool children and their mothers on children's intuitional mathematics abilities. Results of the study showed that there were significant differences in children's intuitional mathematics abilities when children are given the opportunity to think intuitionally and to make…
Memory Abilities in Children with Mathematical Difficulties: Comorbid Language Difficulties Matter
ERIC Educational Resources Information Center
Reimann, Giselle; Gut, Janine; Frischknecht, Marie-Claire; Grob, Alexander
2013-01-01
The present study investigated cognitive abilities in children with difficulties in mathematics only (n = 48, M = 8 years and 5 months), combined mathematical and language difficulty (n = 27, M = 8 years and 1 month) and controls (n = 783, M = 7 years and 11 months). Cognitive abilities were measured with seven subtests, tapping visual perception,…
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
ERIC Educational Resources Information Center
Turgut, Melih; Yilmaz, Suha
2012-01-01
The aim of this work is to investigate relationships among pre-service primary mathematics teachers' gender, academic success and spatial ability. The study was conducted in Izmir with 193 pre-service primary mathematics teachers of Dokuz Eylul University. In the work, spatial ability test, which consists of two main sub-tests measuring spatial…
ERIC Educational Resources Information Center
Zhou, Zheng; Cheng, Christine; Mottram, Lisa; Rosenblum, Stacey
Informal and formal mathematical abilities were studied in the preschool, kindergarten, and first grade children in Beijing, China and Chinese-American children in New York City. Test of Early Mathematical Abilities-2nd Edition (TEMA-2) was administered to the three groups of children (children from Beijing, Chinese-American from lower-class, and…
The Construction of Mathematical Literacy Problems for Geometry
NASA Astrophysics Data System (ADS)
Malasari, P. N.; Herman, T.; Jupri, A.
2017-09-01
The students of junior high school should have mathematical literacy ability to formulate, apply, and interpret mathematics in problem solving of daily life. Teaching these students are not enough by giving them ordinary mathematics problems. Teaching activities for these students brings consequence for teacher to construct mathematical literacy problems. Therefore, the aim of this study is to construct mathematical literacy problems to assess mathematical literacy ability. The steps of this study that consists of analysing, designing, theoretical validation, revising, limited testing to students, and evaluating. The data was collected with written test to 38 students of grade IX at one of state junior high school. Mathematical literacy problems consist of three essays with three indicators and three levels at polyhedron subject. The Indicators are formulating and employing mathematics. The results show that: (1) mathematical literacy problems which are constructed have been valid and practical, (2) mathematical literacy problems have good distinguishing characteristics and adequate distinguishing characteristics, (3) difficulty levels of problems are easy and moderate. The final conclusion is mathematical literacy problems which are constructed can be used to assess mathematical literacy ability.
Sala, Giovanni; Signorelli, Michela; Barsuola, Giulia; Bolognese, Martina; Gobet, Fernand
2017-01-01
The relationship between handedness and mathematical ability is still highly controversial. While some researchers have claimed that left-handers are gifted in mathematics and strong right-handers perform the worst in mathematical tasks, others have more recently proposed that mixed-handers are the most disadvantaged group. However, the studies in the field differ with regard to the ages and the gender of the participants, and the type of mathematical ability assessed. To disentangle these discrepancies, we conducted five studies in several Italian schools (total participants: N = 2,314), involving students of different ages (six to seventeen) and a range of mathematical tasks (e.g., arithmetic and reasoning). The results show that (a) linear and quadratic functions are insufficient for capturing the link between handedness and mathematical ability; (b) the percentage of variance in mathematics scores explained by handedness was larger than in previous studies (between 3 and 10% vs. 1%), and (c) the effect of handedness on mathematical ability depended on age, type of mathematical tasks, and gender. In accordance with previous research, handedness does represent a correlate of achievement in mathematics, but the shape of this relationship is more complicated than has been argued so far.
Sala, Giovanni; Signorelli, Michela; Barsuola, Giulia; Bolognese, Martina; Gobet, Fernand
2017-01-01
The relationship between handedness and mathematical ability is still highly controversial. While some researchers have claimed that left-handers are gifted in mathematics and strong right-handers perform the worst in mathematical tasks, others have more recently proposed that mixed-handers are the most disadvantaged group. However, the studies in the field differ with regard to the ages and the gender of the participants, and the type of mathematical ability assessed. To disentangle these discrepancies, we conducted five studies in several Italian schools (total participants: N = 2,314), involving students of different ages (six to seventeen) and a range of mathematical tasks (e.g., arithmetic and reasoning). The results show that (a) linear and quadratic functions are insufficient for capturing the link between handedness and mathematical ability; (b) the percentage of variance in mathematics scores explained by handedness was larger than in previous studies (between 3 and 10% vs. 1%), and (c) the effect of handedness on mathematical ability depended on age, type of mathematical tasks, and gender. In accordance with previous research, handedness does represent a correlate of achievement in mathematics, but the shape of this relationship is more complicated than has been argued so far. PMID:28649210
Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-song; Chen, Fei-yan
2015-01-01
Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541
Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets
Kovas, Yulia; Plomin, Robert
2010-01-01
Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative. PMID:20978832
NASA Astrophysics Data System (ADS)
Wijayanti, R.; Waluya, S. B.; Masrukan
2018-03-01
The purpose of this research are (1) to analyze the learning quality of MEAs with MURDER strategy, (2) to analyze students’ mathematical literacy ability based on goal orientation in MEAs learning with MURDER strategy. This research is a mixed method research of concurrent embedded type where qualitative method as the primary method. The data were obtained using the methods of scale, observation, test and interviews. The results showed that (1) MEAs Learning with MURDER strategy on students' mathematical literacy ability is qualified, (2) Students who have mastery goal characteristics are able to master the seven components of mathematical literacy process although there are still two components that the solution is less than the maximum. Students who have performance goal characteristics have not mastered the components of mathematical literacy process with the maximum, they are only able to master the ability of using mathematics tool and the other components of mathematical literacy process is quite good.
ERIC Educational Resources Information Center
Rasiman
2015-01-01
This research aims to determine the leveling of critical thinking abilities of students of mathematics education in mathematical problem solving. It includes qualitative-explorative study that was conducted at University of PGRI Semarang. The generated data in the form of information obtained problem solving question and interview guides. The…
Elementary Students' Spontaneous Metacognitive Functions in Different Types of Mathematical Problems
ERIC Educational Resources Information Center
Mokos, Evagelos; Kafoussi, Sonia
2013-01-01
Metacognition is the mind's ability to monitor and control itself or, in other words, the ability to know about our knowing (Dunlosky & Bjork, 2008). In mathematics education, the importance of the investigation of students' metacognition during their mathematical activity has been focused on the area of mathematics problem solving. This study…
ERIC Educational Resources Information Center
MARTIN, BERNARD LOYAL
INVESTIGATED WAS THE EXTENT TO WHICH STUDENTS COMPLETING PLANNED MATHEMATICS EDUCATION PROGRAMS (1) WERE PROFICIENT IN SPATIAL VISUALIZATION ABILITIES, AND (2) HAD DEVELOPED MATHEMATICAL UNDERSTANDINGS. THE EFFECTS OF THE MATHEMATICS CURRICULA UPON SUCH DEVELOPMENT WERE INVESTIGATED BY COMPARING GROUP MEAN TEST SCORES OF PROSPECTIVE ELEMENTARY AND…
Group by Subject or by Ability? Tertiary Mathematics for Engineering Students
ERIC Educational Resources Information Center
Plank, Michael; James, Alex; Hannah, John
2011-01-01
The mathematics topics taught to engineering students at university are ostensibly no different to those taught to mathematics majors, so should these students be taught together or separately? Should engineering students be segregated by ability in their mathematics classes? This study analyses the grades of over 1000 engineering students, and…
Metaphorical Thinking Learning and Junior High School Teachers' Mathematical Questioning Ability
ERIC Educational Resources Information Center
Hendriana, Heris; Rohaeti, Euis Eti; Hidayat, Wahyu
2017-01-01
This control-group posttest-only experimental design study aims to investigate the role of learning that teaches metaphorical thinking in mathematical questioning ability of junior high school teachers. The population of this study was mathematics junior high school teachers in West Java province. The samples were 82 mathematics junior high school…
Age- and Gender-Related Change in Mathematical Reasoning Ability and Some Educational Suggestions
ERIC Educational Resources Information Center
Erdem, Emrullah; Soylu, Yasin
2017-01-01
Does the mathematical reasoning ability develop with increase in age? How is mathematical reasoning ability differing according to gender? The current study is trying to find answers to these two questions. The study using cross-sectional design, was conducted with 409 (8th, 9th and 10th grade) students attending middle school and high school in…
ERIC Educational Resources Information Center
Mills, Nadia Monrose
2015-01-01
The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…
The Effect of Video-Based Approach on Prospective Teachers' Ability to Analyze Mathematics Teaching
ERIC Educational Resources Information Center
Alsawaie, Othman N.; Alghazo, Iman M.
2010-01-01
This is an intervention study that explored the effect of using video lesson analysis methodology (VLAM) on the ability of prospective middle/high school mathematics teachers to analyze mathematics teaching. The sample of the study consisted of 26 female prospective mathematics teachers enrolled in a methods course at the United Arab Emirates…
Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students
ERIC Educational Resources Information Center
Budak, Ibrahim
2012-01-01
Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2014-01-01
The purpose of this study was to determine the effects of incorporating mathematics teaching and integration strategies (MTIS) in a teaching methods course on preservice agricultural teachers' mathematics ability. The research design was quasi-experimental and utilized a nonequivalent control group. The MTIS treatment had a positive effect on the…
ERIC Educational Resources Information Center
Arslan, Cigdem; Erbay, Hatice Nur; Guner, Pinar
2017-01-01
In the present study we try to highlight prospective mathematics teachers' ability to identify mistakes of sixth grade students related to angle concept. And also we examined prospective mathematics teachers' knowledge of angle concept. Study was carried out with 30 sixth-grade students and 38 prospective mathematics teachers. Sixth grade students…
Pina, Violeta; Fuentes, Luis J.; Castillo, Alejandro; Diamantopoulou, Sofia
2014-01-01
It is assumed that children’s performance in mathematical abilities is influenced by several factors such as working memory (WM), verbal ability, intelligence, and socioeconomic status. The present study explored the contribution of those factors to mathematical performance taking a componential view of both WM and mathematics. We explored the existing relationship between different WM components (verbal and spatial) with tasks that make differential recruitment of the central executive, and simple and complex mathematical skills in a sample of 102 children in grades 4–6. The main findings point to a relationship between the verbal WM component and complex word arithmetic problems, whereas language and non-verbal intelligence were associated with knowledge of quantitative concepts and arithmetic ability. The spatial WM component was associated with the subtest Series, whereas the verbal component was with the subtest Concepts. The results also suggest a positive relationship between parental educational level and children’s performance on Quantitative Concepts. These findings suggest that specific cognitive skills might be trained in order to improve different aspects of mathematical ability. PMID:24847306
Number Sense and Mathematics: Which, When and How?
2017-01-01
Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. PMID:28758784
NASA Astrophysics Data System (ADS)
Kowiyah; Mulyawati, I.
2018-01-01
Mathematic representation is one of the basic mathematic skills that allows students to communicate their mathematic ideas through visual realities such as pictures, tables, mathematic expressions and mathematic equities. The present research aims at: 1) analysing students’ mathematic representation ability in solving mathematic problems and 2) examining the difference of students’ mathematic ability based on their gender. A total of sixty primary school students participated in this study comprising of thirty males and thirty females. Data required in this study were collected through mathematic representation tests, interviews and test evaluation rubric. Findings of this study showed that students’ mathematic representation of visual realities (image and tables) was reported higher at 62.3% than at in the form of description (or statement) at 8.6%. From gender perspective, male students performed better than the females at action planning stage. The percentage of males was reported at 68% (the highest), 33% (medium) and 21.3% (the lowest) while the females were at 36% (the highest), 37.7% (medium) and 32.6% (the lowest).
NASA Astrophysics Data System (ADS)
Hamid, H.
2018-01-01
The purpose of this study is to analyze an improvement of students’ mathematical critical thinking (CT) ability in Real Analysis course by using Rigorous Teaching and Learning (RTL) model with informal argument. In addition, this research also attempted to understand students’ CT on their initial mathematical ability (IMA). This study was conducted at a private university in academic year 2015/2016. The study employed the quasi-experimental method with pretest-posttest control group design. The participants of the study were 83 students in which 43 students were in the experimental group and 40 students were in the control group. The finding of the study showed that students in experimental group outperformed students in control group on mathematical CT ability based on their IMA (high, medium, low) in learning Real Analysis. In addition, based on medium IMA the improvement of mathematical CT ability of students who were exposed to RTL model with informal argument was greater than that of students who were exposed to CI (conventional instruction). There was also no effect of interaction between RTL model and CI model with both (high, medium, and low) IMA increased mathematical CT ability. Finally, based on (high, medium, and low) IMA there was a significant improvement in the achievement of all indicators of mathematical CT ability of students who were exposed to RTL model with informal argument than that of students who were exposed to CI.
Sandry, Joshua; Paxton, Jessica; Sumowski, James F
2016-03-01
The Paced Auditory Serial Addition Test (PASAT) is used to assess cognitive status in multiple sclerosis (MS). Although the mathematical demands of the PASAT seem minor (single-digit arithmetic), cognitive psychology research links greater mathematical ability (e.g., algebra, calculus) to more rapid retrieval of single-digit math facts (e.g., 5+6=11). The present study evaluated the hypotheses that (a) mathematical ability is related to PASAT performance and (b) both the relationship between intelligence and PASAT performance as well as the relationship between education and PASAT performance are both mediated by mathematical ability. Forty-five MS patients were assessed using the Wechsler Test of Adult Reading, PASAT and Calculation Subtest of the Woodcock-Johnson-III. Regression based path analysis and bootstrapping were used to compute 95% confidence intervals and test for mediation. Mathematical ability (a) was related to PASAT (β=.61; p<.001) and (b) fully mediated the relationship between Intelligence and PASAT (β=.76; 95% confidence interval (CI95)=.28, 1.45; direct effect of Intelligence, β=.42; CI95=-.39, 1.23) as well as the relationship between Education and PASAT (β=2.43, CI95=.81, 5.16, direct effect of Education, β=.83, CI95=-1.95, 3.61). Mathematical ability represents a source of error in the clinical interpretation of cognitive decline using the PASAT. Domain-specific cognitive reserve is discussed.
The MACSI summer school: a case study in outreach in mathematics
NASA Astrophysics Data System (ADS)
Charpin, J. P. F.; Hanrahan, P.; Mason, J. F.; O'Brien, S. B. G.; O'Sullivan, M.
2012-10-01
To encourage the study of mathematics in Ireland, the Mathematics Applications Consortium for Science and Industry (MACSI) organizes a summer school once a year. The different aspects of this summer school are presented. Students are selected depending on their motivation, academic abilities, gender and geographical origins. Instruction and supervision is provided by academics, post-doctoral fellows and post-graduate students. The teaching programme evolves every year and reflects the interests of the people involved. Feedback from participants has been almost uniformly positive. Students favour interactive sessions and enjoy the residential aspect of the summer school. Food and accommodation are however the most costly aspects of this summer school. In this respect the support of Science Foundation Ireland has been invaluable.
ERIC Educational Resources Information Center
Mardiana, Dinny; Mudrikah, Achmad; Amna, Nurjanah
2016-01-01
This study aimed to describe the application of Area Instruction Model on one of the state kindergarten in Bandung city. The study used a qualitative approach with descriptive qualitative design. Data was obtained through interviews, observation, and documentation. The validity of the analysis was guaranteed through perseverance observation and…
Implementing Inquiry-Based Learning and Examining the Effects in Junior College Probability Lessons
ERIC Educational Resources Information Center
Chong, Jessie Siew Yin; Chong, Maureen Siew Fang; Shahrill, Masitah; Abdullah, Nor Azura
2017-01-01
This study examined how Year 12 students use their inquiry skills in solving conditional probability questions by means of Inquiry-Based Learning application. The participants consisted of 66 students of similar academic abilities in Mathematics, selected from three classes, along with their respective teachers. Observational rubric and lesson…
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-07-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study. Independent sample t tests and Spearman's rho correlations were used for data analysis. This study found: (a) Children with TD had higher word problem solving ability than did children with ASD; (b) Sentence comprehension, math vocabulary, computation, and everyday mathematical knowledge were associated with word problem solving ability of children with ASD and children with TD; and (c) Children with TD had higher everyday mathematical knowledge than did children with ASD.
Preschool Executive Functioning Abilities Predict Early Mathematics Achievement
ERIC Educational Resources Information Center
Clark, Caron A. C.; Pritchard, Verena E.; Woodward, Lianne J.
2010-01-01
Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function…
Seeking mathematics success for college students: a randomized field trial of an adapted approach
NASA Astrophysics Data System (ADS)
Gula, Taras; Hoessler, Carolyn; Maciejewski, Wes
2015-11-01
Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental mathematics course vary widely and are, too often, ineffective at improving students' ability. This trend is concerning, since low mathematics ability is known to be related to lower rates of success in subsequent courses. To date, little attention has been paid to the selection of an instructional approach to consistently apply across developmental mathematics courses. Prior research suggests that an appropriate instructional method would involve explicit instruction and practising mathematical procedures linked to a mathematical concept. This study reports on a randomized field trial of a developmental mathematics approach at a college in Ontario, Canada. The new approach is an adaptation of the JUMP Math program, an explicit instruction method designed for primary and secondary school curriculae, to the college learning environment. In this study, a subset of courses was assigned to JUMP Math and the remainder was taught in the same style as in the previous years. We found consistent, modest improvement in the JUMP Math sections compared to the non-JUMP sections, after accounting for potential covariates. The findings from this randomized field trial, along with prior research on effective education for developmental mathematics students, suggest that JUMP Math is a promising way to improve college student outcomes.
Chu, Felicia W.; vanMarle, Kristy; Geary, David C.
2016-01-01
One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted reading and mathematics achievement at the end of kindergarten. Preliteracy skills were more strongly related to word reading, whereas sensitivity to relative quantity was more strongly related to mathematics achievement. The overall results indicate that a combination of domain-general and domain-specific abilities contribute to development of children's early mathematics and reading achievement. PMID:27252675
Chu, Felicia W; vanMarle, Kristy; Geary, David C
2016-01-01
One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted reading and mathematics achievement at the end of kindergarten. Preliteracy skills were more strongly related to word reading, whereas sensitivity to relative quantity was more strongly related to mathematics achievement. The overall results indicate that a combination of domain-general and domain-specific abilities contribute to development of children's early mathematics and reading achievement.
Using LEGO for learning fractions, supporting or distracting?
NASA Astrophysics Data System (ADS)
Rejeki, Sri; Setyaningsih, Nining; Toyib, Muhamad
2017-05-01
The role of games used for learning mathematics is still in debate. However, many research revealed that it gave positive effects on both students' motivation and performance in mathematics. Therefore, this study aims at investigating the effects of using LEGO-as one of games which students are familiar with, for learning mathematics, on both students' conceptual knowledge of fractions and students' attitude in learning mathematics. A set of learning activities consisting three meetings of fractions learning was designed for this study. The activities were mainly about solving word-context problems using LEGO as the model. Thirty students of seven grade with high-ability in mathematics and thirty two students with low-ability in mathematics were involved in this study. The data were collected through students' written works, video registration and field notes during the teaching and learning activities. The results indicate that in general the use of LEGO in learning activities support the conceptual understanding on fractions for both students with high-ability and low-ability in mathematics. Moreover, for students with low-ability in mathematics, it promotes the computational skill of fractions operation. The evidences also suggest that bringing LEGO into classroom activities improve students' motivation and engagement. However, in some cases, students were more focus on playing than learning. Therefore, teachers play important roles on providing clear pedagogical instructions about the way to use LEGO properly.
ERIC Educational Resources Information Center
Schonberger, Ann K.
A study was conducted at the University of Maine at Orono (UMO) to examine gender differences with respect to mathematical problem-solving ability, visual spatial ability, abstract reasoning ability, field independence/dependence, independent learning style, and developmental problem-solving ability (i.e., formal reasoning ability). Subjects…
He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong
2016-01-01
Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability.
He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong
2016-01-01
Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability. PMID:27462291
ERIC Educational Resources Information Center
Ku, Oskar; Chen, Sherry Y.; Wu, Denise H.; Lao, Andrew C. C.; Chan, Tak-Wai
2014-01-01
Many students possess low confidence toward learning mathematics, which, in turn, may lead them to give up pursuing more mathematics knowledge. Recently, game-based learning (GBL) is regarded as a potential means in improving students' confidence. Thus, this study tried to promote students' confidence toward mathematics by using GBL. In addition,…
ERIC Educational Resources Information Center
Tracy, Jacob Dennis
2017-01-01
It has been argued that teachers do not always teach in the ways their teacher education programs promoted. One cause of this problem has to do with teachers' conceptions about mathematics and ability being incompatible with the visions of mathematics that teacher educators promote. For example, teacher educators may emphasize the need for…
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
NASA Astrophysics Data System (ADS)
Prabawanto, Sufyani
2017-05-01
This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.
Classification and disease prediction via mathematical programming
NASA Astrophysics Data System (ADS)
Lee, Eva K.; Wu, Tsung-Lin
2007-11-01
In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.
Mathematics Instruction: Do Classrooms Matter?
ERIC Educational Resources Information Center
Desoete, Annemie; Stock, Pieter
2013-01-01
Counting abilities have been described as determinative precursors for a good development of later mathematical abilities. However, an important part of variance in mathematical achievement has also been associated with differences between instruction methods given in schools. In this study counting and instruction as predictors for mathematical…
NASA Astrophysics Data System (ADS)
Sowanto; Kusumah, Y. S.
2018-05-01
This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
ERIC Educational Resources Information Center
Dewi, Izwita; Harahap, Muhammad Syahri
2016-01-01
The purposes of this research were to know the validity, practicality, and effectivity of geometrical learning material based on the constructivism to Increase students' mathematic reasoning ability and increasing students' mathematic reasoning ability by using learning material at the grade VIII of SMP Negeri 3 Padangsidimpuan. Type of the…
ERIC Educational Resources Information Center
Yuliani, Kiki; Saragih, Sahat
2015-01-01
The purpose of this research was to: 1) development of learning devices based guided discovery model in improving of understanding concept and critical thinking mathematically ability of students at Islamic Junior High School; 2) describe improvement understanding concept and critical thinking mathematically ability of students at MTs by using…
Neural signatures of co-occurring reading and mathematical difficulties.
Skeide, Michael A; Evans, Tanya M; Mei, Edward Z; Abrams, Daniel A; Menon, Vinod
2018-06-19
Impaired abilities in multiple domains is common in children with learning difficulties. Co-occurrence of low reading and mathematical abilities (LRLM) appears in almost every second child with learning difficulties. However, little is known regarding the neural bases of this combination. Leveraging a unique and tightly controlled sample including children with LRLM, isolated low reading ability (LR), and isolated low mathematical ability (LM), we uncover a distinct neural signature in children with co-occurring low reading and mathematical abilities differentiable from LR and LM. Specifically, we show that LRLM is neuroanatomically distinct from both LR and LM based on reduced cortical folding of the right parahippocampal gyrus, a medial temporal lobe region implicated in visual associative learning. LRLM children were further distinguished from LR and LM by patterns of intrinsic functional connectivity between parahippocampal gyrus and brain circuitry underlying reading and numerical quantity processing. Our results critically inform cognitive and neural models of LRLM by implicating aberrations in both domain-specific and domain-general brain regions involved in reading and mathematics. More generally, our results provide the first evidence for distinct multimodal neural signatures associated with LRLM, and suggest that this population displays an independent phenotype of learning difficulty that cannot be explained simply as a combination of isolated low reading and mathematical abilities. © 2018 John Wiley & Sons Ltd.
Sala, Giovanni; Gobet, Fernand
2017-12-01
It has been proposed that playing chess enables children to improve their ability in mathematics. These claims have been recently evaluated in a meta-analysis (Sala & Gobet, 2016, Educational Research Review, 18, 46-57), which indicated a significant effect in favor of the groups playing chess. However, the meta-analysis also showed that most of the reviewed studies used a poor experimental design (in particular, they lacked an active control group). We ran two experiments that used a three-group design including both an active and a passive control group, with a focus on mathematical ability. In the first experiment (N = 233), a group of third and fourth graders was taught chess for 25 hours and tested on mathematical problem-solving tasks. Participants also filled in a questionnaire assessing their meta-cognitive ability for mathematics problems. The group playing chess was compared to an active control group (playing checkers) and a passive control group. The three groups showed no statistically significant difference in mathematical problem-solving or metacognitive abilities in the posttest. The second experiment (N = 52) broadly used the same design, but the Oriental game of Go replaced checkers in the active control group. While the chess-treated group and the passive control group slightly outperformed the active control group with mathematical problem solving, the differences were not statistically significant. No differences were found with respect to metacognitive ability. These results suggest that the effects (if any) of chess instruction, when rigorously tested, are modest and that such interventions should not replace the traditional curriculum in mathematics.
NASA Astrophysics Data System (ADS)
Nurjanah; Dahlan, J. A.; Wibisono, Y.
2017-02-01
This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.
Visuospatial Training Improves Elementary Students' Mathematics Performance
ERIC Educational Resources Information Center
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2017-01-01
Background: Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. Aims: This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial…
ERIC Educational Resources Information Center
Yang, Euphony F. Y.; Chang, Ben; Cheng, Hercy N. H.; Chan, Tak-Wai
2016-01-01
This study examined how to foster pupils' mathematical communication abilities by using tablet PCs. Students were encouraged to generate math creations (including mathematical representation, solution, and solution explanation of word problems) as their teaching materials and reciprocally tutor classmates to increase opportunities for mathematical…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
ERIC Educational Resources Information Center
Erdogan, Serap; Baran, Gulen
2009-01-01
This study was conducted to examine the effect of mathematics teaching given through the drama method on the mathematical ability of six-year-old children. The research was conducted in Ankara on 105 children from the kindergarten classes of two different primary schools of the Ministry of National Education, which are at middle socio-economic…
ERIC Educational Resources Information Center
Fatah, Abdul; Suryadi, Didi; Sabandar, Jozua; Turmudi
2016-01-01
The present study aims at examining the use of open-ended approach in cultivating senior high school students' mathematical creative thinking ability (MCTA) and self-esteem (SE) in mathematics viewed from school category. The subjects of this research were the students grade XI at three schools; high, middle and low category in Kota Serang, Banten…
Hyde, D C; Berteletti, I; Mou, Y
2016-01-01
Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.
Number sense and mathematics: Which, when and how?
Tosto, Maria G; Petrill, Stephen A; Malykh, Sergey; Malki, Karim; Haworth, Claire M A; Mazzocco, Michele M M; Thompson, Lee; Opfer, John; Bogdanova, Olga Y; Kovas, Yulia
2017-10-01
Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Lack of replication for the myosin-18B association with mathematical ability in independent cohorts
Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S
2015-01-01
Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. PMID:25778778
NASA Astrophysics Data System (ADS)
Munahefi, D. N.; Waluya, S. B.; Rochmad
2018-03-01
The purpose of this research identified the effectiveness of Problem Based Learning (PBL) models based on Self Regulation Leaning (SRL) on the ability of mathematical creative thinking and analyzed the ability of mathematical creative thinking of high school students in solving mathematical problems. The population of this study was students of grade X SMA N 3 Klaten. The research method used in this research was sequential explanatory. Quantitative stages with simple random sampling technique, where two classes were selected randomly as experimental class was taught with the PBL model based on SRL and control class was taught with expository model. The selection of samples at the qualitative stage was non-probability sampling technique in which each selected 3 students were high, medium, and low academic levels. PBL model with SRL approach effectived to students’ mathematical creative thinking ability. The ability of mathematical creative thinking of low academic level students with PBL model approach of SRL were achieving the aspect of fluency and flexibility. Students of academic level were achieving fluency and flexibility aspects well. But the originality of students at the academic level was not yet well structured. Students of high academic level could reach the aspect of originality.
Spatial Skill Profile of Mathematics Pre-Service Teachers
NASA Astrophysics Data System (ADS)
Putri, R. O. E.
2018-01-01
This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.
Teacher Mathematical Literacy: Case Study of Junior High School Teachers in Pasaman
NASA Astrophysics Data System (ADS)
Ahmad, D.; Suherman, S.; Maulana, H.
2018-04-01
The aim of this paper was to examine the ability of junior high school mathematics teachers to solve mathematical literacy base Problems (PISA and PISA-like problems) for the case Pasaman regency. The data was collected by interviews and test. As the results of this study, teacher ability in solving mathematical literacy base problems for level 1 until 3 has been good, but for level 4 or above is still low. It is caused by teacher knowledge about mathematical literacy still few.
Cognition, emotion, and arithmetic in primary school: A cross-cultural investigation.
Rodic, Maja; Cui, Jiaxin; Malykh, Sergey; Zhou, Xinlin; Gynku, Elena I; Bogdanova, Elena L; Zueva, Dina Y; Y Bogdanova, Olga; Kovas, Yulia
2018-06-01
The study investigated cross-cultural differences in variability and average performance in arithmetic, mathematical reasoning, symbolic and non-symbolic magnitude processing, intelligence, spatial ability, and mathematical anxiety in 890 6- to 9-year-old children from the United Kingdom, Russia, and China. Cross-cultural differences explained 28% of the variance in arithmetic and 17.3% of the variance in mathematical reasoning, with Chinese children outperforming the other two groups. No cross-cultural differences were observed for spatial ability and mathematical anxiety. In all samples, symbolic magnitude processing and mathematical reasoning were independently related to early arithmetic. Other factors, such as non-symbolic magnitude processing, mental rotation, intelligence, and mathematical anxiety, produced differential patterns across the populations. The results are discussed in relation to potential influences of parental practice, school readiness, and linguistic factors on individual differences in early mathematics. Statement of contribution What is already known on this subject? Cross-cultural differences in mathematical ability are present in preschool children. Similar mechanisms of mathematical development operate in preschool children from the United Kingdom, Russia, and China. Tasks that require understanding of numbers are best predictors of arithmetic in preschool children. What does this study add? Cross-cultural differences in mathematical ability become greater with age/years of formal education. Similar mechanisms of mathematical development operate in early primary school children from the United Kingdom, Russia, and China. Symbolic number magnitude and mathematical reasoning are the main predictors of arithmetic in all three populations. © 2018 The Authors British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
NASA Astrophysics Data System (ADS)
Darma, I. K.
2018-01-01
This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.
ERIC Educational Resources Information Center
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite…
Florida Preservice Agricultural Education Teachers' Mathematics Ability and Efficacy
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2012-01-01
The purpose of this study was to examine the mathematics ability and efficacy of Florida preservice agricultural education teachers. Results indicated that the preservice teachers were not proficient in solving agricultural mathematics problems. On the other hand, the preservice teachers were efficacious in personal teaching efficacy and personal…
Visual Processing in Generally Gifted and Mathematically Excelling Adolescents
ERIC Educational Resources Information Center
Paz-Baruch, Nurit; Leikin, Roza; Leikin, Mark
2016-01-01
Little empirical data are available concerning the cognitive abilities of gifted individuals in general and especially those who excel in mathematics. We examined visual processing abilities distinguishing between general giftedness (G) and excellence in mathematics (EM). The research population consisted of 190 students from four groups of 10th-…
Is There a Role for Executive Functions in the Development of Mathematics Ability?
ERIC Educational Resources Information Center
Blair, Clancy; Knipe, Hilary; Gamson, David
2008-01-01
This article examines the role of working memory, attention shifting, and inhibitory control executive cognitive functions in the development of mathematics knowledge and ability in children. It suggests that an examination of the executive cognitive demand of mathematical thinking can complement procedural and conceptual knowledge-based…
High-Ability Women and Men in Undergraduate Mathematics and Chemistry Courses.
ERIC Educational Resources Information Center
Bali, John; And Others
1985-01-01
Using samples of college students of very high ability and strong academic background, sex differences in performance and perceptions of performance in introductory chemistry and mathematics courses were studied. Considerable differences favoring men were found, and these appeared to be due primarily to differences in mathematics background.…
NASA Astrophysics Data System (ADS)
Prabawanto, S.
2018-05-01
This research aims to investigate the enhancement of students’ mathematical self- efficacy through teaching with metacognitive scaffolding approach. This research used a quasi- experimental design with pre-post respon control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 students who acquire teaching mathematics under metacognitive approach, while the control group consists of 58 students who acquire teaching mathematics under direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical self-efficacy instruments. By using mean difference test, two conclusions of the research: (1) there is a significant difference in the enhancement of mathematical self-efficacy between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and (2) there is no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students’ mathematical self-efficacy.
Purpura, David J; Logan, Jessica A R
2015-12-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert
2009-01-01
The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of…
NASA Astrophysics Data System (ADS)
Widyaningsih, E.; Waluya, S. B.; Kurniasih, A. W.
2018-03-01
This study aims to know mastery learning of students’ critical thinking ability with learning cycle 7E, determine whether the critical thinking ability of the students with learning cycle 7E is better than students’ critical thinking ability with expository model, and describe the students’ critical thinking phases based on the mathematical anxiety level. The method is mixed method with concurrent embedded. The population is VII grade students of SMP Negeri 3 Kebumen academic year 2016/2017. Subjects are determined by purposive sampling, selected two students from each level of mathematical anxiety. Data collection techniques include test, questionnaire, interview, and documentation. Quantitative data analysis techniques include mean test, proportion test, difference test of two means, difference test of two proportions and for qualitative data used Miles and Huberman model. The results show that: (1) students’ critical thinking ability with learning cycle 7E achieve mastery learning; (2) students’ critical thinking ability with learning cycle 7E is better than students’ critical thinking ability with expository model; (3) description of students’ critical thinking phases based on the mathematical anxiety level that is the lower the mathematical anxiety level, the subjects have been able to fulfil all of the indicators of clarification, assessment, inference, and strategies phases.
Vukovic, Rose K; Lesaux, Nonie K
2013-06-01
This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.
Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szűcs, Dénes
2013-07-01
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8. © 2013 Blackwell Publishing Ltd.
Identifying potential dropouts from college physics classes
NASA Astrophysics Data System (ADS)
Wollman, Warren; Lawrenz, Frances
Hudson and Rottman (1981) established that mathematics ability is probably a secondary factor influencing dropout from college physics courses. Other factors remain to be found for predicting who will drop out or at least have difficulty with the course. When mathematics ability is coupled with general indicators of performance (total GPA and ACT natural science), prediction of performance for those who complete the course is substantially improved. Moreover, discriminant analyses reveal who will have at least some difficulty, but not who will drop out. The problem of isolating specific weaknesses of students who have difficulty persists. Physics achievement appears to depend on mathematics ability only to the extent that students possess the ability to utilize mathematics knowledge for solving physics problems. Identification of the specific aspects of this ability as well as the specific deficiencies leading to dropout should be the object of future research. For the present, interviews might be more revealing than group testing methods.
ERIC Educational Resources Information Center
Stumpf, Heinrich; Mills, Carol J.; Brody, Linda E.; Baxley, Philip G.
2013-01-01
The importance of spatial ability for success in a variety of domains, particularly in science, technology, engineering, and mathematics (STEM), is widely acknowledged. Yet, students with high spatial ability are rarely identified, as Talent Searches for academically talented students focus on identifying high mathematical and verbal abilities.…
Student’s thinking process in solving word problems in geometry
NASA Astrophysics Data System (ADS)
Khasanah, V. N.; Usodo, B.; Subanti, S.
2018-05-01
This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.
Mathematics, anxiety, and the brain.
Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer
2017-05-24
Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.
Shin, Mikyung; Bryant, Diane Pedrotty
2015-01-01
The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.
Mathematical Skills in Ninth-graders: Relationship with Visuo-spatial Abilities and Working Memory.
ERIC Educational Resources Information Center
Reuhkala, Minna
2001-01-01
Investigates the relationship between working memory (WM) capacity (particularly visuo-spatial working memory (VSWM)), the ability to mentally rotate three-dimensional objects, and mathematical skills. Explains that in experiment 1, VSWM was examined; and in experiment 2, contributions of other WM components to mathematical skills was examined.…
ERIC Educational Resources Information Center
Mbwiri, Francis I.
2017-01-01
Many students with disabilities attending alternative high schools are not improving their mathematics ability scores. Failure to improve their mathematics ability scores has hampered their potential academic success and career prospects, resulting in many students dropping out of schools without graduating. The purpose of this quantitative study…
The Enhancement of Students' Teacher Mathematical Reasoning Ability through Reflective Learning
ERIC Educational Resources Information Center
Rohana
2015-01-01
This study aims to examine the enhancement of mathematical reasoning ability through reflective learning. This study used quasi-experimental method with nonequivalent pretest and posttest control group design. The subject of this study were students of Mathematics Education Program in one of private universities in Palembang, South Sumatera,…
ERIC Educational Resources Information Center
Carmody, Heather Jean
2017-01-01
Students' motivational and affective responses to mathematics are related to their academic performance. This mixed methods study involved survey results from 394 middle and high school high ability students. Data revealed that students believed success was possible, and that the usefulness and enjoyment of mathematics precipitated high…
NASA Astrophysics Data System (ADS)
Vila, Francisca; Sanz, Amparo
2013-09-01
The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant Physiology course. We have performed individual analyses of results obtained during the period 2000-2011, for questions in the examinations requiring and not requiring mathematical skills. Additionally, we present the outcome of two interventions introduced with the aim of helping students improve their prospects for success in the course. Our results confirm previous research showing students' deficiencies in mathematical skills. However, the scores obtained for mathematical questions in the examinations are good predictors of the final grades attained in Plant Physiology, as there are strong correlations at the individual level between results for questions requiring and not requiring mathematical skills. The introduction of a laboratory session devoted to strengthening the application of students' previously acquired mathematical knowledge did not change significantly the results obtained for mathematical questions. Since mathematical abilities of students entering university have declined in recent years, this intervention may have helped to maintain students' performance to a level comparable to that of previous years. The outcome of self-assessment online tests indicates that although Mathematics anxiety is lower than during examinations, the poor results obtained for questions requiring mathematical skills are, at least in part, due to a lack of self-efficacy.
Hiniker, Alexis
2016-01-01
Despite reports of mathematical talent in autism spectrum disorders (ASD), little is known about basic number processing abilities in affected children. We investigated number sense, the ability to rapidly assess quantity information, in 36 children with ASD and 61 typically developing controls. Numerical acuity was assessed using symbolic (Arabic numerals) as well as non-symbolic (dot array) formats. We found significant impairments in non-symbolic acuity in children with ASD, but symbolic acuity was intact. Symbolic acuity mediated the relationship between non-symbolic acuity and mathematical abilities only in children with ASD, indicating a distinctive role for symbolic number sense in the acquisition of mathematical proficiency in this group. Our findings suggest that symbolic systems may help children with ASD organize imprecise information. PMID:26659551
Wiklund-Hörnqvist, Carola; Jonsson, Bert; Korhonen, Johan; Eklöf, Hanna; Nyroos, Mikaela
2016-01-01
The aim with the present study was to examine the relationship between the subcomponents in working memory (WM) and mathematical performance, as measured by the National tests in a sample of 597 Swedish third-grade pupils. In line with compelling evidence of other studies, individual differences in WM capacity significantly predicted mathematical performance. Dividing the sample into four groups, based on their mathematical performance, revealed that mathematical ability can be conceptualized in terms of different WM profiles. Pupils categorized as High-math performers particularly differed from the other three groups in having a significant higher phonological ability. In contrast, pupils categorized as Low-math performers were particularly characterized by having a significant lower visuo-spatial ability. Findings suggest that it is important for educators to recognize and acknowledge individual differences in WM to support mathematical achievement at an individual level. PMID:27486413
NASA Astrophysics Data System (ADS)
Handayani, I.; Januar, R. L.; Purwanto, S. E.
2018-01-01
This research aims to know the influence of Missouri Mathematics Project Learning Model to Mathematical Problem-solving Ability of Students at Junior High School. This research is a quantitative research and uses experimental research method of Quasi Experimental Design. The research population includes all student of grade VII of Junior High School who are enrolled in the even semester of the academic year 2016/2017. The Sample studied are 76 students from experimental and control groups. The sampling technique being used is cluster sampling method. The instrument is consisted of 7 essay questions whose validity, reliability, difficulty level and discriminating power have been tested. Before analyzing the data by using t-test, the data has fulfilled the requirement for normality and homogeneity. The result of data shows that there is the influence of Missouri mathematics project learning model to mathematical problem-solving ability of students at junior high school with medium effect.
Rodic, Maja; Tikhomirova, Tatiana; Kolienko, Tatiana; Malykh, Sergey; Bogdanova, Olga; Zueva, Dina Y.; Gynku, Elena I.; Wan, Sirui; Zhou, Xinlin; Kovas, Yulia
2015-01-01
Previous research has consistently found an association between spatial and mathematical abilities. We hypothesized that this link may partially explain the consistently observed advantage in mathematics demonstrated by East Asian children. Spatial complexity of the character-based writing systems may reflect or lead to a cognitive advantage relevant to mathematics. Seven hundered and twenty one 6–9-year old children from the UK and Russia were assessed on a battery of cognitive skills and arithmetic. The Russian children were recruited from specialist linguistic schools and divided into four different language groups, based on the second language they were learning (i.e., English, Spanish, Chinese, and Japanese). The UK children attended regular schools and were not learning any second language. The testing took place twice across the school year, once at the beginning, before the start of the second language acquisition, and once at the end of the year. The study had two aims: (1) to test whether spatial ability predicts mathematical ability in 7–9 year-old children across the samples; (2) to test whether acquisition and usage of a character-based writing system leads to an advantage in performance in arithmetic and related cognitive tasks. The longitudinal link from spatial ability to mathematics was found only in the Russian sample. The effect of second language acquisition on mathematics or other cognitive skills was negligible, although some effect of Chinese language on mathematical reasoning was suggested. Overall, the findings suggest that although spatial ability is related to mathematics at this age, one academic year of exposure to spatially complex writing systems is not enough to provide a mathematical advantage. Other educational and socio-cultural factors might play a greater role in explaining individual and cross-cultural differences in arithmetic at this age. PMID:25859235
Rodic, Maja; Tikhomirova, Tatiana; Kolienko, Tatiana; Malykh, Sergey; Bogdanova, Olga; Zueva, Dina Y; Gynku, Elena I; Wan, Sirui; Zhou, Xinlin; Kovas, Yulia
2015-01-01
Previous research has consistently found an association between spatial and mathematical abilities. We hypothesized that this link may partially explain the consistently observed advantage in mathematics demonstrated by East Asian children. Spatial complexity of the character-based writing systems may reflect or lead to a cognitive advantage relevant to mathematics. Seven hundered and twenty one 6-9-year old children from the UK and Russia were assessed on a battery of cognitive skills and arithmetic. The Russian children were recruited from specialist linguistic schools and divided into four different language groups, based on the second language they were learning (i.e., English, Spanish, Chinese, and Japanese). The UK children attended regular schools and were not learning any second language. The testing took place twice across the school year, once at the beginning, before the start of the second language acquisition, and once at the end of the year. The study had two aims: (1) to test whether spatial ability predicts mathematical ability in 7-9 year-old children across the samples; (2) to test whether acquisition and usage of a character-based writing system leads to an advantage in performance in arithmetic and related cognitive tasks. The longitudinal link from spatial ability to mathematics was found only in the Russian sample. The effect of second language acquisition on mathematics or other cognitive skills was negligible, although some effect of Chinese language on mathematical reasoning was suggested. Overall, the findings suggest that although spatial ability is related to mathematics at this age, one academic year of exposure to spatially complex writing systems is not enough to provide a mathematical advantage. Other educational and socio-cultural factors might play a greater role in explaining individual and cross-cultural differences in arithmetic at this age.
NASA Astrophysics Data System (ADS)
Priatna, N.; Martadiputra, B. A. P.; Wibisono, Y.
2018-05-01
The development of science and technology requires reform in the utilization of various resources for mathematics teaching and learning process. One of the efforts that can be made is the implementation of GeoGebra-assisted Reciprocal Teaching strategy in mathematics instruction as an effective strategy in improving students’ cognitive, affective, and psychomotor abilities. This research is intended to implement GeoGebra-assisted Reciprocal Teaching strategy in improving abstraction ability, lateral thinking, and mathematical persistence of junior high school students. It employed quasi-experimental method with non-random pre-test and post-test control design. More specifically, it used the 2x3 factorial design, namely the learning factors that included GeoGebra-assisted Reciprocal Teaching and conventional teaching learning, and levels of early mathematical ability (high, middle, and low). The subjects in this research were the eighth grade students of junior high school, taken with purposive sampling. The results of this research show: Abstraction and lateral abilities of students who were taught with GeoGebra-assisted Reciprocal Teaching strategy were significantly higher than those of students who received conventional learning. Mathematical persistence of students taught with GeoGebra-assisted Reciprocal Teaching strategy was also significantly higher than of those taught with conventional learning.
Lack of replication for the myosin-18B association with mathematical ability in independent cohorts.
Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S
2015-04-01
Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Sex Differences in the Right Tail of Cognitive Abilities: A 30 Year Examination
ERIC Educational Resources Information Center
Wai, Jonathan; Cacchio, Megan; Putallaz, Martha; Makel, Matthew C.
2010-01-01
One factor in the debate surrounding the underrepresentation of women in science technology, engineering and mathematics (STEM) involves male-female mathematical ability differences in the extreme right tail (top 1% in ability). The present study provides male-female ability ratios from over 1.6 million 7th grade students in the right tail (top 5%…
Visuospatial training improves elementary students' mathematics performance.
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2017-06-01
Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.
Students’ Mathematical Creative Thinking through Problem Posing Learning
NASA Astrophysics Data System (ADS)
Ulfah, U.; Prabawanto, S.; Jupri, A.
2017-09-01
The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story
Analysis of Mathematics Critical Thinking Students in Junior High School Based on Cognitive Style
NASA Astrophysics Data System (ADS)
Agoestanto, A.; Sukestiyarno, YL; Rochmad
2017-04-01
The purpose of this research was to determine the critical thinking ability of mathematics from junior high school students based on FI and FD cognitive style. Data of this research were taken from students grade VIII at SMPN 2 Ambarawa. The research method used a descriptive qualitative approach. Data was taken with a testing method; the critical thinking was measured with WGCTA which is modified with mathematical problems, the cognitive style was measured with GEFT. The student’s test result was analysed, then four students were selected, the two of them are FI cognitive style, and the others are FD cognitive style, for qualitative analysis. The result showed that the ability of mathematics critical thinking students with FI cognitive style is better than FD cognitive style on the ability of inference, assumption, deduction, and interpretation. While on the aspect of argument evaluation, mathematics critical thinking ability of students with FD cognitive style is a little better than students with FI cognitive style.
Bull, R; Scerif, G
2001-01-01
Children's mathematical skills were considered in relation to executive functions. Using multiple measures--including the Wisconsin Card Sorting Task (WCST), dual-task performance, Stroop task, and counting span-it was found that mathematical ability was significantly correlated with all measures of executive functioning, with the exception of dual-task performance. Furthermore, regression analyses revealed that each executive function measure predicted unique variance in mathematics ability. These results are discussed in terms of a central executive with diverse functions (Shallice & Burgess, 1996) and with recent evidence from Miyake, et al. (2000) showing the unity and diversity among executive functions. It is proposed that the particular difficulties for children of lower mathematical ability are lack of inhibition and poor working memory, which result in problems with switching and evaluation of new strategies for dealing with a particular task. The practical and theoretical implications of these results are discussed, along with suggestions for task changes and longitudinal studies that would clarify theoretical and developmental issues related to executive functioning.
ERIC Educational Resources Information Center
Bhakta, Roy; Wood, Clare; Lawson, Duncan
2010-01-01
This study examined differences in personality and mathematical ability between students studying Business, Psychology, Sports and Nursing. There were 286 participants who each completed a mathematics diagnostics test and a Revised Eysenck Personality Questionnaire (EPQ-R) during the first term of their first year of study. There was a significant…
ERIC Educational Resources Information Center
Lewis, Bradford F.; Collins, Alicia; Pitts, Vanessa
This study investigated the perceptions of 30 predominantly white pre-service teachers about African American students' ability to achieve in mathematics and science. Participants completed a three-part, open-ended questionnaire that asked them about their experiences with and awareness of African American students' mathematics and science…
ERIC Educational Resources Information Center
Taub, Gordon E.; Benson, Nicholas; Szente, Judit
2014-01-01
This study investigated the effects of general intelligence and seven specific cognitive abilities on college-age students' mathematics achievement. The present investigation went beyond previous research by employing structural equation modeling. It also represents the first study to examine the direct and indirect effects of general and specific…
Incorporating Learning Motivation and Self-Concept in Mathematical Communicative Ability
ERIC Educational Resources Information Center
Rajagukguk, Waminton
2016-01-01
This research is trying to determine of the mathematical concepts, instead by integrating the learning motivation (X[subscript 1]) and self-concept (X[subscript 2]) can contribute to the mathematical communicative ability (Y). The test instruments showed the following results: (1) simple regressive equation Y on X[subscript 1] was Y = 32.891 +…
Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability
ERIC Educational Resources Information Center
Saragih, Sahat; Napitupulu, Elvis
2015-01-01
The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
Oswald, Tasha M; Beck, Jonathan S; Iosif, Ana-Maria; McCauley, James B; Gilhooly, Leslie J; Matter, John C; Solomon, Marjorie
2016-04-01
Mathematics achievement in autism spectrum disorder (ASD) has been understudied. However, the ability to solve applied math problems is associated with academic achievement, everyday problem-solving abilities, and vocational outcomes. The paucity of research on math achievement in ASD may be partly explained by the widely-held belief that most individuals with ASD are mathematically gifted, despite emerging evidence to the contrary. The purpose of the study was twofold: to assess the relative proportions of youth with ASD who demonstrate giftedness versus disability on applied math problems, and to examine which cognitive (i.e., perceptual reasoning, verbal ability, working memory) and clinical (i.e., test anxiety) characteristics best predict achievement on applied math problems in ASD relative to typically developing peers. Twenty-seven high-functioning adolescents with ASD and 27 age- and Full Scale IQ-matched typically developing controls were assessed on standardized measures of math problem solving, perceptual reasoning, verbal ability, and test anxiety. Results indicated that 22% of the ASD sample evidenced a mathematics learning disability, while only 4% exhibited mathematical giftedness. The parsimonious linear regression model revealed that the strongest predictor of math problem solving was perceptual reasoning, followed by verbal ability and test anxiety, then diagnosis of ASD. These results inform our theories of math ability in ASD and highlight possible targets of intervention for students with ASD struggling with mathematics. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
The Empathizing-Systemizing Theory, Social Abilities, and Mathematical Achievement in Children
Escovar, Emily; Rosenberg-Lee, Miriam; Uddin, Lucina Q.; Menon, Vinod
2016-01-01
The Empathizing-Systemizing (E-S) theory describes a profile of traits that have been linked to autism spectrum disorders, and are thought to encompass a continuum that includes typically developing (TD) individuals. Although systemizing is hypothesized to be related to mathematical abilities, empirical support for this relationship is lacking. We examine the link between empathizing and systemizing tendencies and mathematical achievement in 112 TD children (57 girls) to elucidate how socio-cognitive constructs influence early development of mathematical skills. Assessment of mathematical achievement included standardized tests designed to examine calculation skills and conceptual mathematical reasoning. Empathizing and systemizing were assessed using the Combined Empathy Quotient-Child (EQ-C) and Systemizing Quotient-Child (SQ-C). Contrary to our hypothesis, we found that mathematical achievement was not related to systemizing or the discrepancy between systemizing and empathizing. Surprisingly, children with higher empathy demonstrated lower calculation skills. Further analysis using the Social Responsiveness Scale (SRS) revealed that the relationship between EQ-C and mathematical achievement was mediated by social ability rather than autistic behaviors. Finally, social awareness was found to play a differential role in mediating the relationship between EQ-C and mathematical achievement in girls. These results identify empathy, and social skills more generally, as previously unknown predictors of mathematical achievement. PMID:26972835
The Empathizing-Systemizing Theory, Social Abilities, and Mathematical Achievement in Children.
Escovar, Emily; Rosenberg-Lee, Miriam; Uddin, Lucina Q; Menon, Vinod
2016-03-14
The Empathizing-Systemizing (E-S) theory describes a profile of traits that have been linked to autism spectrum disorders, and are thought to encompass a continuum that includes typically developing (TD) individuals. Although systemizing is hypothesized to be related to mathematical abilities, empirical support for this relationship is lacking. We examine the link between empathizing and systemizing tendencies and mathematical achievement in 112 TD children (57 girls) to elucidate how socio-cognitive constructs influence early development of mathematical skills. Assessment of mathematical achievement included standardized tests designed to examine calculation skills and conceptual mathematical reasoning. Empathizing and systemizing were assessed using the Combined Empathy Quotient-Child (EQ-C) and Systemizing Quotient-Child (SQ-C). Contrary to our hypothesis, we found that mathematical achievement was not related to systemizing or the discrepancy between systemizing and empathizing. Surprisingly, children with higher empathy demonstrated lower calculation skills. Further analysis using the Social Responsiveness Scale (SRS) revealed that the relationship between EQ-C and mathematical achievement was mediated by social ability rather than autistic behaviors. Finally, social awareness was found to play a differential role in mediating the relationship between EQ-C and mathematical achievement in girls. These results identify empathy, and social skills more generally, as previously unknown predictors of mathematical achievement.
The Science of Sex Differences in Science and Mathematics
Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann
2014-01-01
Summary Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school influences; training and experience; and cultural practices. We conclude that early experience, biological factors, educational policy, and cultural context affect the number of women and men who pursue advanced study in science and math and that these effects add and interact in complex ways. There are no single or simple answers to the complex questions about sex differences in science and mathematics. PMID:25530726
Mathematical ability of first year undergraduate paramedic students-A before and after study.
Eastwood, Kathryn; Boyle, Malcolm; Kim, Visal; Stam, Nathan; Williams, Brett
2015-11-01
An ability to accurately perform drug calculations unassisted is an essential skill for all health professionals, with various occupational-specific stressors exacerbating mathematical deficiencies. The objective of this study was to determine the unaided mathematic ability of first year undergraduate paramedic students before and after mathematical and drug calculation tutorials. Students were administered a questionnaire containing demographic, drug calculation and arithmetic questions during week one of the semester before the tutorials. During the semester students participated in three 2-hour tutorials which included both mathematical and drug calculation questions without assistance of computational devices. At the end of semester was a summative drug calculation examination of which five key questions were compared to similar questions from the first questionnaire. Descriptive statistics describe the demographic data with a paired t-test comparing the questionnaire and exam results. Drug calculation and mathematical ability was markedly improved following the tutorials, mean score of correct answers before 1.74 (SD 1.4) and after 4.14 (SD 0.93), p<0001. When comparing the correct results for the same question type, there were statistically significant differences in four of five different drug calculations: volume of drug drawn up 10 v 57 p<0.0001, infusion rate 29 v 31 p=0.717, drip rate 16 v 54 p<0.0001, volume from a syringe 30 v 59 p<0.0001, and drug dose 42 v 62 p<0.0001. Total errors reduced from 188 to 45. First year undergraduate paramedic students initially demonstrated a poor ability to complete mathematical and drug calculations without the assistance of computational devices. This improved significantly following appropriate education and practice. Further research is required to determine the retention of this ability over time. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Haciomeroglu, Erhan Selcuk
2016-01-01
The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…
Utilizing geogebra in financial mathematics problems: didactic experiment in vocational college
NASA Astrophysics Data System (ADS)
Ghozi, Saiful; Yuniarti, Suci
2017-12-01
GeoGebra application offers users to solve real problems in geometry, statistics, and algebra fields. This studydeterminesthe effect of utilizing Geogebra on students understanding skill in the field of financial mathematics. This didactic experiment study used pre-test-post-test control group design. Population of this study were vocational college students in Banking and Finance Program of Balikpapan State Polytechnic. Two classes in the first semester were chosen using cluster random sampling technique, one class as experiment group and one class as control group. Data were analysed used independent sample t-test. The result of data analysis showed that students understanding skill with learning by utilizing GeoGeobra is better than students understanding skill with conventional learning. This result supported that utilizing GeoGebra in learning can assist the students to enhance their ability and depth understanding on mathematics subject.
NASA Astrophysics Data System (ADS)
Colliver, Yeshe
2017-07-01
Children's early mathematical abilities are fundamental to their later academic achievement. An interest in mathematics in the early years is likely to establish a positive attitude to later mathematical learning, hopefully sustaining continued interest in mathematics and mathematical learning. Approaches to early mathematics teaching in the early years, however, are typically adult-initiated, which may fail to capture children's interest. Given the importance of children's motivation and sustained interest, the study described here strove to spark children's interests in mathematical problems in everyday life. The study sought to determine if children would incorporate more numeracy-related concepts into their free play if exposed to adult demonstrations of age-appropriate numeracy activities such as patterning. For at least 15 min three times weekly, participating children's parents and educators demonstrated numeracy problem-solving nearby, while children engaged in other activities. Demonstrations were thought to ascribe social value to the problem-solving activities. If children became interested in participating, adults told them to wait until the demonstrations finished, further indicating social value. Results show these children chose to play with numeracy-related activities in their free play time at preschool significantly more than children in a control group. These results suggest that seeking to foster children's interest in mathematics through child-initiated play, rather than prescribing adult-initiated mathematics activities, may be an important means of laying the foundation for lifelong mathematics learning. Ascribing social value to numeracy applications is proposed as a new approach to teaching mathematics in the early years.
ERIC Educational Resources Information Center
Danisman, Sahin; Erginer, Ergin
2017-01-01
The purpose of this study was to examine fifth graders' mathematical reasoning and spatial ability, to identify a correlation with their learning styles, and to determine the predictive power of their learning styles on their mathematical learning profiles. This causal study was conducted with 97 fifth graders (60 females, 61.9% and 37 males,…
ERIC Educational Resources Information Center
Dimitriadis, Christos
2016-01-01
This article presents findings from a case study of an in-classroom program based on ability grouping for Year 2 (ages 6-7) primary (elementary) children identified as high ability in mathematics. The study examined the role of classroom setting, classroom environment, and teacher's approach in realizing and developing mathematical promise. The…
Moura, Ricardo; Wood, Guilherme; Pinheiro-Chagas, Pedro; Lonnemann, Jan; Krinzinger, Helga; Willmes, Klaus; Haase, Vitor Geraldi
2013-11-01
Transcoding between numerical systems is one of the most basic abilities acquired by children during their early school years. One important topic that requires further exploration is how mathematics proficiency can affect number transcoding. The aim of the current study was to investigate transcoding abilities (i.e., reading Arabic numerals and writing dictation) in Brazilian children with and without mathematics difficulties, focusing on different school grades. We observed that children with learning difficulties in mathematics demonstrated lower achievement in number transcoding in both early and middle elementary school. In early elementary school, difficulties were observed in both the basic numerical lexicon and the management of numerical syntax. In middle elementary school, difficulties appeared mainly in the transcoding of more complex numbers. An error analysis revealed that the children with mathematics difficulties struggled mainly with the acquisition of transcoding rules. Although we confirmed the previous evidence on the impact of working memory capacity on number transcoding, we found that it did not fully account for the observed group differences. The results are discussed in the context of a maturational lag in number transcoding ability in children with mathematics difficulties. Copyright © 2013 Elsevier Inc. All rights reserved.
Mazzocco, Michèle M M; Feigenson, Lisa; Halberda, Justin
2011-01-01
The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities.
Mazzocco, Michèle M. M.; Feigenson, Lisa; Halberda, Justin
2011-01-01
The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood. Throughout development, wide ranging individual differences in ANS precision are evident within age groups. These individual differences have been linked to formal mathematics outcomes, based on concurrent, retrospective, or short-term longitudinal correlations observed during the school age years. However, it remains unknown whether this approximate number sense actually serves as a foundation for these school mathematics abilities. Here we show that ANS precision measured at preschool, prior to formal instruction in mathematics, selectively predicts performance on school mathematics at 6 years of age. In contrast, ANS precision does not predict non-numerical cognitive abilities. To our knowledge, these results provide the first evidence for early ANS precision, measured before the onset of formal education, predicting later mathematical abilities. PMID:21935362
Investigating adaptive reasoning and strategic competence: Difference male and female
NASA Astrophysics Data System (ADS)
Syukriani, Andi; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
The series of adaptive reasoning and strategic competencies represent the five components of mathematical proficiency to describe the students' mathematics learning success. Gender contribute to the problem-solving process. This qualitative research approach investigated the adaptive reasoning and strategic competence aspects of a male student and a female student when they solved mathematical problem. They were in the eleventh grade of high school in Makassar. Both also had similar mathematics ability and were in the highest category. The researcher as the main instrument used secondary instrument to obtain the appropriate subject and to investigate the aspects of adaptive reasoning and strategic competence. Test of mathematical ability was used to locate the subjects with similar mathematical ability. The unstructured guideline interview was used to investigate aspects of adaptive reasoning and strategic competence when the subject completed the task of mathematical problem. The task of mathematical problem involves several concepts as the right solution, such as the circle concept, triangle concept, trigonometry concept, and Pythagoras concept. The results showed that male and female subjects differed in applying a strategy to understand, formulate and represent the problem situation. Furthermore, both also differed in explaining the strategy used and the relationship between concepts and problem situations.
Priess-Groben, Heather A; Hyde, Janet Shibley
2017-06-01
Mathematics motivation declines for many adolescents, which limits future educational and career options. The present study sought to identify predictors of this decline by examining whether implicit theories assessed in ninth grade (incremental/entity) predicted course-taking behaviors and utility value in college. The study integrated implicit theory with variables from expectancy-value theory to examine potential moderators and mediators of the association of implicit theories with college mathematics outcomes. Implicit theories and expectancy-value variables were assessed in 165 American high school students (47 % female; 92 % White), who were then followed into their college years, at which time mathematics courses taken, course-taking intentions, and utility value were assessed. Implicit theories predicted course-taking intentions and utility value, but only self-concept of ability predicted courses taken, course-taking intentions, and utility value after controlling for prior mathematics achievement and baseline values. Expectancy for success in mathematics mediated associations between self-concept of ability and college outcomes. This research identifies self-concept of ability as a stronger predictor than implicit theories of mathematics motivation and behavior across several years: math self-concept is critical to sustained engagement in mathematics.
House, J Daniel
2009-04-01
Recent mathematics assessment findings indicate that Native American students tend to score below students of the ethnic majority. Findings suggest that students' beliefs about mathematics are significantly related to achievement outcomes. This study examined relations between self-beliefs and mathematics achievement for a national sample of 130 Grade 8 Native American students from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States sample of (M age = 14.2 yr., SD = 0.5). Multiple regression indicated several significant relations of mathematics beliefs with achievement and accounted for 26.7% of the variance in test scores. Students who earned high test scores tended to hold more positive beliefs about their ability to learn mathematics quickly, while students who earned low scores expressed negative beliefs about their ability to learn new mathematics topics.
Rhodes, Katherine T; Branum-Martin, Lee; Morris, Robin D; Romski, MaryAnn; Sevcik, Rose A
2015-11-01
Although it is often assumed that mathematics ability alone predicts mathematics test performance, linguistic demands may also predict achievement. This study examined the role of language in mathematics assessment performance for children with intellectual disability (ID) at less severe levels, on the KeyMath-Revised Inventory (KM-R) with a sample of 264 children, in grades 2-5. Using confirmatory factor analysis, the hypothesis that the KM-R would demonstrate discriminant validity with measures of language abilities in a two-factor model was compared to two plausible alternative models. Results indicated that KM-R did not have discriminant validity with measures of children's language abilities and was a multidimensional test of both mathematics and language abilities for this population of test users. Implications are considered for test development, interpretation, and intervention.
Wolke, Dieter; Strauss, Vicky Yu-Chun; Johnson, Samantha; Gilmore, Camilla; Marlow, Neil; Jaekel, Julia
2015-06-01
To determine whether general cognitive ability, basic mathematic processing, and mathematic attainment are universally affected by gestation at birth, as well as whether mathematic attainment is more strongly associated with cohort-specific factors such as schooling than basic cognitive and mathematical abilities. The Bavarian Longitudinal Study (BLS, 1289 children, 27-41 weeks gestational age [GA]) was used to estimate effects of GA on IQ, basic mathematic processing, and mathematic attainment. These estimations were used to predict IQ, mathematic processing, and mathematic attainment in the EPICure Study (171 children <26 weeks GA). For children born <34 weeks GA, each lower week decreased IQ and mathematic attainment scores by 2.34 (95% CI: -2.99, -1.70) and 2.76 (95% CI: -3.40, -2.11) points, respectively. There were no differences among children born 34-41 weeks GA. Similarly, for children born <36 weeks GA, mathematic processing scores decreased by 1.77 (95% CI: -2.20, -1.34) points with each lower GA week. The prediction function generated using BLS data accurately predicted the effect of GA on IQ and mathematic processing among EPICure children. However, these children had better attainment than predicted by BLS. Prematurity has adverse effects on basic mathematic processing following birth at all gestations <36 weeks and on IQ and mathematic attainment <34 weeks GA. The ability to predict IQ and mathematic processing scores from one cohort to another among children cared for in different eras and countries suggests that universal neurodevelopmental factors may explain the effects of gestation at birth. In contrast, mathematic attainment may be improved by schooling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wolke, Dieter; Strauss, Vicky Yu-Chun; Johnson, Samantha; Gilmore, Camilla; Marlow, Neil; Jaekel, Julia
2015-01-01
Objective To determine whether general cognitive ability, basic mathematic processing, and mathematic attainment are universally affected by gestation at birth, as well as whether mathematic attainment is more strongly associated with cohort-specific factors such as schooling than basic cognitive and mathematical abilities. Study design The Bavarian Longitudinal Study (BLS, 1289 children, 27-41 weeks gestational age [GA]) was used to estimate effects of GA on IQ, basic mathematic processing, and mathematic attainment. These estimations were used to predict IQ, mathematic processing, and mathematic attainment in the EPICure Study (171 children <26 weeks GA). Results For children born <34 weeks GA, each lower week decreased IQ and mathematic attainment scores by 2.34 (95% CI: −2.99, −1.70) and 2.76 (95% CI: −3.40, −2.11) points, respectively. There were no differences among children born 34-41 weeks GA. Similarly, for children born <36 weeks GA, mathematic processing scores decreased by 1.77 (95% CI: −2.20, −1.34) points with each lower GA week. The prediction function generated using BLS data accurately predicted the effect of GA on IQ and mathematic processing among EPICure children. However, these children had better attainment than predicted by BLS. Conclusions Prematurity has adverse effects on basic mathematic processing following birth at all gestations <36 weeks and on IQ and mathematic attainment <34 weeks GA. The ability to predict IQ and mathematic processing scores from one cohort to another among children cared for in different eras and countries suggests that universal neurodevelopmental factors may explain the effects of gestation at birth. In contrast, mathematic attainment may be improved by schooling. PMID:25842966
Mathematics ability and related skills in preschoolers born very preterm.
Hasler, Holly M; Akshoomoff, Natacha
2017-12-12
Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.
ERIC Educational Resources Information Center
Badru, Ademola K.
2016-01-01
The study investigated Problem-based Instructional Strategy and Numerical ability as determinants of Senior Secondary Achievement in Mathematics. This study used 4 x 2 x 2 non-randomised control group Pretest-Posttest Quasi-experimental Factorial design. It consisted of two independent variables (treatment and Numerical ability) and one moderating…
ERIC Educational Resources Information Center
Floyd, Randy G.; Evans, Jeffrey J.; McGrew, Kevin S.
2003-01-01
Cognitive clusters from the Woodcock-Johnson III (WJ III) Tests of Cognitive Abilities that measure select Cattell-Horn-Carroll broad and narrow cognitive abilities were shown to be significantly related to mathematics achievement in a large, nationally representative sample of children and adolescents. Multiple regression analyses were used to…
ERIC Educational Resources Information Center
Buhrman, Danielle
2017-01-01
This study uses components of action and self-study research to examine the design and enactment of modeling tasks with the goal of developing student modeling abilities. The author, a secondary mathematics teacher, first closely examined the curriculum design and instructional decisions she made as she prepared for a unit on mathematical modeling…
ERIC Educational Resources Information Center
Rattanatumma, Tawachai; Puncreobutr, Vichian
2016-01-01
The objective of this study was to compare the effectiveness of teaching methods in improving Mathematics Learning Achievement and Problem solving ability of students at an international college. This is a Quasi-Experimental Research which was done the study with the first year students who have registered to study Mathematics subject at St.…
Gandhi, Mihir; Teivaanmaki, Tiina; Maleta, Kenneth; Duan, Xiaolian; Ashorn, Per; Cheung, Yin Bun
2013-01-01
This study aimed to examine the association between child development at 5 years of age and mathematics ability and schooling outcomes at 12 years of age in Malawian children. A prospective cohort study looking at 609 rural Malawian children. Outcome measures were percentage of correctly answered mathematics questions, highest school grade completed and number of times repeating school grades at 12 years of age. A child development summary score obtained at 5 years of age was the main exposure variable. Regression analyses were used to estimate the association and adjust for confounders. Sensitivity analysis was performed by handling losses to follow-up with multiple imputation (MI) method. The summary score was positively associated with percentage of correctly answered mathematics questions (p = 0.057; p = 0.031 MI) and with highest school grade completed (p = 0.096; p = 0.070 MI), and negatively associated with number of times repeating school grades (p = 0.834; p = 0.339 MI). Fine motor score at 5 years was independently associated with the mathematic score (p = 0.032; p = 0.011 MI). The association between child development and mathematics ability did not depend on school attendance. Child development at 5 years of age showed signs of positive association with mathematics ability and possibly with highest school grade completed at 12 years of age. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.
Orlov, S V; Kanykin, A Iu; Moskalev, V P; Shchedrenok, V V; Sedov, R L
2009-01-01
A mathematical model of a three-vertebra complex was developed in order to make an exact calculation of loss of supporting ability of the vertebral column in trauma. Mathematical description of the dynamic processes was based on Lagrange differential equation of the second order. The degree of compression and instability of the three-vertebra complex, established using mathematical modeling, determines the decision on the surgical treatment and might be considered as a prognostic criterion of the course of the compression trauma of the spine. The method of mathematical modeling of supporting ability of the vertebral column was used in 72 patients.
[What is the purpose of the German Aptitude Test for Medical Studies (TMS)?].
Kadmon, Guni; Kirchner, Anna; Duelli, Roman; Resch, Franz; Kadmon, Martina
2012-01-01
The German Aptitude Test for Medical Studies (TMS) was implemented in 2007. 12,194 persons registered for this test in 2011, which represents a 91% increase over 2007. The male/female ratio remained constant at 38:62. Its reliability among applicants to Heidelberg Medical Faculty was confirmed by Cronbach's α (≥ 0.75) and inter-item correlation (≥ 0.25, p < 10(-7)). The TMS contains nine items; using factor analysis these were allocated to the two components verbal-mathematical and spatial-figural ability. The verbal-mathematical items moderately correlate with the German Baccalaureate GPA (r = 0.33), while the spatial-figural items do not correlate (r = 0.07). Thus, the TMS is an admission instrument that appraise different cognitive abilities than the GPA. For the admission of students to our faculty their TMS scores are weighted at 39%, which has resulted in a diversification of our student cohorts. Copyright © 2011. Published by Elsevier GmbH.
Discrete Mathematics and Curriculum Reform.
ERIC Educational Resources Information Center
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Davis, O S P; Kovas, Y; Harlaar, N; Busfield, P; McMillan, A; Frances, J; Petrill, S A; Dale, P S; Plomin, R
2008-06-01
A key translational issue for neuroscience is to understand how genes affect individual differences in brain function. Although it is reasonable to suppose that genetic effects on specific learning abilities, such as reading and mathematics, as well as general cognitive ability (g), will overlap very little, the counterintuitive finding emerging from multivariate genetic studies is that the same genes affect these diverse learning abilities: a Generalist Genes hypothesis. To conclusively test this hypothesis, we exploited the widespread access to inexpensive and fast Internet connections in the UK to assess 2541 pairs of 10-year-old twins for reading, mathematics and g, using a web-based test battery. Heritabilities were 0.38 for reading, 0.49 for mathematics and 0.44 for g. Multivariate genetic analysis showed substantial genetic correlations between learning abilities: 0.57 between reading and mathematics, 0.61 between reading and g, and 0.75 between mathematics and g, providing strong support for the Generalist Genes hypothesis. If genetic effects on cognition are so general, the effects of these genes on the brain are also likely to be general. In this way, generalist genes may prove invaluable in integrating top-down and bottom-up approaches to the systems biology of the brain.
Spreadsheets as a Transparent Resource for Learning the Mathematics of Annuities
ERIC Educational Resources Information Center
Pournara, Craig
2009-01-01
The ability of mathematics teachers to decompress mathematics and to move between representations are two key features of mathematical knowledge that is usable for teaching. This article reports on four pre-service secondary mathematics teachers learning the mathematics of annuities. In working with spreadsheets students began to make sense of…
ERIC Educational Resources Information Center
Akkus, Oylum
2008-01-01
The purpose of this study was to investigate preservice elementary mathematics teachers' ability of relating mathematical concepts and daily life context. Two research questions were set; what is the preservice elementary mathematics teachers' level of relating mathematical concepts and daily life context regarding to their education year and…
ERIC Educational Resources Information Center
Ireson, Judith; Hallam, Susan; Hack, Sarah; Clark, Helen; Plewis, Ian
2002-01-01
Studied the impact of ability grouping on attainment in a cohort of year-9 students in 45 mixed secondary schools in England representing a variety of grouping practices. In mathematics, students at higher levels by year 6 make more progress in sets, but those in lower levels make more progress in mixed ability classes. Discusses educational…
ERIC Educational Resources Information Center
Husnaeni
2016-01-01
Critical thinking ability of students' mathematical is a component that must be mastered by the student. Learn to think critically means using mental processes, such as attention, categorize, selection, and rate/decide. Critical thinking ability in giving proper guidance in thinking and working, and assist in determining the relationship between…
ERIC Educational Resources Information Center
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-01-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study.…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word…
Which Preschool Mathematics Competencies Are Most Predictive of Fifth Grade Achievement?
Nguyen, Tutrang; Watts, Tyler W; Duncan, Greg J; Clements, Douglas H; Sarama, Julie S; Wolfe, Christopher; Spitler, Mary Elaine
In an effort to promote best practices regarding mathematics teaching and learning at the preschool level, national advisory panels and organizations have emphasized the importance of children's emergent counting and related competencies, such as the ability to verbally count, maintain one-to-one correspondence, count with cardinality, subitize, and count forward or backward from a given number. However, little research has investigated whether the kind of mathematical knowledge promoted by the various standards documents actually predict later mathematics achievement. The present study uses longitudinal data from a primarily low-income and minority sample of children to examine the extent to which preschool mathematical competencies, specifically basic and advanced counting, predict fifth grade mathematics achievement. Using regression analyses, we find early numeracy abilities to be the strongest predictors of later mathematics achievement, with advanced counting competencies more predictive than basic counting competencies. Our results highlight the significance of preschool mathematics knowledge for future academic achievement.
ERIC Educational Resources Information Center
Higgins, Karen M.
This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…
Familial aggregation patterns in mathematical ability.
Wijsman, Ellen M; Robinson, Nancy M; Ainsworth, Kathryn H; Rosenthal, Elisabeth A; Holzman, Ted; Raskind, Wendy H
2004-01-01
Mathematical talent is an asset in modern society both at an individual and a societal level. Environmental factors such as quality of mathematics education undoubtedly affect an individual's performance, and there is some evidence that genetic factors also may play a role. The current study was performed to investigate the feasibility of undertaking genetics studies on mathematical ability. Because the etiology of low ability in mathematics is likely to be multifactorial and heterogeneous, we evaluated families ascertained through a proband with high mathematical performance in grade 7 on the SAT to eliminate, to some degree, adverse environmental factors. Families of sex-matched probands, selected for high verbal performance on the SAT, served as the comparison group. We evaluated a number of proxy measures for their usefulness in the study of clustering of mathematical talent. Given the difficulty of testing mathematics performance across developmental ages, especially with the added complexity of decreasing exposure to formal mathematics concepts post schooling, we also devised a semiquantitative scale that incorporated educational, occupational, and avocational information as a surrogate for an academic mathematics measure. Whereas several proxy measures showed no evidence of a genetic basis, we found that the semiquantitative scale of mathematical talent showed strong evidence of a genetic basis, with a differential response as a function of the performance measure used to select the proband. This observation suggests that there may be a genetic basis to specific mathematical talent, and that specific, as opposed to proxy, investigative measures that are designed to measure such talent in family members could be of benefit for this purpose.
Docherty, S J; Davis, O S P; Kovas, Y; Meaburn, E L; Dale, P S; Petrill, S A; Schalkwyk, L C; Plomin, R
2010-01-01
Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P < 0.05) in an individually genotyped sample of *2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e–14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e–07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations. PMID:20039944
Docherty, S J; Davis, O S P; Kovas, Y; Meaburn, E L; Dale, P S; Petrill, S A; Schalkwyk, L C; Plomin, R
2010-03-01
Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P < 0.05) in an individually genotyped sample of (*)2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e-14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e-07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.
Harvey, Sharon; Murphy, Fiona; Lake, Richard; Jenkins, Lynne; Cavanna, Annlouise; Tait, Mike
2010-05-01
Mathematical ability is a skill nurses need to safely administer medicines and fluids to patients (Elliott, M., Joyce, J., 2005. Mapping drug calculation skills in an undergraduate nursing curriculum. Nurse Education in Practice 5, 225-229). However some nurses and nursing students lack mathematical proficiency (Hilton, D.E., 1999. Considering academic qualification in mathematics as an entry requirement for a diploma in nursing programme. Nurse Education Today 19, 543-547). A tool was devised to assess the mathematical abilities of nursing students. This was administered to 304 nursing students in one Higher Education Institution (HEI) in Wales, United Kingdom (UK) on entry to a pre-registration undergraduate nursing course. The students completed a diagnostic mathematics test comprising of 25 non-clinical General Certificate of Secondary Education (GCSE) level multiple choice questions with a pass mark set at 72%. The key findings were that only 19% (n=53) of students passed the test. Students appeared to have difficulties with questions involving decimals, SI units, formulae and fractions. The key demographic variable that influenced test scores was previous mathematical qualifications on entry to the course. The tool proved useful in two ways. First, in identifying those students who needed extra tutorial support in mathematics. Second, in identifying those areas of mathematics that presented difficulties for students. Copyright 2009 Elsevier Ltd. All rights reserved.
Building Knowledge Structures by Testing Helps Children with Mathematical Learning Difficulty
ERIC Educational Resources Information Center
Zhang, Yiyun; Zhou, Xinlin
2016-01-01
Mathematical learning difficulty (MLD) is prevalent in the development of mathematical abilities. Previous interventions for children with MLD have focused on number sense or basic mathematical skills. This study investigated whether mathematical performance of fifth grade children with MLD could be improved by developing knowledge structures by…
Latinas and Problem Solving: What They Say and What They Do
ERIC Educational Resources Information Center
Guerra, Paula; Lim, Woong
2014-01-01
In this article, the authors present three adolescent Latinas' perceptions of ideal mathematical competencies, their perception of their individual "abilities" in mathematics, and their work on a mathematics problem-solving task. Results indicate that these Latinas recognize flexible mathematics as the ideal mathematical competency in…
Influence of Writing Ability and Computation Skill on Mathematics Writing
ERIC Educational Resources Information Center
Powell, Sarah R.; Hebert, Michael A.
2016-01-01
Mathematics standards expect students to communicate about mathematics using oral and written methods, and some high-stakes assessments ask students to answer mathematics questions by writing. Assumptions about mathematics communication via writing include (a) students possess writing skill, (b) students can transfer this writing skill to…
ERIC Educational Resources Information Center
Shin, Mikyung; Bryant, Diane Pedrotty
2015-01-01
The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no…
Task design for improving students’ engagement in mathematics learning
NASA Astrophysics Data System (ADS)
Khairunnisa
2018-01-01
This article analysed the importance of task design as one of the instruments in the learning and its application in several studies. Through task design, students engage in learning caused them enthusiastically in expressing ideas, opinion or knowledge of them. Thus, the teacher was able to gain an idea of knowledge belonging to students. By using this information, teachers are able to develop the thinking ability of students.
ERIC Educational Resources Information Center
Yao, Shih-Ying; Muñez, David; Bull, Rebecca; Lee, Kerry; Khng, Kiat Hui; Poon, Kenneth
2017-01-01
The Test of Early Mathematics Ability-Third Edition (TEMA-3) is a commonly used measure of early mathematics knowledge for children aged 3 years to 8 years 11 months. In spite of its wide use, research on the psychometric properties of TEMA-3 remains limited. This study applied the Rasch model to investigate the psychometric properties of TEMA-3…
ERIC Educational Resources Information Center
Hickendorff, Marian
2013-01-01
The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…
ERIC Educational Resources Information Center
Marks, Rachel
2013-01-01
The use of structured ability grouping is increasing in English primary schools and is regularly seen in primary mathematics classrooms. Ability is a normalised discourse with beliefs that some individuals are "born to do maths" permeating society and infiltrating school practices. In this article, observation and interview data…
Designing for Productive Failure
ERIC Educational Resources Information Center
Kapur, Manu; Bielaczyc, Katerine
2012-01-01
In this article, we describe the design principles undergirding "productive failure" (PF; M. Kapur, 2008). We then report findings from an ongoing program of research on PF in mathematical problem solving in 3 Singapore public schools with significantly different mathematical ability profiles, ranging from average to lower ability. In…
Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert
2009-01-01
The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we developed for Web-based testing, included problems from 3 domains of mathematics taught as part of the UK National Curriculum. Using quantitative genetic model-fitting analyses, similar results were found for math disabilities and abilities for all 3 measures: Moderate genetic influence and environmental influence were mainly due to nonshared environmental factors that were unique to the individual, with little influence from shared environment. No sex differences were found in the etiologies of math abilities and disabilities. We conclude that low mathematical performance is the quantitative extreme of the same genetic and environmental factors responsible for variation throughout the distribution. PMID:18064980
NASA Astrophysics Data System (ADS)
Feriyanto
2018-01-01
This research aims to describe the ability of students’ mathematical proof in determining the validity of argument reviewed from gender differences. The subjects of this research were one male and one female student of the fifth semester of Mathematic Education study program. The subjects were selected based on the highest mathematics ability which was assesed from their previous assignments and tests. In addition, the communication ability of the subjects was also considered in order to facilitate the researcher in conducting interviews. Based on the result of the test with direct and indirect proof, it could be concluded that the subjects were able to: 1) mention all facts/premises and write about what should be shown (conclusion) in direct proof and write additional premise in indirect proof; 2) connect facts/premises to concepts which must be mastered; 3) use equivalent concept to manipulate and organize the proof; 4) use the concept of syllogism and tollens mode to obtain the desired conclusion; 5) construct mathematical evidence systematically, and logically; 6) complement the reason for each step appropriately. The difference was that the male subject wrote the final conclusion, while the female subject did not write the final conclusion on the proof.
The frequency of dyscalculia among primary school children.
Jovanović, Gordana; Jovanović, Zoran; Banković-Gajić, Jelena; Nikolić, Anđelka; Svetozarević, Srđana; Ignjatović-Ristić, Dragana
2013-06-01
Formal education, daily living activities and jobs require knowledge and application skills of counting and simple mathematical operations. Problems with mathematics start in primary school and persist till adulthood. This is known as dyscalculia and its prevalence in the school population ranges from 3 to 6.5%. The study included 1424 third-grade students (aged 9-10) of all primary schools in the City of Kragujevac, Serbia. Tests in mathematics were given in order to determine their mathematical achievement. 1078 students (538 boys and 540 girls) completed all five tests. The frequency of dyscalculia in the sample was 9.9%. The difference between boys and girls according to the total score on the test was statistically significant (p<0.005). The difference between students according to their school achievement (excellent, very good, good, sufficient and insufficient) was statistically significant for all tests (p<0.0005). The influence of place of residence/school was significant for all tests (p<0.0005). Independent prognostic variables associated with dyscalculia are marks in mathematics and Serbian language. Frequency of dyscalculia of 9.9% in the sample is higher than in the other similar studies. Further research should identify possible causes of such frequency of dyscalculia in order to improve students` mathematical abilities.
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.
2011-01-01
Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math–biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822
Colon-Berlingeri, Migdalisel; Burrowes, Patricia A
2011-01-01
Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.
The contribution of spatial ability to mathematics achievement in middle childhood.
Gilligan, Katie A; Flouri, Eirini; Farran, Emily K
2017-11-01
Strong spatial skills are associated with success in science, technology, engineering, and mathematics (STEM) domains. Although there is convincing evidence that spatial skills are a reliable predictor of mathematical achievement in preschool children and in university students, there is a lack of research exploring associations between spatial and mathematics achievement during the primary school years. To address this question, this study explored associations between mathematics and spatial skills in children aged 5 and 7years. The study sample included 12,099 children who participated in both Wave 3 (mean age=5; 02 [years; months]) and Wave 4 (mean age=7; 03) of the Millennium Cohort Study. Measures included a standardised assessment of mathematics and the Pattern Construction subscale of the British Ability Scales II to assess intrinsic-dynamic spatial skills. Spatial skills at 5 and 7years of age explained a significant 8.8% of the variation in mathematics achievement at 7years, above that explained by other predictors of mathematics, including gender, socioeconomic status, ethnicity, and language skills. This percentage increased to 22.6% without adjustment for language skills. This study expands previous findings by using a large-scale longitudinal sample of primary school children, a population that has been largely omitted from previous research exploring associations between spatial ability and mathematics achievement. The finding that early and concurrent spatial skills contribute to mathematics achievement at 7years of age highlights the potential of spatial skills as a novel target in the design of mathematics interventions for children in this age range. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Math Anxiety and Math Ability in Early Primary School Years.
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2009-06-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa-contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development.
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2010-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159
Assessment of Student Memo Assignments in Management Science
ERIC Educational Resources Information Center
Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin
2015-01-01
Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…
Mathematical model of small water-plane area twin-hull and application in marine simulator
NASA Astrophysics Data System (ADS)
Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng
2013-09-01
Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.
Examination of Pre-Service Mathematics Teachers' Knowledge of Teaching Function Concept
ERIC Educational Resources Information Center
Tasdan, Berna Tataroglu; Koyunkaya, Melike Yigit
2017-01-01
Teaching of mathematics could be improved with teachers who have a strong mathematical knowledge and have an ability to reflect this knowledge on their teaching. Therefore, it is important to develop mathematics teachers' theoretical and pedagogical knowledge. This study was designed to examine pre-service secondary mathematics teachers' (PSMT)…
ERIC Educational Resources Information Center
Hilby, Alyssa C.; Stripling, Christopher T.; Stephens, Carrie A.
2014-01-01
STEM disciplines will continue to impact school-based agricultural education programs; thus, in order to produce secondary students proficient in science and mathematics, developing preservice agricultural education teachers who are competent in mathematics and teaching mathematics is essential. This study utilized data collected through a focus…
Brain organization underlying superior mathematical abilities in children with autism.
Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod
2014-02-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Gniewosz, Burkhard; Watt, Helen M G
2017-07-01
This study examines whether and how student-perceived parents' and teachers' overestimation of students' own perceived mathematical ability can explain trajectories for adolescents' mathematical task values (intrinsic and utility) controlling for measured achievement, following expectancy-value and self-determination theories. Longitudinal data come from a 3-cohort (mean ages 13.25, 12.36, and 14.41 years; Grades 7-10), 4-wave data set of 1,271 Australian secondary school students. Longitudinal structural equation models revealed positive effects of student-perceived overestimation of math ability by parents and teachers on students' intrinsic and utility math task values development. Perceived parental overestimations predicted intrinsic task value changes between all measurement occasions, whereas utility task value changes only were predicted between Grades 9 and 10. Parental influences were stronger for intrinsic than utility task values. Teacher influences were similar for both forms of task values and commenced after the curricular school transition in Grade 8. Results support the assumptions that the perceived encouragement conveyed by student-perceived mathematical ability beliefs of parents and teachers, promote positive mathematics task values development. Moreover, results point to different mechanisms underlying parents' and teachers' support. Finally, the longitudinal changes indicate transition-related increases in the effects of student-perceived overestimations and stronger effects for intrinsic than utility values. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Agrillo, Christian; Piffer, Laura; Adriano, Andrea
2013-07-01
A significant debate surrounds the nature of the cognitive mechanisms involved in non-symbolic number estimation. Several studies have suggested the existence of the same cognitive system for estimation of time, space, and number, called "a theory of magnitude" (ATOM). In addition, researchers have proposed the theory that non-symbolic number abilities might support our mathematical skills. Despite the large number of studies carried out, no firm conclusions can be drawn on either topic. In the present study, we correlated the performance of adults on non-symbolic magnitude estimations and symbolic numerical tasks. Non-symbolic magnitude abilities were assessed by asking participants to estimate which auditory tone lasted longer (time), which line was longer (space), and which group of dots was more numerous (number). To assess symbolic numerical abilities, participants were required to perform mental calculations and mathematical reasoning. We found a positive correlation between non-symbolic and symbolic numerical abilities. On the other hand, no correlation was found among non-symbolic estimations of time, space, and number. Our study supports the idea that mathematical abilities rely on rudimentary numerical skills that predate verbal language. By contrast, the lack of correlation among non-symbolic estimations of time, space, and number is incompatible with the idea that these magnitudes are entirely processed by the same cognitive system.
Mathematical (Dis)abilities Within the Opportunity-Propensity Model: The Choice of Math Test Matters
Baten, Elke; Desoete, Annemie
2018-01-01
This study examined individual differences in mathematics learning by combining antecedent (A), opportunity (O), and propensity (P) indicators within the Opportunity-Propensity Model. Although there is already some evidence for this model based on secondary datasets, there currently is no primary data available that simultaneously takes into account A, O, and P factors in children with and without Mathematical Learning Disabilities (MLD). Therefore, the mathematical abilities of 114 school-aged children (grade 3 till 6) with and without MLD were analyzed and combined with information retrieved from standardized tests and questionnaires. Results indicated significant differences in personality, motivation, temperament, subjective well-being, self-esteem, self-perceived competence, and parental aspirations when comparing children with and without MLD. In addition, A, O, and P factors were found to underlie mathematical abilities and disabilities. For the A factors, parental aspirations explained about half of the variance in fact retrieval speed in children without MLD, and SES was especially involved in the prediction of procedural accuracy in general. Teachers’ experience contributed as O factor and explained about 6% of the variance in mathematical abilities. P indicators explained between 52 and 69% of the variance, with especially intelligence as overall significant predictor. Indirect effects pointed towards the interrelatedness of the predictors and the value of including A, O, and P indicators in a comprehensive model. The role parental aspirations played in fact retrieval speed was partially mediated through the self-perceived competence of the children, whereas the effect of SES on procedural accuracy was partially mediated through intelligence in children of both groups and through working memory capacity in children with MLD. Moreover, in line with the componential structure of mathematics, our findings were dependent on the math task used. Different A, O, and P indicators seemed to be important for fact retrieval speed compared to procedural accuracy. Also, mathematical development type (MLD or typical development) mattered since some A, O, and P factors were predictive for MLD only and the other way around. Practical implications of these findings and recommendations for future research on MLD and on individual differences in mathematical abilities are provided. PMID:29867645
Baten, Elke; Desoete, Annemie
2018-01-01
This study examined individual differences in mathematics learning by combining antecedent (A), opportunity (O), and propensity (P) indicators within the Opportunity-Propensity Model. Although there is already some evidence for this model based on secondary datasets, there currently is no primary data available that simultaneously takes into account A, O, and P factors in children with and without Mathematical Learning Disabilities (MLD). Therefore, the mathematical abilities of 114 school-aged children (grade 3 till 6) with and without MLD were analyzed and combined with information retrieved from standardized tests and questionnaires. Results indicated significant differences in personality, motivation, temperament, subjective well-being, self-esteem, self-perceived competence, and parental aspirations when comparing children with and without MLD. In addition, A, O, and P factors were found to underlie mathematical abilities and disabilities. For the A factors, parental aspirations explained about half of the variance in fact retrieval speed in children without MLD, and SES was especially involved in the prediction of procedural accuracy in general. Teachers' experience contributed as O factor and explained about 6% of the variance in mathematical abilities. P indicators explained between 52 and 69% of the variance, with especially intelligence as overall significant predictor. Indirect effects pointed towards the interrelatedness of the predictors and the value of including A, O, and P indicators in a comprehensive model. The role parental aspirations played in fact retrieval speed was partially mediated through the self-perceived competence of the children, whereas the effect of SES on procedural accuracy was partially mediated through intelligence in children of both groups and through working memory capacity in children with MLD. Moreover, in line with the componential structure of mathematics, our findings were dependent on the math task used. Different A, O, and P indicators seemed to be important for fact retrieval speed compared to procedural accuracy. Also, mathematical development type (MLD or typical development) mattered since some A, O, and P factors were predictive for MLD only and the other way around. Practical implications of these findings and recommendations for future research on MLD and on individual differences in mathematical abilities are provided.
ERIC Educational Resources Information Center
Bakker, Marjoke; van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander
2016-01-01
This study examined the effects of a teacher-delivered intervention with online mathematics mini-games on special education students' multiplicative reasoning ability (multiplication and division). The games involved declarative, procedural, as well as conceptual knowledge of multiplicative relations, and were accompanied with teacher-led lessons…
Intergenerational Associations in Numerical Approximation and Mathematical Abilities
ERIC Educational Resources Information Center
Braham, Emily J.; Libertus, Melissa E.
2017-01-01
Although growing evidence suggests a link between children's math skills and their ability to estimate numerical quantities using the approximate number system (ANS), little is known about the sources underlying individual differences in ANS acuity and their relation with specific mathematical skills. To examine the role of intergenerational…
ERIC Educational Resources Information Center
Smith, Susan Sperry
Most experts believe that young children possess a substantial amount of informal knowledge about mathematics. The teacher's role is to create a link between children's ability to use informal math and the ability to understand the more formal math taught in elementary school. Teachers must help children construct and elaborate upon what they…
A Design To Improve Children's Competencies in Solving Mathematical Word Problems.
ERIC Educational Resources Information Center
Zimmerman, Helene
A discrepancy exists between children's ability to compute and their ability to solve mathematical word problems. The literature suggests a variety of methods that have been attempted to improve this skill with varying success. The utilization of manipulatives, visualization, illustration, and emphasis on improving listening skills all were…
The Correlation of Selected Nonmathematical Measures with Mathematics Achievement
ERIC Educational Resources Information Center
Cathcart, W. George
1974-01-01
Investigation of second- and third-graders' achievement in mathematics and its correlation with nonmathematical variables yielded the following results: listening ability and vocabulary levels were significant variables, intelligence was significant for grade three but not grade two, and sex and the ability to conserve were not significant for…
Bibliography on Mathematical Abilities.
ERIC Educational Resources Information Center
Kilpatrick, Jeremy; Wagner, Sigrid
The items in this bibliography were collected as part of a project, "An Analysis of Research on Mathematical Abilities," conducted at the University of Georgia. The 1,491 entries in the bibliography are listed alphabetically by author. Each entry is preceded by a line containing a name and date code (used in computerized alphabetizing of…
Predictors of Mathematics Achievement in Jamaican Elementary School Children.
ERIC Educational Resources Information Center
Roach, D. A.
1981-01-01
Using 418 sixth-graders in Jamaica, sex, family size, birth order, occupational level, father's presence, preference for conceptual style, field dependence, reading achievement, and mental ability were examined in relationship to mathematics achievement. Mental ability, reading achievement, and family size, in that order, were found to predict…
Remedial Instruction to Enhance Mathematical Ability of Dyscalculics
ERIC Educational Resources Information Center
Kumar, S. Praveen; Raja, B. William Dharma
2012-01-01
The ability to do arithmetic calculations is essential to school-based learning and skill development in an information rich society. Arithmetic is a basic academic skill that is needed for learning which includes the skills such as counting, calculating, reasoning etc. that are used for performing mathematical calculations. Unfortunately, many…
Which Preschool Mathematics Competencies Are Most Predictive of Fifth Grade Achievement?
Nguyen, Tutrang; Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie S.; Wolfe, Christopher; Spitler, Mary Elaine
2016-01-01
In an effort to promote best practices regarding mathematics teaching and learning at the preschool level, national advisory panels and organizations have emphasized the importance of children’s emergent counting and related competencies, such as the ability to verbally count, maintain one-to-one correspondence, count with cardinality, subitize, and count forward or backward from a given number. However, little research has investigated whether the kind of mathematical knowledge promoted by the various standards documents actually predict later mathematics achievement. The present study uses longitudinal data from a primarily low-income and minority sample of children to examine the extent to which preschool mathematical competencies, specifically basic and advanced counting, predict fifth grade mathematics achievement. Using regression analyses, we find early numeracy abilities to be the strongest predictors of later mathematics achievement, with advanced counting competencies more predictive than basic counting competencies. Our results highlight the significance of preschool mathematics knowledge for future academic achievement. PMID:27057084
Sex differences in intrinsic aptitude for mathematics and science?: a critical review.
Spelke, Elizabeth S
2005-12-01
This article considers 3 claims that cognitive sex differences account for the differential representation of men and women in high-level careers in mathematics and science: (a) males are more focused on objects from the beginning of life and therefore are predisposed to better learning about mechanical systems; (b) males have a profile of spatial and numerical abilities producing greater aptitude for mathematics; and (c) males are more variable in their cognitive abilities and therefore predominate at the upper reaches of mathematical talent. Research on cognitive development in human infants, preschool children, and students at all levels fails to support these claims. Instead, it provides evidence that mathematical and scientific reasoning develop from a set of biologically based cognitive capacities that males and females share. These capacities lead men and women to develop equal talent for mathematics and science.
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.
2015-02-01
A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.
Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach.
Campitelli, Guillermo; Gerrans, Paul
2014-04-01
We used a mathematical modeling approach, based on a sample of 2,019 participants, to better understand what the cognitive reflection test (CRT; Frederick In Journal of Economic Perspectives, 19, 25-42, 2005) measures. This test, which is typically completed in less than 10 min, contains three problems and aims to measure the ability or disposition to resist reporting the response that first comes to mind. However, since the test contains three mathematically based problems, it is possible that the test only measures mathematical abilities, and not cognitive reflection. We found that the models that included an inhibition parameter (i.e., the probability of inhibiting an intuitive response), as well as a mathematical parameter (i.e., the probability of using an adequate mathematical procedure), fitted the data better than a model that only included a mathematical parameter. We also found that the inhibition parameter in males is best explained by both rational thinking ability and the disposition toward actively open-minded thinking, whereas in females this parameter was better explained by rational thinking only. With these findings, this study contributes to the understanding of the processes involved in solving the CRT, and will be particularly useful for researchers who are considering using this test in their research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, J.; Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, ES-18071 Granada; Bouvrie, P. A.
An alternative one-parameter measure of divergence is proposed, quantifying the discrepancy among general probability densities. Its main mathematical properties include (i) comparison among an arbitrary number of functions, (ii) the possibility of assigning different weights to each function according to its relevance on the comparative procedure, and (iii) ability to modify the relative contribution of different regions within the domain. Applications to the study of atomic density functions, in both conjugated spaces, show the versatility and universality of this divergence.
ERIC Educational Resources Information Center
Gabriel, Florence; Signolet, Jason; Westwell, Martin
2018-01-01
Mathematics competency is fast becoming an essential requirement in ever greater parts of day-to-day work and life. Thus, creating strategies for improving mathematics learning in students is a major goal of education research. However, doing so requires an ability to look at many aspects of mathematics learning, such as demographics and…
Using the Wonder of Inequalities between Averages for Mathematics Problems Solving
ERIC Educational Resources Information Center
Shaanan, Rachel Mogilevsky; Gordon, Moshe Stupel
2016-01-01
The study presents an introductory idea of using mathematical averages as a tool for enriching mathematical problem solving. Throughout students' activities, a research was conducted on their ability to solve mathematical problems, and how to cope with a variety of mathematical tasks, in a variety of ways, using the skills, tools and experiences…
ERIC Educational Resources Information Center
Tasova, Halil Ibrahim; Delice, Ali
2012-01-01
Mathematical modelling involves mathematical constructions chosen to represent some real world situations and the relationships among them; it is the process of expressing a real world situation mathematically. Visualisation can play a significant role in the development of thinking or understanding mathematical concepts, and also makes abstract…
Research Mathematicians' Practices in Selecting Mathematical Problems
ERIC Educational Resources Information Center
Misfeldt, Morten; Johansen, Mikkel Willum
2015-01-01
Developing abilities to create, inquire into, qualify, and choose among mathematical problems is an important educational goal. In this paper, we elucidate how mathematicians work with mathematical problems in order to understand this mathematical process. More specifically, we investigate how mathematicians select and pose problems and discuss to…
ERIC Educational Resources Information Center
Moody, Charles D.; Linn, Eleanor
1986-01-01
The role of mathematics as a critical determiner of employment is noted, and the "significant absence of women and minority students in mathematics classes" is given attention. The need to gain competence in mathematics skills and confidence in mathematical abilities calls for programs to increase student participation, motivation, and…
Forming Positive Identities to Enhance Mathematics Learning among Adolescents
ERIC Educational Resources Information Center
Mkhize, Duduzile Rosemary
2017-01-01
Learners' participation in mathematics decreases during their transition from primary to high school. This is despite adolescents' cognitive growth equipping them with enhanced cognitive ability; to learn mathematics. Hence low participation in mathematics does not result from cognitive deficiency. Rather, lack of motivation to learn mathematics…
Flawed Mathematical Conceptualizations: Marlon's Dilemma
ERIC Educational Resources Information Center
Garrett, Lauretta
2013-01-01
Adult developmental mathematics students often work under great pressure to complete the mathematics sequences designed to help them achieve success (Bryk & Treisman, 2010). Results of a teaching experiment demonstrate how the ability to reason can be impeded by flaws in students' mental representations of mathematics. The earnestness of the…
Time estimation predicts mathematical intelligence.
Kramer, Peter; Bressan, Paola; Grassi, Massimo
2011-01-01
Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity. Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence. We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability.
Richardson, Miles; Hunt, Thomas E; Richardson, Cassandra
2014-12-01
This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability.
Students’ Spatial Ability through Open-Ended Approach Aided by Cabri 3D
NASA Astrophysics Data System (ADS)
Priatna, N.
2017-09-01
The use of computer software such as Cabri 3D for learning activities is very unlimited. Students can adjust their learning speed according to their level of ability. Open-ended approach strongly supports the use of computer software in learning, because the goal of open-ended learning is to help developing creative activities and mathematical mindset of students through problem solving simultaneously. In other words, creative activities and mathematical mindset of students should be developed as much as possible in accordance with the ability of spatial ability of each student. Spatial ability is the ability of students in constructing and representing geometry models. This study aims to determine the improvement of spatial ability of junior high school students who obtained learning with open-ended approach aided by Cabri 3D. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2×3 factorial model. The instrument of the study is spatial ability test. Based on analysis of the data, it is found that the improvement of spatial ability of students who received open-ended learning aided by Cabri 3D was greater than students who received expository learning, both as a whole and based on the categories of students’ initial mathematical ability.
Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert
2014-01-01
The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children’s mathematical development. This mapping ability has been mainly examined indirectly by looking at children’s performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children’s mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills. PMID:24699664
Emotion, Confidence, Perception and Expectation Case of Mathematics
ERIC Educational Resources Information Center
Dogan, Hamide
2012-01-01
Students' concerns about mathematics can significantly affect their ability to learn the subject. In particular, their anxieties and attitudes can greatly affect how they perceive their own mathematical competence, and in return, this may make them reluctant to pursue mathematical studies. Many researchers believe in the role of active learning…
Funny Face Contest: A Formative Assessment
ERIC Educational Resources Information Center
Colen, Yong S.
2010-01-01
Many American students begin their high school mathematics study with the algebra 1-geometry-algebra 2 sequence. After algebra 2, then, students with average or below-average mathematical ability face a dilemma in choosing their next mathematics course. For students to succeed in higher mathematics, understanding the concept of functions is…
Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question
ERIC Educational Resources Information Center
Novita, Rita; Zulkardi; Hartono, Yusuf
2012-01-01
Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term "problem solving" refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students' mathematical understanding and development. In addition, the contextual problem…
Mathematical Problem Solving Ability of Eleventh Standard Students
ERIC Educational Resources Information Center
Priya, J. Johnsi
2017-01-01
There is a general assertion among mathematics instructors that learners need to acquire problem solving expertise, figure out how to communicate using mathematics knowledge and aptitude, create numerical reasoning and thinking, to see the interconnectedness amongst mathematics and other subjects. Based on this perspective, the present study aims…
Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity
ERIC Educational Resources Information Center
Stohlmann, Micah S.
2017-01-01
Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2013-01-01
The purpose of this exploratory study was to investigate the relationships between mathematics ability, personal mathematics efficacy, mathematics teaching efficacy, personal teaching efficacy, and background characteristics of preservice agricultural education teachers. Data were collected for two years at the University of Florida. Fourteen…
From Mathematical Reading to Mathematical Literacy
ERIC Educational Resources Information Center
Beaudine, Gregory
2018-01-01
If teachers have a deeper comprehension of their students' reading ability, it may lead to students' improved literacy and understanding of the subject. The account presented in this article of the author's growing interest in mathematical literacy specifically involves mathematical reading. This shift in interest began with a six-week…
Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers
ERIC Educational Resources Information Center
Evans, Brian R.
2012-01-01
It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…
ERIC Educational Resources Information Center
Budak, Ibrahim; Kaygin, Bulent
2015-01-01
In this study, through the observation of mathematically promising students in regular classrooms, relevant learning environments and the learning needs of promising students, teacher approaches and teaching methods, and the differences between the promising students and their normal ability peers in the same classroom were investigated.…
Dragging in a Dynamic Geometry Environment through the Lens of Variation
ERIC Educational Resources Information Center
Leung, Allen
2008-01-01
What makes Dynamic Geometry Environment (DGE) a powerful mathematical knowledge acquisition microworld is its ability to visually make explicit the implicit dynamism of thinking about mathematical geometrical concepts. One of DGE's powers is to equip us with the ability to retain the background of a geometrical configuration while we can…
Factors Influencing Mathematic Problem-Solving Ability of Sixth Grade Students
ERIC Educational Resources Information Center
Pimta, Sakorn; Tayraukham, Sombat; Nuangchalerm, Prasart
2009-01-01
Problem statement: This study aims to investigate factors influencing mathematic problem-solving ability of sixth grade students. One thousand and twenty eight of sixth grade students, studying in the second semester of academic year 2007 were sampled by stratified random sampling technique. Approach: The research instruments used in the study…
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
In that current study, pattern conversion ability of 25 pre-service mathematics teachers (producing figural patterns following number patterns) was investigated. During the study participants were asked to generate figural patterns based on those number patterns. The results of the study indicate that many participants could generate different…
Evidence for Shared Genetic Risk between ADHD Symptoms and Reduced Mathematics Ability: A Twin Study
ERIC Educational Resources Information Center
Greven, Corina U.; Kovas, Yulia; Willcutt, Erik G.; Petrill, Stephen A.; Plomin, Robert
2013-01-01
Background: Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Methods: Data came from more than 6,000 twelve-year-old twin pairs from the UK population-representative Twins Early Development Study. Parents…
ERIC Educational Resources Information Center
Spitzer, Sandy M.; Phelps, Christine M.; Beyers, James E. R.; Johnson, Delayne Y.; Sieminski, Elizabeth M.
2011-01-01
This study investigated the effects of a classroom intervention on prospective elementary teachers' ability to evaluate evidence of student achievement of mathematical learning goals. The intervention was informed by a framework for teacher education which aims to provide prospective teachers (PTs) with the skills needed to systematically learn…
Early Numerical Competencies in 5- and 6-Year-Old Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Titeca, Daisy; Roeyers, Herbert; Ceulemans, Annelies; Desoete, Annemie
2015-01-01
Research Findings: To date, studies comparing the mathematical abilities of children with autism spectrum disorder (ASD) and typically developing children are scarce, and results remain inconclusive. In general, studies on this topic focus on mathematical abilities learned from elementary school onward, with little attention for possible…
Teacher Approval and Disapproval by Ability Grouping.
ERIC Educational Resources Information Center
Heller, Marc Stephen
This study investigated teachers' use of verbal approval and disapproval as a function of subject matter (mathematics, social studies) and class ability; the use of these behaviors in instructional versus managerial contexts was studied. Five mathematics and five social studies teachers in an inner-city junior high school were observed for 6…
Women and Mathematics: Research vs. Achievement in Education.
ERIC Educational Resources Information Center
Abel, Theodora Mead; And Others
Many educators and researchers who believe that girls have less mathematical ability than boys associate this deficiency with girls' inferior spatial ability. This generally accepted belief that spatial skills are a major prerequisite for math achievement was tested through a study of the visual-spatial skills of a sample of 32 professional…
A Comparison of Student Spatial Abilities Across STEM Fields
NASA Astrophysics Data System (ADS)
Loftis, Thad; Cid, Xiimena; Lopez, Ramon
2011-10-01
It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.
Wu, Che-Ming; Liu, Tien-Chen; Liao, Pei-Ju; Chen, Chin-Kuo; Chang, Bey-Lih; Lin, Bao-Guey
2013-09-01
To document academic achievements and classroom performance in 35 Mandarin-speaking, congenital/pre-lingual, deafened children who used cochlear implants (CIs) for 5-11 years. The possible associated factors were also analyzed. Cross-sectional case series. Standardized Chinese literacy ability and mathematics tests were administered to evaluate the academic achievement of these children. Raw scores derived from both literacy ability and mathematics tests were compared with normative data from children with normal hearing (NH). A modified Mandarin edition of the Screening Instrument for Targeting Educational Risk (SIFTER) and a Regular School Adjustment Scale (RSAS) for students with hearing impairments filled out by regular classroom teachers were used to assess the children's classroom performances. The mean standard T-scores for Chinese literacy ability and mathematics ability were 48.6 and 50.3 (NORM=50 ± 10), respectively. A total of 85.7% of children with CIs scored within or above the normal range of their age-matched hearing peers in Chinese literacy ability, and 82.9% were within normal ranges in mathematics ability. The SIFTER results showed that 45.7% failure was noted on the communication subscale, and the RSAS also indicated 40% of CI students to have communication problems. The academic subscale scores on the SIFTER were associated with the children's Chinese literacy abilities. The Verbal Comprehension Index (VCI) of the Wechsler IQ test IV was related to the children's mathematics abilities. The academic achievements of Mandarin-speaking children who receive CIs from a young age and are integrated into mainstream elementary school system appear to fall within the normal range of their age-matched hearing counterparts after 5-11 years of use. This study strongly suggests the need for future ongoing support for these children in communication field. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Miranda Casas, Ana; Meliá de Alba, Amanda; Marco Taverner, Rafaela
2009-02-01
Mathematical abilities and executive function in children with attention deficit hyperactivity disorder and learning disabilities in mathematics. Even though 26% of children with attention deficit hyperactivity disorder (ADHD) show a specific mathematic learning difficulty (MLD), the studies have been scarce. The present study had the following goals: 1) to study the profile related to cognitive and metacognitive skills implied in calculation and problem-solving in children with ADHD+MLD, and to compare them in children with ADHD, children with MLD, and children without problems; 2) to study the severity of the deficit in executive function (EF) in children with ADHD+MLD. Comparing the groups MLD, ADHD, ADHD+MLD, and children without problems, the results highlighted that children with ADHD+MLD showed a cognitive and metacognitive deficit in mathematic achievement. Furthermore, results showed a more severe deficit in the EF in children with ADHD+MLD.
NASA Astrophysics Data System (ADS)
Mujiasih; Waluya, S. B.; Kartono; Mariani
2018-03-01
Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.
ERIC Educational Resources Information Center
Catapano, Michael
2013-01-01
Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…
ERIC Educational Resources Information Center
Rust, Amber Heller
2011-01-01
When a student is not successful in mathematics, teachers frequently assume the difficulty lies within the student's mathematical ability or negative disposition towards mathematics, but the difficulty may lie with the student's reading comprehension (Draper, Smith, Hall, & Siebert, 2005; Kane, Byrne, & Hater, 1974). Many…
Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy
NASA Astrophysics Data System (ADS)
Sahendra, A.; Budiarto, M. T.; Fuad, Y.
2018-01-01
This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.
NASA Astrophysics Data System (ADS)
Ataei, Sh; Mahmud, Z.; Khalid, M. N.
2014-04-01
The students learning outcomes clarify what students should know and be able to demonstrate after completing their course. So, one of the issues on the process of teaching and learning is how to assess students' learning. This paper describes an application of the dichotomous Rasch measurement model in measuring the cognitive process of engineering students' learning of mathematics. This study provides insights into the perspective of 54 engineering students' cognitive ability in learning Calculus III based on Bloom's Taxonomy on 31 items. The results denote that some of the examination questions are either too difficult or too easy for the majority of the students. This analysis yields FIT statistics which are able to identify if there is data departure from the Rasch theoretical model. The study has identified some potential misfit items based on the measurement of ZSTD where the removal misfit item was accomplished based on the MNSQ outfit of above 1.3 or less than 0.7 logit. Therefore, it is recommended that these items be reviewed or revised to better match the range of students' ability in the respective course.
NASA Astrophysics Data System (ADS)
Walker, Valentine
The purpose of this dissertation was to utilize the ELS: 2002 longitudinal data to highlight the achievement of African American students relative to other racial sub-groups in mathematics and science and to highlight teacher oriented variables that might influence their achievement. Various statistical tools, including descriptive statistics, ANOVA, Multiple Regression were used to analyze data that was derived from the students', teachers' and administrations' questionnaires compiled in the base year of the study (2002) as well as the first follow-up transcript study (2006). The major findings are as follows: African American students performed lower than all other major racial subgroups in mathematics and science; Parental variables including SES and parental education were strong correlates of achievement in mathematics and science: The amount and type of mathematics and science courses students took were strong predictors of achievement in mathematics and science; Teachers' race, experience, certification status, graduate courses completed and professional development influenced African American students' achievement in mathematics and science; Aspects of classroom climate including teacher-pupil relationship, classroom management, students' perception of quality instructions, praise and rewards system might influence African American students' achievement in mathematics and science; Teachers' beliefs pertaining to students' background and intellectual ability might influence their educational expectation of African American students and subsequently student achievement in mathematics and science; Teaching strategies such as reviewing, lecturing and using graphing calculators had a positive influence on mathematics achievement while using computers, discussion and using other books than mathematics textbooks had negative influences on mathematics achievement; Computer use in science had positive influence on science achievement while homework had a positive influence on mathematics and science achievement among African American students. The application of these findings in settings populated with African American students might be important in increasing mathematics and science achievement among them.
Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology
NASA Astrophysics Data System (ADS)
Gasparri, J. P.; Bouchet, A.; Abras, G.; Ballarin, V.; Pastore, J. I.
2011-12-01
Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.
Wang, Ming-Te; Eccles, Jacquelynne S; Kenny, Sarah
2013-05-01
The pattern of gender differences in math and verbal ability may result in females having a wider choice of careers, in both science, technology, engineering, and mathematics (STEM) and non-STEM fields, compared with males. The current study tested whether individuals with high math and high verbal ability in 12th grade were more or less likely to choose STEM occupations than those with high math and moderate verbal ability. The 1,490 subjects participated in two waves of a national longitudinal study; one wave was when the subjects were in 12th grade, and the other was when they were 33 years old. Results revealed that mathematically capable individuals who also had high verbal skills were less likely to pursue STEM careers than were individuals who had high math skills but moderate verbal skills. One notable finding was that the group with high math and high verbal ability included more females than males.
Lazarides, Rebecca; Watt, Helen M G
2017-12-01
According to Eccles and Jacobs' (1986) parent socialization model, parents' gendered ability and value beliefs influence girls' and boys' interpretations of those beliefs, and hence students' domain-specific valuing of tasks and competence beliefs and subsequent career plans. Studies have rarely analyzed how both student-perceived mothers' and fathers' beliefs affect girls' and boys' task values, success expectancies, and career plans across domains. This study analyzed survey data of 459 students (262 boys) assessed through Grades 9, 10, and 11 from three coeducational secondary schools in Sydney, Australia. Longitudinal structural equation models revealed gendered value transmission pathways for girls in mathematics. Although mathematics test scores did not vary statistically significantly, girls reported statistically significantly lower mothers' ability beliefs for them in mathematics than boys at Time 1, which led to their statistically significantly lower mathematics intrinsic value at Time 2 and mathematics-related career plans at Time 3. Such gendered pathways did not occur in English. Matched same-gender effects and gendered pathways in parent socialization processes were evident; perceived mothers' value beliefs were more strongly related to girls' than boys' importance values in English. Student-perceived fathers' ability beliefs positively predicted boys', not girls', importance value in mathematics. Implications for educational practice emphasize the need to target girls' and boys' interest when aiming to enhance their mathematical career motivations. © 2017 The Authors. Journal of Research on Adolescence © 2017 Society for Research on Adolescence.
ERIC Educational Resources Information Center
Brelias, Anastasia
2009-01-01
The purpose of this study was to examine the use of socially relevant mathematics applications in high school mathematics classrooms and students' views of mathematics in light of their experiences with these applications. Also, the study sought to determine whether inquiries afforded by these applications incorporated features that promoted…
Reading and Mathematics Bound Together: Creating a Home Environment for Preschool Learning
ERIC Educational Resources Information Center
Godwin, Amber J.; Rupley, William H.; Capraro, Robert M.; Capraro, Mary Margaret
2016-01-01
The combination of mathematics and reading in family reading time can positively impact children's ability to make sense of representations in both mathematics and reading. Four families volunteered to participate in this field based inquiry to learn how to integrate mathematics and reading in parent-supported activities. Four parents and their…
A Structural Equation Model Explaining 8th Grade Students' Mathematics Achievements
ERIC Educational Resources Information Center
Yurt, Eyüp; Sünbül, Ali Murat
2014-01-01
The purpose of this study is to investigate, via a model, the explanatory and predictive relationships among the following variables: Mathematical Problem Solving and Reasoning Skills, Sources of Mathematics Self-Efficacy, Spatial Ability, and Mathematics Achievements of Secondary School 8th Grade Students. The sample group of the study, itself…
ERIC Educational Resources Information Center
Soon, Wanmei; Lioe, Luis Tirtasanjaya; McInnes, Brett
2011-01-01
The teaching of mathematics in Singapore continues, in most cases, to follow a traditional model. While this traditional approach has many advantages, it does not always adequately prepare students for University-level mathematics, especially applied mathematics. In particular, it does not cultivate the ability to deal with "non-routine…
ERIC Educational Resources Information Center
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
The High School Mathematics Library. Eighth Edition.
ERIC Educational Resources Information Center
Schaaf, William L.
This eighth edition of the bibliography reflects changes in emphasis in the secondary school mathematics curriculum. The booklet is addressed primarily to high school students of all ability levels and to their mathematics teachers, and should also be of interest to students and instructors of mathematics in two-year colleges as well as librarians…
Elements of Mathematics, Book 11: Finite Probability Spaces.
ERIC Educational Resources Information Center
Exner, Robert; And Others
One of 12 books developed for use with the core material (Book O) of the Elements of Mathematics Program, this text covers material well beyond the scope of the usual secondary mathematics sequences. These materials are designed for highly motivated students with strong verbal abilities; mathematical theories and ideas are developed through…
Provocative Mathematics Questions: Drawing Attention to a Lack of Attention
ERIC Educational Resources Information Center
Klymchuk, Sergiy
2015-01-01
The article investigates the role of attention in the reflective thinking of school mathematics teachers. It analyses teachers' ability to pay attention to detail and "use" their mathematical knowledge. The vast majority of teachers can be expected to have an excellent knowledge of mathematical techniques. The question examined here is…
The Influence of a Reform-Based Mathematics Methods Course on Preservice Teachers' Beliefs
ERIC Educational Resources Information Center
Evans, Brian R.; Leonard, Jacqueline; Krier, Kathleen; Ryan, Steve
2013-01-01
Beliefs about teaching mathematics and urban students' ability to learn mathematics are often overlooked in the discourse on highly qualified teachers. Altering teacher experiences has the potential to change their beliefs. It was found in this qualitative case study that preservice teachers' beliefs about teaching mathematics to urban students…
ERIC Educational Resources Information Center
Stevenson, Harold W.; And Others
Over the last decade, it has been reported that American students lag behind their Asian counterparts as early as the first grade. This study investigated variables influencing elementary school students' mathematics achievement in Japan, Taiwan, and America. Children's mathematics achievement and cognitive abilities were tested. Children,…
ERIC Educational Resources Information Center
DeLoach, Debbie
2012-01-01
Many children who have attended Georgia's prekindergarten programs are unprepared to enter kindergarten and learn a standards-based mathematics curriculum. In addition, a majority of prekindergarten programs in Georgia struggle to provide high quality mathematics instructional support for children. One such program is a childcare center located in…
Mathematics Education in Lebanon: Gender Differences in Attitudes and Achievement
ERIC Educational Resources Information Center
Sarouphim, Ketty M.; Chartouny, Madona
2017-01-01
The purpose of this study was to investigate gender differences in students' mathematics achievement and in their attitudes toward mathematics. Another purpose was to examine mathematics teachers' beliefs and their perceptions of their male and female students' ability. The sample consisted of 692 students (353 girls, 339 boys) between the ages of…
Elements of Mathematics, Book 8: Elements of Geometry.
ERIC Educational Resources Information Center
Exner, Robert; And Others
One of 12 books developed for use with the core material (Book O) of the Elements of Mathematics Program, this text covers material well beyond the scope of the usual secondary mathematics sequences. These materials are designed for highly motivated students with strong verbal abilities; mathematical theories and ideas are developed through…
Promoting Students' Self-Directed Learning Ability through Teaching Mathematics for Social Justice
ERIC Educational Resources Information Center
Voss, Richard; Rickards, Tony
2016-01-01
Mathematics is a subject which is often taught using abstract methods and processes. These methods by their very nature may for students alienate the relationship between Mathematics and real life situations. Further, these abstract methods and processes may disenfranchise students from becoming self-directed learners of Mathematics. A solution to…
Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications
ERIC Educational Resources Information Center
Zollman, Alan
2009-01-01
Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…
NASA Astrophysics Data System (ADS)
Maelasari, E.; Wahyudin
2017-09-01
The aim of this study is to describe the increasing of mathematical communications capability, and difference between students who get STAD cooperative learning and students who receive Direct Instruction. This study is a quasi-experimental study with pretest posttest study design. Subjects in this study in one of the fifth grade elementary school located in Cibeureum District, Kuningan. The research instrument used was a written test mathematical communication skills. The results showed that the improvement of mathematical communication capabilities Direct Instruction students who scored significantly better than students who learned with STAD cooperative learning. By grouping according to the ability of students will show a positive impact on student achievement in the classroom.
Intuitive Sense of Number Correlates With Math Scores on College-Entrance Examination
Libertus, Melissa E.; Odic, Darko; Halberda, Justin
2012-01-01
Many educated adults possess exact mathematical abilities in addition to an approximate, intuitive sense of number, often referred to as the Approximate Number System (ANS). Here we investigate the link between ANS precision and mathematics performance in adults by testing participants on an ANS-precision test and collecting their scores on the Scholastic Aptitude Test (SAT), a standardized college-entrance exam in the USA. In two correlational studies, we found that ANS precision correlated with SAT-Quantitative (i.e., mathematics) scores. This relationship remained robust even when controlling for SAT-Verbal scores, suggesting a small but specific relationship between our primitive sense for number and formal mathematical abilities. PMID:23098904
Teaching Mathematics to Gifted Students in a Mixed-Ability Classroom. ERIC Digest E594.
ERIC Educational Resources Information Center
Johnson, Dana T.
This digest discusses the unique needs of mathematically gifted students and reasons why curriculum and instruction should be differentiated for these learners in mixed-ability classrooms. Recommendations for differentiation include: (1) give pre-assessments so that students who already know the material do not have to repeat it but may be…
ERIC Educational Resources Information Center
Saputri, Affa Ardhi; Wilujeng, Insih
2017-01-01
This research aims at revealing (1) the suitability of physics e-scaffolding teaching media with mathematical and image/diagrammatic representation, as well as (2) the effectiveness of the e-scaffolding teaching media with mathematical and image/diagrammatic representation to improve students' problem solving ability and scientific attitude. It is…
Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four
ERIC Educational Resources Information Center
Stanley, Ashley M.
2011-01-01
The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…
Affording and Constraining Local Moral Orders in Teacher-Led Ability-Based Mathematics Groups
ERIC Educational Resources Information Center
Tait-McCutcheon, Sandi; Shuker, Mary Jane; Higgins, Joanna; Loveridge, Judith
2015-01-01
How teachers position themselves and their students can influence the development of afforded or constrained local moral orders in ability-based teacher-led mathematics lessons. Local moral orders are the negotiated discursive practices and interactions of participants in the group. In this article, the developing local moral orders of 12 teachers…
ERIC Educational Resources Information Center
Samo, Damianus D.; Darhim; Kartasasmita, Bana
2017-01-01
The purpose of this research is to develop contextual mathematical thinking learning model which is valid, practical and effective based on the theoretical reviews and its support to enhance higher-order thinking ability. This study is a research and development (R & D) with three main phases: investigation, development, and implementation.…
The Effect of Journal Writing on Mathematics Achievement among High-Ability Students in Singapore
ERIC Educational Resources Information Center
Tan, Tracy; Garces-Bacsal, Rhoda Myra
2013-01-01
This study examined the effect of journal writing on mathematics achievement in high-ability students in Singapore. It assessed both the cognitive benefits of journal writing (as evidenced through gains in math test scores) and the socio-affective benefits of journal writing (as demonstrated in their personal reflections) as the students learned…
The Influence of Cognitive Abilities on Mathematical Problem Solving Performance
ERIC Educational Resources Information Center
Bahar, Abdulkadir
2013-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…
Neuroscientific Investigator of High Mathematical Ability: An Interview with Michael W. O'Boyle
ERIC Educational Resources Information Center
Kalbfleisch, M. Layne
2008-01-01
This article presents an interview with Michael W. O'Boyle, a neuroscientific investigator of high mathematical ability. O'Boyle is a professor in the Department of Human Development and Family Studies, Texas Tech University, and Adjunct Professor of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center.…
A Study on the Relationship between Six-Year-Old Children's Creativity and Mathematical Ability
ERIC Educational Resources Information Center
Baran, Gülen; Erdogan, Serap; Çakmak, Aygen
2011-01-01
Creativity is defined as a totality of processes and a way of attitude and behavior which exists in every child to a different extent. Every child is creative owing to their nature and their perspective on life. Offering children creative environments, especially during early childhood education, affects their mathematical abilities and supports…
NASA Astrophysics Data System (ADS)
Robiansyah, S. T. U.; Nanang, F.; Hidayat
2018-01-01
The purpose of this study was to introduce about mathematic assessment is a process of obtaining data or information about the mastery of a student's mathematical skills as an ingredient in preparing a learning program. With this mathematics assessment can be known obstacles, difficulties and needs of students especially in the field of mathematic, so that the learning program will be in accordance with the potential students because it is tailored to what is required of students. This research study was conducted at elementary school of inclusive precisely at SDN Sukagalih I Bandung City based learning in setting of inclusive education. This research study is motivated by the existence of a first-grade student who has disabilities learning in mathematics, the ability of the mathematical prerequisite mastery of the classification of objects by color. The results of the research can provide a profile picture of student data information, the data obtained from the results of the development of systematic and formal mathematical assessment. After doing the development of mathematics assessment then the teacher gets important related information: 1. process the analysis of students’ learning needs, especially in the field of mathematics, 2. preparing the learning program planning according to student learning needs, 3. Designing procedural of method remedial program.
Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa
2014-01-01
Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.
Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa
2014-01-01
Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504
ERIC Educational Resources Information Center
Chesimet, M. C.; Githua, B. N.; Ng'eno, J. K.
2016-01-01
Mathematics is a subject which seeks to understand patterns that permeate both the world around us and the mind within us. There are many ways of thinking and the kind of thinking one learns in mathematics is an ability to handle abstraction and solve problems that require knowledge of mathematics. Mathematical creativity is essential for…
ERIC Educational Resources Information Center
Adams, Vicki
2012-01-01
Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…
ERIC Educational Resources Information Center
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
Analyzing Preservice Mathematics Teachers' Professional Noticing
ERIC Educational Resources Information Center
Amador, Julie M.; Carter, Ingrid; Hudson, Rick A.
2016-01-01
Recent research in mathematics education has highlighted the importance of teachers' abilities to professionally notice students' thinking. This study examined what preservice teachers professionally notice during lesson study to further describe their attention to students' mathematical thinking, their interpretations about students' reasoning,…
Students’ logical-mathematical intelligence profile
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-04-01
One of students’ characteristics which play an important role in learning mathematics is logical-mathematical intelligence. This present study aims to identify profile of students’ logical-mathematical intelligence in general and specifically in each indicator. It is also analyzed and described based on students’ sex. This research used qualitative method with case study strategy. The subjects involve 29 students of 9th grade that were selected by purposive sampling. Data in this research involve students’ logical-mathematical intelligence result and interview. The results show that students’ logical-mathematical intelligence was identified in the moderate level with the average score is 11.17 and 51.7% students in the range of the level. In addition, the level of both male and female students are also mostly in the moderate level. On the other hand, both male and female students’ logical-mathematical intelligence is strongly influenced by the indicator of ability to classify and understand patterns and relationships. Furthermore, the ability of comparison is the weakest indicator. It seems that students’ logical-mathematical intelligence is still not optimal because more than 50% students are identified in moderate and low level. Therefore, teachers need to design a lesson that can improve students’ logical-mathematical intelligence level, both in general and on each indicator.
Specialization of the Right Intraparietal Sulcus for Processing Mathematics During Development.
Schel, Margot A; Klingberg, Torkel
2017-09-01
Mathematical ability, especially perception of numbers and performance of arithmetics, is known to rely on the activation of intraparietal sulcus (IPS). However, reasoning ability and working memory, 2 highly associated abilities also activate partly overlapping regions. Most studies aimed at localizing mathematical function have used group averages, where individual variability is averaged out, thus confounding the anatomical specificity when localizing cognitive functions. Here, we analyze the functional anatomy of the intraparietal cortex by using individual analysis of subregions of IPS based on how they are structurally connected to frontal, parietal, and occipital cortex. Analysis of cortical thickness showed that the right anterior IPS, defined by its connections to the frontal lobe, was associated with both visuospatial working memory, and mathematics in 6-year-old children. This region specialized during development to be specifically related to mathematics, but not visuospatial working memory in adolescents and adults. This could be an example of interactive specialization, where interacting with the environment in combination with interactions between cortical regions leads from a more general role of right anterior IPS in spatial processing, to a specialization of this region for mathematics. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tully, D.; Jacobs, B.
2010-08-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.
Analysis of students’ mathematical reasoning
NASA Astrophysics Data System (ADS)
Sukirwan; Darhim; Herman, T.
2018-01-01
The reasoning is one of the mathematical abilities that have very complex implications. This complexity causes reasoning including abilities that are not easily attainable by students. Similarly, studies dealing with reason are quite diverse, primarily concerned with the quality of mathematical reasoning. The objective of this study was to determine the quality of mathematical reasoning based perspective Lithner. Lithner looked at how the environment affects the mathematical reasoning. In this regard, Lithner made two perspectives, namely imitative reasoning and creative reasoning. Imitative reasoning can be memorized and algorithmic reasoning. The Result study shows that although the students generally still have problems in reasoning. Students tend to be on imitative reasoning which means that students tend to use a routine procedure when dealing with reasoning. It is also shown that the traditional approach still dominates on the situation of students’ daily learning.
NASA Astrophysics Data System (ADS)
Afgani, M. W.; Suryadi, D.; Dahlan, J. A.
2017-09-01
The aim of this study was to know the level of undergraduate students’ mathematical understanding ability based on APOS theory perspective. The APOS theory provides an evaluation framework to describe the level of students’ understanding and mental structure about their conception to a mathematics concept. The levels of understanding in APOS theory are action, process, object, and schema conception. The subjects were 59 students of mathematics education whom had attended a class of the limit of function at a university in Palembang. The method was qualitative descriptive with 4 test items. The result showed that most of students were still at the level of action conception. They could calculate and use procedure precisely to the mathematics objects that was given, but could not reach the higher conception yet.
Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher
2010-11-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.
NASA Astrophysics Data System (ADS)
Sulistiani, E.; Waluya, S. B.; Masrukan
2018-03-01
This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs and WPs in spring. Development was indexed via latent change scores, and the interplay between numerical and domain-general abilities was analyzed via multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for PC development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for WP development, the set of domain- general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive. PMID:20822213
ERIC Educational Resources Information Center
Morrone, Anastasia Steffen; Harkness, Shelly S.; D'Ambrosio, Beatriz; Caulfield, Richard
2004-01-01
Elementary education students enrolled in an experimental mathematics course participated in this study. The course is taught using a social constructivist approach and is designed to improve students' mathematical problem-solving ability and deepen their understanding of mathematics. The research question for the present study is as follows: In…
ERIC Educational Resources Information Center
Gullie, Kathy A.
2011-01-01
This study investigated the predictive ability of students' responses to open-ended, constructed/extended questions in third and fourth grade mathematics content subcategories on subsequent fifth grade mathematics achievement proficiency levels. Open-ended, extended/constructed response questions reflected content as outlined by the National…
ERIC Educational Resources Information Center
Anwar, Rahmad Bustanul; Yuwono, Ipung; As'ari, Abdur Rahman; Sisworo; Dwi, Rahmawati
2016-01-01
Representation is an important aspect of learners in building a relational understanding of mathematical concepts. But the ability of a mathematical representation of students in building relational understanding is still very limited. The purpose of this research is to description of mathematical representation of students who appear in building…
ERIC Educational Resources Information Center
Mohamed, Ibrahim Jeylani
The aim of this study was to investigate the implementation of modern mathematics in the primary schools of Somalia. In particular, three concerns were addressed: (1) teachers' confidence and ability in teaching mathematics; (2) students' interest in mathematics; and (3) students' examination performance in mathematics. Subjects were 30 teachers…
ERIC Educational Resources Information Center
Lambert, Rachel
2015-01-01
This study demonstrates the importance of a critical lens on disability in mathematics educational research. This ethnographic and interview study investigated how ability and disability were constructed over 1 year in a middle school mathematics classroom. Children participated in two kinds of mathematical pedagogy that positioned children…
A Follow-up Study of Two Methods of Teaching Mathematics: Traditional versus New Math
ERIC Educational Resources Information Center
Walton, Gene A.; And Others
1977-01-01
When high school mathematics grades and test scores were analyzed, findings showed that high- and middle-ability students who had a modern mathematics course in the seventh grade received significantly higher grades in Algebra I, II, III, and Geometry than did students who had a traditional seventh grade mathematics course. (DT)
ERIC Educational Resources Information Center
Berkley, Darrin K.
2012-01-01
This sequential explanatory mixed-methods study determined whether the game of chess can be used as an educational tool to improve critical thinking skills of developmental mathematics students and improve mathematics achievement for these students. Five research questions were investigated. These questions were as follows: (a) Is there a…
ERIC Educational Resources Information Center
Garon-Carrier, Gabrielle; Boivin, Michel; Guay, Frédéric; Kovas, Yulia; Dionne, Ginette; Lemelin, Jean-Pascal; Séguin, Jean R.; Vitaro, Frank; Tremblay, Richard E.
2016-01-01
This study examined the associations between intrinsic motivation and achievement in mathematics in a sample of 1,478 Canadian school-age children followed from Grades 1 to 4 (ages 7-10). Children self-reported their intrinsic motivation toward mathematics, whereas achievement was measured through direct assessment of mathematics abilities.…
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
ERIC Educational Resources Information Center
Surya, Edy; Putri, Feria Andriana; Mukhtar
2017-01-01
The purposes of this study are: (1) to know if students' mathematical problem-solving ability taught by contextual learning model is higher than students taught by expository learning, (2) to know if students' self-confidence taught by contextual learning model is higher than students taught by expository learning, (3) to know if there is…
ERIC Educational Resources Information Center
Alqallaf, Nadeyah
2016-01-01
The purpose of this study was to examine Kuwaiti mathematical elementary teachers' perceptions about their ability to integrate M-learning (mobile learning) into their current teaching practices and the major barriers hindering teachers' ability to create an M-learning environment. Furthermore, this study sought to understand teachers' perceptions…
ERIC Educational Resources Information Center
Erbas, Ayhan Kursat; Bas, Selda
2015-01-01
The purpose of this study was to investigate the extent to which personality traits, motivation, academic risk-taking, and metacognition explain the mathematical creative ability of high school students. The participants were 217 9th-grade students that were exceptionally high achievers. The participants responded to a set of measures about…
ERIC Educational Resources Information Center
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2017-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects, and domain-specific effects were indexed by prior grade…
ERIC Educational Resources Information Center
Qohar, Abdul; Sumarmo, Utari
2013-01-01
This paper presents the findings from a posttest experiment control group design by using reciprocal teaching, conducted in Indonesia University of Education to investigate students' ability in mathematical communication and self regulated learning. Subject of the study were 254 of 9th grade students from three junior high schools of high, medium,…
ERIC Educational Resources Information Center
Syafari
2017-01-01
This research was purposed to develop module and learning model and instrument of proofing ability in algebra structure through cooperative learning with helping map concept media for students of mathematic major and mathematics education in State University and Private University in North Sumatra province. The subject of this research was the…
ERIC Educational Resources Information Center
Frederick-Jonah, Toinpere Mercy; Igbojinwaekwu, Patrick Chukwuemeka
2015-01-01
This study investigated the effects of game and poem-enhanced instructional strategies on students' interest in mathematics. The moderating effects of verbal ability were also examined on the dependent variable. A quasi-experimental design was adopted. Three hundred and forty four students in the sixth year of their primary education (primary 6…
ERIC Educational Resources Information Center
Wang, Ming-Te; Degol, Jessica L.
2017-01-01
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences…
ERIC Educational Resources Information Center
Maarif, Samsul
2016-01-01
The aim of this study was to identify the influence of discovery learning method towards the mathematical analogical ability of junior high school's students. This is a research using factorial design 2x2 with ANOVA-Two ways. The population of this research included the entire students of SMPN 13 Jakarta (State Junior High School 13 of Jakarta)…
ERIC Educational Resources Information Center
Khotimah, Rita Pramujiyanti; Masduki
2016-01-01
Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…
Causal attribution for success and failure in mathematics among MDAB pre-diploma students
NASA Astrophysics Data System (ADS)
Maidinsah, Hamidah; Embong, Rokiah; Wahab, Zubaidah Abd
2014-07-01
The Program Mengubah Destini Anak Bangsa (MDAB) is a pre-diploma programme catering to SPM school leavers who do not meet the minimum requirement to enter any of UiTM diploma programmes. The study aims to evaluate the perceptions of MDAB students toward the main causal attribution factors underlying students' success and failure in mathematics. Research sample comprised of 482 students from five UiTM branch campuses. Research instrument used was a set of GALUS questionnaire consisting of 36 items based on the Weiner Attribution Theory. Four causal attributions factors for success and failures evaluated are ability, effort, question difficulty and environment. GALUS reliability index was 0.93. The research found that effort appears to be the main causal attribution factor in students' success and failure in mathematics, followed by environment, question difficulty and ability. High achiever students strongly agree that the ability factor influenced their success while low achiever students strongly agree that all attributing factors influenced their failures in mathematics.
NASA Astrophysics Data System (ADS)
Aqib, M. A.; Budiarto, M. T.; Wijayanti, P.
2018-01-01
The effectiveness of learning in this era can be seen from 3 factors such as: technology, content, and pedagogy that covered in Technological Pedagogical Content Knowledge (TPCK). This research was a qualitative research which aimed to describe each domain from TPCK include Content Knowledge, Pedagogical Knowledge, Pedagogical Content Knowledge, Technological Knowledge, Technological Content Knowledge, Technological Pedagogical Knowledge and Technological, Pedagogical, and Content Knowledge. The subjects of this research were male and female mathematics college students at least 5th semester who has almost the same ability for some course like innovative learning, innovative learning II, school mathematics I, school mathematics II, computer applications and instructional media. Research began by spreading the questionnaire of subject then continued with the assignment and interview. The obtained data was validated by time triangulation.This research has result that male and female prospective teacher was relatively same for Content Knowledge and Pedagogical Knowledge domain. While it was difference in the Technological Knowledge domain. The difference in this domain certainly has an impact on other domains that has technology components on it. Although it can be minimized by familiarizing the technology.
Seethaler, Pamela M; Fuchs, Lynn S; Fuchs, Douglas; Compton, Donald L
2012-02-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1(st)-grade calculations (CA) and word problems (WP) development, while controlling for the role of traditional assessments. Among 184 1(st) graders, predictors (DA, Quantity Discrimination, Test of Mathematics Ability, language, and reasoning) were assessed near the start of 1(st) grade. CA and WP were assessed near the end of 1(st) grade. Planned regression and commonality analyses indicated that for forecasting CA development, Quantity Discrimination, which accounted for 8.84% of explained variance, was the single most powerful predictor, followed by Test of Mathematics Ability and DA; language and reasoning were not uniquely predictive. By contrast, for predicting WP development, DA was the single most powerful predictor, which accounted for 12.01% of explained variance, with Test of Mathematics Ability, Quantity Discrimination, and language also uniquely predictive. Results suggest that different constellations of cognitive resources are required for CA versus WP development and that DA may be useful in predicting 1(st)-grade mathematics development, especially WP.
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CA) and word problems (WP) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity Discrimination, Test of Mathematics Ability, language, and reasoning) were assessed near the start of 1st grade. CA and WP were assessed near the end of 1st grade. Planned regression and commonality analyses indicated that for forecasting CA development, Quantity Discrimination, which accounted for 8.84% of explained variance, was the single most powerful predictor, followed by Test of Mathematics Ability and DA; language and reasoning were not uniquely predictive. By contrast, for predicting WP development, DA was the single most powerful predictor, which accounted for 12.01% of explained variance, with Test of Mathematics Ability, Quantity Discrimination, and language also uniquely predictive. Results suggest that different constellations of cognitive resources are required for CA versus WP development and that DA may be useful in predicting 1st-grade mathematics development, especially WP. PMID:22347725
Mathematically Talented Males and Females and Achievement in the High School Sciences.
ERIC Educational Resources Information Center
Benbow, Camilla Persson; Minor, Lola L.
1986-01-01
Using data on approximately 2,000 students drawn from three talent searches conducted by the Study of Mathematically Precocious Youth, this study investigated the relationship of possible sex differences in science achievement to sex differences in mathematical reasoning ability. (BS)
Unpacking the Logic of Mathematical Statements.
ERIC Educational Resources Information Center
Selden, John; Selden, Annie
1995-01-01
Investigated (n=61) undergraduates' ability to unpack informally written mathematical statements into the language of predicate calculus in an introduction to proofs and mathematical reasoning. Found that students were unable to construct proofs or validate them. Appendices are "A Sample Validation" and "Building a Statement Image." (MKR)
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2013 CFR
2013-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2011 CFR
2011-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2010 CFR
2010-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
A Network Analysis of Concept Maps of Triangle Concepts
ERIC Educational Resources Information Center
Haiyue, Jin; Khoon Yoong, Wong
2010-01-01
Mathematics educators and mathematics standards of curriculum have emphasised the importance of constructing the interconnectedness among mathematic concepts ("conceptual understanding") instead of only the ability to carry out standard procedures in an isolated fashion. Researchers have attempted to assess the knowledge networks in…
How Ordinary Meaning Underpins the Meaning of Mathematics.
ERIC Educational Resources Information Center
Ormell, Christopher
1991-01-01
Discusses the meaning of mathematics by looking at its uses in the real world. Offers mathematical modeling as a way to represent mathematical applications in real or potential situations. Presents levels of applicability, modus operandi, relationship to "pure mathematics," and consequences for education for mathematical modeling. (MDH)
Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training
NASA Astrophysics Data System (ADS)
Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek
2016-07-01
This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.
NASA Astrophysics Data System (ADS)
Ratnaningsih, N.; El Akbar, R. R.; Hidayat, E.
2018-05-01
One of ways to improve students' learning ability is conduct a research, with purpose to obtain a method to improve students' ability. Research often carried out on the modification of teaching methods, uses of teaching media, motivation, interests and talents of students. Research related to the internal condition of students becomes very interesting to studied, including research on circadian rhythms. Every person in circadian rhythms has its own Chronotype, which divided into two types namely early type and night late type. Chronotype affects the comfort in activity, for example a person with Chronotype category of early type tends to be more comfort in daytime activities. The purpose of this study is to examine the conditions of students, related Chronotype suitable or appropriate for student learning time. This suitability then studied in relation to the ability of learning mathematics with self- regulated learning approach. This study consists of three stages; (i) student Chronotype measurement, (ii) data retrieval, and (iii) analysis of research results. The results show the relationship between the students' learning ability in mathematics to learning time corresponding to Chronotype.
The contribution of executive functions to emergent mathematic skills in preschool children.
Espy, Kimberly Andrews; McDiarmid, Melanie M; Cwik, Mary F; Stalets, Melissa Meade; Hamby, Arlena; Senn, Theresa E
2004-01-01
Mathematical ability is related to both activation of the prefrontal cortex in neuroimaging studies of adults and to executive functions in school-age children. The purpose of this study was to determine whether executive functions were related to emergent mathematical proficiency in preschool children. Preschool children (N = 96) were administered an executive function battery that was reduced empirically to working memory (WM), inhibitory control (IC), and shifting abilities by calculating composite scores derived from principal component analysis. Both WM and IC predicted early arithmetic competency, with the observed relations robust after controlling statistically for child age, maternal education, and child vocabulary. Only IC accounted for unique variance in mathematical skills, after the contribution of other executive functions were controlled statistically as well. Specific executive functions are related to emergent mathematical proficiency in this age range. Longitudinal studies using structural equation modeling are necessary to better characterize these ontogenetic relations.
A Report on the Present Status of Engineering Mathematics Test (EMaT)
NASA Astrophysics Data System (ADS)
Watanabe, Toshimasa; Takafuji, Daisuke
The aim of Engineering Mathematics Test (EMaT) is to make sure what essentials in curriculum of Engineering Mathematics is, and to assess university students’ core academic competence and achievement of Engineering Mathematics, helping assurance of students’ academic ability. It is useful for professors to evaluate teaching effect of the classes, and this evaluation would help them improve curricula. Scores can be available for both graduate school entrance examinations and employment tests, leading to selecting persons with basic academic ability in Engineering Mathematics. The scope includes fundamentals in Calculus, Linear Algebra, Differential Equations, and Probability and Statistics. It is open to all students free of charge, and is annually given once in December. In 2007, 2,396 students from 35 universities took EMaT, and the total number of students who have taken EMaT in these 5 years is 6,240.
ERIC Educational Resources Information Center
Van Harpen, Xianwei Y.; Sriraman, Bharath
2013-01-01
In the literature, problem-posing abilities are reported to be an important aspect/indicator of creativity in mathematics. The importance of problem-posing activities in mathematics is emphasized in educational documents in many countries, including the USA and China. This study was aimed at exploring high school students' creativity in…
ERIC Educational Resources Information Center
Sheldrake, Richard; Mujtaba, Tamjid; Reiss, Michael J.
2015-01-01
Increasing the number of students who study mathematics once it is no longer compulsory remains a priority for England. A longitudinal cohort from England (1085 students) was surveyed at Years 10 and 12. Students' self-beliefs of ability influenced their GCSE mathematics grades and their intended and actual mathematics subject-choices; the degree…
ERIC Educational Resources Information Center
Letwinsky, Karim Medico
2017-01-01
The rich language surrounding mathematical concepts often is reduced in many classrooms to a narrow process of memorizing isolated procedures with little context. This approach has proven to be detrimental to students' ability to understand mathematics at deeper levels and remain engaged with this content. The current generation of students values…
ERIC Educational Resources Information Center
Pape, S. J.; Bell, C. V.; Yetkin, IE.
2003-01-01
Mathematics educators have found sociocultural models of teaching and learning to be powerful in their ability to describe and support the pursuit of instruction based on recent standards documents (e.g., National Council of Teachers of Mathematics [NCTM], 1989, 2000). These models of instruction, however, have been criticized for their lack of…
Pina, Violeta; Castillo, Alejandro; Cohen Kadosh, Roi; Fuentes, Luis J.
2015-01-01
Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1–6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size) was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved. PMID:25873909
NASA Astrophysics Data System (ADS)
Bektasli, Behzat
Graphs have a broad use in science classrooms, especially in physics. In physics, kinematics is probably the topic for which graphs are most widely used. The participants in this study were from two different grade-12 physics classrooms, advanced placement and calculus-based physics. The main purpose of this study was to search for the relationships between student spatial ability, logical thinking, mathematical achievement, and kinematics graphs interpretation skills. The Purdue Spatial Visualization Test, the Middle Grades Integrated Process Skills Test (MIPT), and the Test of Understanding Graphs in Kinematics (TUG-K) were used for quantitative data collection. Classroom observations were made to acquire ideas about classroom environment and instructional techniques. Factor analysis, simple linear correlation, multiple linear regression, and descriptive statistics were used to analyze the quantitative data. Each instrument has two principal components. The selection and calculation of the slope and of the area were the two principal components of TUG-K. MIPT was composed of a component based upon processing text and a second component based upon processing symbolic information. The Purdue Spatial Visualization Test was composed of a component based upon one-step processing and a second component based upon two-step processing of information. Student ability to determine the slope in a kinematics graph was significantly correlated with spatial ability, logical thinking, and mathematics aptitude and achievement. However, student ability to determine the area in a kinematics graph was only significantly correlated with student pre-calculus semester 2 grades. Male students performed significantly better than female students on the slope items of TUG-K. Also, male students performed significantly better than female students on the PSAT mathematics assessment and spatial ability. This study found that students have different levels of spatial ability, logical thinking, and mathematics aptitude and achievement levels. These different levels were related to student learning of kinematics and they need to be considered when kinematics is being taught. It might be easier for students to understand the kinematics graphs if curriculum developers include more activities related to spatial ability and logical thinking.
Davis, Oliver S P; Band, Gavin; Pirinen, Matti; Haworth, Claire M A; Meaburn, Emma L; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J; Hanscombe, Ken B; Trzaskowski, Maciej; Curtis, Charles J C; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Dale, Philip S; Petrill, Stephen A; Schalkwyk, Leonard S; Craig, Ian W; Lewis, Cathryn M; Price, Thomas S; Donnelly, Peter; Plomin, Robert; Spencer, Chris C A
2014-07-08
Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.
Preschool acuity of the approximate number system correlates with school math ability.
Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2011-11-01
Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. 2011 Blackwell Publishing Ltd.
Preschool Acuity of the Approximate Number System Correlates with School Math Ability
Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin
2012-01-01
Previous research shows a correlation between individual differences in people’s school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants’ ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children’s math ability and vocabulary size prior to the onset of formal math instruction. We found that children’s ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. PMID:22010889
Should Science Be Used to Teach Mathematical Skills?
ERIC Educational Resources Information Center
Kren, Sandra R.; Huntsberger, John P.
1977-01-01
Studies elementary school childrens' abilities in (1) measuring and constructing angles, and (2) interpreting and constructing linear graphs as a result of instructional formats. Partitioned into instructional treatments of (1) science, (2) science-mathematics, (3) mathematics, and (4) control were 161 fourth- and fifth-grade children. Mathematics…
Anticipation Guides: Reading for Mathematics Understanding
ERIC Educational Resources Information Center
Adams, Anne E.; Pegg, Jerine; Case, Melissa
2015-01-01
With the acceptance by many states of the Common Core State Standards for Mathematics, new emphasis is being placed on students' ability to engage in mathematical practices such as understanding problems (including word problems), reading and critiquing arguments, and making explicit use of definitions (CCSSI 2010). Engaging students in…
Developing Latent Mathematics Abilities in Economically Disadvantaged Students
ERIC Educational Resources Information Center
McKenna, Michele A.; Hollingsworth, Patricia L.; Barnes, Laura L. B.
2005-01-01
The current study was undertaken as an effort to attend to the potential giftedness of economically disadvantaged students, to give opportunities for mathematics acceleration, and to provide a sequential, individualized mathematics program for students of high mobility. The authors evaluated the Project SAIL (Students' Active Interdisciplinary…
Construction Industry Related Mathematics: Seventh Grade.
ERIC Educational Resources Information Center
Mundell, Scott
The field tested construction industry-related mathematics unit is intended to familiarize seventh grade students with various facets of the construction industry, including the various occupations available and the mathematical abilities and other skills and training necessary to pursue an occupation in the industry. The final set of activities…
ERIC Educational Resources Information Center
Putra, Mulia; Novita, Rita
2015-01-01
This study aimed to describe the profile of secondary school students with high mathematics ability in solving shape and space problem in PISA (Program for International Student Assessment). It is a descriptive research with a qualitative approach, in which the subjects in this study were students of class VIII SMP N 1 Banda Aceh. The results show…
ERIC Educational Resources Information Center
Andersen, Lori; Ward, Thomas J.
2014-01-01
Group differences in the effects of the expectancies and values that high-ability students have for science and mathematics on plans to persist in science, technology, engineering, and mathematics (STEM) were investigated. A nationally representative sample of ninth-grade students, the High School Longitudinal Study of 2009 (HSLS: 2009; n =…
ERIC Educational Resources Information Center
Marks, Rachel
2014-01-01
This case-study, drawing on an unanticipated theme arising from a wider study of ability-grouping in primary mathematics, documents some of the consequences of educational triage in the final year of one primary school. The paper discusses how a process of educational triage, as a response to accountability pressures, is justified by teachers on…
ERIC Educational Resources Information Center
Pirie, Susan E. B.; Martin, Lyndon
1997-01-01
Presents the results of a case study which looked at the mathematics classroom of one teacher trying to teach mathematics with meaning to pupils or lower ability at the secondary level. Contrasts methods of teaching linear equations to a variety of ability levels and uses the Pirie-Kieren model to account for the successful growth in understanding…
Graphic Abilities in Relation to Mathematical and Scientific Ability in Adolescents
ERIC Educational Resources Information Center
Stavridou, Fotini; Kakana, Domna
2008-01-01
Background: The study investigated a small range of cognitive abilities, related to visual-spatial intelligence, in adolescents. This specific range of cognitive abilities was termed "graphic abilities" and defined as a range of abilities to visualise and think in three dimensions, originating in the domain of visual-spatial…
NASA Astrophysics Data System (ADS)
Kartikasari, A.; Widjajanti, D. B.
2017-02-01
The aim of this study is to explore the effectiveness of learning approach using problem-based learning based on multiple intelligences in developing student’s achievement, mathematical connection ability, and self-esteem. This study is experimental research with research sample was 30 of Grade X students of MIA III MAN Yogyakarta III. Learning materials that were implemented consisting of trigonometry and geometry. For the purpose of this study, researchers designed an achievement test made up of 44 multiple choice questions with respectively 24 questions on the concept of trigonometry and 20 questions for geometry. The researcher also designed a connection mathematical test and self-esteem questionnaire that consisted of 7 essay questions on mathematical connection test and 30 items of self-esteem questionnaire. The learning approach said that to be effective if the proportion of students who achieved KKM on achievement test, the proportion of students who achieved a minimum score of high category on the results of both mathematical connection test and self-esteem questionnaire were greater than or equal to 70%. Based on the hypothesis testing at the significance level of 5%, it can be concluded that the learning approach using problem-based learning based on multiple intelligences was effective in terms of student’s achievement, mathematical connection ability, and self-esteem.
The relative importance of two different mathematical abilities to mathematical achievement.
Nunes, Terezinha; Bryant, Peter; Barros, Rossana; Sylva, Kathy
2012-03-01
Two distinct abilities, mathematical reasoning and arithmetic skill, might make separate and specific contributions to mathematical achievement. However, there is little evidence to inform theory and educational practice on this matter. The aims of this study were (1) to assess whether mathematical reasoning and arithmetic make independent contributions to the longitudinal prediction of mathematical achievement over 5 years and (2) to test the specificity of this prediction. Data from Avon Longitudinal Study of Parents and Children (ALSPAC) were available on 2,579 participants for analyses of KS2 achievement and on 1,680 for the analyses of KS3 achievement. Hierarchical regression analyses were used to assess the independence and specificity of the contribution of mathematical reasoning and arithmetic skill to the prediction of achievement in KS2 and KS3 mathematics, science, and English. Age, intelligence, and working memory (WM) were controls in these analyses. Mathematical reasoning and arithmetic did make independent contributions to the prediction of mathematical achievement; mathematical reasoning was by far the stronger predictor of the two. These predictions were specific in so far as these measures were more strongly related to mathematics than to science or English. Intelligence and WM were non-specific predictors; intelligence contributed more to the prediction of science than of maths, and WM predicted maths and English equally well. There is clear justification for making a distinction between mathematical reasoning and arithmetic skills. The implication is that schools must plan explicitly to improve mathematical reasoning as well as arithmetic skills. ©2011 The British Psychological Society.
Morsanyi, Kinga; Busdraghi, Chiara; Primi, Caterina
2014-09-01
When asked to solve mathematical problems, some people experience anxiety and threat, which can lead to impaired mathematical performance (Curr Dir Psychol Sci 11:181-185, 2002). The present studies investigated the link between mathematical anxiety and performance on the cognitive reflection test (CRT; J Econ Perspect 19:25-42, 2005). The CRT is a measure of a person's ability to resist intuitive response tendencies, and it correlates strongly with important real-life outcomes, such as time preferences, risk-taking, and rational thinking. In Experiments 1 and 2 the relationships between maths anxiety, mathematical knowledge/mathematical achievement, test anxiety and cognitive reflection were analysed using mediation analyses. Experiment 3 included a manipulation of working memory load. The effects of anxiety and working memory load were analysed using ANOVAs. Our experiments with university students (Experiments 1 and 3) and secondary school students (Experiment 2) demonstrated that mathematical anxiety was a significant predictor of cognitive reflection, even after controlling for the effects of general mathematical knowledge (in Experiment 1), school mathematical achievement (in Experiment 2) and test anxiety (in Experiments 1-3). Furthermore, Experiment 3 showed that mathematical anxiety and burdening working memory resources with a secondary task had similar effects on cognitive reflection. Given earlier findings that showed a close link between cognitive reflection, unbiased decisions and rationality, our results suggest that mathematical anxiety might be negatively related to individuals' ability to make advantageous choices and good decisions.
The Design and Implementation of Network Teaching Platform Basing on .NET
NASA Astrophysics Data System (ADS)
Yanna, Ren
This paper addresses the problem that students under traditional teaching model have poor operation ability and studies in depth the network teaching platform in domestic colleges and universities, proposing the design concept of network teaching platform of NET + C # + SQL excellent course and designing the overall structure, function module and back-end database of the platform. This paper emphatically expounds the use of MD5 encryption techniques in order to solve data security problems and the assessment of student learning using ADO.NET database access technology as well as the mathematical formula. The example shows that the network teaching platform developed by using WEB application technology has higher safety and availability, and thus improves the students' operation ability.
Mathematical Ability Relies on Knowledge, Too
ERIC Educational Resources Information Center
Sweller, John; Clark, Richard E.; Kirschner, Paul A.
2011-01-01
Recent "reform" curricula both ignore the absence of supporting data and completely misunderstand the role of problem solving in cognition. If, the argument goes, teachers are not really teaching people mathematics but rather are teaching them some form of general problem solving, then mathematical content can be reduced in importance. According…
Mathematical Strengths and Weaknesses of Preservice Agricultural Education Teachers
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady; Stephens, Carrie A.
2014-01-01
The purpose of this study was to describe the mathematics ability of preservice agricultural education teachers related to each of the National Council of Teachers of Mathematics (NCTM) content/process areas and their corresponding sub-standards that are cross-referenced with the National Agriculture, Food and Natural Resources Career Cluster…
MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics
ERIC Educational Resources Information Center
Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan
2015-01-01
The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…
The North Carolina School of Science and Mathematics.
ERIC Educational Resources Information Center
Eilber, Charles R.
1987-01-01
The North Carolina School of Science and Mathematics was established in 1980 as a resident public high school for juniors and seniors demonstrating ability and interest in science and mathematics. Outlines the admission policy, instructional program, supportive services, and the school's commitment to public service. This was the first publicly…
Where Is the Square? Activities to Stimulate Spatial Reasoning
ERIC Educational Resources Information Center
Obara, Samuel
2013-01-01
The National Council of Teachers of Mathematics (NCTM, 1989, 2000) and the new "Australian Curriculum: Mathematics" for senior secondary (ACARA, 2010) highlight the importance of teaching spatial reasoning as early as preschool when mathematics is introduced. Studies have shown that there is a relationship between spatial abilities and…
Guide to Mathematics Released Items: Understanding Scoring
ERIC Educational Resources Information Center
Partnership for Assessment of Readiness for College and Careers, 2017
2017-01-01
The Partnership for Assessment of Readiness for College and Careers (PARCC) mathematics items measure critical thinking, mathematical reasoning, and the ability to apply skills and knowledge to real-world problems. Students are asked to solve problems involving the key knowledge and skills for their grade level as identified by the Common Core…
Improving Communication Skills through a Capstone Experience
ERIC Educational Resources Information Center
Ackerman, Michael; Fenton, William E.; Raymond, Anne M.
2013-01-01
In the early 1990s, in an effort to enhance their majors' ability to communicate mathematical ideas, the Mathematics Department at Bellarmine University added a capstone course, "Readings in Mathematics," to the curriculum of each degree program in the department. We provide an overview of the course, noting its unique aspects, with…
Effects of Directed Learning Groups upon Students' Ability to Understand Conceptual Ideas
ERIC Educational Resources Information Center
Johnson, Karen Gabrielle; Galluzzo, Benjamin Jason
2014-01-01
Mathematical modeling and directed learning groups were employed in a terminal mathematics course to encourage university students to conceptualize real-world mathematics problems. Multiple assessments were utilized to determine whether students' conceptual development is enhanced by participating in directed learning groups conducted in a…
Turning Origami into the Language of Mathematics
ERIC Educational Resources Information Center
Cipoletti, Beth; Wilson, Nancy
2004-01-01
The National Council of Teachers of Mathematics (1989) proposes using everyday objects, such as paper, to enable students to explore geometric relationships and vocabulary. Paper-folding and other types of hands-on activities have been found to increase students' ability to communicate mathematically and foster their understanding of mathematical…
The Relation between Patterning, Executive Function, and Mathematics
ERIC Educational Resources Information Center
Schmerold, Katrina Lea
2015-01-01
Patterning, or the ability to understand patterns, is a skill commonly taught to young children as part of school mathematics curricula. While a number of studies have demonstrated that patterning is beneficial for young children acquiring mathematical skills, little research exists that examines the cognitive components of the skill. It seems…
Mathematical Abilities in Elementary School Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Titeca, Daisy; Roeyers, Herbert; Loeys, Tom; Ceulemans, Annelies; Desoete, Annemie
2015-01-01
Although clinical practitioners often express concerns about the mathematical functioning of children with autism spectrum disorder (ASD), the field of mathematics remains a relatively unexplored topic in individuals with ASD. Moreover, research findings are fragmentary and hold inconclusive results. The present study aimed to examine whether…
Language, Mathematics and English Language Learners
ERIC Educational Resources Information Center
Adoniou, Misty; Qing, Yi
2014-01-01
There is a correlation between language proficiency and achievement in mathematics (Riordain & O'Donoghue, 2009), and this is particularly evident for children who speak English as an additional language or dialect. More effort needs to be made in mathematics classrooms to develop cognitive competencies, including the ability to decode and…
Technology-Enhanced Learning in College Mathematics Remediation
ERIC Educational Resources Information Center
Foshee, Cecile M.; Elliott, Stephen N.; Atkinson, Robert K.
2016-01-01
US colleges presently face an academic plight; thousands of high school graduates are performing below the expected ability for college-level mathematics. This paper describes an innovative approach intended to improve the mathematics performance of first-year college students, at a large US university. The innovation involved the integration of…
Cognitive, Educational and Psychological Determinants of Prospective Preschool Teachers' Beliefs
ERIC Educational Resources Information Center
Blömeke, Sigrid; Dunekacke, Simone; Jenßen, Lars
2017-01-01
This study examined the level, structure and cognitive, educational and psychological determinants of beliefs about the relevance and nature of mathematics, about gender-stereotypes with respect to mathematics abilities and about enjoyment of mathematics. Prospective preschool teachers from programs at vocational schools and higher education…
Special Educators and Mathematics Phobia: An Initial Qualitative Investigation
ERIC Educational Resources Information Center
Humphrey, Michael; Hourcade, Jack J.
2010-01-01
Special educators are uniquely challenged to be content experts in all curricular areas, including mathematics, because students in their caseloads may require academic instruction in any area. However, special educators with math phobia may be limited in their ability to provide effective instruction to their students with mathematical deficits…
ERIC Educational Resources Information Center
Sharma, Mahesh C.
1985-01-01
This bulletin concerns the role of memorization in mathematics instruction. Sections of the bulletin are devoted to discussions of: old math vs. new math; the importance of memorization ability on mathematics learning; misconceptions about memory; how to enhance the memory, including short-term vs. long-term memory systems, attention, interest,…
ERIC Educational Resources Information Center
Furner, Joseph M.
2017-01-01
Today, being confident and having a sound understanding of mathematics is critical in an age of STEM. Teachers must play in important role in seeing that all students display their confidence in their ability to do mathematics. This paper explains the process of using bibliotherapy when teaching mathematics to address both the math anxious or the…
ERIC Educational Resources Information Center
Tinungki, Georgina Maria
2015-01-01
The importance of learning mathematics can not be separated from its role in all aspects of life. Communicating ideas by using mathematics language is even more practical, systematic, and efficient. In order to overcome the difficulties of students who have insufficient understanding of mathematics material, good communications should be built in…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2013
2013-01-01
The National Assessment of Educational Progress (NAEP) mathematics assessment measures students' knowledge and skills in mathematics and students' ability to apply their knowledge in problem-solving situations. At each grade, students responded to questions designed to measure what they know and can do across five mathematics content areas: number…
Baron-Cohen, Simon; Murphy, Laura; Chakrabarti, Bhismadev; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Warrier, Varun
2014-01-01
Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10(-5), 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10(-6)). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10(-4)). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.
ERIC Educational Resources Information Center
Barham, Peter J.
2012-01-01
New undergraduate students arriving to study physics at the University of Bristol from 1975 onwards have all taken the same test of their knowledge and understanding of physics and mathematics. Many of the questions test knowledge of material that has been in the A-level syllabus for maths or physics throughout this period. The ability of incoming…
ERIC Educational Resources Information Center
Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert
2007-01-01
The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we…
ERIC Educational Resources Information Center
Webb, Karla Denise
2011-01-01
The purpose of this qualitative study was to explore the interconnectedness of the environment, human development, and the factors that influence students' academic performance in a homogeneous ability grouped mathematics classroom. The study consisted of four African American urban high school juniors, 2 male and 2 female. During the 12 week…
ERIC Educational Resources Information Center
Demiray, Esra; Isiksal Bostan, Mine
2017-01-01
The purposes of this study are to investigate Turkish pre-service middle school mathematics teachers' ability in conducting valid proofs for statements regarding numbers and algebra in terms of their year of enrollment in a teacher education program, to determine the proof methods used in their valid proofs, and to examine the reasons for their…
ERIC Educational Resources Information Center
Bing, Mark N.; Stewart, Susan M.; Davison, H. Kristl
2009-01-01
Handheld calculators have been used on the job for more than 30 years, yet the degree to which these devices can affect performance on employment tests of mathematical ability has not been thoroughly examined. This study used a within-subjects research design (N = 167) to investigate the effects of calculator use on test score reliability, test…
ERIC Educational Resources Information Center
Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree
2016-01-01
The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…
Wightman, Bruce; Hark, Amy T
2012-01-01
The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this study, we deliberately integrated bioinformatics instruction at multiple course levels into an existing biology curriculum. Students in an introductory biology course, intermediate lab courses, and advanced project-oriented courses all participated in new course components designed to sequentially introduce bioinformatics skills and knowledge, as well as computational approaches that are common to many bioinformatics applications. In each course, bioinformatics learning was embedded in an existing disciplinary instructional sequence, as opposed to having a single course where all bioinformatics learning occurs. We designed direct and indirect assessment tools to follow student progress through the course sequence. Our data show significant gains in both student confidence and ability in bioinformatics during individual courses and as course level increases. Despite evidence of substantial student learning in both bioinformatics and mathematics, students were skeptical about the link between learning bioinformatics and learning mathematics. While our approach resulted in substantial learning gains, student "buy-in" and engagement might be better in longer project-based activities that demand application of skills to research problems. Nevertheless, in situations where a concentrated focus on project-oriented bioinformatics is not possible or desirable, our approach of integrating multiple smaller components into an existing curriculum provides an alternative. Copyright © 2012 Wiley Periodicals, Inc.
The influence of number line estimation precision and numeracy on risky financial decision making.
Park, Inkyung; Cho, Soohyun
2018-01-10
This study examined whether different aspects of mathematical proficiency influence one's ability to make adaptive financial decisions. "Numeracy" refers to the ability to process numerical and probabilistic information and is commonly reported as an important factor which contributes to financial decision-making ability. The precision of mental number representation (MNR), measured with the number line estimation (NLE) task has been reported to be another critical factor. This study aimed to examine the contribution of these mathematical proficiencies while controlling for the influence of fluid intelligence, math anxiety and personality factors. In our decision-making task, participants chose between two options offering probabilistic monetary gain or loss. Sensitivity to expected value was measured as an index for the ability to discriminate between optimal versus suboptimal options. Partial correlation and hierarchical regression analyses revealed that NLE precision better explained EV sensitivity compared to numeracy, after controlling for all covariates. These results suggest that individuals with more precise MNR are capable of making more rational financial decisions. We also propose that the measurement of "numeracy," which is commonly used interchangeably with general mathematical proficiency, should include more diverse aspects of mathematical cognition including basic understanding of number magnitude. © 2018 International Union of Psychological Science.
Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots.
Zhou, Yanmin; He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng
2018-02-13
Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip's resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots.
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities. Copyright © 2012 Elsevier Inc. All rights reserved.
The influence of test mode and visuospatial ability on mathematics assessment performance
NASA Astrophysics Data System (ADS)
Logan, Tracy
2015-12-01
Mathematics assessment and testing are increasingly situated within digital environments with international tests moving to computer-based testing in the near future. This paper reports on a secondary data analysis which explored the influence the mode of assessment—computer-based (CBT) and pencil-and-paper based (PPT)—and visuospatial ability had on students' mathematics test performance. Data from 804 grade 6 Singaporean students were analysed using the knowledge discovery in data design. The results revealed statistically significant differences between performance on CBT and PPT test modes across content areas concerning whole number algebraic patterns and data and chance. However, there were no performance differences for content areas related to spatial arrangements geometric measurement or other number. There were also statistically significant differences in performance between those students who possess higher levels of visuospatial ability compared to those with lower levels across all six content areas. Implications include careful consideration for the comparability of CBT and PPT testing and the need for increased attention to the role of visuospatial reasoning in student's mathematics reasoning.
Can goal-free problems facilitating students' flexible thinking?
NASA Astrophysics Data System (ADS)
Maulidya, Sity Rahmy; Hasanah, Rusi Ulfa; Retnowati, Endah
2017-08-01
Problem solving is the key of doing and also learning mathematics. It takes also the fundamental role of developing mathematical knowledge. Responding to the current reform movement in mathematics, students are expected to learn to be a flexible thinker. The ability to think flexible is challenged by the globalisation, hence influence mathematics education. A flexible thinking includes ability to apply knowledge in different contexts rather than simply use it in similar context when it is studied. Arguably problem solving activities can contribute to the development of the ability to apply skills to unfamiliar situations. Accordingly, an appropriate classroom instructional strategy must be developed. A cognitive load theory suggests that by reducing extraneous cognitive load during learning could enhance transfer learning. A goal-free problem strategy that is developed based in cognitive load theory have been showed to be effective for transfer learning. This strategy enables students to learn a large numbers of problem solving moves from a mathematics problem. The instruction in a goal-free problem directs students to `calculate as many solution as you can' rather than to calculate a single given goal. Many experiment research evident goal-free problem enhance learning. This literature review will discuss evidence goal-free problem facilitate students to solve problems flexibly and thus enhance their problem solving skills, including how its implication in the classroom.
Teaching Mathematics to Non-Mathematics Majors through Applications
ERIC Educational Resources Information Center
Abramovich, Sergei; Grinshpan, Arcadii Z.
2008-01-01
This article focuses on the important role of applications in teaching mathematics to students with career paths other than mathematics. These include the fields as diverse as education, engineering, business, and life sciences. Particular attention is given to instructional computing as a means for concept development in mathematics education…
Studies in Mathematics, Volume X. Applied Mathematics in the High School.
ERIC Educational Resources Information Center
Schiffer, Max M.
This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…
Classroom Stress Promotes Motivated Forgetting of Mathematics Knowledge
ERIC Educational Resources Information Center
Ramirez, Gerardo; McDonough, Ian M.; Jin, Ling
2017-01-01
The ability to retain educationally relevant content in a readily accessible state in memory is critical for students at all stages in schooling. We hypothesized that a high degree of stress in mathematics courses can threaten students' mathematics self-concept and lead to a motivation to forget course content. We tested the aforementioned…
Elements of Mathematics, Book O: Intuitive Background. Chapter 1, Operational Systems.
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core material for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
ERIC Educational Resources Information Center
Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szucs, Denes
2013-01-01
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized…
ERIC Educational Resources Information Center
Etuk, Etuk N.; Afangideh, Maria E.; Uya, Asukwo O.
2013-01-01
The study sought to find out the relationship between how students perceive their teachers' in respect of knowledge of Mathematics content, communication ability, use of appropriate teaching strategies and teachers' classroom management skills and students' attitude towards mathematics. The population of the study comprised all the second year…
Does an Ability to Pattern Indicate That Our Thinking Is Mathematical?
ERIC Educational Resources Information Center
McCluskey, Catherine; Mitchelmore, Michael; Mulligan, Joanne
2013-01-01
Research affirms that pattern and structure underlie the development of a broad range of mathematical concepts. However, the concept of pattern also occurs in other fields. This theoretical paper explores pattern recognition, a neurological construct based on the world of Goldberg (2005), and pattern as defined in the field of mathematics to…
Cross-Cultural Predictors of Mathematical Talent and Academic Productivity
ERIC Educational Resources Information Center
Nokelainen, Petri; Tirri, Kirsi; Campbell, James Reed
2004-01-01
The main goal of this paper is to investigate cross-cultural factors that predict academic ability among mathematically gifted Olympians in Finland and the United States. The following two research problems are formulated: (1) What factors contribute to or impede the development of the Olympians' mathematic talent? and (2) Do the Olympians fulfill…
ERIC Educational Resources Information Center
Harrison, Ryan Matthew
2012-01-01
Teachers' knowledge of mathematical content and children's mathematical thinking have been identified as critical elements related to teachers' ability to effectively teach mathematics (Fennema & Franke, 1992; Kazemi & Franke, 2001; Ma, 1999; Peterson, Carpenter, & Fennema, 1989). Literature on teachers' knowledge…
Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2010
2010-01-01
"Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on…
Note-Taking in a Mathematics Classroom
ERIC Educational Resources Information Center
Hoong, Leong Yew; Guan, Tay Eng; Seng, Quek Khiok; Fwe, Yap Sook; Luen, Tong Cherng; Toh, Wei Yeng Karen; Chia, Alexander; Teck, Ong Yao
2014-01-01
The authors are a team of teachers and teacher educators who are deeply interested in helping mathematically-challenged students improve in their learning of mathematics. In Singapore, depending on their performance at the end of a nationwide Year 6 examination, students are channelled into three ability streams for Years 7 to 10: Express (60%),…
ERIC Educational Resources Information Center
Ko, Yi-Yin; Knuth, Eric
2009-01-01
In advanced mathematical thinking, proving and refuting are crucial abilities to demonstrate whether and why a proposition is true or false. Learning proofs and counterexamples within the domain of continuous functions is important because students encounter continuous functions in many mathematics courses. Recently, a growing number of studies…
Shifting College Students' Epistemological Framing Using Hypothetical Debate Problems
ERIC Educational Resources Information Center
Hu, Dehui; Rebello, N. Sanjay
2014-01-01
Developing expertise in physics problem solving requires the ability to use mathematics effectively in physical scenarios. Novices and experts often perceive the use of mathematics in physics differently. Students' perceptions and how they frame the use of mathematics in physics play an important role in their physics problem solving. In this…
ERIC Educational Resources Information Center
Gersten, Russell; Beckmann, Sybilla; Clarke, Benjamin; Foegen, Anne; Marsh, Laurel; Star, Jon R.; Witzel, Bradley
2009-01-01
Students struggling with mathematics may benefit from early interventions aimed at improving their mathematics ability and ultimately preventing subsequent failure. This guide provides eight specific recommendations intended to help teachers, principals, and school administrators use Response to Intervention (RtI) to identify students who need…
The Mathematics of Global Change
ERIC Educational Resources Information Center
Kreith, Kurt
2011-01-01
This paper is a descriptive and preliminary report on recent efforts to address two questions: 1) Can school mathematics be used to enhance our students' ability to understand their changing world? and 2) What role might computer technology play in this regard? After recounting some of the mathematical tools that led to a better understanding of…
Teaching Mathematics to Lower Attainers: Dilemmas and Discourses
ERIC Educational Resources Information Center
Alderton, Julie; Gifford, Sue
2018-01-01
This article draws on Foucault's concepts of power and discourse to explore the issues of teaching mathematics to low attainers in primary schools in England. We analyse a data set of interviews, from a larger study, with the mathematics teachers of one child across three years, showing how accountability practices, discourses of ability and…
ERIC Educational Resources Information Center
Huang, Qi; Zhang, Xiao; Liu, Yingyi; Yang, Wen; Song, Zhanmei
2017-01-01
Background: A growing body of recent research has shown that parent-child mathematical activities have a strong effect on children's mathematical learning. However, this research was conducted predominantly in Western societies and focused mainly on mothers' involvement in such activities. Aims: This study aimed to examine both mother-child and…
Elementary School Quality: The Mathematics Curriculum and the Role of Local Knowledge.
ERIC Educational Resources Information Center
Balfanz, Robert
This report considers how the mathematical knowledge children develop on their own outside of formal school instruction can be used to increase the distribution and level of mathematical knowledge attained by students in grades K-3. Included are preliminary results of an investigation of the counting and calculating abilities brought to…
The High School Mathematics Library. Seventh Edition.
ERIC Educational Resources Information Center
Schaaf, William L.
This document was designed as a guide for the selection of library books for high school students of all levels of ability. It also contains materials dealing with the professional interests of students and teachers involved with mathematics in junior and community colleges. The material is categorized into: (1) Expository Mathematics; (2)…
Elements of Mathematics, Book O: Intuitive Background. Chapter 5, Mappings.
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core material for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
Mathematics Performance of the Primary School Students: Attention and Shifting
ERIC Educational Resources Information Center
Poorghorban, Maryam; Jabbari, Susan; Chamandar, Fatemah
2018-01-01
The purpose of this study was to understand the relationship between executive functions and mathematical abilities to determine the contribution of these functions to math performance. In this study, 30 students were selected from among 4th graders of elementary school, in two groups with low achievement in mathematics (poor) and high achievement…
Encouraging Students to Read Mathematics
ERIC Educational Resources Information Center
Shepherd, Mary D.
2005-01-01
It is generally agreed that the ability to read mathematics is an important skill--one that few of our students possess. A number of people have published some suggestions for helping students learn to read their mathematics textbooks. What these have in common is suggestions for getting students more active while reading. Using these resources as…
Adult Student Learning Behaviors in a Roadblock Mathematics Course
ERIC Educational Resources Information Center
Tennant, Aimee
2012-01-01
Adult students are a growing population on college campuses. Adult students have lower graduation rates and longer times to graduation than traditional-age students. The ability to pass a college level mathematics course is a key factor in the graduation rates of all students. Past research has identified developmental mathematics, college…
Differentiated Instruction: Effects on Primary Students' Mathematics Achievement
ERIC Educational Resources Information Center
Maxey, Katherine S.
2013-01-01
Low mathematics achievement is a concern of educators and the general public because many Americans are emerging from school without the requisite mathematics skills to function well in our complex, quickly changing society. Individuals with low math abilities are more likely to be unemployed and be a burden to fellow taxpayers. Educators and…
Role of Mathematics Learning Development Centres in HEIs
ERIC Educational Resources Information Center
Nzekwe-Excel, C.
2010-01-01
Background and Rationale: Student withdrawal and non-completion in institutions have been an issue of considerable concern. The lack of mathematical ability has been identified as a factor resulting to non-completion in higher institutions. Several students in higher education approach mathematics with a lot of anxiety. This has created the need…
Examining How Students with Diverse Abilities Use Diagrams to Solve Mathematics Word Problems
ERIC Educational Resources Information Center
van Garderen, Delinda; Scheuermann, Amy; Jackson, Christa
2013-01-01
This study examined students' understanding of diagrams and their use of diagrams as tools to solve mathematical word problems. Students with learning disabilities (LD), typically achieving students, and gifted students in Grades 4 through 7 ("N" = 95) participated. Students were presented with novel mathematical word problem-solving…
ERIC Educational Resources Information Center
Seegers, Gerard; Van Putten, Cornelis M.; Vermeer, Harriet J.
2004-01-01
The authors investigated the effects of former learning experiences on how students adapt to challenging mathematics tasks. A distinction has been made between domain-specific variables (goal orientation, self-concept of mathematics ability) and task- (or context-) specific appraisals (estimated competence for, attractiveness and relevance of the…