Sample records for mathematical diffusion model

  1. Mathematical modeling of molecular diffusion through mucus

    PubMed Central

    Cu, Yen; Saltzman, W. Mark

    2008-01-01

    The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488

  2. Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana

    2016-03-01

    A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.

  3. A note on stress-driven anisotropic diffusion and its role in active deformable media.

    PubMed

    Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Ruiz-Baier, Ricardo

    2017-10-07

    We introduce a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to employ diffusion tensors directly influenced by the coupling with mechanical stress. The proposed generalised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the mathematical model and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electric feedback in actively deforming bio-materials such as the cardiac tissue. Copyright © 2017. Published by Elsevier Ltd.

  4. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue.

    PubMed

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.

  5. Mathematical models for optimization of the centrifugal stage of a refrigerating compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzhdin, A.S.

    1987-09-01

    The authors describe a general approach to the creating of mathematical models of energy and head losses in the flow part of the centrifugal compressor. The mathematical model of the pressure head and efficiency of a two-section stage proposed in this paper is meant for determining its characteristics for the assigned geometric dimensions and for optimizing by variance calculations. Characteristic points on the plot of velocity distribution over the margin of the vanes of the impeller and the diffuser of the centrifugal stage with a combined diffuser are presented. To assess the reliability of the mathematical model the authors comparedmore » some calculated data with the experimental ones.« less

  6. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  7. Information diffusion, Facebook clusters, and the simplicial model of social aggregation: a computational simulation of simplicial diffusers for community health interventions.

    PubMed

    Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto

    2016-01-01

    By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.

  8. Some Fundamental Issues of Mathematical Simulation in Biology

    NASA Astrophysics Data System (ADS)

    Razzhevaikin, V. N.

    2018-02-01

    Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.

  9. Computational modeling of diffusion in the cerebellum.

    PubMed

    Marinov, Toma M; Santamaria, Fidel

    2014-01-01

    Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance. © 2014 Elsevier Inc. All rights reserved.

  10. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  11. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  12. Effective moisture diffusivity determination and mathematical modelling of drying curves of apple pomace

    NASA Astrophysics Data System (ADS)

    Kara, Cem; Doymaz, İbrahim

    2015-07-01

    Drying of apple pomace representing by-products from apple juice processing was studied. The results obtained show that moisture content of the pomace decreases with time and temperature. The Midilli et al. model was selected as the best mathematical model for describing the drying kinetics of the apple pomace. The effective moisture diffusivity varied from 1.73 × 10-10 to 4.40 × 10-10 m2/s and the activation energy was calculated to be 29.65 kJ/mol.

  13. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.

    PubMed

    Ying, Chong T; Wang, Juntian; Lamm, Robert J; Kamei, Daniel T

    2013-02-01

    Vesicles have been studied for several years in their ability to deliver drugs. Mathematical models have much potential in reducing time and resources required to engineer optimal vesicles, and this review article summarizes these models that aid in understanding the ability of targeted vesicles to bind and internalize into cancer cells, diffuse into tumors, and distribute in the body. With regard to binding and internalization, radiolabeling and surface plasmon resonance experiments can be performed to determine optimal vesicle size and the number and type of ligands conjugated. Binding and internalization properties are also inputs into a mathematical model of vesicle diffusion into tumor spheroids, which highlights the importance of the vesicle diffusion coefficient and the binding affinity of the targeting ligand. Biodistribution of vesicles in the body, along with their half-life, can be predicted with compartmental models for pharmacokinetics that include the effect of targeting ligands, and these predictions can be used in conjunction with in vivo models to aid in the design of drug carriers. Mathematical models can prove to be very useful in drug carrier design, and our hope is that this review will encourage more investigators to combine modeling with quantitative experimentation in the field of vesicle-based drug delivery.

  14. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  15. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  16. Modelling and simulating reaction-diffusion systems using coloured Petri nets.

    PubMed

    Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming

    2014-10-01

    Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mathematical and computational modeling simulation of solar drying Systems

    USDA-ARS?s Scientific Manuscript database

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  18. Opening the closed box: lattice diffusion in zircon?

    NASA Astrophysics Data System (ADS)

    Wheeler, J.; MacDonald, J.; Goodenough, K. M.; Crowley, Q.; Harley, S.; Mariani, E.

    2015-12-01

    In principle, any radiogenic parent or daughter element can diffuse through any crystalline lattice. Given improved analytic techniques and mathematical models, geochronology is beginning to take such diffusion into account in a quantitative fashion. Whilst lattice diffusion compromises simple interpretation of radiometric data, it can, when combined with spatially resolved data, provide more detailed insight into thermal histories. In regions that have experienced particularly high temperatures diffusion may become significant in minerals normally thought to be reliably closed. We have modelled Pb diffusion in zircon, building on earlier work on Ar diffusion in micas - the mathematics being basically the same. We are motivated by some challenging isotope data from zircon in the Lewisian Complex of NW Scotland (a TTG region with a long Archaean and Proterozoic history). For example we have grains with old rims and younger cores. Whilst other explanations are possible, we show how lattice diffusion of Pb is plausible, using experimental diffusion data together with estimates of ultra-high temperatures from the region. We have modified a previous model for Ar diffusion ("Diffarg") to include variations in parent isotope concentration, so we can understand the consequences of U zonation within zircon grains during prolonged thermal histories. This is also relevant to asking why Pb has apparently not diffused in zircon from other UHT regions - or has it?

  19. Two-fluid models of turbulence

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.

    1985-01-01

    The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.

  20. A combinatorial model of malware diffusion via bluetooth connections.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  1. Quantitative dual-probe microdialysis: mathematical model and analysis.

    PubMed

    Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles

    2002-04-01

    Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.

  2. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  3. A Combinatorial Model of Malware Diffusion via Bluetooth Connections

    PubMed Central

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677

  4. Fractional phenomenology of cosmic ray anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.

    2013-11-01

    We review the evolution of the cosmic ray diffusion concept from the ordinary (Einstein) model of Brownian motion to the fractional models that appeared in the last decade. The mathematical and physical foundations of these models are discussed, as are their consequences, related problems, and prospects for further development.

  5. A Mathematical Model for the Middle Ear Ventilation

    NASA Astrophysics Data System (ADS)

    Molnárka, G.; Miletics, E. M.; Fücsek, M.

    2008-09-01

    The otitis media is one of the mostly existing illness for the children, therefore investigation of the human middle ear ventilation is an actual problem. In earlier investigations both experimental and theoretical approach one can find in ([l]-[3]). Here we give a new mathematical and computer model to simulate this ventilation process. This model able to describe the diffusion and flow processes simultaneously, therefore it gives more precise results than earlier models did. The article contains the mathematical model and some results of the simulation.

  6. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  7. Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications

    NASA Technical Reports Server (NTRS)

    Giere, A. C.

    1977-01-01

    An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.

  8. Numerical Modeling of HgCdTe Solidification: Effects of Phase Diagram, Double-Diffusion Convection and Microgravity Level

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1997-01-01

    Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.

  9. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  10. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  11. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    PubMed

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  13. CRITICAL EVALUATION OF THE DIFFUSION HYPOTHESIS IN THE THEORY OF POROUS MEDIA VOLATILE ORGANIC COMPOUND (VOC) SOURCES AND SINKS

    EPA Science Inventory

    The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...

  14. Controlled Release Drug Delivery via Polymeric Microspheres: A Neat Application of the Spherical Diffusion Equation

    ERIC Educational Resources Information Center

    Ormerod, C. S.; Nelson, M.

    2017-01-01

    Various applied mathematics undergraduate skills are demonstrated via an adaptation of Crank's axisymmetric spherical diffusion model. By the introduction of a one-parameter Heaviside initial condition, the pharmaceutically problematic initial mass flux is attenuated. Quantities germane to the pharmaceutical industry are examined and the model is…

  15. Specifying Theories of Developmental Dyslexia: A Diffusion Model Analysis of Word Recognition

    ERIC Educational Resources Information Center

    Zeguers, Maaike H. T.; Snellings, Patrick; Tijms, Jurgen; Weeda, Wouter D.; Tamboer, Peter; Bexkens, Anika; Huizenga, Hilde M.

    2011-01-01

    The nature of word recognition difficulties in developmental dyslexia is still a topic of controversy. We investigated the contribution of phonological processing deficits and uncertainty to the word recognition difficulties of dyslexic children by mathematical diffusion modeling of visual and auditory lexical decision data. The first study showed…

  16. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-05-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  17. Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo-Christov Heat Diffusion Theory

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.

    2017-07-01

    Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.

  18. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-03-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  19. Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing

    NASA Astrophysics Data System (ADS)

    Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.

    2017-09-01

    A phenomenological mathematical model of the formation and growth of phases in a binary multiphase system with allowance for factors influencing the process of diffusion in a binary system is presented. It is shown that phases can grow for a certain time at different ratios between diffusion parameters according to a parabolic law that depends on the duration of isothermic annealing. They then slow their growth after successor phases appear at their interface with one component and can completely disappear from a diffusion layer or begin to grow again, but only at a rate slower than during their initial formation. The dependence of the thickness of each phase layer in a multiphase diffusion zone on the duration of isothermic annealing and the ratio between the diffusion parameters in neighboring phases is obtained. It is established that a certain ratio between the phase growth and rates of dissolution with allowance for the coefficients of diffusion in each phase and the periods of incubation can result in the complete disappearance of one phase as early as the onset of the growth of phase nuclei and be interpreted as a process of reaction diffusion.

  20. Mathematical modelling of the uptake and transport of salt in plant roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2013-11-07

    In this paper, we present and discuss a mathematical model of ion uptake and transport in roots of plants. The underlying physical model of transport is based on the mechanisms of forced diffusion and convection. The model can take account of local variations in effective ion and water permeabilities across the major tissue regions of plant roots, represented through a discretized coupled system of governing equations including mass balance, forced diffusion, convection and electric potential. We present simulation results of an exploration of the consequent enormous parameter space. Among our findings we identify the electric potential as a major factor affecting ion transport across, and accumulation in, root tissues. We also find that under conditions of a constant but realistic level of bulk soil salt concentration and plant-soil hydraulic pressure, diffusion plays a significant role even when convection by the water transpiration stream is operating. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  1. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    PubMed

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  2. Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release

    PubMed Central

    Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde

    2016-01-01

    The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138

  3. An Introduction to Biological Modeling Using Coin Flips to Predict the Outcome of a Diffusion Activity

    ERIC Educational Resources Information Center

    Butcher, Greg Q.; Rodriguez, Juan; Chirhart, Scott; Messina, Troy C.

    2016-01-01

    In order to increase students' awareness for and comfort with mathematical modeling of biological processes, and increase their understanding of diffusion, the following lab was developed for use in 100-level, majors/non-majors biology and neuroscience courses. The activity begins with generation of a data set that uses coin-flips to replicate…

  4. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  5. Mathematical modeling of the kinetics of deposition of particles during their pulse introduction through the free surface of a mixed-medium plane layer

    NASA Astrophysics Data System (ADS)

    Boger, A. A.; Ryazhskikh, V. I.; Slyusarev, M. I.

    2012-01-01

    Based on diffusion concepts of transfer of slightly concentrated polydisperse suspensions in the gravity field, we propose a mathematical model of the kinetics of deposition of such suspensions in a plane layer of a homogeneously mixed medium through the free surface of which Stokesian particles penetrate according to the rectangular pulse law.

  6. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium.

    PubMed

    Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T

    2014-11-01

    Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

  7. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    NASA Astrophysics Data System (ADS)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  8. Mathematical Modeling and Optimization Studies on Development of Fuel Cells for Multifarious Applications

    DTIC Science & Technology

    2010-05-12

    multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid

  9. ADP Compartmentation Analysis Reveals Coupling between Pyruvate Kinase and ATPases in Heart Muscle

    PubMed Central

    Sepp, Mervi; Vendelin, Marko; Vija, Heiki; Birkedal, Rikke

    2010-01-01

    Abstract Cardiomyocytes have intracellular diffusion restrictions, which spatially compartmentalize ADP and ATP. However, the models that predict diffusion restrictions have used data sets generated in rat heart permeabilized fibers, where diffusion distances may be heterogeneous. This is avoided by using isolated, permeabilized cardiomyocytes. The aim of this work was to analyze the intracellular diffusion of ATP and ADP in rat permeabilized cardiomyocytes. To do this, we measured respiration rate, ATPase rate, and ADP concentration in the surrounding solution. The data were analyzed using mathematical models that reflect different levels of cell compartmentalization. In agreement with previous studies, we found significant diffusion restriction by the mitochondrial outer membrane and confirmed a functional coupling between mitochondria and a fraction of ATPases in the cell. In addition, our experimental data show that considerable activity of endogenous pyruvate kinase (PK) remains in the cardiomyocytes after permeabilization. A fraction of ATPases were inactive without ATP feedback by this endogenous PK. When analyzing the data, we were able to reproduce the measurements only with the mathematical models that include a tight coupling between the fraction of endogenous PK and ATPases. To our knowledge, this is the first time such a strong coupling of PK to ATPases has been demonstrated in permeabilized cardiomyocytes. PMID:20550890

  10. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  11. A Fractional PDE Approach to Turbulent Mixing; Part II: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen

    2016-11-01

    We propose a generalizing fractional order transport model of advection-diffusion kind with fractional time- and space-derivatives, governing the evolution of passive scalar turbulence. This approach allows one to incorporate the nonlocal and memory effects in the underlying anomalous diffusion i.e., sub-to-standard diffusion to model the trapping of particles inside the eddied, and super-diffusion associated with the sudden jumps of particles from one coherent region to another. For this nonlocal model, we develop a high order numerical (spectral) method in addition to a fast solver, examined in the context of some canonical problems. PhD student, Department of Mechanical Engineering, & Department Computational Mathematics, Science, and Engineering.

  12. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    PubMed

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  13. Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.

    PubMed

    Strohm, S; Tyson, R C; Powell, J A

    2013-10-01

    Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.

  14. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    PubMed

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  16. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  17. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  18. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  19. Mathematical model for steady state, simple ampholyte isoelectric focusing: Development, computer simulation and implementation

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.

    1979-01-01

    The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.

  20. Why Don't All Maths Teachers Use Dynamic Geometry Software in Their Classrooms?

    ERIC Educational Resources Information Center

    Stols, Gerrit; Kriek, Jeanne

    2011-01-01

    In this exploratory study, we sought to examine the influence of mathematics teachers' beliefs on their intended and actual usage of dynamic mathematics software in their classrooms. The theory of planned behaviour (TPB), the technology acceptance model (TAM) and the innovation diffusion theory (IDT) were used to examine the influence of teachers'…

  1. Mathematical Modeling of Ni/H2 and Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; White, Ralph E.; Dougal, Roger A.

    2001-01-01

    The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.

  2. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  3. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    PubMed

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  4. Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Khrennikov, A.

    2017-10-01

    This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

  5. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach.

    PubMed

    Tredenick, Eloise C; Farrell, Troy W; Forster, W Alison; Psaltis, Steven T P

    2017-01-01

    The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.

  6. Nonlinear Porous Diffusion Modeling of Hydrophilic Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach

    PubMed Central

    Tredenick, Eloise C.; Farrell, Troy W.; Forster, W. Alison; Psaltis, Steven T. P.

    2017-01-01

    The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects. PMID:28539930

  7. Controlled release drug delivery via polymeric microspheres: a neat application of the spherical diffusion equation

    NASA Astrophysics Data System (ADS)

    Ormerod, C. S.; Nelson, M.

    2017-11-01

    Various applied mathematics undergraduate skills are demonstrated via an adaptation of Crank's axisymmetric spherical diffusion model. By the introduction of a one-parameter Heaviside initial condition, the pharmaceutically problematic initial mass flux is attenuated. Quantities germane to the pharmaceutical industry are examined and the model is tested with data derived from industry journals. A binomial algorithm for the acceleration of alternating sequences is demonstrated. The model is accompanied by a MAPLE worksheet for further student exploration.

  8. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  9. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  10. Effect of the initial domain on the dispersion dynamics of a diffusing substance

    NASA Astrophysics Data System (ADS)

    Bestuzheva, A. N.; Smirnov, A. L.

    2018-05-01

    The formulation and analysis of ecological problems involves the mathematical modeling, when some assumptions concerning the nature of the processes are introduced. These assumptions must be justified. In the present paper the effect of the form of the initial domain occupied with a diffusing substance on the process of diffusion is studied. It's shown that the form of the initial domain plays unimportant role and it may be modeled as semi-sphere, for which the problem has analytical solution. That solution may serves as the zeroth approximation in modeling of actual ecological problem taking into account the relief of the bottom and the bottom currents.

  11. Microbial mutualism at a distance: The role of geometry in diffusive exchanges

    NASA Astrophysics Data System (ADS)

    Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.

    2018-02-01

    The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.

  12. Preliminary study: Moisture-polymer interaction. Stuby objectives

    NASA Technical Reports Server (NTRS)

    Wen, L. C.

    1985-01-01

    The problems associated with mathematically modeling water-module interaction phenomena, including sorption and desorption, diffusion, and permeation are discussed. With reliable analytical models, an extensive materials data base, and solar radiation surface meteorological observations (SOLMET) weather data, predicting module lifetimes in realistic environments can become a practical reality. The status of the present techniques of simulating the various transport mechanisms was reported. The Dent model (a modified Brunauer-Emmet-Teller) approach represented polyvinyl butyral (PVB) sorption data. A 100-layer material model and Fick's diffusion model gave diffusivity values exhibiting adequate agreement with those measured for PVB. Diffusivity of PVB is concentration dependent, decreasing as the water content in PVB increases. The temperature dependence of diffusion in PVB is well modeled by the Arrhenius rate equation. Equilibrium conductivity and leakage current data are well represented by Hearle's model for bulk ionic conductivity. A nodal network analysis using the Systems Improved Numerical Differencing Analyzer (SINDA) Thermal Analyzer gave reasonable correlation with measurable data. It is concluded that realistic lifetime predictions seem to be feasible.

  13. Characterization, scaling, and partial representation of diffuse and discrete input junctions to CA3 hippocampus.

    PubMed

    Ascarrunz, F G; Kisley, M A; Flach, K A; Hamilton, R W; MacGregor, R J

    1995-07-01

    This paper applies a general mathematical system for characterizing and scaling functional connectivity and information flow across the diffuse (EC) and discrete (DG) input junctions to the CA3 hippocampus. Both gross connectivity and coordinated multiunit informational firing patterns are quantitatively characterized in terms of 32 defining parameters interrelated by 17 equations, and then scaled down according to rules for uniformly proportional scaling and for partial representation. The diffuse EC-CA3 junction is shown to be uniformly scalable with realistic representation of both essential spatiotemporal cooperativity and coordinated firing patterns down to populations of a few hundred neurons. Scaling of the discrete DG-CA3 junction can be effected with a two-step process, which necessarily deviates from uniform proportionality but nonetheless produces a valuable and readily interpretable reduced model, also utilizing a few hundred neurons in the receiving population. Partial representation produces a reduced model of only a portion of the full network where each model neuron corresponds directly to a biological neuron. The mathematical analysis illustrated here shows that although omissions and distortions are inescapable in such an application, satisfactorily complete and accurate models the size of pattern modules are possible. Finally, the mathematical characterization of these junctions generates a theory which sees the DG as a definer of the fine structure of embedded traces in the hippocampus and entire coordinated patterns of sequences of 14-cell links in CA3 as triggered by the firing of sequences of individual neurons in DG.

  14. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    NASA Astrophysics Data System (ADS)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  15. Moving-Boundary Problems Associated with Lyopreservation

    NASA Astrophysics Data System (ADS)

    Gruber, Christopher Andrew

    The work presented in this Dissertation is motivated by research into the preservation of biological specimens by way of vitrification, a technique known as lyopreservation. The operative principle behind lyopreservation is that a glassy material forms as a solution of sugar and water is desiccated. The microstructure of this glass impedes transport within the material, thereby slowing metabolism and effectively halting the aging processes in a biospecimen. This Dissertation is divided into two segments. The first concerns the nature of diffusive transport within a glassy state. Experimental studies suggest that diffusion within a glass is anomalously slow. Scaled Brownian motion (SBM) is proposed as a mathematical model which captures the qualitative features of anomalously slow diffusion while minimizing computational expense. This model is applied to several moving-boundary problems and the results are compared to a more well-established model, fractional anomalous diffusion (FAD). The virtues of SBM are based on the model's relative mathematical simplicity: the governing equation under FAD dynamics involves a fractional derivative operator, which precludes the use of analytical methods in almost all circumstances and also entails great computational expense. In some geometries, SBM allows similarity solutions, though computational methods are generally required. The use of SBM as an approximation to FAD when a system is "nearly classical'' is also explored. The second portion of this Dissertation concerns spin-drying, which is an experimental approach to biopreservation in a laboratory setting. A biospecimen is adhered to a glass wafer and this substrate is covered with sugar solution and rapidly spun on a turntable while water is evaporated from the film surface. The mathematical model for the spin-drying process includes diffusion, viscous fluid flow, and evaporation, among other contributions to the dynamics. Lubrication theory is applied to the model and an expansion in orthogonal polynomials is applied. The resulting system of equations is solved computationally. The influence of various experimental parameters upon the system dynamics is investigated, particularly the role of the spin rate. A convergence study of the solution verifies that the polynomial expansion method yields accurate results.

  16. Risk Assessment of Alzheimer's Disease using the Information Diffusion Model from Structural Magnetic Resonance Imaging.

    PubMed

    Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan

    2016-04-05

    Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.

  17. A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.

    PubMed

    Sciumè, G; Boso, D P; Gray, W G; Cobelli, C; Schrefler, B A

    2014-11-01

    A new computational model, based on the thermodynamically constrained averaging theory, has been recently proposed to predict tumor initiation and proliferation. A similar mathematical approach is proposed here as an aid in diabetic ulcer prevention. The common aspects at the continuum level are the macroscopic balance equations governing the flow of the fluid phase, diffusion of chemical species, tissue mechanics, and some of the constitutive equations. The soft plantar tissue is modeled as a two-phase system: a solid phase consisting of the tissue cells and their extracellular matrix, and a fluid one (interstitial fluid and dissolved chemical species). The solid phase may become necrotic depending on the stress level and on the oxygen availability in the tissue. Actually, in diabetic patients, peripheral vascular disease impacts tissue necrosis; this is considered in the model via the introduction of an effective diffusion coefficient that governs transport of nutrients within the microvasculature. The governing equations of the mathematical model are discretized in space by the finite element method and in time domain using the θ-Wilson Method. While the full mathematical model is developed in this paper, the example is limited to the simulation of several gait cycles of a healthy foot. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.

    PubMed

    Luján, Emmanuel; Soto, Daniela; Rosito, María S; Soba, Alejandro; Guerra, Liliana N; Calvo, Juan C; Marshall, Guillermo; Suárez, Cecilia

    2018-05-09

    Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.

  19. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Mathematical modeling and computer simulation of isoelectric focusing with electrochemically defined ampholytes

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.; Mosher, R. A.; Bier, M.; Saville, D. A.

    1981-01-01

    A mathematical model of isoelectric focusing at the steady state has been developed for an M-component system of electrochemically defined ampholytes. The model is formulated from fundamental principles describing the components' chemical equilibria, mass transfer resulting from diffusion and electromigration, and electroneutrality. The model consists of ordinary differential equations coupled with a system of algebraic equations. The model is implemented on a digital computer using FORTRAN-based simulation software. Computer simulation data are presented for several two-component systems showing the effects of varying the isoelectric points and dissociation constants of the constituents.

  1. Theoretical studies in isoelectric focusing. [mathematical modeling and computer simulation for biologicals purification process

    NASA Technical Reports Server (NTRS)

    Mosher, R. A.; Palusinski, O. A.; Bier, M.

    1982-01-01

    A mathematical model has been developed which describes the steady state in an isoelectric focusing (IEF) system with ampholytes or monovalent buffers. The model is based on the fundamental equations describing the component dissociation equilibria, mass transport due to diffusion and electromigration, electroneutrality, and the conservation of charge. The validity and usefulness of the model has been confirmed by using it to formulate buffer systems in actual laboratory experiments. The model has been recently extended to include the evolution of transient states not only in IEF but also in other modes of electrophoresis.

  2. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

    DOE PAGES

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...

    2015-10-26

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less

  3. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  4. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  5. Diffusion in inhomogeneous polymer membranes

    NASA Astrophysics Data System (ADS)

    Kasargod, Sameer S.; Adib, Farhad; Neogi, P.

    1995-10-01

    The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.

  6. Analysis of forced convective modified Burgers liquid flow considering Cattaneo-Christov double diffusion

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-03-01

    A mathematical model is formulated to characterize the non-Fourier and Fick's double diffusive models of heat and mass in moving flow of modified Burger's liquid. Temperature-dependent conductivity of liquid is taken into account. The concept of stratification is utilized to govern the equations of energy and mass species. The idea of boundary layer theory is employed to obtain the mathematical model of considered physical problem. The obtained partial differential system is converted into ordinary ones with the help of relevant variables. The homotopic concept lead to the convergent solutions of governing expressions. Convergence is attained and acceptable values are certified by expressing the so called ℏ -curves and numerical benchmark. Several graphs are made for different values of physical constraints to explore the mechanism of heat and mass transportation. We explored that the liquid temperature and concentration are retard for the larger thermal/concentration relaxation time constraint.

  7. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas.

    PubMed

    Boujelben, Ahmed; Watson, Michael; McDougall, Steven; Yen, Yi-Fen; Gerstner, Elizabeth R; Catana, Ciprian; Deisboeck, Thomas; Batchelor, Tracy T; Boas, David; Rosen, Bruce; Kalpathy-Cramer, Jayashree; Chaplain, Mark A J

    2016-10-06

    Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.

  8. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  9. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  10. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  11. Simplified mathematical model of losses in a centrifugal compressor stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleznev, K.P.; Galerkin, Yu.B.; Popova, E.Yu.

    1988-05-01

    A mathematical model was developed for optimizing the parameters of the stage which does not require calculation of the flow around grids. The loss coefficients of the stage elements were considered as functions of the flow-through section, the angle of incidence, the compressibility criterion, and the Reynolds number. The relationships were used to calculate losses in all blade components, including blade diffusers, deflectors, and rotors. The model is implemented in a microcomputer and will compute the efficiency of one variant of the flow-through section of a stage in 60 minutes.

  12. Mathematical Modeling of Herpes Simplex Virus Distribution in Solid Tumors: Implications for Cancer Gene Therapy

    PubMed Central

    Mok, Wilson; Stylianopoulos, Triantafyllos; Boucher, Yves; Jain, Rakesh K.

    2010-01-01

    Purpose Although oncolytic viral vectors show promise for the treatment of various cancers, ineffective initial distribution and propagation throughout the tumor mass often limit the therapeutic response. A mathematical model is developed to describe the spread of herpes simplex virus from the initial injection site. Experimental Design The tumor is modeled as a sphere of radius R. The model incorporates reversible binding, interstitial diffusion, viral degradation, and internalization and physiologic parameters. Three species are considered as follows: free interstitial virus, virus bound to cell surfaces, and internalized virus. Results This analysis reveals that both rapid binding and internalization as well as hindered diffusion contain the virus to the initial injection volume, with negligible spread to the surrounding tissue. Unfortunately, increasing the dose to saturate receptors and promote diffusion throughout the tumor is not a viable option: the concentration necessary would likely compromise safety. However, targeted modifications to the virus that decrease the binding affinity have the potential to increase the number of infected cells by 1.5-fold or more. An increase in the effective diffusion coefficient can result in similar gains. Conclusions This analysis suggests criteria by which the potential response of a tumor to oncolytic herpes simplex virus therapy can be assessed. Furthermore, it reveals the potential of modifications to the vector delivery method, physicochemical properties of the virus, and tumor extracellular matrix composition to enhance efficacy. PMID:19318482

  13. Application of an OCT data-based mathematical model of the foveal pit in Parkinson disease.

    PubMed

    Ding, Yin; Spund, Brian; Glazman, Sofya; Shrier, Eric M; Miri, Shahnaz; Selesnick, Ivan; Bodis-Wollner, Ivan

    2014-11-01

    Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.

  14. [Diffusion and diffusion-osmosis models of the charged macromolecule transfer in barriers of biosystems].

    PubMed

    Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V

    2009-01-01

    Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.

  15. Mathematical modeling of the gas extraction from the gas hydrate deposit taking into account the replacement technology

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.; Borodin, S. L.

    2018-03-01

    In the work on the basis of methods and equations of mechanics of multiphase systems the mathematical model of the process of carbon dioxide burial in the reservoir saturated with methane hydrate is proposed. Estimates are obtained that allow for this problem to neglect diffusion mixing of carbon dioxide and methane. The features of the process of methane displacement from CH4 hydrate by filling them with carbon dioxide are studied.

  16. On an instability exhibited by the ballistic-diffusive heat conduction model of Xu and Hu

    DOE PAGES

    Christov, I. C.; Jordan, P. M.

    2013-11-13

    We show that the constitutive relation for the thermal flux proposed by Xu & Hu (2011) admits an unconditional instability. We also highlight the difference between mathematical models containing delay and those that include relaxation effects.

  17. A review on symmetries for certain Aedes aegypti models

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2015-04-01

    We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.

  18. A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL

    PubMed Central

    LEE, CHANYOUNG; RICHTSMEIER, JOAN T.; KRAFT, REUBEN H.

    2017-01-01

    Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing’s reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures. PMID:29225392

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.; Maggs, James E.

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less

  20. Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion

    NASA Astrophysics Data System (ADS)

    Sposini, Vittoria; Chechkin, Aleksei V.; Seno, Flavio; Pagnini, Gianni; Metzler, Ralf

    2018-04-01

    A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

  1. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  2. A Spatio-Temporal Model of Notch Signalling in the Zebrafish Segmentation Clock: Conditions for Synchronised Oscillatory Dynamics

    PubMed Central

    Terry, Alan J.; Sturrock, Marc; Dale, J. Kim; Maroto, Miguel; Chaplain, Mark A. J.

    2011-01-01

    In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes. PMID:21386903

  3. A spatio-temporal model of Notch signalling in the zebrafish segmentation clock: conditions for synchronised oscillatory dynamics.

    PubMed

    Terry, Alan J; Sturrock, Marc; Dale, J Kim; Maroto, Miguel; Chaplain, Mark A J

    2011-02-28

    In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explicitly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.

  4. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  5. Landsat test of diffuse reflectance models for aquatic suspended solids measurement

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Alfoldi, T. T.

    1979-01-01

    Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.

  6. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    EPA Science Inventory

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  7. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviationsmore » of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.« less

  9. The Dynamics of Drug Resistance: A Mathematical Perspective

    PubMed Central

    Lavi, Orit; Gottesman, Michael M.; Levy, Doron

    2012-01-01

    Resistance to chemotherapy is a key impediment to successful cancer treatment that has been intensively studied for the last three decades. Several central mechanisms have been identified as contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Mathematical models of drug resistance have dealt with many of the known aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic resistance that is therapy independent, therapy-dependent cellular alterations including induced resistance (dose-dependent) and acquired resistance (dose-independent). In addition, there are mathematical models that take into account the kinetic/phase resistance, and models that investigate intra-cellular mechanisms based on specific biological functions (such as ABC transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have been mathematically studied, and explains how, from a methodological perspective, mathematics can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis, and demonstrate how mathematics can be used in combination with other experimental and clinical tools. We emphasize the potential benefits of integrating analytical and mathematical methods into future clinical and experimental studies of drug resistance. PMID:22387162

  10. Possibility of increasing the fire-suppression efficiency of the foam in automatic extinguishing installations

    NASA Astrophysics Data System (ADS)

    Kachanov, I. V.; Veremenyuk, V. V.; Karpenchuk, I. V.; Pavlyukov, S. Yu.

    2013-05-01

    The mechanics of movement of a liquid in the diffuser of the injector of an automatic extinguishing installation with preaeration of the fire-fighting substance was theoretically investigated. An integral solution of the equation for movement of the preaerated fire-fighting gas-liquid mixture in the indicated diffuser has been obtained. A mathematical model of two-phase liquid flow in this diffuser, which allows one to calculate the distribution of the average pressure in the diffuser along its length and to determine the loss in this pressure, has been developed. This model can be used for designing the output region of a hydraulic system with a hydrodynamic drag providing the operation of its injector in a definite regime.

  11. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  12. Heterogeneous continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  13. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    PubMed Central

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  14. Fractional derivatives in the diffusion process in heterogeneous systems: The case of transdermal patches.

    PubMed

    Caputo, Michele; Cametti, Cesare

    2017-09-01

    In this note, we present a simple mathematical model of drug delivery through transdermal patches by introducing a memory formalism in the classical Fick diffusion equation based on the fractional derivative. This approach is developed in the case of a medicated adhesive patch placed on the skin to deliver a time released dose of medication through the skin towards the bloodstream.The main resistance to drug transport across the skin resides in the diffusion through its outermost layer (the stratum corneum). Due to the complicated architecture of this region, a model based on a constant diffusivity in a steady-state condition results in too simplistic assumptions and more refined models are required.The introduction of a memory formalism in the diffusion process, where diffusion parameters depend at a certain time or position on what happens at preceeding times, meets this requirement and allows a significantly better description of the experimental results.The present model may be useful not only for analyzing the rate of skin permeation but also for predicting the drug concentration after transdermal drug delivery depending on the diffusion characteristics of the patch (its thickness and pseudo-diffusion coefficient). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Fisher-KPP problem with doubly nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Audrito, Alessandro; Vázquez, Juan Luis

    2017-12-01

    The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical KPP reaction term, and appears in a number of relevant applications in biology and chemistry. It is remarkable as a mathematical model since it possesses a family of travelling waves that describe the asymptotic behaviour of a large class solutions 0 ≤ u (x , t) ≤ 1 of the problem posed in the real line. The existence of propagation waves with finite speed has been confirmed in some related models and disproved in others. We investigate here the corresponding theory when the linear diffusion is replaced by the "slow" doubly nonlinear diffusion and we find travelling waves that represent the wave propagation of more general solutions even when we extend the study to several space dimensions. A similar study is performed in the critical case that we call "pseudo-linear", i.e., when the operator is still nonlinear but has homogeneity one. With respect to the classical model and the "pseudo-linear" case, the "slow" travelling waves exhibit free boundaries.

  16. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  17. Dependence of growth of the phases of multiphase binary systems on the diffusion parameters

    NASA Astrophysics Data System (ADS)

    Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.

    2017-12-01

    A mathematical model of the diffusion interaction of a binary system with several phases on the equilibrium phase diagram is presented. The theoretical and calculated dependences of the layer thickness of each phase in the multiphase diffusion zone on the isothermal annealing time and the ratio of the diffusion parameters in the neighboring phases with an unlimited supply of both components were constructed. The phase formation and growth in the diffusion zone during "reactive" diffusion corresponds to the equilibrium state diagram for two components, and the order of their appearance in the diffusion zone depends only on the ratio of the diffusion parameters in the phases themselves and on the duration of the incubation periods. The dependence of phase appearance on the incubation periods, annealing time, and difference in the movement rates of the components across the interface boundaries was obtained. An example of the application of the model for processing the experimental data on phase growth in a two-component three-phase system was given.

  18. Active compound diffusivity of particle size reduced S. aromaticum and C. cassia fused starch edible films and the shelf life of mutton (Capra aegagrus hircus) meat.

    PubMed

    Chandra Mohan, C; Radha Krishnan, K; Babuskin, S; Sudharsan, K; Aafrin, Vajiha; Lalitha Priya, U; Mariyajenita, P; Harini, K; Madhushalini, D; Sukumar, M

    2017-06-01

    In the present study, mathematical models were used to examine the effect of active compound diffusion from edible film (supplemented with S. aromaticum and C. cassia) on the microbial, physical and chemical quality of mutton stored at 4 and 10°C. Cinnamaldehyde and eugenol release from edible film into liquid was found to be 80% and 75% of the equilibrium concentration. Active compound release into meat was 42-51% for cinnamaldehyde and 38-48% for eugenol, in storage temperatures of 4-15°C. Developed mathematical models showed the diffusivity of cinnamaldehyde (0.45×10 -15 ±0.04×10 -15 ) and eugenol (0.63×10 -10 ±0.01×10 -10 ) into meat, which was about 40% of that in liquid medium. On comparing physical, chemical and microbial results, shelf life of mutton meat was found to be increased by 1week at storage temperature of 10°C and 3weeks at storage temperature of 4°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  20. Lithium manganese oxide spinel electrodes

    NASA Astrophysics Data System (ADS)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The results compared favorably with those available in the literature. Dynamic Monte Carlo simulations were conducted to investigate the concentration dependence of the diffusion coefficient fundamentally. The dynamic Monte Carlo predictions compare favorably with the experimental data.

  1. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    NASA Technical Reports Server (NTRS)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  2. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  3. Application of mathematical modeling in sustained release delivery systems.

    PubMed

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  4. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE*

    PubMed Central

    MIKUCKI, MICHAEL; ZHOU, Y. C.

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization. PMID:29056778

  5. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.

    PubMed

    Wang, J; Flanagan, D R

    1999-07-01

    Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.

  6. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    PubMed

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  7. The Effect of Moisture on Carbon Fiber Reinforced Epoxy Composites. 1. Diffusion

    DTIC Science & Technology

    1976-09-27

    II i NSWC/WOL/’r 76-7 0 00 WHITE OAK LABORATORY THE EFFECT OF MOISTURE ON CARBON FIBER REINFORCED EPOXY COMPOSITES I DIFFUSION 0 BY Joseph M. AugI 27...Effect of Moisture on Carbon Fiber’ Reinorcd EoxyComposites. onZI j , l Joseph M./Augll - lan E./egr ,. E RORMING ORGANIZATION NAME AND ADDRESS 10...Diffusion Carbon fiber composite* 20. A bf AACT (Ceedhlua on rverse side it meosemp &W idmtl’ 5 bl eek mmbeet) Mathematical models are suggested for

  8. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOEpatents

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  9. Numerical investigations of hybrid rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  10. Pepsin diffusion in dairy gels depends on casein concentration and microstructure.

    PubMed

    Thévenot, J; Cauty, C; Legland, D; Dupont, D; Floury, J

    2017-05-15

    Fundamental knowledge of gastric digestion had only focused on acid diffusion from the gastric fluid, but no data are available for pepsin diffusion. Using fluorescence recovery after photobleaching technique, diffusion coefficients D of fluorescein isothiocyanate (FITC)-pepsin were measured in rennet gels across a range of casein concentrations allowing to form networks of protein aggregates with different structures. To investigate the microstructural parameters of native gels, electron microscopy image analysis were performed and qualitatively related to diffusion behavior of FITC-pepsin in these dairy gels. This study is the first report on quantification of pepsin diffusion in dairy product. Pepsin diffusion in rennet gels depends on casein concentration and microstructure. Models of polymer science can be used to assess D in dairy gel. Such data should be confronted with pepsin activity in acidic environment, and will be very useful as input parameters in mathematical models of food degradation in the human stomach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins.

    PubMed

    Kong, Muwen; Van Houten, Bennett

    2017-08-01

    Since Robert Brown's first observations of random walks by pollen particles suspended in solution, the concept of diffusion has been subject to countless theoretical and experimental studies in diverse fields from finance and social sciences, to physics and biology. Diffusive transport of macromolecules in cells is intimately linked to essential cellular functions including nutrient uptake, signal transduction, gene expression, as well as DNA replication and repair. Advancement in experimental techniques has allowed precise measurements of these diffusion processes. Mathematical and physical descriptions and computer simulations have been applied to model complicated biological systems in which anomalous diffusion, in addition to simple Brownian motion, was observed. The purpose of this review is to provide an overview of the major physical models of anomalous diffusion and corresponding experimental evidence on the target search problem faced by DNA-binding proteins, with an emphasis on DNA repair proteins and the role of anomalous diffusion in DNA target recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers

    PubMed Central

    Ramay, Hena R.; Vendelin, Marko

    2009-01-01

    Abstract Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions. PMID:19619458

  13. The fractional diffusion limit of a kinetic model with biochemical pathway

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Sun, Weiran; Tang, Min

    2018-06-01

    Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

  14. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  15. Removal of chlorine from Illinois coal by high-temperature leaching: Final report, March 1--December 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Han Lin

    1988-03-01

    The objectives of this research are to: (1) conduct experimental investigations of the removal of chlorine from coal by high- temperature leaching; (2) identify important factors affecting the chlorine removal process; (3) understand the mechanisms involved; and (4) develop a mathematical model to describe the process. A generalized mathematical model based on diffusion and relaxation has been developed for water leaching of chlorine from coal. The model has been fitted to four different samples of Illinois No. 6 coal: C22175, C22651, C8601, and C8602. The weight percent of chlorine ranged from 0.42 to 0.82. The experimental data on these samplesmore » covered a temperature range of 297 to 370K and a particle size range of 60 to 325 mesh. Based on the type of coal and the conditions of leaching, it was found that 40 to 80% of the original chlorine could be leached from the coal matrix. The model based on diffusion-relaxation concept predicted the leaching data within +-5% average absolute deviation. The diffusion rate constants at different temperatures were correlated to Arrhenius type relations. Attempts made to correlate the constants in the Arrhenius equations with the chlorine content in coal and with particle size have been discussed. The water leaching data were used to extract Fickian diffusivities based on the time required for 50% desorption. The calculated diffusivity values ranged from 0.6 to 3 /times/ 10/sup /minus/11/ cm/sup 2//sec. The effect of chemical additives on the rate of leaching has also been studied. Both HNO/sub 3/ and NH/sub 4/OH were used as additives. 28 refs., 3 figs., 7 tabs.« less

  16. Simulating the evolution of non-point source pollutants in a shallow water environment.

    PubMed

    Yan, Min; Kahawita, Rene

    2007-03-01

    Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.

  17. Age-related apparent diffusion coefficient changes in the normal brain.

    PubMed

    Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán

    2013-02-01

    To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.

  18. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    PubMed

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. Copyright © 2016. Published by Elsevier Ltd.

  19. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling.

    PubMed

    Sims, Lee B; Frieboes, Hermann B; Steinbach-Rankins, Jill M

    2018-01-01

    A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date - whereby transport parameters are determined, extrapolated, and validated - is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.

  20. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  1. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.

  2. A model for the compositions of non-stoichiometric intermediate phases formed by diffusion reactions, and its application to Nb 3Sn superconductors

    DOE PAGES

    Xu, X.; Sumption, M. D.

    2016-01-12

    In this work we explore the compositions of non-stoichiometric intermediate phases formed by diffusion reactions: a mathematical framework is developed and tested against the specific case of Nb 3Sn superconductors. In the first part, the governing equations for the bulk diffusion and interphase interface reactions during the growth of a compound are derived, numerical solutions to which give both the composition profile and growth rate of the compound layer. The analytic solutions are obtained with certain approximations made. In the second part, we explain an effect that the composition characteristics of compounds can be quite different depending on whether itmore » is the bulk diffusion or grain boundary diffusion that dominates in the compounds, and that “frozen” bulk diffusion leads to unique composition characteristics that the bulk composition of a compound layer remains unchanged after its initial formation instead of varying with the diffusion reaction system; here the model is modified for the case of grain boundary diffusion. Lastly, we apply this model to the Nb 3Sn superconductors and propose approaches to control their compositions.« less

  3. Exits in order: How crowding affects particle lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penington, Catherine J.; Simpson, Matthew J.; Baker, Ruth E.

    2016-06-28

    Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents inmore » a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.« less

  4. HIGH-TEMPERATURE, SHORT-TIME SULFATION OF CALCIUM- BASED SORBENTS. 1. THEORETICAL SULFATION MODEL

    EPA Science Inventory

    A mathematical model for the sulfation of CaO is developed around the overlapping grain concept. The potential influence of high mass-transfer rates from simultaneous calcination of CaCO3 or Ca(OH)2 is incorporated in the mass-transfer coefficient for SO2 diffusion to the partic...

  5. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  6. A Diffusion Model for Two-sided Service Systems

    NASA Astrophysics Data System (ADS)

    Homma, Koichi; Yano, Koujin; Funabashi, Motohisa

    A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.

  7. Modeling the Role of Incisures in Vertebrate Phototransduction

    PubMed Central

    Caruso, Giovanni; Bisegna, Paolo; Shen, Lixin; Andreucci, Daniele; Hamm, Heidi E.; DiBenedetto, Emmanuele

    2006-01-01

    Phototransduction is mediated by a G-protein-coupled receptor-mediated cascade, activated by light and localized to rod outer segment (ROS) disk membranes, which, in turn, drives a diffusion process of the second messengers cGMP and Ca2+ in the ROS cytosol. This process is hindered by disks—which, however, bear physical cracks, known as incisures, believed to favor the longitudinal diffusion of cGMP and Ca2+. This article is aimed at highlighting the biophysical functional role and significance of incisures, and their effect on the local and global response of the photocurrent. Previous work on this topic regarded the ROS as well stirred in the radial variables, lumped the diffusion mechanism on the longitudinal axis of the ROS, and replaced the cytosolic diffusion coefficients by effective ones, accounting for incisures through their total patent area only. The fully spatially resolved model recently published by our group is a natural tool to take into account other significant details of incisures, including their geometry and distribution. Using mathematical theories of homogenization and concentrated capacity, it is shown here that the complex diffusion process undergone by the second messengers cGMP and Ca2+ in the ROS bearing incisures can be modeled by a family of two-dimensional diffusion processes on the ROS cross sections, glued together by other two-dimensional diffusion processes, accounting for diffusion in the ROS outer shell and in the bladelike regions comprised by the stack of incisures. Based on this mathematical model, a code has been written, capable of incorporating an arbitrary number of incisures and activation sites, with any given arbitrary distribution within the ROS. The code is aimed at being an operational tool to perform numerical experiments of phototransduction, in rods with incisures of different geometry and structure, under a wide spectrum of operating conditions. The simulation results show that incisures have a dual biophysical function. On the one hand, since incisures line up from disk to disk, they create vertical cytoplasmic channels crossing the disks, thus facilitating diffusion of second messengers; on the other hand, at least in those species bearing multiple incisures, they divide the disks into lobes like the petals of a flower, thus confining the diffusion of activated phosphodiesterase and localizing the photon response. Accordingly, not only the total area of incisures, but their geometrical shape and distribution as well, significantly influence the global photoresponse. PMID:16714347

  8. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  9. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  10. Taguchi method for partial differential equations with application in tumor growth.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  11. Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis.

    PubMed

    Wang, Zhi-Wu; Hamilton-Brehm, Scott D; Lochner, Adriane; Elkins, James G; Morrell-Falvey, Jennifer L

    2011-02-01

    In this study, a hydrolysate diffusion and utilization model was developed to examine factors influencing cellulolytic biofilm morphology. Model simulations using Caldicellulosiruptor obsidiansis revealed that the cellulolytic biofilm needs to generate more hydrolysate than it consumes to establish a higher than bulk solution intra-biofilm substrate concentration to support its growth. This produces a hydrolysate surplus that diffuses through the thin biofilm structure into the bulk solution, which gives rise to a uniform growth rate and hence the homogeneous morphology of the cellulolytic biofilm. Model predictions were tested against experimental data from a cellulose-fermenting bioreactor and the results were consistent with the model prediction and indicated that only a small fraction (10-12%) of the soluble hydrolysis products are utilized by the biofilm. The factors determining the rate-limiting step of cellulolytic biofilm growth are also analyzed and discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  13. Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs.

    PubMed

    Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto

    2016-01-01

    The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.

  14. A method to investigate the diffusion properties of nuclear calcium.

    PubMed

    Queisser, Gillian; Wittum, Gabriel

    2011-10-01

    Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.

  15. Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain

    NASA Astrophysics Data System (ADS)

    Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa

    2017-10-01

    Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.

  16. Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program

    NASA Technical Reports Server (NTRS)

    Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.

    1982-01-01

    The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646.

  17. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    PubMed

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Mathematical Model of the Processes of Heat and Mass Transfer and Diffusion of the Magnetic Field in an Induction Furnace

    NASA Astrophysics Data System (ADS)

    Perminov, A. V.; Nikulin, I. L.

    2016-03-01

    We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.

  19. Diffuse charge dynamics in ionic thermoelectrochemical systems.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1/Dκ^{2}, where D is the Brownian diffusion coefficient of both ion species, and κ^{-1} is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L^{2}/D, where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.

  20. Diffuse charge dynamics in ionic thermoelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2017-08-01

    Thermoelectrics are increasingly being studied as promising electrical generators in the ongoing search for alternative energy sources. In particular, recent experimental work has examined thermoelectric materials containing ionic charge carriers; however, the majority of mathematical modeling has been focused on their steady-state behavior. Here, we determine the time scales over which the diffuse charge dynamics in ionic thermoelectrochemical systems occur by analyzing the simplest model thermoelectric cell: a binary electrolyte between two parallel, blocking electrodes. We consider the application of a temperature gradient across the device while the electrodes remain electrically isolated from each other. This results in a net voltage, called the thermovoltage, via the Seebeck effect. At the same time, the Soret effect results in migration of the ions toward the cold electrode. The charge dynamics are described mathematically by the Poisson-Nernst-Planck equations for dilute solutions, in which the ion flux is driven by electromigration, Brownian diffusion, and thermal diffusion under a temperature gradient. The temperature evolves according to the heat equation. This nonlinear set of equations is linearized in the (experimentally relevant) limit of a "weak" temperature gradient. From this, we show that the time scale on which the thermovoltage develops is the Debye time, 1 /D κ2 , where D is the Brownian diffusion coefficient of both ion species, and κ-1 is the Debye length. However, the concentration gradient due to the Soret effect develops on the bulk diffusion time, L2/D , where L is the distance between the electrodes. For thin diffuse layers, which is the condition under which most real devices operate, the Debye time is orders of magnitude less than the diffusion time. Therefore, rather surprisingly, the majority of ion motion occurs after the steady thermovoltage has developed. Moreover, the dynamics are independent of the thermal diffusion coefficients, which simply set the magnitude of the steady-state thermovoltage.

  1. Generalized mathematical-computational-electronic model of MPTP- induced Parkinsonism

    NASA Astrophysics Data System (ADS)

    Jaramillo Raquejo, Daniela

    2013-05-01

    The substance 1-methyl-4-phenyl-1, 2, 3, 6 tetrahy dropyridine (MPTP) has been studied as a major cause of neurodegeneration dopaminica, which is specifically related to Parkinson's disease. The analysis is in terms of the diffusion of the substance to the mammalian brain, by evaluating the diffusion equation in a spherical coordinate system, being η (collective diffusion term) spatially modulated. Although the progress of the disease with respect to time has not been established with certainty, an attempt to find a stable pattern of the concentration of MPTP and its effects has been made.

  2. A reaction-diffusion model of CO2 influx into an oocyte

    PubMed Central

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  3. Advanced Multi-Physics (AMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby

    2012-06-01

    The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.

  4. POWER AND THERMAL TECHNOLOGIES FOR AIR AND SPACE-SCIENTIFIC RESEARCH PROGRAM Delivery Order 0018: Single Ion Conducting Solid-State Lithium Electrochemical Technologies (Task 4)

    DTIC Science & Technology

    2010-08-01

    a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active

  5. A Diffusion Model Analysis of Magnitude Comparison in Children with and without Dyscalculia: Care of Response and Ability Are Related to Both Mathematical Achievement and Stimuli.

    PubMed

    Szardenings, Carsten; Kuhn, Jörg-Tobias; Ranger, Jochen; Holling, Heinz

    2017-01-01

    The respective roles of the approximate number system (ANS) and an access deficit (AD) in developmental dyscalculia (DD) are not well-known. Most studies rely on response times (RTs) or accuracy (error rates) separately. We analyzed the results of two samples of elementary school children in symbolic magnitude comparison (MC) and non-symbolic MC using a diffusion model. This approach uses the joint distribution of both RTs and accuracy in order to synthesize measures closer to ability and response caution or response conservatism. The latter can be understood in the context of the speed-accuracy tradeoff: It expresses how much a subject trades in speed for improved accuracy. We found significant effects of DD on both ability (negative) and response caution (positive) in MC tasks and a negative interaction of DD with symbolic task material on ability. These results support that DD subjects suffer from both an impaired ANS and an AD and in particular support that slower RTs of children with DD are indeed related to impaired processing of numerical information. An interaction effect of symbolic task material and DD (low mathematical ability) on response caution could not be refuted. However, in a sample more representative of the general population we found a negative association of mathematical ability and response caution in symbolic but not in non-symbolic task material. The observed differences in response behavior highlight the importance of accounting for response caution in the analysis of MC tasks. The results as a whole present a good example of the benefits of a diffusion model analysis.

  6. A Diffusion Model Analysis of Magnitude Comparison in Children with and without Dyscalculia: Care of Response and Ability Are Related to Both Mathematical Achievement and Stimuli

    PubMed Central

    Szardenings, Carsten; Kuhn, Jörg-Tobias; Ranger, Jochen; Holling, Heinz

    2018-01-01

    The respective roles of the approximate number system (ANS) and an access deficit (AD) in developmental dyscalculia (DD) are not well-known. Most studies rely on response times (RTs) or accuracy (error rates) separately. We analyzed the results of two samples of elementary school children in symbolic magnitude comparison (MC) and non-symbolic MC using a diffusion model. This approach uses the joint distribution of both RTs and accuracy in order to synthesize measures closer to ability and response caution or response conservatism. The latter can be understood in the context of the speed-accuracy tradeoff: It expresses how much a subject trades in speed for improved accuracy. We found significant effects of DD on both ability (negative) and response caution (positive) in MC tasks and a negative interaction of DD with symbolic task material on ability. These results support that DD subjects suffer from both an impaired ANS and an AD and in particular support that slower RTs of children with DD are indeed related to impaired processing of numerical information. An interaction effect of symbolic task material and DD (low mathematical ability) on response caution could not be refuted. However, in a sample more representative of the general population we found a negative association of mathematical ability and response caution in symbolic but not in non-symbolic task material. The observed differences in response behavior highlight the importance of accounting for response caution in the analysis of MC tasks. The results as a whole present a good example of the benefits of a diffusion model analysis. PMID:29379450

  7. Diffuse sorption modeling.

    PubMed

    Pivovarov, Sergey

    2009-04-01

    This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.

  8. A mathematical modeling method for determination of local vibroacoustic characteristics of structures

    NASA Technical Reports Server (NTRS)

    Tartakovskiy, B. D.; Dubner, A. B.

    1973-01-01

    A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.

  9. Mathematical Description Development of Reactions of Metallic Gallium Using Kinetic Block Diagram

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. A.; Soboleva, V. G.; Filatova, E. G.

    2018-05-01

    A kinetic block diagram based on a logical sequence of actions in the mathematical processing of a kinetic data is used. A type of reactions of metallic gallium in hydrochloric acid solutions is determined. It has been established that the reactions of the formation of gallium oxide and its salts proceed independently and in the absence of the diffusion resistance. Kinetic models connecting the constants of the reaction rate with the activation energy and describing the evolution of the process are obtained.

  10. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.

    PubMed

    Payvandi, S; Daly, K R; Jones, D L; Talboys, P; Zygalakis, K C; Roose, T

    2014-03-01

    At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios.

  11. Neonatal MRI is associated with future cognition and academic achievement in preterm children

    PubMed Central

    Spencer-Smith, Megan; Thompson, Deanne K.; Doyle, Lex W.; Inder, Terrie E.; Anderson, Peter J.; Klingberg, Torkel

    2015-01-01

    School-age children born preterm are particularly at risk for low mathematical achievement, associated with reduced working memory and number skills. Early identification of preterm children at risk for future impairments using brain markers might assist in referral for early intervention. This study aimed to examine the use of neonatal magnetic resonance imaging measures derived from automated methods (Jacobian maps from deformation-based morphometry; fractional anisotropy maps from diffusion tensor images) to predict skills important for mathematical achievement (working memory, early mathematical skills) at 5 and 7 years in a cohort of preterm children using both univariable (general linear model) and multivariable models (support vector regression). Participants were preterm children born <30 weeks’ gestational age and healthy control children born ≥37 weeks’ gestational age at the Royal Women’s Hospital in Melbourne, Australia between July 2001 and December 2003 and recruited into a prospective longitudinal cohort study. At term-equivalent age ( ±2 weeks) 224 preterm and 46 control infants were recruited for magnetic resonance imaging. Working memory and early mathematics skills were assessed at 5 years (n = 195 preterm; n = 40 controls) and 7 years (n = 197 preterm; n = 43 controls). In the preterm group, results identified localized regions around the insula and putamen in the neonatal Jacobian map that were positively associated with early mathematics at 5 and 7 years (both P < 0.05), even after covarying for important perinatal clinical factors using general linear model but not support vector regression. The neonatal Jacobian map showed the same trend for association with working memory at 7 years (models ranging from P = 0.07 to P = 0.05). Neonatal fractional anisotropy was positively associated with working memory and early mathematics at 5 years (both P < 0.001) even after covarying for clinical factors using support vector regression but not general linear model. These significant relationships were not observed in the control group. In summary, we identified, in the preterm brain, regions around the insula and putamen using neonatal deformation-based morphometry, and brain microstructural organization using neonatal diffusion tensor imaging, associated with skills important for childhood mathematical achievement. Results contribute to the growing evidence for the clinical utility of neonatal magnetic resonance imaging for early identification of preterm infants at risk for childhood cognitive and academic impairment. PMID:26329284

  12. Iontophoretic transdermal drug delivery: a multi-layered approach.

    PubMed

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  13. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2018-05-01

    In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.

  14. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    NASA Astrophysics Data System (ADS)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  15. A novel mathematical model considering change of diffusion coefficient for predicting dissolution behavior of acetaminophen from wax matrix dosage form.

    PubMed

    Nitanai, Yuta; Agata, Yasuyoshi; Iwao, Yasunori; Itai, Shigeru

    2012-05-30

    From wax matrix dosage forms, drug and water-soluble polymer are released into the external solvent over time. As a consequence, the pore volume inside the wax matrix particles is increased and the diffusion coefficient of the drug is altered. In the present study, we attempted to derive a novel empirical mathematical model, namely, a time-dependent diffusivity (TDD) model, that assumes the change in the drug's diffusion coefficient can be used to predict the drug release from spherical wax matrix particles. Wax matrix particles were prepared by using acetaminophen (APAP), a model drug; glyceryl monostearate (GM), a wax base; and aminoalkyl methacrylate copolymer E (AMCE), a functional polymer that dissolves below pH 5.0 and swells over pH 5.0. A three-factor, three-level (3(3)) Box-Behnken design was used to evaluate the effects of several of the variables in the model formulation, and the release of APAP from wax matrix particles was evaluated by the paddle method at pH 4.0 and pH 6.5. When comparing the goodness of fit to the experimental data between the proposed TDD model and the conventional pure diffusion model, a better correspondence was observed for the TDD model in all cases. Multiple regression analysis revealed that an increase in AMCE loading enhanced the diffusion coefficient with time, and that this increase also had a significant effect on drug release behavior. Furthermore, from the results of the multiple regression analysis, a formulation with desired drug release behavior was found to satisfy the criteria of the bitter taste masking of APAP without lowering the bioavailability. That is to say, the amount of APAP released remains below 15% for 10 min at pH 6.5 and exceeds 90% within 30 min at pH 4.0. The predicted formulation was 15% APAP loading, 8.25% AMCE loading, and 400 μm mean particle diameter. When wax matrix dosage forms were prepared accordingly, the predicted drug release behavior agreed well with experimental values at each pH level. Therefore, the proposed model is feasible as a useful tool for predicting drug release behavior, as well as for designing the formulation of wax matrix dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. New product forecasting with limited or no data

    NASA Astrophysics Data System (ADS)

    Ismai, Zuhaimy; Abu, Noratikah; Sufahani, Suliadi

    2016-10-01

    In the real world, forecasts would always be based on historical data with the assumption that the behaviour be the same for the future. But how do we forecast when there is no such data available? New product or new technologies normally has limited amount of data available. Knowing that forecasting is valuable for decision making, this paper presents forecasting of new product or new technologies using aggregate diffusion models and modified Bass Model. A newly launched Proton car and its penetration was chosen to demonstrate the possibility of forecasting sales demand where there is limited or no data available. The model was developed to forecast diffusion of new vehicle or an innovation in the Malaysian society. It is to represent the level of spread on the new vehicle among a given set of the society in terms of a simple mathematical function that elapsed since the introduction of the new product. This model will forecast the car sales volume. A procedure of the proposed diffusion model was designed and the parameters were estimated. Results obtained by applying the proposed diffusion model and numerical calculation shows that the model is robust and effective for forecasting demand of the new vehicle. The results reveal that newly developed modified Bass diffusion of demand function has significantly contributed for forecasting the diffusion of new Proton car or new product.

  17. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    EPA Science Inventory

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  18. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less

  19. Mathematically guided approaches to distinguish models of periodic patterning

    PubMed Central

    Hiscock, Tom W.; Megason, Sean G.

    2015-01-01

    How periodic patterns are generated is an open question. A number of mechanisms have been proposed – most famously, Turing's reaction-diffusion model. However, many theoretical and experimental studies focus on the Turing mechanism while ignoring other possible mechanisms. Here, we use a general model of periodic patterning to show that different types of mechanism (molecular, cellular, mechanical) can generate qualitatively similar final patterns. Observation of final patterns is therefore not sufficient to favour one mechanism over others. However, we propose that a mathematical approach can help to guide the design of experiments that can distinguish between different mechanisms, and illustrate the potential value of this approach with specific biological examples. PMID:25605777

  20. Is pigment patterning in fish skin determined by the Turing mechanism?

    PubMed

    Watanabe, Masakatsu; Kondo, Shigeru

    2015-02-01

    More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of 'local activation and long-range inhibition', a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Arbitrary-order corrections for finite-time drift and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Anteneodo, C.; Riera, R.

    2009-09-01

    We address a standard class of diffusion processes with linear drift and quadratic diffusion coefficients. These contributions to dynamic equations can be directly drawn from data time series. However, real data are constrained to finite sampling rates and therefore it is crucial to establish a suitable mathematical description of the required finite-time corrections. Based on Itô-Taylor expansions, we present the exact corrections to the finite-time drift and diffusion coefficients. These results allow to reconstruct the real hidden coefficients from the empirical estimates. We also derive higher-order finite-time expressions for the third and fourth conditional moments that furnish extra theoretical checks for this class of diffusion models. The analytical predictions are compared with the numerical outcomes of representative artificial time series.

  2. Thermal diffusivity and adiabatic limit temperature characterization of consolidate granular expanded perlite using the flash method

    NASA Astrophysics Data System (ADS)

    Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula

    2017-07-01

    In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.

  3. Invariant characteristics of self-organization modes in Belousov reaction modeling

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Goryunov, V. E.; Kolesov, A. Yu

    2018-01-01

    We consider the problem of mathematical modeling of oxidation-reduction oscillatory chemical reactions based on the mechanism of Belousov reaction. The process of the main components interaction in such reaction can be interpreted by a phenomenologically similar to it “predator-prey” model. Thereby, we consider a parabolic boundary value problem consisting of three Volterra-type equations, which is a mathematical model of this reaction. We carry out a local study of the neighborhood of the system’s non-trivial equilibrium state and construct the normal form of the considering system. Finally, we do a numerical analysis of the coexisting chaotic oscillatory modes of the boundary value problem in a flat area, which have different nature and occur as the diffusion coefficient decreases.

  4. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    PubMed

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Mathematical Development of the Spill Assessment Model (SAM) for Hydrazine and Similar Acting Materials in Water Bodies.

    DTIC Science & Technology

    1980-02-01

    migration of the chemical mass in the fluid volume according to two entirely different means, yet governed by the same form of the equation: molecular ...pressure or temperature gradients, gravitational or other body forces, or bulk fluid motion, is observed as molecular diffusion. In general, the...need be made at this stage as to whether the diffusion of a released mass in the fluid is molecular or turbulent in nature. The general form of the one

  6. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis

    DTIC Science & Technology

    2015-08-13

    is due to Reiman [36] who considered the case where the arrivals and services are mutually independent renewal processes with square integrable summands...to a reflected diffusion process with drift and diffusion coefficients that depend on the state of the process. In models considered in works of Reiman ...the infinity Laplacian. Jour. AMS, to appear [36] M. I. Reiman . Open queueing networks in heavy traffic. Mathematics of Operations Research, 9(3): 441

  7. Spatial modeling of cell signaling networks.

    PubMed

    Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M

    2012-01-01

    The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. ELECTROCHEMICAL CHROMIC ACID REGENERATION PROCESS: FITTING OF MEMBRANE TRANSPORT PROPERTIES. (R827125)

    EPA Science Inventory

    Abstract

    A mathematical model was developed to predict changes in contaminant concentrations with time, and to estimate contaminant fluxes due to migration, diffusion, and convection in a laboratory-scale batch electrolysis cell for the regeneration of contaminated har...

  9. Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns

    NASA Astrophysics Data System (ADS)

    Hughes, Barry D.; Fellner, Klemens

    2013-10-01

    Mathematical models of swarms of moving agents with non-local interactions have many applications and have been the subject of considerable recent interest. For modest numbers of agents, cellular automata or related algorithms can be used to study such systems, but in the present work, instead of considering discrete agents, we discuss a class of one-dimensional continuum models, in which the agents possess a density ρ(x,t) at location x at time t. The agents are subject to a stochastic motility mechanism and to a global cohesive inter-agent force. The motility mechanisms covered include classical diffusion, nonlinear diffusion (which may be used to model, in a phenomenological way, volume exclusion or other short-range local interactions), and a family of linear redistribution operators related to fractional diffusion equations. A variety of exact analytic results are discussed, including equilibrium solutions and criteria for unimodality of equilibrium distributions, full time-dependent solutions, and transitions between asymptotic collapse and asymptotic escape. We address the behaviour of the system for diffusive motility in the low-diffusivity limit for both smooth and singular interaction potentials and show how this elucidates puzzling behaviour in fully deterministic non-local particle interaction models. We conclude with speculative remarks about extensions and applications of the models.

  10. Surface Properties of PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less

  11. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  12. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  13. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    PubMed

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  14. Modeling of acetone biofiltration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiu-Mu Tang; Shyh-Jye Hwang; Wen-Chuan Wang

    1996-12-31

    The objective of this research was to investigate the kinetic behavior of the biofiltration process for the removal of acetone 41 which was used as a model compound for highly water soluble gas pollutants. A mathematical model was developed by taking into account diffusion and biodegradation of acetone and oxygen in the biofilm, mass transfer resistance in the gas film, and flow pattern of the bulk gas phase. The simulated results obtained by the proposed model indicated that mass transfer resistance in the gas phase was negligible for this biofiltration process. Analysis of the relative importance of various rate stepsmore » indicated that the overall acetone removal process was primarily limited by the oxygen diffusion rate. 11 refs., 6 figs., 1 tab.« less

  15. A GENERALIZED MATHEMATICAL SCHEME TO ANALYTICALLY SOLVE THE ATMOSPHERIC DIFFUSION EQUATION WITH DRY DEPOSITION. (R825689C072)

    EPA Science Inventory

    Abstract

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...

  16. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    NASA Astrophysics Data System (ADS)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  17. Control of reaction-diffusion equations on time-evolving manifolds.

    PubMed

    Rossi, Francesco; Duteil, Nastassia Pouradier; Yakoby, Nir; Piccoli, Benedetto

    2016-12-01

    Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.

  18. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  19. Predictive model to describe water migration in cellular solid foods during storage.

    PubMed

    Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J

    2011-11-01

    Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.

  20. Finite element modeling of diffusion and partitioning in biological systems: the infinite composite medium problem.

    PubMed

    Missel, P J

    2000-01-01

    Four methods are proposed for modeling diffusion in heterogeneous media where diffusion and partition coefficients take on differing values in each subregion. The exercise was conducted to validate finite element modeling (FEM) procedures in anticipation of modeling drug diffusion with regional partitioning into ocular tissue, though the approach can be useful for other organs, or for modeling diffusion in laminate devices. Partitioning creates a discontinuous value in the dependent variable (concentration) at an intertissue boundary that is not easily handled by available general-purpose FEM codes, which allow for only one value at each node. The discontinuity is handled using a transformation on the dependent variable based upon the region-specific partition coefficient. Methods were evaluated by their ability to reproduce a known exact result, for the problem of the infinite composite medium (Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1975, pp. 38-39.). The most physically intuitive method is based upon the concept of chemical potential, which is continuous across an interphase boundary (method III). This method makes the equation of the dependent variable highly nonlinear. This can be linearized easily by a change of variables (method IV). Results are also given for a one-dimensional problem simulating bolus injection into the vitreous, predicting time disposition of drug in vitreous and retina.

  1. Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong

    2017-12-01

    In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.

  2. Random walk, diffusion and mixing in simulations of scalar transport in fluid flows

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2008-12-01

    Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.

  3. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.

    PubMed

    Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D

    2018-05-01

    Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.

  4. Reaction-diffusion systems in natural sciences and new technology transfer

    NASA Astrophysics Data System (ADS)

    Keller, André A.

    2012-12-01

    Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.

  5. A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Abrahmsen-Alami, Susanna; Borgquist, Per; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2010-10-15

    In this paper a computationally efficient mathematical model describing the swelling and dissolution of a polyethylene oxide tablet is presented. The model was calibrated against polymer release, front position and water concentration profile data inside the gel layer, using two different diffusion models. The water concentration profiles were obtained from magnetic resonance microimaging data which, in addition to the previously used texture analysis method, can help to validate and discriminate between the mechanisms of swelling, diffusion and erosion in relation to the dissolution process. Critical parameters were identified through a comprehensive sensitivity analysis, and the effect of hydrodynamic shearing was investigated by using two different stirring rates. Good agreement was obtained between the experimental results and the model. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Thermomechanical Stresses Analysis of a Single Event Burnout Process

    NASA Astrophysics Data System (ADS)

    Tais, Carlos E.; Romero, Eduardo; Demarco, Gustavo L.

    2009-06-01

    This work analyzes the thermal and mechanical effects arising in a power Diffusion Metal Oxide Semiconductor (DMOS) during a Single Event Burnout (SEB) process. For studying these effects we propose a more detailed simulation structure than the previously used by other authors, solving the mathematical models by means of the Finite Element Method. We use a cylindrical heat generation region, with 5 W, 10 W, 50 W and 100 W for emulating the thermal phenomena occurring during SEB processes, avoiding the complexity of the mathematical treatment of the ion-semiconductor interaction.

  7. Comparison and analysis of theoretical models for diffusion-controlled dissolution.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2012-05-07

    Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.

  8. Design and validation of diffusion MRI models of white matter

    NASA Astrophysics Data System (ADS)

    Jelescu, Ileana O.; Budde, Matthew D.

    2017-11-01

    Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.

  9. Design and validation of diffusion MRI models of white matter

    PubMed Central

    Jelescu, Ileana O.; Budde, Matthew D.

    2018-01-01

    Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus. PMID:29755979

  10. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    PubMed

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mathematical modeling of laser lipolysis

    PubMed Central

    Mordon, Serge R; Wassmer, Benjamin; Reynaud, Jean Pascal; Zemmouri, Jaouad

    2008-01-01

    Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc). The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer) with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s) give similar skin surface temperature (max: 41°C). These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction depends on the applied energy, typically 5 cm3 for 3000 J. At last, skin retraction was observed in patients at 6-month follow up. This observation can be easily explained by mathematical modeling showing that the temperature increase inside the lower dermis is sufficient (48–50°C) to induce skin tightening Discussion and Conclusion Laser lipolysis can be described by a theoretical model. Fat volume reduction observed in patients is in accordance with model calculations. Due to heat diffusion, temperature elevation is also produced inside the lower reticular dermis. This interesting observation can explain remodeling of the collagenous tissue, with clinically evident skin tightening. In conclusion, while the heat generated by interstitial laser irradiation provides stimulate lipolysis of the fat cells, the collagen and elastin are also stimulated resulting in a tightening in the skin. This mathematical model should serve as a useful tool to simulate and better understand the mechanism of action of the laser lipolysis PMID:18312643

  12. Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis

    NASA Astrophysics Data System (ADS)

    Khramchenkov, E.; Khramchenkov, M.

    2015-04-01

    Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.

  13. Influence of drug-light-interval on photodynamic therapy of port wine stains--simulation and validation of mathematic models.

    PubMed

    Huang, Naiyan; Cheng, Gang; Li, Xiaosong; Gu, Ying; Liu, Fanguang; Zhong, Qiuhai; Wang, Ying; Zen, Jin; Qiu, Haixia; Chen, Hongxia

    2008-06-01

    We established mathematical models of photodynamic therapy (PDT) on port wine stains (PWS) to observe the effect of drug-light-interval (DLI) and optimize light dose. The mathematical simulations included determining (1) the distribution of laser light by Monte Carlo model, (2) the change of photosensitizer concentration in PWS vessels by a pharmacokinetics equation, (3) the change of photosensitizer distribution in tissue outside the vessels by a diffuse equation and photobleaching equation, and (4) the change of tissue oxygen concentration by the Fick's law with a consideration of the oxygen consumption during PDT. The concentration of singlet oxygen in the tissue model was calculated by the finite difference method. To validate those models, a PWS lesion of the same patient was divided into two areas and subjected to different DLIs and treated with different energy density. The color of lesion was assessed 8-12 weeks later. The simulation indicated the singlet oxygen concentration of the second treatment area (DLI=40 min) was lower than that of the first treatment area (DLI=0 min). However, it would be increased to a level similar to that of the first treatment area if the light irradiation time of the second treatment area was prolonged from 40 min to 55 min. Clinical results were consistent with the results predicted by the mathematical models. The mathematical models established in this study are helpful to optimize clinical protocol.

  14. User's manual for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program

    NASA Technical Reports Server (NTRS)

    Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.

    1982-01-01

    The REEDM computer program predicts concentrations, dosages, and depositions downwind from normal and abnormal launches of rocket vehicles at NASA's Kennedy Space Center. The atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model are described mathematically Vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud, and meteorological layering techniques are presented as well as user's instructions for REEDM. Worked example problems are included.

  15. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  16. Diffusion of biostimulators into plant tissues

    NASA Astrophysics Data System (ADS)

    Kolomazník, Karel; Pecha, Jiří; Friebrová, Veronika; Janáčová, Dagmar; Vašek, Vladimír

    2012-09-01

    Biostimulators are substances able to enhance the immune system of cultivated crops and support plant metabolism. Their utilization helps to reduce the amount of chemicals used in agriculture. To perform the desired effect, a biostimulator must be able to penetrate into the plant tissue. The time of penetration however, is limited, since the biostimulator must remain in a liquid state. This is of great importance—especially in field conditions, where the treated plants are exposed to different weather condition and other extrinsic factors. A mathematical model based on diffusion mechanisms has been elaborated to describe the biostimulator transport process from penetration of the leaves into the plant's inner tissues. By means of the effective diffusion coefficient of the prepared specific protein hydrolyzate, this model can be used to estimate the time necessary for the uptake of the minimal active amount of the biostimulator.

  17. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    PubMed

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  18. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  19. Release kinetics of volatile organic compounds from roasted and ground coffee: online measurements by PTR-MS and mathematical modeling.

    PubMed

    Mateus, Maria-L; Lindinger, Christian; Gumy, Jean-C; Liardon, Remy

    2007-12-12

    The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.

  20. Relevance of quantum mechanics on some aspects of ion channel function

    PubMed Central

    Roy, Sisir

    2010-01-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter. PMID:19520314

  1. Mathematical model of the methane replacement by carbon dioxide in the gas hydrate reservoir taking into account the diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Musakaev, N. G.; Khasanov, M. K.; Rafikova, G. R.

    2018-03-01

    The problem of the replacement of methane in its hydrate by carbon dioxide in a porous medium is considered. The gas-exchange kinetics scheme is proposed in which the intensity of the process is limited by the diffusion of CO2 through the hydrate layer formed between the gas mixture flow and the CH4 hydrate. Dynamics of the main parameters of the process is numerically investigated. The main characteristic stages of the process are determined.

  2. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  4. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    Efforts in measuring, analyzing, and mathematically modeling the specular, polarized, and diffuse light scattering properties of several plant canopies and their component parts (leaves, stems, fruit, soil) as a function of view angle and illumination angle are reported. Specific objectives were: (1) to demonstrate a technique for determining the specular and diffuse components of the reflectance factor of plant canopies; (2) to acquire the measurements and begin assembling a data set for developing and testing canopy reflectance models; (3) to design and build a new optical instrument to measure the light scattering properties of individual leaves; and (4) to use this instrument to survey and investigate the information in the light scattering properties of individual leaves of crops, forests, weeds, and horticulture.

  5. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  6. Unifying models of dialect spread and extinction using surface tension dynamics

    PubMed Central

    2018-01-01

    We provide a unified mathematical explanation of two classical forms of spatial linguistic spread. The wave model describes the radiation of linguistic change outwards from a central focus. Changes can also jump between population centres in a process known as hierarchical diffusion. It has recently been proposed that the spatial evolution of dialects can be understood using surface tension at linguistic boundaries. Here we show that the inclusion of long-range interactions in the surface tension model generates both wave-like spread, and hierarchical diffusion, and that it is surface tension that is the dominant effect in deciding the stable distribution of dialect patterns. We generalize the model to allow population mixing which can induce shrinkage of linguistic domains, or destroy dialect regions from within. PMID:29410847

  7. Reaction-diffusion systems and external morphogen gradients: the two-dimensional case, with an application to skeletal pattern formation.

    PubMed

    Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A

    2012-03-01

    We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.

  8. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    NASA Astrophysics Data System (ADS)

    Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.

  9. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  10. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  11. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  12. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR

    NASA Astrophysics Data System (ADS)

    Majer, Günter; Southan, Alexander

    2017-06-01

    The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.

  13. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  14. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  15. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  16. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  17. Energy Models for One-Carrier Transport in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Jerome, Joseph W.; Shu, Chi-Wang

    1991-01-01

    Moment models of carrier transport, derived from the Boltzmann equation, made possible the simulation of certain key effects through such realistic assumptions as energy dependent mobility functions. This type of global dependence permits the observation of velocity overshoot in the vicinity of device junctions, not discerned via classical drift-diffusion models, which are primarily local in nature. It was found that a critical role is played in the hydrodynamic model by the heat conduction term. When ignored, the overshoot is inappropriately damped. When the standard choice of the Wiedemann-Franz law is made for the conductivity, spurious overshoot is observed. Agreement with Monte-Carlo simulation in this regime required empirical modification of this law, or nonstandard choices. Simulations of the hydrodynamic model in one and two dimensions, as well as simulations of a newly developed energy model, the RT model, are presented. The RT model, intermediate between the hydrodynamic and drift-diffusion model, was developed to eliminate the parabolic energy band and Maxwellian distribution assumptions, and to reduce the spurious overshoot with physically consistent assumptions. The algorithms employed for both models are the essentially non-oscillatory shock capturing algorithms. Some mathematical results are presented and contrasted with the highly developed state of the drift-diffusion model.

  18. Bicarbonate diffusion through mucus.

    PubMed

    Livingston, E H; Miller, J; Engel, E

    1995-09-01

    The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.

  19. Gas Diffusion in Fluids Containing Bubbles

    NASA Technical Reports Server (NTRS)

    Zak, M.; Weinberg, M. C.

    1982-01-01

    Mathematical model describes movement of gases in fluid containing many bubbles. Model makes it possible to predict growth and shrink age of bubbles as function of time. New model overcomes complexities involved in analysis of varying conditions by making two simplifying assumptions. It treats bubbles as point sources, and it employs approximate expression for gas concentration gradient at liquid/bubble interface. In particular, it is expected to help in developing processes for production of high-quality optical glasses in space.

  20. Parameter extraction and transistor models

    NASA Technical Reports Server (NTRS)

    Rykken, Charles; Meiser, Verena; Turner, Greg; Wang, QI

    1985-01-01

    Using specified mathematical models of the MOSFET device, the optimal values of the model-dependent parameters were extracted from data provided by the Jet Propulsion Laboratory (JPL). Three MOSFET models, all one-dimensional were used. One of the models took into account diffusion (as well as convection) currents. The sensitivity of the models was assessed for variations of the parameters from their optimal values. Lines of future inquiry are suggested on the basis of the behavior of the devices, of the limitations of the proposed models, and of the complexity of the required numerical investigations.

  1. SPIR: The potential spreaders involved SIR model for information diffusion in social networks

    NASA Astrophysics Data System (ADS)

    Rui, Xiaobin; Meng, Fanrong; Wang, Zhixiao; Yuan, Guan; Du, Changjiang

    2018-09-01

    The Susceptible-Infective-Removed (SIR) model is one of the most widely used models for the information diffusion research in social networks. Many researchers have devoted themselves to improving the classic SIR model in different aspects. However, on the one hand, the equations of these improved models are regarded as continuous functions, while the corresponding simulation experiments use discrete time, leading to the mismatch between numerical solutions got from mathematical method and experimental results obtained by simulating the spreading behaviour of each node. On the other hand, if the equations of these improved models are solved discretely, susceptible nodes will be calculated repeatedly, resulting in a big deviation from the actual value. In order to solve the above problem, this paper proposes a Susceptible-Potential-Infective-Removed (SPIR) model that analyses the diffusion process based on the discrete time according to simulation. Besides, this model also introduces a potential spreader set which solve the problem of repeated calculation effectively. To test the SPIR model, various experiments have been carried out from different angles on both artificial networks and real world networks. The Pearson correlation coefficient between numerical solutions of our SPIR equations and corresponding simulation results is mostly bigger than 0.95, which reveals that the proposed SPIR model is able to depict the information diffusion process with high accuracy.

  2. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  3. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    NASA Astrophysics Data System (ADS)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted optical properties of the epithelium and the stroma can be estimated accurately. Adjoint model is applied to 926 clinical measurements from 503 patients. Mean values of extracted optical properties have demonstrated to characterize the biological changes associated with dysplastic progression. Finally, penalized logistic regression algorithms are applied to discriminate dysplastic stages in tissue based on extracted optical features. This work provides understandable and interpretable information regarding predictive and generalization ability of optical spectroscopy in neoplastic changes using a minimum subset of optical measurements. Ultimately these methodologies would facilitate the transfer of these optical technologies into clinical practice.

  4. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  5. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  6. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  7. A theoretical approach to evaluate the release rate of acetaminophen from erosive wax matrix dosage forms.

    PubMed

    Agata, Yasuyoshi; Iwao, Yasunori; Shiino, Kai; Miyagishima, Atsuo; Itai, Shigeru

    2011-07-29

    To predict drug dissolution and understand the mechanisms of drug release from wax matrix dosage forms containing glyceryl monostearate (GM; a wax base), aminoalkyl methacrylate copolymer E (AMCE; a pH-dependent functional polymer), and acetaminophen (APAP; a model drug), we tried to derive a novel mathematical model with respect to erosion and diffusion theory. Our model exhibited good agreement with the whole set of experimentally obtained values pertaining to APAP release at pH 4.0 and pH 6.5. In addition, this model revealed that the eroding speed of wax matrices was strongly influenced by the loading content of AMCE, but not that of APAP, and that the diffusion coefficient increased as APAP loading decreased and AMCE loading increased, thus directly defining the physicochemical properties of erosion and diffusion. Therefore, this model might prove a useful equation for the precise prediction of dissolution and for understanding the mechanisms of drug release from wax matrix dosage forms. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation

    NASA Astrophysics Data System (ADS)

    Shelley, Michael; Masoud, Hassan

    2013-11-01

    Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.

  9. Role of cytosolic calcium diffusion in cardiac purkinje cells.

    PubMed

    Limbu, Bijay; Shah, Kushal; Deo, Makarand

    2016-08-01

    The Cardiac Purkinje cells (PCs) exhibit distinct calcium (Ca2+) homeostasis than that in ventricular myocytes (VMs). Due to lack of t-tubules in PCs, the Ca2+ ions entering the cell have to diffuse through the cytoplasm to reach the sarcoplasmic reticulum (SR) before triggering Ca2+-induced-Ca2+-release (CICR). In recent experimental studies PCs have been shown to be more susceptible to action potential (AP) abnormalities than the VMs, however the exact mechanisms are poorly understood. In this study, we utilize morphologically realistic detailed biophysical mathematical model of a murine PC to systematically examine the role intracellular Ca2+ diffusion in the APs of PCs. A biphasic spatiotemporal Ca2+ diffusion process, as observed experimentally, was implemented in the model which includes radial Ca2+ wavelets and cell wide longitudinal Ca2+ diffusion wave (CWW). The AP morphology, specifically plateau, is affected due to changes in intracellular Ca2+ dynamics. When Ca2+ concentration in sarcolemmal region is elevated, it activated inward sodium Ca2+ exchanger (NCX) current resulting into prolongation of the plateau at faster diffusion rates. Our results demonstrate that the cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights into the increased arrhythmogeneity of PCs.

  10. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  11. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  12. Recycling of Kinesin-1 Motors by Diffusion after Transport

    PubMed Central

    Blasius, T. Lynne; Reed, Nathan; Slepchenko, Boris M.; Verhey, Kristen J.

    2013-01-01

    Kinesin motors drive the long-distance anterograde transport of cellular components along microtubule tracks. Kinesin-dependent transport plays a critical role in neurogenesis and neuronal function due to the large distance separating the soma and nerve terminal. The fate of kinesin motors after delivery of their cargoes is unknown but has been postulated to involve degradation at the nerve terminal, recycling via retrograde motors, and/or recycling via diffusion. We set out to test these models concerning the fate of kinesin-1 motors after completion of transport in neuronal cells. We find that kinesin-1 motors are neither degraded nor returned by retrograde motors. By combining mathematical modeling and experimental analysis, we propose a model in which the distribution and recycling of kinesin-1 motors fits a “loose bucket brigade” where individual motors alter between periods of active transport and free diffusion within neuronal processes. These results suggest that individual kinesin-1 motors are utilized for multiple rounds of transport. PMID:24098765

  13. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  14. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  15. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  16. Cadmium biosorption rate in protonated Sargassum biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Volesky, B.

    1999-03-01

    Biosorption of the heavy metal ion Cd{sup 2+} by protonated nonliving brown alga Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake of cadmium and the release of proton matched each other throughout the biosorption process. The end-point titration methodology was used to maintain the constant pH 4.0 for developing the dynamic sorption rate. The sorption isotherm could be well represented by the Langmuir sorption model. A mass transfer model assuming the intraparticle diffusion in a one-dimensional thin plate as a controlling step was developed to describe the overall biosorption rate of cadmiummore » ions in flat seaweed biomass particles. The overall biosorption mathematical model equations were solved numerically yielding the effective diffusion coefficient D{sub e} about 3.5 {times} 10{sup {minus}6} cm{sup 2}/s. This value matches that obtained for the desorption process and is approximately half of that of the molecular diffusion coefficient for cadmium ions in aqueous solution.« less

  17. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurf< SSbott< BS; and content of Pb – SS >BS.

  18. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels.

    PubMed

    Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans

    2011-01-01

    The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  20. Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.

    PubMed

    Skoneczny, Szymon

    2015-01-01

    The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics.

  1. Flow and diffusion of high-stakes test scores.

    PubMed

    Marder, M; Bansal, D

    2009-10-13

    We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades.

  2. Mathematical modeling of drug dissolution.

    PubMed

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A novel individual-cell-based mathematical model based on multicellular tumour spheroids for evaluating doxorubicin-related delivery in avascular regions.

    PubMed

    Liu, Jiali; Yan, Fangrong; Chen, Hongzhu; Wang, Wenjie; Liu, Wenyue; Hao, Kun; Wang, Guangji; Zhou, Fang; Zhang, Jingwei

    2017-09-01

    Effective drug delivery in the avascular regions of tumours, which is crucial for the promising antitumour activity of doxorubicin-related therapy, is governed by two inseparable processes: intercellular diffusion and intracellular retention. To accurately evaluate doxorubicin-related delivery in the avascular regions, these two processes should be assessed together. Here we describe a new approach to such an assessment. An individual-cell-based mathematical model based on multicellular tumour spheroids was developed that describes the different intercellular diffusion and intracellular retention kinetics of doxorubicin in each cell layer. The different effects of a P-glycoprotein inhibitor (LY335979) and a hypoxia inhibitor (YC-1) were quantitatively evaluated and compared, in vitro (tumour spheroids) and in vivo (HepG2 tumours in mice). This approach was further tested by evaluating in these models, an experimental doxorubicin derivative, INNO 206, which is in Phase II clinical trials. Inhomogeneous, hypoxia-induced, P-glycoprotein expression compromised active transport of doxorubicin in the central area, that is, far from the vasculature. LY335979 inhibited efflux due to P-glycoprotein but limited levels of doxorubicin outside the inner cells, whereas YC-1 co-administration specifically increased doxorubicin accumulation in the inner cells without affecting the extracellular levels. INNO 206 exhibited a more effective distribution profile than doxorubicin. The individual-cell-based mathematical model accurately evaluated and predicted doxorubicin-related delivery and regulation in the avascular regions of tumours. The described framework provides a mechanistic basis for the proper development of doxorubicin-related drug co-administration profiles and nanoparticle development and could avoid unnecessary clinical trials. © 2017 The British Pharmacological Society.

  4. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description

    PubMed Central

    SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY

    2016-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031

  5. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases.

    PubMed

    Figini, Matteo; Alexander, Daniel C; Redaelli, Veronica; Fasano, Fabrizio; Grisoli, Marina; Baselli, Giuseppe; Gambetti, Pierluigi; Tagliavini, Fabrizio; Bizzi, Alberto

    2015-01-01

    In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm(2) and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.

  6. Clinical system model for monitoring the physiological status of jaundice by extracting bilirubin components from skin diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.

    2009-02-01

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.

  7. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression.

    PubMed

    Song, G; Luo, T; Dong, L; Liu, Q

    2017-07-03

    Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  8. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  9. WE-AB-204-07: Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, M; Sefidgar, M; Bazmara, H

    2015-06-15

    Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less

  10. A Comprehensive Fluid Dynamic-Diffusion Model of Blood Microcirculation with Focus on Sickle Cell Disease

    NASA Astrophysics Data System (ADS)

    Le Floch, Francois; Harris, Wesley L.

    2009-11-01

    A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.

  11. Flow and transport due to natural convection in a galvanic cell. 1: Development of a mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, S.; Evans, J.W.

    1997-08-01

    In many electrochemical cells, the flow of electrolyte has an influence on cell behavior and this investigation concerns a cell (a zinc-air cell) where that flow occurred through natural convection. The zinc was present in the form of a bed of particles, connected at its top and bottom with channels forming reservoirs of electrolyte. Dissolution of the zinc caused density differences between electrolyte in the bed interstices and that in the reservoir. In Part 1 of this two-part paper, a mathematical model for this cell is developed. The model employs the well-known Newman/Tobias description of a porous electrode and treatsmore » flow through the bed using the Blake-Kozeny equation. A fourth-order Lax-Wendroff algorithm, thought to be original, is used to solve the convective diffusion equation within the model. Sample computed results are presented.« less

  12. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  13. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  14. Development of water movement model as a module of moisture content simulation in static pile composting.

    PubMed

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2012-01-01

    This paper presents a mathematical model of vertical water movement and a performance evaluation of the model in static pile composting operated with neither air supply nor turning. The vertical moisture content (MC) model was developed with consideration of evaporation (internal and external evaporation), diffusion (liquid and vapour diffusion) and percolation, whereas additional water from substrate decomposition and irrigation was not taken into account. The evaporation term in the model was established on the basis of reference evaporation of the materials at known temperature, MC and relative humidity of the air. Diffusion of water vapour was estimated as functions of relative humidity and temperature, whereas diffusion of liquid water was empirically obtained from experiment by adopting Fick's law. Percolation was estimated by following Darcy's law. The model was applied to a column of composting wood chips with an initial MC of 60%. The simulation program was run for four weeks with calculation span of 1 s. The simulated results were in reasonably good agreement with the experimental results. Only a top layer (less than 20 cm) had a considerable MC reduction; the deeper layers were comparable to the initial MC, and the bottom layer was higher than the initial MC. This model is a useful tool to estimate the MC profile throughout the composting period, and could be incorporated into biodegradation kinetic simulation of composting.

  15. Investigating the impact of mindfulness meditation training on working memory: a mathematical modeling approach.

    PubMed

    van Vugt, Marieke K; Jha, Amishi P

    2011-09-01

    We investigated whether mindfulness training (MT) influences information processing in a working memory task with complex visual stimuli. Participants were tested before (T1) and after (T2) participation in an intensive one-month MT retreat, and their performance was compared with that of an age- and education-matched control group. Accuracy did not differ across groups at either time point. Response times were faster and significantly less variable in the MT versus the control group at T2. Since these results could be due to changes in mnemonic processes, speed-accuracy trade-off, or nondecisional factors (e.g., motor execution), we used a mathematical modeling approach to disentangle these factors. The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, Psychonomic Bulletin & Review 14:(1), 3-22, 2007) suggested that MT leads to improved information quality and reduced response conservativeness, with no changes in nondecisional factors. The noisy exemplar model further suggested that the increase in information quality reflected a decrease in encoding noise and not an increase in forgetting. Thus, mathematical modeling may help clarify the mechanisms by which MT produces salutary effects on performance.

  16. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.

  17. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling.

    PubMed

    Melo, Diego de Quadros; Vidal, Carla Bastos; Medeiros, Thiago Coutinho; Raulino, Giselle Santiago Cabral; Dervanoski, Adriana; Pinheiro, Márcio do Carmo; Nascimento, Ronaldo Ferreira do

    2016-09-01

    Buriti fibers were subjected to an alkaline pre-treatment and tested as an adsorbent to investigate the adsorption of copper, cadmium, lead and nickel in mono- and multi-element aqueous solutions, the results showed an increase in the adsorption capacity compared to the unmodified Buriti fiber. The effects of pH, adsorbent mass, agitation rate and initial metal ions concentration on the efficiency of the adsorption process were studied using a fractional 2(4-1) factorial design, and the results showed that all four parameters influenced metal adsorption differently. Fourier transform infrared spectrometry and X-ray fluorescence analysis were used to identify the groups that participated in the adsorption process and suggest its mechanisms and they indicated the probable mechanisms involved in the adsorption process are mainly ion exchange. Kinetic and thermodynamic equilibrium parameters were determined. The adsorption kinetics were adjusted to the homogeneous diffusion model. The adsorption equilibrium was reached in 30 min for Cu(2+) and Pb(2+), 20 min for Ni(2+) and instantaneously for Cd(2+). The results showed a significant difference was found in the competitiveness for the adsorption sites. A mathematical model was used to simulate the breakthrough curves in multi-element column adsorption considering the influences of external mass transfer and intraparticle diffusion resistance.

  18. Imaging brain microstructure with diffusion MRI: practicality and applications.

    PubMed

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Drying kinetics of apricot halves in a microwave-hot air hybrid oven

    NASA Astrophysics Data System (ADS)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2017-06-01

    Drying behavior and kinetics of apricot halves were investigated in a microwave-hot air domestic hybrid oven at 120, 150 and 180 W microwave power and 50, 60 and 70 °C air temperature. Drying operation was finished when the moisture content reached to 25% (wet basis) from 77% (w.b). Increase in microwave power and air temperature increased drying rates and reduced drying time. Only falling rate period was observed in drying of apricot halves in hybrid oven. Eleven mathematical models were used for describing the drying kinetics of apricots. Modified logistic model gave the best fitting to the experimental data. The model has never been used to explain drying behavior of any kind of food materials up to now. Fick's second law was used for determination of both effective moisture diffusivity and thermal diffusivity values. Activation energy values of dried apricots were calculated from Arrhenius equation. Those that obtained from effective moisture diffusivity, thermal diffusivity and drying rate constant values ranged from 31.10 to 39.4 kJ/mol, 29.56 to 35.19 kJ/mol, and 26.02 to 32.36 kJ/mol, respectively.

  20. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  1. Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization

    PubMed Central

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0

  2. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    PubMed

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  3. An Earth Albedo Model: A Mathematical Model for the Radiant Energy Input to an Orbiting Spacecraft Due to the Diffuse Reflectance of Solar Radiation from the Earth Below

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Moore, Wendy A.

    1994-01-01

    Past missions have shown that the earth's albedo can have a significant effect on the sun sensors used for spacecraft attitude control information. In response to this concern, an algorithm was developed to simulate this phenomenon, consisting of two parts, the physical model of albedo and its effect on the sun sensors. This paper contains the theoretical development of this model, practical operational notes, and its implementation in a FORTRAN subroutine.

  4. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  5. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  6. Automatic phase control in solar power satellite systems

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1978-01-01

    Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.

  7. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  8. Analytical and computational studies on the vacuum performance of a chevron ejector

    NASA Astrophysics Data System (ADS)

    Kong, F. S.; Jin, Y. Z.; Kim, H. D.

    2016-11-01

    The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

  9. Modeling drug release from PVAc/PVP matrix tablets.

    PubMed

    Siepmann, F; Eckart, K; Maschke, A; Kolter, K; Siepmann, J

    2010-01-25

    Kollidon SR-based matrix tablets containing various amounts of diprophylline were prepared and thoroughly characterized in vitro. This includes drug release measurements in 0.1M HCl and phosphate buffer pH 7.4, monitoring of changes in the tablet's height and diameter, morphology as well as dry mass upon exposure to the release media. Based on these experimental results, a mechanistic realistic mathematical theory is proposed, taking into account the given initial and boundary conditions as well as radial and axial mass transport in cylinders. Importantly, good agreement between theory and experiment was obtained in all cases, indicating that drug diffusion with constant diffusivity is the dominant mass transport mechanism in these systems. Furthermore, the proposed theory was used to quantitatively predict the effects of the initial tablet height and diameter on the resulting drug release patterns. These theoretical predictions were compared with independently measured drug release kinetics. Good agreement was observed in all cases, proving the validity of the mathematical theory and illustrating the latter's practical benefit: The model can help to significantly facilitate the recipe optimization of this type of advanced drug delivery systems in order to achieve a desired release profile. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Surface conservation laws at microscopically diffuse interfaces.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2007-11-01

    In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.

  11. Diffusion processes in tumors: A nuclear medicine approach

    NASA Astrophysics Data System (ADS)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  12. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  13. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  14. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  15. A mathematical model for the release of noble gas and Cs from porous nuclear fuel based on VEGA 1&2 experiments

    NASA Astrophysics Data System (ADS)

    Simones, M. P.; Reinig, M. L.; Loyalka, S. K.

    2014-05-01

    Release of fission products from nuclear fuel in accidents is an issue of major concern in nuclear reactor safety, and there is considerable room for development of improved models, supported by experiments, as one needs to understand and elucidate role of various phenomena and parameters. The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program on several irradiated nuclear fuels investigated the release rates of radionuclides and results demonstrated that the release rates of radionuclides from all nuclear fuels tested decreased with increasing external gas pressure surrounding the fuel. Hidaka et al. (2004-2011) accounted for this pressure effect by developing a 2-stage diffusion model describing the transport of radionuclides in porous nuclear fuel. We have extended this 2-stage diffusion model to account for mutual binary gas diffusion in the open pores as well as to introduce the appropriate parameters to cover the slip flow regime (0.01 ⩽ Kn ⩽ 0.1). While we have directed our numerical efforts toward the simulation of the VEGA experiments and assessments of differences from the results of Hidaka et al., the model and the techniques reported here are of larger interest as these would aid in modeling of diffusion in general (e.g. in graphite and other nuclear materials of interest).

  16. Fractional diffusion on bounded domains

    DOE PAGES

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; ...

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  17. Death wins against life in a spatially extended model of the caspase-3/8 feedback loop.

    PubMed

    Daub, M; Waldherr, S; Allgöwer, F; Scheurich, P; Schneider, G

    2012-01-01

    Apoptosis is an important physiological process which enables organisms to remove unwanted or damaged cells. A mathematical model of the extrinsic pro-apoptotic signaling pathway has been introduced by Eissing et al. (2007) and a bistable behavior with a stable death state and a stable life state of the reaction system has been established. In this paper, we consider a spatial extension of the extrinsic pro-apoptotic signaling pathway incorporating diffusion terms and make a model-based, numerical analysis of the apoptotic switch in the spatial dimension. For the parameter regimes under consideration it turns out that for this model diffusion homogenizes rapidly the concentrations which afterward are governed by the original reaction system. The activation of effector-caspase 3 depends on the space averaged initial concentration of pro-caspase 8 and pro-caspase 3 at the beginning of the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  19. A mathematical model of diffusion from a steady source of short duration in a finite mixing layer

    NASA Astrophysics Data System (ADS)

    Bianconi, Roberto; Tamponi, Matteo

    This paper presents an analytical unsteady-state solution to the atmospheric dispersion equation for substances subject to chemical-physical decay in a finite mixing layer for releases of short duration. This solution is suitable for describing critical events relative to accidental release of toxic, flammable or explosive substances. To implement the solution, the Modello per Rilasci a Breve Termine (MRBT) code has been developed, for some characteristics parameters of which the results of the sensitivity analysis are presented. Moreover some examples of application to the calculation of exposure to toxic substances and to the determination of the ignition field of flammable substances are described. Finally, the mathematical model described can be used to interpret the phenomenon of pollutant accumulation.

  20. Reaction-diffusion pattern in shoot apical meristem of plants.

    PubMed

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-03-29

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants.

  1. Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants

    PubMed Central

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-01-01

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants. PMID:21479227

  2. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  3. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor

    NASA Astrophysics Data System (ADS)

    Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko

    2014-06-01

    Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.

  4. Numerical approaches to model perturbation fire in turing pattern formations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  5. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  6. Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum.

    PubMed

    Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V

    2012-10-01

    Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The possibility of coexistence and co-development in language competition: ecology-society computational model and simulation.

    PubMed

    Yun, Jian; Shang, Song-Chao; Wei, Xiao-Dan; Liu, Shuang; Li, Zhi-Jie

    2016-01-01

    Language is characterized by both ecological properties and social properties, and competition is the basic form of language evolution. The rise and decline of one language is a result of competition between languages. Moreover, this rise and decline directly influences the diversity of human culture. Mathematics and computer modeling for language competition has been a popular topic in the fields of linguistics, mathematics, computer science, ecology, and other disciplines. Currently, there are several problems in the research on language competition modeling. First, comprehensive mathematical analysis is absent in most studies of language competition models. Next, most language competition models are based on the assumption that one language in the model is stronger than the other. These studies tend to ignore cases where there is a balance of power in the competition. The competition between two well-matched languages is more practical, because it can facilitate the co-development of two languages. A third issue with current studies is that many studies have an evolution result where the weaker language inevitably goes extinct. From the integrated point of view of ecology and sociology, this paper improves the Lotka-Volterra model and basic reaction-diffusion model to propose an "ecology-society" computational model for describing language competition. Furthermore, a strict and comprehensive mathematical analysis was made for the stability of the equilibria. Two languages in competition may be either well-matched or greatly different in strength, which was reflected in the experimental design. The results revealed that language coexistence, and even co-development, are likely to occur during language competition.

  8. Investigation of the Spatiotemporal Responses of Nanoparticles in Tumor Tissues with a Small-Scale Mathematical Model

    PubMed Central

    Chou, Cheng-Ying; Huang, Chih-Kang; Lu, Kuo-Wei; Horng, Tzyy-Leng; Lin, Win-Li

    2013-01-01

    The transport and accumulation of anticancer nanodrugs in tumor tissues are affected by many factors including particle properties, vascular density and leakiness, and interstitial diffusivity. It is important to understand the effects of these factors on the detailed drug distribution in the entire tumor for an effective treatment. In this study, we developed a small-scale mathematical model to systematically study the spatiotemporal responses and accumulative exposures of macromolecular carriers in localized tumor tissues. We chose various dextrans as model carriers and studied the effects of vascular density, permeability, diffusivity, and half-life of dextrans on their spatiotemporal concentration responses and accumulative exposure distribution to tumor cells. The relevant biological parameters were obtained from experimental results previously reported by the Dreher group. The area under concentration-time response curve (AUC) quantified the extent of tissue exposure to a drug and therefore was considered more reliable in assessing the extent of the overall drug exposure than individual concentrations. The results showed that 1) a small macromolecule can penetrate deep into the tumor interstitium and produce a uniform but low spatial distribution of AUC; 2) large macromolecules produce high AUC in the perivascular region, but low AUC in the distal region away from vessels; 3) medium-sized macromolecules produce a relatively uniform and high AUC in the tumor interstitium between two vessels; 4) enhancement of permeability can elevate the level of AUC, but have little effect on its uniformity while enhancement of diffusivity is able to raise the level of AUC and improve its uniformity; 5) a longer half-life can produce a deeper penetration and a higher level of AUC distribution. The numerical results indicate that a long half-life carrier in plasma and a high interstitial diffusivity are the key factors to produce a high and relatively uniform spatial AUC distribution in the interstitium. PMID:23565142

  9. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.

    PubMed

    Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas

    2016-09-01

    A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

  10. Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head.

    PubMed

    Okada, E; Firbank, M; Schweiger, M; Arridge, S R; Cope, M; Delpy, D T

    1997-01-01

    Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source-detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity-diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution.

  11. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  12. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerde, P.; Muggenburg, B.A.; Thornton-Manning, J.R.

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipidmore » membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled« less

  13. Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.

  14. Modeling and simulation of a low-grade urinary bladder carcinoma.

    PubMed

    Bunimovich-Mendrazitsky, Svetlana; Pisarev, Vladimir; Kashdan, Eugene

    2015-03-01

    In this work, we present a mathematical model of the initiation and progression of a low-grade urinary bladder carcinoma. We simulate the crucial processes affecting tumor growth, such as oxygen diffusion, carcinogen penetration, and angiogenesis, within the framework of the urothelial cell dynamics. The cell dynamics are modeled using the discrete technique of cellular automata, while the continuous processes of carcinogen penetration and oxygen diffusion are described by nonlinear diffusion-absorption equations. As the availability of oxygen is necessary for tumor progression, processes of oxygen transport to the tumor growth site seem most important. Our model yields a theoretical insight into the main stages of development and growth of urinary bladder carcinoma with emphasis on the two most common types: bladder polyps and carcinoma in situ. Analysis of histological structure of bladder tumor is important to avoid misdiagnosis and wrong treatment. We expect our model to be a valuable tool in the study of bladder cancer progression due to the exposure to carcinogens and the oxygen dependent expression of genes promoting tumor growth. Our numerical simulations have good qualitative agreement with in vivo results reported in the corresponding medical literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Diffusion and reaction within porous packing media: a phenomenological model.

    PubMed

    Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J

    1993-04-25

    A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.

  16. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  17. A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Sharan, M.

    2017-12-01

    The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.

  18. Stability of wave processes in a rotating electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.

    2018-05-01

    The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

  19. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  20. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less

  1. Modeling persistence of motion in a crowded environment: The diffusive limit of excluding velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Yates, Christian A.

    2018-03-01

    Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.

  2. Heat and Mass Transfer with Condensation in Capillary Porous Bodies

    PubMed Central

    2014-01-01

    The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study. PMID:24688366

  3. A study of tablet dissolution by magnetic resonance electric current density imaging.

    PubMed

    Mikac, Ursa; Demsar, Alojz; Demsar, Franci; Sersa, Igor

    2007-03-01

    The electric current density imaging technique (CDI) was used to monitor the dissolution of ion releasing tablets (made of various carboxylic acids and of sodium chloride) by following conductivity changes in an agar-agar gel surrounding the tablet. Conductivity changes in the sample were used to calculate spatial and temporal changes of ionic concentrations in the sample. The experimental data for ion migration were compared to a mathematical model based on a solution of the diffusion equation with moving boundary conditions for the tablet geometry. Diffusion constants for different acids were determined by fitting the model to the experimental data. The experiments with dissolving tablets were used to demonstrate the potential of the CDI technique for measurement of ion concentration in the vicinity of ion releasing samples.

  4. Impact of delay on disease outbreak in a spatial epidemic model

    NASA Astrophysics Data System (ADS)

    Zhao, Xia-Xia; Wang, Jian-Zhong

    2015-04-01

    One of the central issues in studying epidemic spreading is the mechanism on disease outbreak. In this paper, we investigate the effects of time delay on disease outbreak in spatial epidemics based on a reaction-diffusion model. By mathematical analysis and numerical simulations, we show that when time delay is more than a critical value, the disease outbreaks. The obtained results show that the time delay is an important factor in the spread of the disease, which may provide new insights on disease control.

  5. Feasibility of High Energy Lasers for Interdiction Activities

    DTIC Science & Technology

    2017-12-01

    2.3.2 Power in the Bucket Another parameter we will use in this study is the power-in-the-bucket. The “bucket” is defined as the area on the target we...the heat diffusion equation for a one -dimensional case (where the x-direction is into the target) and assuming a semi-infinite slab of material. The... studied and modeled. One of the approaches to describe these interactions is by making a one -dimensional mathematical model assuming [8]: 1. A semi

  6. Mathematical Models of Diffusion-Limited Gas Bubble Evolution in Perfused Tissue

    DTIC Science & Technology

    2013-08-01

    the Generation of New Bubbles,” Undersea Biomedical Research, Vol. 18, No. 4 (1991), pp. 333-345. 10. H. D. Van Liew and M. E. Burkard, “Density of...and R. D. Vann, “Probabilistic Gas and Bubble Dynamics Models of Decompression Sickness Occurrence in Air and Nitrogen-Oxygen Diving,” Undersea and...Gas Bubbles During Decompression,” Undersea and Hyperbaric Medicine, Vol. 23, No. 3 (1996), pp. 131-140. 13. R. L. Riley and A. Cournand, “’Ideal

  7. Mathematical model of phase transformations and elastoplastic stress in the water spray quenching of steel bars

    NASA Astrophysics Data System (ADS)

    Nagasaka, Y.; Brimacombe, J. K.; Hawbolt, E. B.; Samarasekera, I. V.; Hernandez-Morales, B.; Chidiac, S. E.

    1993-04-01

    A mathematical model, based on the finite-element technique and incorporating thermo-elasto-plastic behavior during the water spray quenching of steel, has been developed. In the model, the kinetics of diffusion-dependent phase transformation and martensitic transformation have been coupled with the transient heat flow to predict the microstructural evolution of the steel. Furthermore, an elasto-plastic constitutive relation has been applied to calculate internal stresses resulting from phase changes as well as temperature variation. The computer code has been verified for internal consistency with previously published results for pure iron bars. The model has been applied to the water spray quenching of two grades of steel bars, 1035 carbon and nickel-chromium alloyed steel; the calculated temperature, hardness, distortion, and residual stresses in the bars agreed well with experimental measurements. The results show that the phase changes occurring during this process affect the internal stresses significantly and must be included in the thermomechanical model.

  8. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    PubMed

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  9. Hydrodynamic fingering instability induced by a precipitation reaction

    NASA Astrophysics Data System (ADS)

    De Wit, Anne; Nagatsu, Yuichiro

    2014-05-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A+B → C type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  10. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    PubMed

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  11. Evaluation of shrinking core model in leaching process of Pomalaa nickel laterite using citric acid as leachant at atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Wanta, K. C.; Perdana, I.; Petrus, H. T. B. M.

    2016-11-01

    Most of kinetics studies related to leaching process used shrinking core model to describe physical phenomena of the process. Generally, the model was developed in connection with transport and/or reaction of reactant components. In this study, commonly used internal diffusion controlled shrinking core model was evaluated for leaching process of Pomalaa nickel laterite using citric acid as leachant. Particle size was varied at 60-70, 100-120, -200 meshes, while the operating temperature was kept constant at 358 K, citric acid concentration at 0.1 M, pulp density at 20% w/v and the leaching time was for 120 minutes. Simulation results showed that the shrinking core model was inadequate to closely approach the experimental data. Meanwhile, the experimental data indicated that the leaching process was determined by the mobility of product molecules in the ash layer pores. In case of leaching resulting large product molecules, a mathematical model involving steps of reaction and product diffusion might be appropriate to develop.

  12. Accuracies and Contrasts of Models of the Diffusion-Weighted-Dependent Attenuation of the MRI Signal at Intermediate b-values.

    PubMed

    Nicolas, Renaud; Sibon, Igor; Hiba, Bassem

    2015-01-01

    The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexponential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. Acquisition was performed with nine b-values up to 2500 s/mm(2) in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best model to infer the microstructural properties of brain tissue.

  13. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.

    PubMed Central

    Uttenweiler, D; Weber, C; Fink, R H

    1998-01-01

    A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber. PMID:9545029

  14. In Vivo Bioluminescence Tomography for Monitoring Breast Tumor Growth and Metastatic Spreading: Comparative Study and Mathematical Modeling

    PubMed Central

    Mollard, Séverine; Fanciullino, Raphaelle; Giacometti, Sarah; Serdjebi, Cindy; Benzekry, Sebastien; Ciccolini, Joseph

    2016-01-01

    This study aimed at evaluating the reliability and precision of Diffuse Luminescent Imaging Tomography (DLIT) for monitoring primary tumor and metastatic spreading in breast cancer mice, and to develop a biomathematical model to describe the collected data. Using orthotopic mammary fat pad model of breast cancer (MDAMB231-Luc) in mice, we monitored tumor and metastatic spreading by three-dimensional (3D) bioluminescence and cross-validated it with standard bioluminescence imaging, caliper measurement and necropsy examination. DLIT imaging proved to be reproducible and reliable throughout time. It was possible to discriminate secondary lesions from the main breast cancer, without removing the primary tumor. Preferential metastatic sites were lungs, peritoneum and lymph nodes. Necropsy examinations confirmed DLIT measurements. Marked differences in growth profiles were observed, with an overestimation of the exponential phase when using a caliper as compared with bioluminescence. Our mathematical model taking into account the balance between living and necrotic cells proved to be able to reproduce the experimental data obtained with a caliper or DLIT imaging, because it could discriminate proliferative living cells from a more composite mass consisting of tumor cells, necrotic cell, or inflammatory tissues. DLIT imaging combined with mathematical modeling could be a powerful and informative tool in experimental oncology. PMID:27812027

  15. Changing clothes easily: connexin41.8 regulates skin pattern variation.

    PubMed

    Watanabe, Masakatsu; Kondo, Shigeru

    2012-05-01

    The skin patterns of animals are very important for their survival, yet the mechanisms involved in skin pattern formation remain unresolved. Turing's reaction-diffusion model presents a well-known mathematical explanation of how animal skin patterns are formed, and this model can predict various animal patterns that are observed in nature. In this study, we used transgenic zebrafish to generate various artificial skin patterns including a narrow stripe with a wide interstripe, a narrow stripe with a narrow interstripe, a labyrinth, and a 'leopard' pattern (or donut-like ring pattern). In this process, connexin41.8 (or its mutant form) was ectopically expressed using the mitfa promoter. Specifically, the leopard pattern was generated as predicted by Turing's model. Our results demonstrate that the pigment cells in animal skin have the potential and plasticity to establish various patterns and that the reaction-diffusion principle can predict skin patterns of animals. © 2012 John Wiley & Sons A/S.

  16. Transport equations in an enzymatic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  17. Mathematical model for the Bridgman-Stockbarger crystal growing system

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1986-01-01

    In a major technical breakthrough, a computer model for Bridgman-Stockbarger crystal growth was developed. The model includes melt convection, solute effects, thermal conduction in the ampule, melt, and crystal, and the determination of the curved moving crystal-melt interface. The key to the numerical method is the use of a nonuniform computational mesh which moves with the interface, so that the interface is a mesh surface. In addition, implicit methods are used for advection and diffusion of heat, concentration, and vorticity, for interface movement, and for internal gracity waves. This allows large time-steps without loss of stability or accuracy. Numerical results are presented for the interface shape, temperature distribution, and concentration distribution, in steady-state crystl growth. Solutions are presented for two test cases using water, with two different salts in solution. The two diffusivities differ by a factor of ten, and the concentrations differ by a factor of twenty.

  18. Full-field 3D shape measurement of specular object having discontinuous surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Huang, Shujun; Gao, Nan; Gao, Feng; Jiang, Xiangqian

    2017-06-01

    This paper presents a novel Phase Measuring Deflectometry (PMD) method to measure specular objects having discontinuous surfaces. A mathematical model is established to directly relate the absolute phase and depth, instead of the phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a precise translating stage, a projector, a diffuser and a camera. The stage locates the projector and the diffuser together to a known position during measurement. By using the model-based and machine vision methods, system calibration is accomplished to provide the required parameters and conditions. The verification tests are given to evaluate the effectiveness of the developed system. 3D (Three-Dimensional) shapes of a concave mirror and a monolithic multi-mirror array having multiple specular surfaces have been measured. Experimental results show that the proposed method can obtain 3D shape of specular objects having discontinuous surfaces effectively

  19. Mathematical Modeling of Decarburization in Levitated Fe-Cr-C Droplets

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Yang, Yindong; Li, Donghui; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor

    2018-04-01

    Using carbon dioxide to replace oxygen as an alternative oxidant gas has proven to be a viable solution in the decarburization process, with potential for industrial applications. In a recent study, the transport phenomena governing the carbon dioxide decarburization process through the use of electromagnetic levitation (EML) was examined. CO2/CO mass transfer was found to be the principal reaction rate control step, as a result gas diffusion has gained significant attention. In the present study, gas diffusion during decarburization process was investigated using computational fluid dynamics (CFD) modeling coupled with chemical reactions. The resulting model was verified through experimental data in a published paper, and employed to provide insights on phenomena typically unobservable through experiments. Based on the results, a new correction of the Frössling equation was presented which better represents the mass transfer phenomena at the metal-gas interface within the range of this research.

  20. Principles for the dynamic maintenance of cortical polarity

    PubMed Central

    Marco, Eugenio; Wedlich-Soldner, Roland; Li, Rong; Altschuler, Steven J.; Wu, Lani F.

    2007-01-01

    Summary Diverse cell types require the ability to dynamically maintain polarized membrane protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that balanced diffusion and colocalized transport to and from the plasma membrane were sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured transport rates, and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step towards understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes. PMID:17448998

  1. Photopolarimetry of scattering surfaces and their interpretation by computer model

    NASA Technical Reports Server (NTRS)

    Wolff, M.

    1979-01-01

    Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.

  2. Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Wessling, Francis C.

    2000-01-01

    The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass, volume, and possibly even time. Through the experimental and numerical results obtained, the power requirements and thermal response time of the breadboard furnace are quantified.

  3. Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model

    PubMed Central

    Faggiano, Elena; Boffano, Carlo; Acerbi, Francesco; Ciarletta, Pasquale

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and malignant among brain tumors. In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a diffuse infiltration, developing long protrusions that penetrate deeply along the fibers of the white matter. These features, combined with the underestimation of the invading GBM area by available imaging techniques, make a definitive treatment of GBM particularly difficult. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of GBM evolution in every single patient throughout his/her oncological history, in order to target therapeutic weapons in a patient-specific manner. In this work, we propose a continuous mechanical model and we perform numerical simulations of GBM invasion combining the main mechano-biological characteristics of GBM with the micro-structural information extracted from radiological images, i.e. by elaborating patient-specific Diffusion Tensor Imaging (DTI) data. The numerical simulations highlight the influence of the different biological parameters on tumor progression and they demonstrate the fundamental importance of including anisotropic and heterogeneous patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution. The results of the proposed mathematical model have the potential to provide a relevant benefit for clinicians involved in the treatment of this particularly aggressive disease and, more importantly, they might drive progress towards improving tumor control and patient’s prognosis. PMID:26186462

  4. Understanding and improving lithium ion batteries through mathematical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj D.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.

  5. Predictability of drug release from water-insoluble polymeric matrix tablets.

    PubMed

    Grund, Julia; Körber, Martin; Bodmeier, Roland

    2013-11-01

    The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Understanding Performance Limitations to Enable High Performance Magnesium-Ion Batteries

    DOE PAGES

    Kim, Sun Ung; Perdue, Brian; Apblett, Christopher A.; ...

    2016-05-18

    We developed a mathematical model in order to investigate the performance limiting factors of Mg-ion battery with a Chevrel phase (Mg xMo 6S 8) cathode and a Mg metal anode. Furthermore, the model was validated using experimental data from the literature [Cheng et al., Chem. Mater., 26, 4904 (2014)]. Two electrochemical reactions of the Chevrel phase with significantly different kinetics and solid diffusion were included in the porous electrode model, which captured the physics sufficiently well to generate charge curves of five rates (0.1C–2C) for two different particle sizes. Limitation analysis indicated that the solid diffusion and kinetics in themore » higher-voltage plateau limit the capacity and increase the overpotential in the Cheng et al.’s thin (20-μm) electrodes. The model reveals that the performance of the cells with reasonable thickness would also be subject to electrolyte-phase limitations. Finally, the simulation also suggested that the polarization losses on discharge will be lower than that on charge, because of the differences in the kinetics and solid diffusion between the two reactions of the Chevrel phase.« less

  7. Diffusion-Based Model for Synaptic Molecular Communication Channel.

    PubMed

    Khan, Tooba; Bilgin, Bilgesu A; Akan, Ozgur B

    2017-06-01

    Computational methods have been extensively used to understand the underlying dynamics of molecular communication methods employed by nature. One very effective and popular approach is to utilize a Monte Carlo simulation. Although it is very reliable, this method can have a very high computational cost, which in some cases renders the simulation impractical. Therefore, in this paper, for the special case of an excitatory synaptic molecular communication channel, we present a novel mathematical model for the diffusion and binding of neurotransmitters that takes into account the effects of synaptic geometry in 3-D space and re-absorption of neurotransmitters by the transmitting neuron. Based on this model we develop a fast deterministic algorithm, which calculates expected value of the output of this channel, namely, the amplitude of excitatory postsynaptic potential (EPSP), for given synaptic parameters. We validate our algorithm by a Monte Carlo simulation, which shows total agreement between the results of the two methods. Finally, we utilize our model to quantify the effects of variation in synaptic parameters, such as position of release site, receptor density, size of postsynaptic density, diffusion coefficient, uptake probability, and number of neurotransmitters in a vesicle, on maximum number of bound receptors that directly affect the peak amplitude of EPSP.

  8. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    PubMed

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  9. A physiologically based mathematical model of dermal absorption in man.

    PubMed

    Auton, T R; Westhead, D R; Woollen, B H; Scott, R C; Wilks, M F

    1994-01-01

    A sound understanding of the mechanisms determining percutaneous absorption is necessary for toxicological risk assessment of chemicals contacting the skin. As part of a programme investigating these mechanisms we have developed a physiologically based mathematical model. The structure of the model parallels the multi-layer structure of the skin, with separate surface, stratum corneum and viable tissue layers. It simulates the effects of partitioning and diffusive transport between the sub-layers, and metabolism in the viable epidermis. In addition the model describes removal processes on the surface of the skin, including the effects of washing and desquamation, and rubbing off onto clothing. This model is applied to data on the penetration of the herbicide fluazifop-butyl through human skin in vivo and in vitro. Part of this dataset is used to estimate unknown model parameter values and the remainder is used to provide a partial validation of the model. Only a small fraction of the applied dose was absorbed through the skin; most of it was removed by washing or onto clothing. The model provides a quantitative description of these loss processes on the skin surface.

  10. Characteristic time scales for diffusion processes through layers and across interfaces

    NASA Astrophysics Data System (ADS)

    Carr, Elliot J.

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  11. Characteristic time scales for diffusion processes through layers and across interfaces.

    PubMed

    Carr, Elliot J

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  12. The mathematical model of radon-222 accumulation in underground mines

    NASA Astrophysics Data System (ADS)

    Klimshin, A.

    2012-04-01

    Necessity to control underground mine air radon level arises during building and operating mines as well as auto and railway tunnels including those for metros. Calculation of underground mine air radon level can be fulfilled for estimation of potential radon danger of area for underground structure building. In this work the new mathematical model of radon accumulation in underground mines has been suggested. It takes into consideration underground mine dimensions, air exchange factor and soils ability to emanate radon. The following assumptions have been taken for model development. It is assumed that underground mine is a cylinder of length L and of base area S. Due to ventilation atmosphere air of volume activity Catm, is coming in through one cylinder base and is going out of volume activity Cind from underground mine. Diffusion radon flux is coming in through side surfaces of underground mine. The sources of this flux are radium-226 atoms distributed evenly in rock. For simplification of the task it considered possible to disregard radon emanation by loosened rock and underground waters. As a result of solution of the radon diffusion equation the following expression for calculation of radon volume activity in underground space air has been got: 2·r0 ·λv ·Catm-·l·K0(r0/l)-+D-·K1(r0/l)·C0- Cind = 2·(λ+ λv)·r0 ·l·K0 (r0/l)+ D ·K1(r0/l) . The following designations are used in this expression: Kν(r) - the second genus modified Bessel's function, C0 - equilibrium radon volume activity in soil air, l - diffusion radon length in soil, D - radon diffusion factor, r0 - radius of underground tunnel, λv - factor of air exchange. Expression found may be used for calculation of the minimum factor of necessary air exchange for ensuring safe radon levels in underground spaces. With this worked out model expected levels of radon volume activity were calculated for air in the second metro line underground spaces in the city of Yekaterinburg, Russia.

  13. Convective instabilities in a ternary alloy mushy layer

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel; Guba, Peter

    2014-11-01

    We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).

  14. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    PubMed

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Pulsation-limited oxygen diffusion in the tumour microenvironment

    NASA Astrophysics Data System (ADS)

    Milotti, Edoardo; Stella, Sabrina; Chignola, Roberto

    2017-01-01

    Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers-a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow -may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.

  16. Agent-based model of diffusion of N-acyl homoserine lactones in a multicellular environment of Pseudomonas aeruginosa and Candida albicans.

    PubMed

    Pérez-Rodríguez, Gael; Dias, Sónia; Pérez-Pérez, Martín; Fdez-Riverola, Florentino; Azevedo, Nuno F; Lourenço, Anália

    2018-03-08

    Experimental incapacity to track microbe-microbe interactions in structures like biofilms, and the complexity inherent to the mathematical modelling of those interactions, raises the need for feasible, alternative modelling approaches. This work proposes an agent-based representation of the diffusion of N-acyl homoserine lactones (AHL) in a multicellular environment formed by Pseudomonas aeruginosa and Candida albicans. Depending on the spatial location, C. albicans cells were variably exposed to AHLs, an observation that might help explain why phenotypic switching of individual cells in biofilms occurred at different time points. The simulation and algebraic results were similar for simpler scenarios, although some statistical differences could be observed (p < 0.05). The model was also successfully applied to a more complex scenario representing a small multicellular environment containing C. albicans and P. aeruginosa cells encased in a 3-D matrix. Further development of this model may help create a predictive tool to depict biofilm heterogeneity at the single-cell level.

  17. Differential water sorption studies on Kevlar 49 and As-polymerized poly(p-phenylene terephthalamide): determination of water transport properties.

    PubMed

    Mooney, Damian A; MacElroy, J M Don

    2007-11-06

    Water vapor sorption experiments have been conducted on Kevlar 49 at 30 degrees C over a range of water vapor pressures in 0-90% of saturation and on the as-polymerized form of the material at 30, 45, and 60 degrees C over a series of water vapor pressures of 0-60%, 0-25%, and 0-15%, respectively. For each of the differential steps in water vapor pressure, dynamic uptake curves were generated and analyzed according to a number of different mathematical models, including Fickian, Coaxial cylindrical, and intercalation models. The intercalation model was demonstrated to be the most successful model and considered two time-scales involved in the diffusion process, i.e., a penetrant-diffusive time-scale and a polymer-local-matrix-relaxation time-scale. The success of this model reinforces previously reported adsorption and desorption isotherms which suggested that water may penetrate into the surface layers of the polymer crystallite through a process known as intercalation.

  18. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate. PMID:26913283

  19. Basin infilling of a schematic 1D estuary using two different approaches: an aggregate diffusive type model and a processed based model.

    NASA Astrophysics Data System (ADS)

    Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.

    2010-05-01

    Fluvial sediment transport creates great challenges for river scientists and engineers. The interaction between the fluid (water) and the solid (dispersed sediment particles) phases is crucial in morphodynamics. The process of sediment transport and the resulting morphological evolution of rivers get more complex with the exposure of the fluvial systems to the natural and variable environment (climatic, geological, ecological and social, etc.). The earlier efforts in mathematical river modelling were almost exclusively built on traditional fluvial hydraulics. The last half century has seen more and more developments and applications of mathematical models for fluvial flow, sediment transport and morphological evolution. The first attempts for a quantitative description and simulation of basin filling in geological time scales started in the late 60´s of the last century (eg. Schwarzacher, 1966; Briggs & Pollack, 1967). However, the quality of this modelling practice has emerged as a crucial issue for concern, which is widely viewed as the key that could unlock the full potential of computational fluvial hydraulics. Most of the models presently used to study fluvial basin filling are of the "diffusion type" (Flemmings and Jordan, 1989). It must be noted that this type of models do not assume that the sediment transport is performed by a physical diffusive process. Rather they are synthetic models based on mass conservation. In the "synthesist" viewpoint (Tipper, 1992; Goldenfeld & Kadanoff, 1999; Werner, 1999 in Paola, 2000) the dynamics of complex systems may occur on many levels (time or space scales) and the dynamics of higher levels may be more or less independent of that at lower levels. In this type of models the low frequency dynamics is controlled by only a few important processes and the high frequency processes are not included. In opposition to this is the "reductionist" viewpoint that states that there is no objective reason to discard high frequency processes. In this viewpoint the system is broken down into its fundamental components and processes and the model is build up by selecting the important processes regardless of its time and space scale. This viewpoint was only possible to pursue in the recent years due to improvement in system knowledge and computer power (Paola, 2000). The primary aim of this paper is to demonstrate that it is possible to simulate the evolution of the sediment river bed, traditionally studied with synthetic models, with a process-based hydrodynamic, sediment transport and morphodynamic model, solving explicitly the mass and momentum conservation equations. With this objective, a comparison between two mathematical models for alluvial rivers is made to simulate the evolution of the sediment river bed of a conceptual 1D embayment for periods in the order of a thousand years: the traditional synthetic basin infilling aggregate diffusive type model based on the diffusion equation (Paola, 2000), used in the "synthesist" viewpoint and the process-based model MOHID (Miranda et al., 2000). The simulation of the sediment river bed evolution achieved by the process-based model MOHID is very similar to those obtained by the diffusive type model, but more complete due to the complexity of the process-based model. In the MOHID results it is possible to observe a more comprehensive and realistic results because this type of model include processes that is impossible to a synthetic model to describe. At last the combined effect of tide, sea level rise and river discharges was investigated in the process based model. These effects cannot be simulated using the diffusive type model. The results demonstrate the feasibility of using process based models to perform studies in scales of 10000 years. This is an advance relative to the use of synthetic models, enabling the use of variable forcing. REFERENCES • Briggs, L.I. and Pollack, H.N., 1967. Digital model of evaporate sedimentation. Science, 155, 453-456. • Flemmings, P.B. and Jordan, T.E., 1989. A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851-3866. • Miranda, R., Braunschweig, F., Leitão, P., Neves, R., Martins, F. & Santos A., 2000. MOHID 2000 - A coastal integrated object oriented model. Proc. Hydraulic Engineering Software VIII, Lisbon, 2000, 393-401, Ed. W.R. Blain & C.A. Brebbia, WITpress. • Paola, C., 2000. Quantitative models of sedimentary basin filing. Sedimentology, 47, 121-178. • Schwarzacher, W., 1966. Sedimentation in a subsiding basin. Nature, 5043, 1349-1350. ACKNOWLEDGMENTS This work was supported by the EVEDUS PTDC/CLI/68488/2006 Research Project

  20. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.

    PubMed

    Angell-Petersen, Even; Hirschberg, Henry; Madsen, Steen J

    2007-01-01

    Light and heat distributions are measured in a rat glioma model used in photodynamic therapy. A fiber delivering 632-nm light is fixed in the brain of anesthetized BDIX rats. Fluence rates are measured using calibrated isotropic probes that are positioned stereotactically. Mathematical models are then used to derive tissue optical properties, enabling calculation of fluence rate distributions for general tumor and light application geometries. The fluence rates in tumor-free brains agree well with the models based on diffusion theory and Monte Carlo simulation. In both cases, the best fit is found for absorption and reduced scattering coefficients of 0.57 and 28 cm(-1), respectively. In brains with implanted BT(4)C tumors, a discrepancy between diffusion and Monte Carlo-derived two-layer models is noted. Both models suggest that tumor tissue has higher absorption and less scattering than normal brain. Temperatures are measured by inserting thermocouples directly into tumor-free brains. A model based on diffusion theory and the bioheat equation is found to be in good agreement with the experimental data and predict a thermal penetration depth of 0.60 cm in normal rat brain. The predicted parameters can be used to estimate the fluences, fluence rates, and temperatures achieved during photodynamic therapy.

  1. Mathematical model of gas plasma applied to chronic wounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. G.; Liu, X. Y.; Liu, D. W.

    2013-11-15

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model.more » The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.« less

  2. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  3. Howard Brenner's Legacy for Biological Transport Processes

    NASA Astrophysics Data System (ADS)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  4. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    PubMed

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.

  5. Mathematical Model of Estuarial Sediment Transport.

    DTIC Science & Technology

    1977-10-01

    This experience showed the central importance of the vertical diffusion coefficient and of the settling velocities of suspended aggregates. 150...34Report of Radioactive Tracer Studies, Sumatra ," Report prepared for Government Offices of Sumatra , 1975. 28. Strang, Gilbert and Fix, G. J., An...of the overall system as it is located at a turning basin . * Krone, R. B., "A Field Study of Flocculation as a Factor in Estuarial Shoaling

  6. Cosmic clustering

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik

    2016-06-30

    We show that the late time Hartle-Hawking wave function for a free massless scalar in a fixed de Sitter background encodes a sharp ultrametric structure for the standard Euclidean distance on the space of field configurations. This implies a hierarchical, tree-like organization of the state space, reflecting its genesis as a branched diffusion process. In conclusion, an equivalent mathematical structure organizes the state space of the Sherrington-Kirkpatrick model of a spin glass.

  7. Receptive Fields and the Reconstruction of Visual Information.

    DTIC Science & Technology

    1985-09-01

    depending on the noise . Thus our model would suggest that the interpolation filters for deblurring are playing a role in Ii hyperacuity. This is novel...of additional precision in the information can be obtained by a process of deblurring , which could be relevant to hyperacuity. It also provides an... impulse of heat diffuses into increasingly larger Gaussian distributions as time proceeds. Mathematically, let f(x) denote the initial temperature

  8. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  9. Quantum dots as contrast agents for endoscopy: mathematical modeling and experimental validation of the optimal excitation wavelength

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.

    2007-02-01

    Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.

  10. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  11. Modeling Bimolecular Reactive Transport With Mixing-Limitation: Theory and Application to Column Experiments

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.

    2018-01-01

    The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.

  12. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    USGS Publications Warehouse

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  13. Diffusion processes in tumors: A nuclear medicine approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Helman, E-mail: haamayae@unal.edu.co

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and {sup 18}F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer softwaremore » was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical {sup 18}F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.« less

  14. Pattern formation in mass conserving reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin

    We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.

  15. Mathematical modeling of planar cell polarity signaling in the Drosophila melanogaster wing

    NASA Astrophysics Data System (ADS)

    Amonlirdviman, Keith

    Planar cell polarity (PCP) signaling refers to the coordinated polarization of cells within the plane of various epithelial tissues to generate sub-cellular asymmetry along an axis orthogonal to their apical-basal axes. For example, in the Drosophila wing, PCP is seen in the parallel orientation of hairs that protrude from each of the approximately 30,000 epithelial cells to robustly point toward the wing tip. Through a poorly understood mechanism, cell clones mutant for some PCP signaling components, including some, but not all alleles of the receptor frizzled, cause polarity disruptions of neighboring, wild-type cells, a phenomenon referred to as domineering nonautonomy. Previous models have proposed diffusible factors to explain nonautonomy, but no such factors have yet been found. This dissertation describes the mathematical modeling of PCP in the Drosophila wing, based on a contact dependent signaling hypothesis derived from experimental results. Intuition alone is insufficient to deduce that this hypothesis, which relies on a local feedback loop acting at the cell membrane, underlies the complex patterns observed in large fields of cells containing mutant clones, and others have argued that it cannot account for observed phenotypes. Through reaction-diffusion, partial differential equation modeling and simulation, the feedback loop is shown to fully reproduce PCP phenotypes, including domineering nonautonomy. The sufficiency of this model and the experimental validation of model predictions argue that previously proposed diffusible factors need not be invoked to explain PCP signaling and reveal how specific protein-protein interactions lead to autonomy or domineering nonautonomy. Based on these results, an ordinary differential equation model is derived to study the relationship of the feedback loop with upstream signaling components. The cadherin Fat transduces a cue to the local feedback loop, biasing the polarity direction of each cell toward the wing tip. The feedback loop then amplifies and propagates PCP across the pupal wing, but polarity information does not always propagate correctly across cells lacking Fat function. Using the simplified model, the presence and severity of polarity defects in fat clones is shown to be an inherent consequence of the feedback loop when confronted with irregular variations in cell geometry.

  16. Adsorption with biodegradation for decolorization of reactive black 5 by Funalia trogii 200800 on a fly ash-chitosan medium in a fluidized bed bioreactor-kinetic model and reactor performance.

    PubMed

    Lin, Yen-Hui; Lin, Wen-Fan; Jhang, Kai-Ning; Lin, Pei-Yu; Lee, Mong-Chuan

    2013-02-01

    A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of reactive black 5 (RB5) by Funalia trogii (F. trogii) ATCC 200800 biofilm on fly ash-chitosan bead in the fluidized bed process was derived. The mechanisms in the model system included adsorption by fly ash-chitosan beads, biodegradation by F. trogii cells and mass transport diffusion. Batch kinetic tests were independently performed to determine surface diffusivity of RB5, adsorption parameters for RB5 and biokinetic parameters of F. trogii ATCC 200800. A column test was conducted using a continuous-flow fluidized bed reactor with a recycling pump to approximate a completely-mixed flow reactor for model verification. The experimental results indicated that F. trogii biofilm bioregenerated the fly ash-chitosan beads after attached F. trogii has grown significantly. The removal efficiency of RB5 was about 95 % when RB5 concentration in the effluent was approximately 0.34 mg/L at a steady-state condition. The concentration of suspended F. trogii cells reached up to about 1.74 mg/L while the thickness of attached F. trogii cells was estimated to be 80 μm at a steady-state condition by model prediction. The comparisons of experimental data and model prediction show that the model system for adsorption and biodegradation of RB5 can predict the experimental results well. The approaches of experiments and mathematical modeling in this study can be applied to design a full-scale fluidized bed process to treat reactive dye in textile wastewater.

  17. HARDI DATA DENOISING USING VECTORIAL TOTAL VARIATION AND LOGARITHMIC BARRIER

    PubMed Central

    Kim, Yunho; Thompson, Paul M.; Vese, Luminita A.

    2010-01-01

    In this work, we wish to denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical brain imaging. Diffusion imaging is a relatively new and powerful method to measure the three-dimensional profile of water diffusion at each point in the brain. These images can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI data is a powerful new extension of diffusion imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity data is given at every voxel and at any direction on the sphere. Unfortunately, HARDI data is usually highly contaminated with noise, depending on the b-value which is a tuning parameter pre-selected to collect the data. Larger b-values help to collect more accurate information in terms of measuring diffusivity, but more noise is generated by many factors as well. So large b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure. Here we propose two variational methods to denoise HARDI data. The first one directly denoises the collected data S, while the second one denoises the so-called sADC (spherical Apparent Diffusion Coefficient), a field of radial functions derived from the data. These two quantities are related by an equation of the form S = SSexp (−b · sADC) (in the noise-free case). By applying these two different models, we will be able to determine which quantity will most accurately preserve data structure after denoising. The theoretical analysis of the proposed models is presented, together with experimental results and comparisons for denoising synthetic and real HARDI data. PMID:20802839

  18. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  19. The role of fractional calculus in modeling biological phenomena: A review

    NASA Astrophysics Data System (ADS)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  20. Energy balance in the solar transition region. III - Helium emission in hydrostatic, constant-abundance models with diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1993-01-01

    In our previous papers we described the mathematical formalism and the computed results for energy-balance hydrostatic models of the solar transition region. In this paper we discuss in some detail the limitations of the hydrostatic and one-dimensional assumptions used. Then we analyze the determination of helium emission when diffusion is included. We use transport coefficients estimated from kinetic theory to determine the helium departures from local ionization balance. We calculate the helium spectra for each of our models and evaluate the role of helium in the energy transport. Also, we investigate the effects of coronal illumination on the structure of the transition region and upper chromosphere, and show how coronal illumination affects various EUV lines and the He I 10830 A line. Comparing with both absolute intensities and detailed line profiles, we show that our models are consistent not only with the observed hydrogen spectra but also with the available helium spectra.

  1. Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent

    NASA Astrophysics Data System (ADS)

    Nec, Yana

    2018-01-01

    Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).

  2. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  3. Coupled diffusion and mechanics in battery electrodes

    NASA Astrophysics Data System (ADS)

    Eshghinejad, Ahmadreza

    We are living in a world with continuous production and consumption of energy. The energy production in the past decades has started to move away from petrochemical sources toward sustainable sources such as solar, wind and geothermal. Also, the energy consumption is further adapting to the sustainable sources. For instance, in recent years electric vehicles are growing fast that can consume sustainable electric energy stored in their batteries. In this direction, in order to further move toward sustainable energy, materials are becoming increasingly important for storing electric energy. Although, currently the technologies such as Li-ion batteries and solid-oxide fuel cells are commercially available for energy applications, improvements are crucial for the next generation of many other technologies producing or consuming sustainable energies. A critical aspect of the electrochemical activities involved in energy storage technologies such as Li-ion batteries and solid-oxide fuel cells is the diffusion of ions into the electrode materials. This process ultimately governs various functional properties of the batteries such as capacity and charging/discharging rates. The first goal of this dissertation is to develop mathematical tools to analyze the ionic diffusion and investigate its coupling with mechanics in electrodes. For this purpose, a thermodynamics-based modeling framework is developed and numerically solved using two numerical methods to analyze ionic diffusion in heterogeneous and structured electrodes. The next goal of this dissertation is to develop and analyze characterization techniques to probe the electrochemical processes at the nano-scale. To this end, the mathematical models are first employed to model a previously developed Atomic Force Microscopy based technique to probe local electrochemical activities called Electrochemical Strain Microscopy (ESM). This method probes the activities by inducing AC electric field to perturb ionic activities and measuring the surface vibrations. Different aspects of this technique are analyzed and the limitations are discussed. Such limitations moves the dissertation toward development of a new technique for probing the electrochemical activities, to overcome the previous limitations, called Scanning Thermo-ionic Microscopy (STIM). In this method, the local activities are probed by inducing AC temperature oscillations to perturb ionic activities and measuring the surface vibrations. The principle mathematical analysis of the coupled governing equations and the method of probing electrochemical activities are discussed in detail. Also, the method is implemented into the AFM hardware/software and the STIM response is confirmed using experiments on LiFePO4 and Sm-doped Ceria as well-known battery and fuel cell electrodes. The STIM method provides a clean method for analyzing energy storage materials and designing novel nano-structured materials for improved performance. Finally, conclusion of the presented work is discussed in the last chapter and the future works to continue the development of the modeling and experiments are listed.

  4. A Model for the Oxidation of C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2003-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.

  5. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels.

    PubMed

    Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko

    2016-08-01

    Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Survival probability of diffusion with trapping in cellular neurobiology

    NASA Astrophysics Data System (ADS)

    Holcman, David; Marchewka, Avi; Schuss, Zeev

    2005-09-01

    The problem of diffusion with absorption and trapping sites arises in the theory of molecular signaling inside and on the membranes of biological cells. In particular, this problem arises in the case of spine-dendrite communication, where the number of calcium ions, modeled as random particles, is regulated across the spine microstructure by pumps, which play the role of killing sites, while the end of the dendritic shaft is an absorbing boundary. We develop a general mathematical framework for diffusion in the presence of absorption and killing sites and apply it to the computation of the time-dependent survival probability of ions. We also compute the ratio of the number of absorbed particles at a specific location to the number of killed particles. We show that the ratio depends on the distribution of killing sites. The biological consequence is that the position of the pumps regulates the fraction of calcium ions that reach the dendrite.

  7. Mathematical modeling of microbially induced crown corrosion in wastewater collection systems and laboratory investigation and modeling of sulfuric acid corrosion of concrete

    NASA Astrophysics Data System (ADS)

    Jahani, Fereidoun

    In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.

  8. Stable time filtering of strongly unstable spatially extended systems

    PubMed Central

    Grote, Marcus J.; Majda, Andrew J.

    2006-01-01

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626

  9. Stable time filtering of strongly unstable spatially extended systems.

    PubMed

    Grote, Marcus J; Majda, Andrew J

    2006-05-16

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.

  10. [Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].

    PubMed

    Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K

    2003-01-01

    The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.

  11. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  12. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle

    PubMed Central

    Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.

    2011-01-01

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946

  13. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.

    2016-09-01

    This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less

  14. Noah, Joseph and Convex Hulls

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chau, Y.; Chapman, S. C.

    2010-12-01

    The idea of describing animal movement by mathematical models based on diffusion and Brownian motion has a long heritage. It has thus been natural to account for those aspects of motion that depart from the Brownian by the use of models incorporating long memory & subdiffusion (“the Joseph effect”) and/or heavy tails & superdiffusion (“the Noah effect”). My own interest in this problem was originally from a geoscience perspective, and was triggered by the need to model time series in space physics where both effects coincide. Subsequently I have been involved in animal foraging studies [e.g. Edwards et al, Nature, 2007]. I will describe some recent work [Watkins et al, PRE, 2009] which studies how fixed-timestep and variable-timestep formulations of anomalous diffusion are related in the presence of heavy tails and long range memory (stable processes versus the CTRW). Quantities for which different scaling relations are predicted between the two approaches are of particular interest, to aid testability. I will also present some of work in progress on the convex hull of anomalously diffusing walkers, inspired by its possible relevance to the idea of home range in biology, and by Randon-Furling et al’s recent analytical results in the Brownian case [PRL, 2009].

  15. Properties of interfaces and transport across them.

    PubMed

    Cabezas, H

    2000-01-01

    Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.

  16. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    NASA Astrophysics Data System (ADS)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  17. Microwave heating and joining of ceramic cylinders: A mathematical model

    NASA Technical Reports Server (NTRS)

    Booty, Michael R.; Kriegsmann, Gregory A.

    1994-01-01

    A thin cylindrical ceramic sample is placed in a single mode microwave applicator in such a way that the electric field strength is allowed to vary along its axis. The sample can either be a single rod or two rods butted together. We present a simple mathematical model which describes the microwave heating process. It is built on the assumption that the Biot number of the material is small, and that the electric field is known and uniform throughout the cylinder's cross-section. The model takes the form of a nonlinear parabolic equation of reaction-diffusion type, with a spatially varying reaction term that corresponds to the spatial variation of the electromagnetic field strength in the waveguide. The equation is analyzed and a solution is found which develops a hot spot near the center of the cylindrical sample and which then propagates outwards until it stabilizes. The propagation and stabilization phenomenon concentrates the microwave energy in a localized region about the center where elevated temperatures may be desirable.

  18. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  19. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  20. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane

    PubMed Central

    Ungricht, Rosemarie; Klann, Michael; Horvath, Peter

    2015-01-01

    Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2β as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention–based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo. PMID:26056139

  1. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  2. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period.

  3. Importance of a diffusion-dominant small volume to activate cell-secreted soluble factor signaling in embryonic stem cell culture in microbioreactors: a mathematical model based study.

    PubMed

    Chowdhury, Mohammad Mahfuz; Fujii, Teruo; Sakai, Yasuyuki

    2013-07-01

    In our previous studies, we observed that cell-secreted BMP4 had a prominent influence on mouse embryonic stem cell (mESC) behaviors in a membrane-based two-chambered microbioreactor (MB), but not in a macro-scale culture (6-well plate/6WP). In this study, we investigated how the physical aspects of these cultures regulated BMP4 signaling by developing mathematical models of the cultures. The models estimated signaling activity in the cultures by considering size of the undifferentiated mESC colonies and their growth, diffusion of BMP4, and BMP4 trafficking process in the colonies. The models successfully depicted measured profile of BMP4 concentration in the culture medium which was two times higher in the MB than that in the 6WP during 5-day culture. The models estimated that, owing to the small volume and the membrane, cells were exposed to a higher BMP4 concentration in the top chamber of the MB than that in the 6WP culture. The higher concentration of BMP4 induced a higher concentration of BMP4-bound receptor in the colony in the MB than in the 6WP, thereby leading to the higher activation of BMP4 signaling in the MB. The models also predicted that the size of the MB, but not that of the 6WP, was suitable for maximizing BMP4 accumulation and upregulating its signaling. This study will be helpful in analyzing culture systems, designing microfluidic devices for controlling ESC or other cell behavior. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Communication: Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellery, Adam J.; Simpson, Matthew J.; Baker, Ruth E.

    2016-05-07

    The motion of cells and molecules through biological environments is often hindered by the presence of other cells and molecules. A common approach to modeling this kind of hindered transport is to examine the mean squared displacement (MSD) of a motile tracer particle in a lattice-based stochastic random walk in which some lattice sites are occupied by obstacles. Unfortunately, stochastic models can be computationally expensive to analyze because we must average over a large ensemble of identically prepared realizations to obtain meaningful results. To overcome this limitation we describe an exact method for analyzing a lattice-based model of the motionmore » of an agent moving through a crowded environment. Using our approach we calculate the exact MSD of the motile agent. Our analysis confirms the existence of a transition period where, at first, the MSD does not follow a power law with time. However, after a sufficiently long period of time, the MSD increases in proportion to time. This latter phase corresponds to Fickian diffusion with a reduced diffusivity owing to the presence of the obstacles. Our main result is to provide a mathematically motivated, reproducible, and objective estimate of the amount of time required for the transport to become Fickian. Our new method to calculate this crossover time does not rely on stochastic simulations.« less

  5. Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.

    PubMed

    Cheng, Jian; Basser, Peter J

    2018-01-01

    In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    PubMed Central

    Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin

    2014-01-01

    Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109

  7. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  8. Adsorptive Water Removal from Dichloromethane and Vapor-Phase Regeneration of a Molecular Sieve 3A Packed Bed

    PubMed Central

    2017-01-01

    The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701

  9. Hydrodynamic Fingering Instability Induced by a Precipitation Reaction

    NASA Astrophysics Data System (ADS)

    Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.

    2014-07-01

    We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.

  10. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.

  11. Variable order fractional Fokker-Planck equations derived from Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Straka, Peter

    2018-08-01

    Continuous Time Random Walk models (CTRW) of anomalous diffusion are studied, where the anomalous exponent β(x) ∈(0 , 1) varies in space. This type of situation occurs e.g. in biophysics, where the density of the intracellular matrix varies throughout a cell. Scaling limits of CTRWs are known to have probability distributions which solve fractional Fokker-Planck type equations (FFPE). This correspondence between stochastic processes and FFPE solutions has many useful extensions e.g. to nonlinear particle interactions and reactions, but has not yet been sufficiently developed for FFPEs of the "variable order" type with non-constant β(x) . In this article, variable order FFPEs (VOFFPE) are derived from scaling limits of CTRWs. The key mathematical tool is the 1-1 correspondence of a CTRW scaling limit to a bivariate Langevin process, which tracks the cumulative sum of jumps in one component and the cumulative sum of waiting times in the other. The spatially varying anomalous exponent is modelled by spatially varying β(x) -stable Lévy noise in the waiting time component. The VOFFPE displays a spatially heterogeneous temporal scaling behaviour, with generalized diffusivity and drift coefficients whose units are length2/timeβ(x) resp. length/timeβ(x). A global change of the time scale results in a spatially varying change in diffusivity and drift. A consequence of the mathematical derivation of a VOFFPE from CTRW limits in this article is that a solution of a VOFFPE can be approximated via Monte Carlo simulations. Based on such simulations, we are able to confirm that the VOFFPE is consistent under a change of the global time scale.

  12. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  13. On the Symmetry of Molecular Flows Through the Pipe of an Arbitrary Shape (I) Diffusive Reflection

    NASA Astrophysics Data System (ADS)

    Kusumoto, Yoshiro

    Molecular gas flows through the pipe of an arbitrary shape is mathematically considered based on a diffusive reflection model. To avoid a perpetual motion, the magnitude of the molecular flow rate must remain invariant under the exchange of inlet and outlet pressures. For this flow symmetry, the cosine law reflection at the pipe wall was found to be sufficient and necessary, on the assumption that the molecular flux is conserved in a collision with the wall. It was also shown that a spontaneous flow occurs in a hemispherical apparatus, if the reflection obeys the n-th power of cosine law with n other than unity. This apparatus could work as a molecular pump with no moving parts.

  14. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids

    PubMed Central

    2016-01-01

    Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970

  15. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.

  16. Modeling the effect of topical oxygen therapy on wound healing

    NASA Astrophysics Data System (ADS)

    Agyingi, Ephraim; Ross, David; Maggelakis, Sophia

    2011-11-01

    Oxygen supply is a critical element for the healing of wounds. Clinical investigations have shown that topical oxygen therapy (TOT) increases the healing rate of wounds. The reason behind TOT increasing the healing rate of a wound remains unclear and hence current protocols are empirical. In this paper we present a mathematical model of wound healing that we use to simulate the application of TOT in the treatment of cutaneous wounds. At the core of our model is an account of the initiation of angiogenesis by macrophage-derived growth factors. The model is expressed as a system of reaction-diffusion equations. We present results of simulations for a version of the model with one spatial dimension.

  17. A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness

    PubMed Central

    Stride, E.; Cheema, U.

    2017-01-01

    The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127

  18. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  19. Estimation of cauliflower mass transfer parameters during convective drying

    NASA Astrophysics Data System (ADS)

    Sahin, Medine; Doymaz, İbrahim

    2017-02-01

    The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.

  20. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  1. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  2. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    PubMed

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  3. Retinal Oxygen: from animals to humans

    PubMed Central

    Linsenmeier, Robert A.; Zhang, Hao F.

    2017-01-01

    This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory. PMID:28109737

  4. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    PubMed

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. SPEEDUP{trademark} ion exchange column model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process.more » The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.« less

  6. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  7. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling.

    PubMed

    Busatto, Carlos; Pesoa, Juan; Helbling, Ignacio; Luna, Julio; Estenoz, Diana

    2018-01-30

    Poly(lactic-co-glycolic acid) (PLGA) microparticles containing progesterone were prepared by the solvent extraction/evaporation and microfluidic techniques. Microparticles were characterized by their size distribution, encapsulation efficiency, morphology and thermal properties. The effect of particle size, polydispersity and polymer degradation on the in vitro release of the hormone was studied. A triphasic release profile was observed for larger microparticles, while smaller microspheres showed a biphasic release profile. This behavior is related to the fact that complete drug release was achieved in a few days for smaller microparticles, during which polymer degradation effects are still negligible. A mathematical model was developed that predicts the progesterone release profiles from different-sized PLGA microspheres. The model takes into account both the dissolution and diffusion of the drug in the polymeric matrix as well as the autocatalytic effect of polymer degradation. The model was adjusted and validated with novel experimental data. Simulation results are in very good agreement with experimental results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1972-01-01

    Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.

  9. A Mathematical Model on Water Redistribution Mechanism of the Seismonastic Movement of Mimosa Pudica

    PubMed Central

    Kwan, K.W.; Ye, Z.W.; Chye, M.L.; Ngan, A.H.W.

    2013-01-01

    A theoretical model based on the water redistribution mechanism is proposed to predict the volumetric strain of motor cells in Mimosa pudica during the seismonastic movement. The model describes the water and ion movements following the opening of ion channels triggered by stimulation. The cellular strain is related to the angular velocity of the plant movement, and both their predictions are in good agreement with experimental data, thus validating the water redistribution mechanism. The results reveal that an increase in ion diffusivity across the cell membrane of <15-fold is sufficient to produce the observed seismonastic movement. PMID:23823246

  10. Differential die-away analysis system response modeling and detector design

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Gozani, T.; Vujic, J.

    2008-05-01

    Differential die-away-analysis (DDAA) is a sensitive technique to detect presence of fissile materials such as 235U and 239Pu. DDAA uses a high-energy (14 MeV) pulsed neutron generator to interrogate a shipping container. The signature is a fast neutron signal hundreds of microseconds after the cessation of the neutron pulse. This fast neutron signal has decay time identical to the thermal neutron diffusion decay time of the inspected cargo. The theoretical aspects of a cargo inspection system based on the differential die-away technique are explored. A detailed mathematical model of the system is developed, and experimental results validating this model are presented.

  11. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from material system (namely, substrate//glue//vinyl tile).

  12. Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment.

    PubMed

    Zhang, Bo; Liu, Xin; DeAngelis, D L; Ni, Wei-Ming; Wang, G Geoff

    2015-06-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  14. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-03

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.

  15. Nanoscopic compartmentalization of membrane protein motion at the axon initial segment.

    PubMed

    Albrecht, David; Winterflood, Christian M; Sadeghi, Mohsen; Tschager, Thomas; Noé, Frank; Ewers, Helge

    2016-10-10

    The axon initial segment (AIS) is enriched in specific adaptor, cytoskeletal, and transmembrane molecules. During AIS establishment, a membrane diffusion barrier is formed between the axonal and somatodendritic domains. Recently, an axonal periodic pattern of actin, spectrin, and ankyrin forming 190-nm-spaced, ring-like structures has been discovered. However, whether this structure is related to the diffusion barrier function is unclear. Here, we performed single-particle tracking time-course experiments on hippocampal neurons during AIS development. We analyzed the mobility of lipid-anchored molecules by high-speed single-particle tracking and correlated positions of membrane molecules with the nanoscopic organization of the AIS cytoskeleton. We observe a strong reduction in mobility early in AIS development. Membrane protein motion in the AIS plasma membrane is confined to a repetitive pattern of ∼190-nm-spaced segments along the AIS axis as early as day in vitro 4, and this pattern alternates with actin rings. Mathematical modeling shows that diffusion barriers between the segments significantly reduce lateral diffusion along the axon. © 2016 Albrecht et al.

  16. Hopping Conduction and Bacteria: Transport Properties of Disordered Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Missel, Andrew; Dahmen, Karin

    2008-03-01

    Reaction-diffusion (RD) systems are used to model everything from the formation of animal coat patterns to the spread of genes in a population to the seasonal variation of plankton density in the ocean. In all of these problems, disorder plays a large role, but determining its effects on transport properties in RD systems has been a challenge. We present here both analytical and numerical studies of a particular disordered RD system consisting of particles which are allowed to diffuse and compete for resources (2A->A) with spatially homogeneous rates, reproduce (A->2A) in certain areas (``oases''), and die (A->0) everywhere else (the ``desert''). In the low oasis density regime, transport is mediated through rare ``hopping events'' in which a small number of particles diffuse through the desert from one oasis to another; the situation is mathematically analogous to hopping conduction in doped semiconductors, and this analogy, along with some ideas from first passage percolation theory, allows us to make some quantitative predictions about the transport properties of the system on a large scale.

  17. Comparison of Numerical Approaches to a Steady-State Landscape Equation

    NASA Astrophysics Data System (ADS)

    Bachman, S.; Peckham, S.

    2008-12-01

    A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a nonlinear diffusion filtering technique (Welk et. al, 2007) that has been applied successfully in the context of image processing. The second uses a Ritz finite element approach to the Euler-Lagrange formulation of the PDE in which an eighth degree polynomial is solved whose coefficients are locally dependent on slope and elevation. Lastly, we show a variant to the diffusion filtering approach in which a single-stage Runge-Kutta method is used to iterate a time-derivative to steady- state. The relative merits and drawbacks of these approaches are discussed, as well as stability and consistency requirements.

  18. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  19. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular, for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: (1) development of a spectral code for moving boundary problems; and (2) diffusivity measurements on concentrated and supersaturated TGS solutions. Progress made during this seventh half-year period is reported.

  20. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and diffusivity measurements on concentrated and supersaturated TGS solutions. During this eighth half-year period, good progress was made on these tasks.

  1. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1992-01-01

    The development is examined of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). The tasks include development of a spectral code for moving boundary problems, kinematic viscosity measurements on liquid MCT at temperatures close to the melting point, and diffusivity measurements on concentrated and supersaturated TGS solutions. A detailed description is given of the work performed for these tasks, together with a summary of the resulting publications and presentations.

  2. PLGA-based drug delivery systems: importance of the type of drug and device geometry.

    PubMed

    Klose, D; Siepmann, F; Elkharraz, K; Siepmann, J

    2008-04-16

    Different types of ibuprofen- and lidocaine-loaded, poly(lactic-co-glycolic acid) (PLGA)-based microparticles and thin, free films of various dimensions were prepared and physico-chemically characterized in vitro. The obtained experimental results were analyzed using mathematical theories based on Fick's second law of diffusion. Importantly, the initial drug loadings were low in all cases (4%, w/w), simplifying the mathematical treatment and minimizing potential effects of the acidic/basic nature of the two model drugs on polymer degradation. Interestingly, the type of drug and device geometry strongly affected the resulting release kinetics and relative importance of the involved mass transport mechanisms. For instance, the relative release rate was almost unaffected by the system size in the case of spherical microparticles, but strongly depended on the thickness of thin, free films, irrespective of the type of drug. Ibuprofen and lidocaine release was found to be primarily diffusion controlled from the investigated PLGA-based microparticles for all system sizes, whereas diffusion was only dominant in the case of the thinnest free films. Interestingly, the type of drug did not significantly affect the resulting polymer degradation kinetics. However, ibuprofen release was always much faster than lidocaine release for all system geometries and sizes. This can probably be attributed to attractive ionic interactions between protonated, positively charged lidocaine ions and negatively charged, deprotonated carboxylic end groups of PLGA, hindering drug diffusion. The determined apparent diffusion coefficients of the drugs clearly point out that the mobility of an active agent in PLGA-based delivery systems does not only depend on its own physico-chemical properties and the type of PLGA used, but also to a large extent on the size and shape of the device. This has to be carefully taken into account when developing/optimizing this type of advanced drug delivery systems.

  3. Method for measurement of radon diffusion and solubility in solid materials

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  4. Parameterized source term in the diffusion approximation for enhanced near-field modeling of collimated light

    NASA Astrophysics Data System (ADS)

    Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan

    2016-03-01

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.

  5. Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions.

    PubMed

    Mehala, N; Rajendran, L; Meena, V

    2017-02-01

    A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.

  6. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  7. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    PubMed

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Semianalytical solutions for transport in aquifer and fractured clay matrix system

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2015-09-01

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.

  9. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.

    PubMed

    Collins, R; Paul, Z; Reynolds, D B; Short, R F; Wasuwanich, S

    1997-01-01

    Chronic diseases and pathological medical conditions requiring the administration of longterm pharmaceutical dosages have in the past been treated by oral administrations of tablets, pills and capsules or through the use of creams and ointments, suppositories, aerosols, and injectables. Such forms of drug delivery, which are still currently used today, provide a prompt release of the drug, but with significant fluctuations in the drug levels within various regions of the body. Repeated administrations of the drug are often needed, at rather precise intervals of time, in order to maintain these levels within a relatively narrow therapeutic range as a means of assuring effectiveness at the low end and of minimizing adverse effects at the higher end of the fluctuation spectrum. Recent technical advances now permit one to control the rate of drug delivery. The required therapeutic levels may thus be maintained over long periods of months and years through implanted rate-controlled drug release capsules. Two such novel drug delivery systems currently employed are implanted erodible polymeric and ceramic capsules. Mathematical modeling and computer simulations can be very effective in improving and optimizing the performance of the self-regulating release of therapeutic drugs into specific regions of the body. Further development is needed for the optimal design of such capsules. It is in this area, in particular, that a review will be presented of the mathematical modeling techniques susceptible to refine the development of a reliable tool for designing and predicting the resulting pharmaceutical dosages as a function of time and space. Of primary importance in such models are the time-varying effective permeability of the capsule to the various molecules composing the drug, the effective solubility and diffusion coefficients of the drug and its metabolites in the surrounding tissues and fluids and, finally, the uptake of the drug at the target organ. Mathematical models are presented for the diffusional release of a solute from an erodible matrix in which the initial drug loading c0 is greater than the solubility limit cs. An inward moving diffusional front separates the reservoir (unextracted region) containing the undissolved drug from the partially extracted region. The mathematical formulation of such moving boundary problems has wide application to heat transfer with melting phase transitions and diffusion-controlled growth of particles, in addition to our topic of controlled-release drug delivery. In spite of this diversity of applications, only a very few mathematical descriptions have been published for the analysis of release kinetics of a dispersed solute from polymeric or ceramic matrices. In these rare instances, perfect sink conditions are assumed, while matrix swelling, concentration-dependence of the solute diffusion coefficient and the external mass transfer resistance have been largely neglected. The ultimate goal of such an investigation is to provide a reliable design tool for the fabrication of specialized implantable capsule/drug combinations which will deliver pre-specified and reproducible dosages over a wide spectrum of conditions and required durations of therapeutic treatment. Such a mathematical/computational tool can also prove effective in the prediction of suitable dosages for other drugs of differing chemical and molecular properties which have not been subjected to time-consuming animal laboratory testing. Finally, such models may permit more realistic scaling of the required dosages of therapeutic drug for variations in diverse factors such as body weight or organ size and capacity of the patient (clinical medicine) or animal (veterinary medicine for farm animals). Additional applications of controlled-release drug delivery for insecticide and pesticide use in agriculture, and the control of pollution in lakes, rivers, marshes, etc. in which a pre-programmed dose-time schedule is necessary, further

  10. Designing herbicide formulation characteristics to maximize efficacy and minimize rice injury in paddy environments.

    PubMed

    Cryer, S A; Mann, R K; Erhardt-Zabik, S; Keeney, F N; Handy, P R

    2001-06-01

    Mathematical descriptors, coupled with experimental observations, are used to quantify differential uptake of an experimental herbicide in Japonica and Indica rice (Oryza sativa, non-target) and barnyardgrass (Echinochloa crus-galli, target). Partitioning, degradation, plant uptake and metabolism are described using mass-balance conservation equations in the form of kinetic approximations. Estimated environmental concentrations, governed by the pesticide formulation, are described using superimposed analytical solutions for the one-dimensional diffusion equation in spherical coordinates and by a finite difference representation of the two-dimensional diffusion equation in Cartesian coordinates. Formulation attributes from granules include active ingredient release rates, particle sizes, pesticide loading, and granule spacing. The diffusion model for pesticide transport is coupled with the compartment model to follow the fate and transport of a pesticide from its initial application location to various environmental matrices of interest. Formulation effects, partitioning and degradation in the various environmental matrices, differential plant uptake and metabolism, and dose-response information for plants are accounted for. This novel model provides a mechanism for selecting formulation delivery systems that optimize specific attributes (such as weed control or the therapeutic index) for risk-assessment procedures. In this report we describe how this methodology was used to explore the factors affecting herbicide efficacy and to define an optimal release rate for a granule formulation.

  11. Steam stripping of the unsaturated zone of contaminated sub-soils: The effect of diffusion/dispersion in the start-up phase

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.; Gilding, B. H.

    2006-02-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in this phase. The model has two components. The first is a one-dimensional description of the propagation of a steam front in the start-up phase. This is based on Darcy's law and conservation laws of mass and energy. The second component describes the transport of volatile contaminants. Taking the view that non-equilibrium between liquid and vapour phases exists, it accounts for evaporation, transport, and condensation at the front. This leads to a moving-boundary problem. The moving-boundary problem is brought into a fixed domain by a suitable transformation of the governing partial differential equations, and solved numerically. For a broad range of the governing dimensionless numbers, such as the Henry, Merkel and Péclet numbers, computational results are discussed. A mathematical asymptotic analysis supports this discussion. The range of parameter values for which the model is valid is investigated. Diffusion and dispersion are shown to be of qualitative importance, but to have little quantitative effect in the start-up phase.

  12. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses.

    PubMed

    Torresi, Elena; Polesel, Fabio; Bester, Kai; Christensson, Magnus; Smets, Barth F; Trapp, Stefan; Andersen, Henrik R; Plósz, Benedek Gy

    2017-10-15

    Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L -1 , for X-ray contrast media 15 μg L -1 ) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient K d,eq (L g -1 ). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient K d,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). K d,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between K d,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f ≪ 0.1) by the high biomass density (reduced porosity). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diffusion orientation transform revisited.

    PubMed

    Canales-Rodríguez, Erick Jorge; Lin, Ching-Po; Iturria-Medina, Yasser; Yeh, Chun-Hung; Cho, Kuan-Hung; Melie-García, Lester

    2010-01-15

    Diffusion orientation transform (DOT) is a powerful imaging technique that allows the reconstruction of the microgeometry of fibrous tissues based on diffusion MRI data. The three main error sources involving this methodology are the finite sampling of the q-space, the practical truncation of the series of spherical harmonics and the use of a mono-exponential model for the attenuation of the measured signal. In this work, a detailed mathematical description that provides an extension to the DOT methodology is presented. In particular, the limitations implied by the use of measurements with a finite support in q-space are investigated and clarified as well as the impact of the harmonic series truncation. Near- and far-field analytical patterns for the diffusion propagator are examined. The near-field pattern makes available the direct computation of the probability of return to the origin. The far-field pattern allows probing the limitations of the mono-exponential model, which suggests the existence of a limit of validity for DOT. In the regimen from moderate to large displacement lengths the isosurfaces of the diffusion propagator reveal aberrations in form of artifactual peaks. Finally, the major contribution of this work is the derivation of analytical equations that facilitate the accurate reconstruction of some orientational distribution functions (ODFs) and skewness ODFs that are relatively immune to these artifacts. The new formalism was tested using synthetic and real data from a phantom of intersecting capillaries. The results support the hypothesis that the revisited DOT methodology could enhance the estimation of the microgeometry of fiber tissues.

  14. Thermal diffusivity of peat, sand and their mixtures at different water contents

    NASA Astrophysics Data System (ADS)

    Gvozdkova, Anna; Arkhangelskaya, Tatiana

    2014-05-01

    Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001

  15. Computer simulation of population dynamics inside the urban environment

    NASA Astrophysics Data System (ADS)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  16. Analytical Description of Degradation-Relaxation Transformations in Nanoinhomogeneous Spinel Ceramics.

    PubMed

    Shpotyuk, O; Brunner, M; Hadzaman, I; Balitska, V; Klym, H

    2016-12-01

    Mathematical models of degradation-relaxation kinetics are considered for jammed thick-film systems composed of screen-printed spinel Cu 0.1 Ni 0.1 Co 1.6 Mn 1.2 O 4 and conductive Ag or Ag-Pd alloys. Structurally intrinsic nanoinhomogeneous ceramics due to Ag and Ag-Pd diffusing agents embedded in a spinel phase environment are shown to define governing kinetics of thermally induced degradation under 170 °C obeying an obvious non-exponential behavior in a negative relative resistance drift. The characteristic stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in thick-film systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of a conductive phase, Ag penetrates thick-film spinel ceramics via a considerable two-step diffusing process.

  17. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  18. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  19. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  20. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  1. Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion

    PubMed Central

    Sato, Makoto; Yasugi, Tetsuo; Minami, Yoshiaki; Miura, Takashi; Nagayama, Masaharu

    2016-01-01

    Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or “proneural wave” accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation. PMID:27535937

  2. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    DOE PAGES

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less

  3. Transscleral diffusion of ethacrynic acid and sodium fluorescein

    PubMed Central

    Lin, Cheng-Wen; Wang, Yong; Challa, Pratap; Epstein, David L.

    2007-01-01

    Purpose One of the current limitations in developing novel glaucoma drugs that target the trabecular meshwork (TM) is the induced corneal toxicity from eyedrop formulations. To avoid the corneal toxicity, an alternative approach would be to deliver TM drugs through the sclera. To this end, we quantified ex vivo diffusion coefficient of a potential TM drug, ethacrynic acid (ECA), and investigated mechanisms of ECA transport in the sclera. Methods An Ussing-type diffusion apparatus was built to measure the apparent diffusion coefficient of ECA in fresh porcine sclera at 4 °C. To understand mechanisms of ECA transport, we quantified the transscleral transport of a fluorescent tracer, sodium fluorescein (NaF), that has a similar molecular weight but is more hydrophilic compared to ECA. Furthermore, we developed a mathematical model to simulate the transport processes and used it to analyze the experimental data. The model was also used to investigate the dependence of diffusion coefficients on volume fraction of viable cells and the binding of NaF and ECA to scleral tissues. Results The diffusion coefficients of ECA and NaF in the sclera were 48.5±15.1x10-7 cm2/s (n=9) and 5.23±1.93x10-7 cm2/s (n=8), respectively. Both diffusion coefficients were insensitive to cell shrinkage caused by ECA during the diffusion experiments and cell damage caused by the storage of tissues ex vivo before the experiments. Binding of ECA to scleral tissues could not be detected. The apparent maximum binding capacity and the apparent equilibrium dissociation constant for NaF were 80±5 mM and 2.5±0.5 mM (n=3), respectively. Conclusions These data demonstrated that ECA diffusion was minimally hindered by structures in the sclera, presumably due to the lack of cells and binding sites for ECA in the sclera. PMID:17356511

  4. Cooperativity to increase Turing pattern space for synthetic biology.

    PubMed

    Diambra, Luis; Senthivel, Vivek Raj; Menendez, Diego Barcena; Isalan, Mark

    2015-02-20

    It is hard to bridge the gap between mathematical formulations and biological implementations of Turing patterns, yet this is necessary for both understanding and engineering these networks with synthetic biology approaches. Here, we model a reaction-diffusion system with two morphogens in a monostable regime, inspired by components that we recently described in a synthetic biology study in mammalian cells.1 The model employs a single promoter to express both the activator and inhibitor genes and produces Turing patterns over large regions of parameter space, using biologically interpretable Hill function reactions. We applied a stability analysis and identified rules for choosing biologically tunable parameter relationships to increase the likelihood of successful patterning. We show how to control Turing pattern sizes and time evolution by manipulating the values for production and degradation relationships. More importantly, our analysis predicts that steep dose-response functions arising from cooperativity are mandatory for Turing patterns. Greater steepness increases parameter space and even reduces the requirement for differential diffusion between activator and inhibitor. These results demonstrate some of the limitations of linear scenarios for reaction-diffusion systems and will help to guide projects to engineer synthetic Turing patterns.

  5. Modelling of discrete TDS-spectrum of hydrogen desorption

    NASA Astrophysics Data System (ADS)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  6. On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling

    NASA Astrophysics Data System (ADS)

    Falcke, Martin; Moein, Mahsa; TilÅ«naitÄ--, Agne; Thul, Rüdiger; Skupin, Alexander

    2018-04-01

    The correspondence between mathematical structures and experimental systems is the basis of the generalizability of results found with specific systems and is the basis of the predictive power of theoretical physics. While physicists have confidence in this correspondence, it is less recognized in cellular biophysics. On the one hand, the complex organization of cellular dynamics involving a plethora of interacting molecules and the basic observation of cell variability seem to question its possibility. The practical difficulties of deriving the equations describing cellular behaviour from first principles support these doubts. On the other hand, ignoring such a correspondence would severely limit the possibility of predictive quantitative theory in biophysics. Additionally, the existence of functional modules (like pathways) across cell types suggests also the existence of mathematical structures with comparable universality. Only a few cellular systems have been sufficiently investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2+signalling is one of them, and the mathematical structure corresponding to it is subject of ongoing discussion. We review the system's general properties observed in a variety of cell types. They are captured by a reaction diffusion system. We discuss the phase space structure of its local dynamics. The spiking regime corresponds to noisy excitability. Models focussing on different aspects can be derived starting from this phase space structure. We discuss how the initial assumptions on the set of stochastic variables and phase space structure shape the predictions of parameter dependencies of the mathematical models resulting from the derivation.

  7. Non-invasive method for quantitative evaluation of exogenous compound deposition on skin.

    PubMed

    Stamatas, Georgios N; Wu, Jeff; Kollias, Nikiforos

    2002-02-01

    Topical application of active compounds on skin is common to both pharmaceutical and cosmetic industries. Quantification of the concentration of a compound deposited on the skin is important in determining the optimum formulation to deliver the pharmaceutical or cosmetic benefit. The most commonly used techniques to date are either invasive or not easily reproducible. In this study, we have developed a noninvasive alternative to these techniques based on spectrofluorimetry. A mathematical model based on diffusion approximation theory is utilized to correct fluorescence measurements for the attenuation caused by endogenous skin chromophore absorption. The limitation is that the compound of interest has to be either fluorescent itself or fluorescently labeled. We used the method to detect topically applied salicylic acid. Based on the mathematical model a calibration curve was constructed that is independent of endogenous chromophore concentration. We utilized the method to localize salicylic acid in epidermis and to follow its dynamics over a period of 3 d.

  8. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    NASA Astrophysics Data System (ADS)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  9. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-05

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.

  10. Modelling the formation of necrotic regions in avascular tumours.

    PubMed

    Tindall, M J; Please, C P; Peddie, M J

    2008-01-01

    The mechanisms underlying the formation of necrotic regions within avascular tumours are not well understood. In this paper, we examine the relative roles of nutrient deprivation and of cell death, from both the proliferating phase of the cell cycle via apoptosis and from the quiescent phase via necrosis, in changing the structure within multicellular tumour spheroids and particularly the accumulation of dead cell material in the centre. A mathematical model is presented and studied that accounts for nutrient diffusion, changes in cell cycling rates, the two different routes to cell death as well as active motion of cells and passive motion of the dead cell material. In studying the accumulation of dead cell matter we do not distinguish between the route by which each was formed. The resulting mathematical model is examined for a number of scenarios. Results show that in many cases the size of the necrotic core is closely correlated with low levels in nutrient concentration. However, in certain cases, particularly where the rate of necrosis is large, the resulting necrotic core can lead to regions of non-negligible nutrient concentration-dependent upon the mode of cell death.

  11. Radon transport model into a porous ground layer of finite capacity

    NASA Astrophysics Data System (ADS)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  12. Chemotaxis migration and morphogenesis of living colonies.

    PubMed

    Ben Amar, Martine

    2013-06-01

    Development of forms in living organisms is complex and fascinating. Morphogenetic theories that investigate these shapes range from discrete to continuous models, from the variational elasticity to time-dependent fluid approach. Here a mixture model is chosen to describe the mass transport in a morphogenetic gradient: it gives a mathematical description of a mixture involving several constituents in mechanical interactions. This model, which is highly flexible can incorporate many biological processes but also complex interactions between cells as well as between cells and their environment. We use this model to derive a free-boundary problem easier to handle analytically. We solve it in the simplest geometry: an infinite linear front advancing with a constant velocity. In all the cases investigated here as the 3 D diffusion, the increase of mitotic activity at the border, nonlinear laws for the uptake of morphogens or for the mobility coefficient, a planar front exists above a critical threshold for the mobility coefficient but it becomes unstable just above the threshold at long wavelengths due to the existence of a Goldstone mode. This explains why sparsely bacteria exhibit dendritic patterns experimentally in opposition to other colonies such as biofilms and epithelia which are more compact. In the most unstable situation, where all the laws: diffusion, chemotaxis driving and chemoattractant uptake are linear, we show also that the system can recover a dynamic stability. A second threshold for the mobility exists which has a lower value as the ratio between diffusion coefficients decreases. Within the framework of this model where the biomass is treated mainly as a viscous and diffusive fluid, we show that the multiplicity of independent parameters in real biologic experimental set-up may explain varieties of observed patterns.

  13. Using Mentoring and Professional Development Approaches to Educate Urban Mathematics Teachers

    ERIC Educational Resources Information Center

    Fraser-Abder, Pamela

    2005-01-01

    Due to the dearth of qualified professional teachers, policymakers and professional development programs need to focus on improving the quality of high school mathematics teaching in order to diffuse this crisis. In the middle of this crisis, the demand for new teachers is predicted to rise significantly in the next ten years. Based on the…

  14. Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix

    PubMed Central

    Partikian, Arthur; Ölveczky, Bence; Swaminathan, R.; Li, Yuxin; Verkman, A.S.

    1998-01-01

    Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse. PMID:9472034

  15. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 2. Mathematical modeling

    USGS Publications Warehouse

    Jackman, A.P.; Walters, R.A.; Kennedy, V.C.

    1984-01-01

    Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.

  16. Mathematical Description of the Uptake of Hydrocarbons in Jet Fuel into the Stratum Corneum of Human Volunteers

    PubMed Central

    Kim, David; Farthing, Matthew W.; Miller, Cass T.; Nylander-French, Leena A.

    2008-01-01

    The objective of this research was to develop a mathematical description of uptake of aromatic and aliphatic hydrocarbons into the stratum corneum of human skin in vivo. A simple description based on Fick’s Laws of diffusion was used to predict the spatiotemporal variation of naphthalene, 1- and 2-methylnaphthalene, undecane, and dodecane in the stratum corneum of human volunteers. The estimated values of the diffusion coefficients for each chemical were comparable to values predicted using in vitro skin systems and biomonitoring studies. These results demonstrate the value of measuring dermal exposure using the tape-strip technique and the importance of quantifying of dermal uptake. PMID:18423910

  17. A class of exact solutions for biomacromolecule diffusion-reaction in live cells.

    PubMed

    Sadegh Zadeh, Kouroush; Montas, Hubert J

    2010-06-07

    A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. A mathematical model on water redistribution mechanism of the seismonastic movement of Mimosa pudica.

    PubMed

    Kwan, K W; Ye, Z W; Chye, M L; Ngan, A H W

    2013-07-02

    A theoretical model based on the water redistribution mechanism is proposed to predict the volumetric strain of motor cells in Mimosa pudica during the seismonastic movement. The model describes the water and ion movements following the opening of ion channels triggered by stimulation. The cellular strain is related to the angular velocity of the plant movement, and both their predictions are in good agreement with experimental data, thus validating the water redistribution mechanism. The results reveal that an increase in ion diffusivity across the cell membrane of <15-fold is sufficient to produce the observed seismonastic movement. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Critical patch-size for two-sex populations.

    PubMed

    Andreguetto Maciel, Gabriel; Mendes Coutinho, Renato; André Kraenkel, Roberto

    2018-06-01

    As environments become increasingly degraded, mainly due to human activities, species are often subject to isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical models have provided useful insights into the population persistence in such cases. Most of these models, however, neglect the sex structure of populations and the differences between males and females. In this work we investigate, through a reaction-diffusion system, the dynamics of a sex-structured population in a single semipermeable patch. The critical patch size for persistence is determined from implicit relationships between model parameters. The effects of the various growth and movement parameters are also investigated. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Modelling the evolution and diversity of cumulative culture

    PubMed Central

    Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo

    2011-01-01

    Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups). PMID:21199845

  1. Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Modena, T. D.

    1979-01-01

    An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions.

  2. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  3. On the computation of the turbulent flow near rough surface

    NASA Astrophysics Data System (ADS)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  4. Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.

    PubMed

    Bhatia, S; Naidu, A D; Kamaruddin, A H

    1999-01-01

    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.

  5. Empirical constraints on closure temperatures from a single diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Lee, J. K. W.

    The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [lnÊRT^c vs. Tc*/TM] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K-Ar minerals - biotite, phlogopite, muscovite, hornblende and orthoclase - in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a ``model'' closure temperature Tcm from a single diffusion coefficient DM at temperature TM. Preliminary diffusion data for a labradorite lead to a Tcm of 507+/-17°C and a corresponding activation energy of about 65kcal/mol, given a grain size of 200μm and a cooling rate of 5°C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RTc*; for the noble gases and 18O, E/RTc* values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data.

  6. Glucose diffusion in pancreatic islets of Langerhans.

    PubMed Central

    Bertram, R; Pernarowski, M

    1998-01-01

    We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose. PMID:9545035

  7. A mathematical model of atherogenesis as an inflammatory response.

    PubMed

    Ibragimov, A I; McNeal, C J; Ritter, L R; Walton, J R

    2005-12-01

    We construct a mathematical model of the early formation of an atherosclerotic lesion based on a simplification of Russell Ross' paradigm of atherosclerosis as a chronic inflammatory response. Atherosclerosis is a disease characterized by the accumulation of lipid-laden cells in the arterial wall. This disease results in lesions within the artery that may grow into the lumen restricting blood flow and, in critical cases, can rupture causing complete, sudden occlusion of the artery resulting in heart attack, stroke and possibly death. It is now understood that when chemically modified low-density lipoproteins (LDL cholesterol) enter into the wall of the human artery, they can trigger an immune response mediated by biochemical signals sent and received by immune and other cells indigenous to the vasculature. The presence of modified LDL can also corrupt the normal immune function triggering further immune response and ultimately chronic inflammation. In the construction of our mathematical model, we focus on the inflammatory component of the pathogenesis of cardiovascular disease (CVD). Because this study centres on the interplay between chemical and cellular species in the human artery and bloodstream, we employ a model of chemotaxis first given by E. F. Keller and Lee Segel in 1970 and present our model as a coupled system of non-linear reaction diffusion equations describing the state of the various species involved in the disease process. We perform numerical simulations demonstrating that our model captures certain observed features of CVD such as the localization of immune cells, the build-up of lipids and debris and the isolation of a lesion by smooth muscle cells.

  8. An algorithm for variational data assimilation of contact concentration measurements for atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir

    2014-05-01

    Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate outside the splitting stages and involve iterations. Splitting method stage that is responsible for chemical transformation processes is realized with the explicit discrete-analytical scheme with respect to time. The scheme is based on analytical extraction of the exponential terms from the solution. This provides unconditional positive sign for the evaluated concentrations. Splitting-based structure of the algorithm provides means for efficient parallel realization. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004.

  9. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, S.; Chowdhury, R.; Biswas, G.K.

    A mathematical model based on the mechanistic approach to the reaction kinetics of pyrolysis reactions and the realistic analysis of the interaction between simultaneous heat and mass transfer along with the chemical reaction has been developed for the design of smoothly running pyrolyzers. The model of a fixed-bed pyrolysis reactor has been proposed on the basis of the dimensionless parameters with respect to time and radial position. The variation of physical parameters like bed voidage, heat capacity, diffusivity, density, thermal conductivity, etc., on temperature and conversion has been taken into account. A deactivation model has also been incorporated to explainmore » the behavior of pyrolysis reactions at temperatures above 673 K. The simulated results of the model have been explained by comparing them with the experimental results.« less

  11. Mechanistic Basis of Cocrystal Dissolution Advantage.

    PubMed

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Effects of calcium (Ca(2+)) extrusion mechanisms on electrophysiological properties in a hypoglossal motoneuron: insight from a mathematical model.

    PubMed

    Horn, Kyle G; Solomon, Irene C

    2014-01-01

    Spike-frequency dynamics and spike shape can provide insight into the types of ion channels present in any given neuron and give a sense for the precise response any neuron may have to a given input stimulus. Motoneuron firing frequency over time is especially important due to its direct effect on motor output. Of particular interest is intracellular Ca(2+), which exerts a powerful influence on both firing properties over time and spike shape. In order to better understand the cellular mechanisms for the regulation of intracellular Ca(2+) and their effect on spiking behavior, we have modified a computational model of an HM to include a variety of Ca(2+) handling processes. For the current study, a series of HM models that include Ca(2+) pumps, Na(+)/Ca(2+) exchangers, and a generic exponential decay of excess Ca(2+) were generated. Simulations from these models indicate that although each extrusion mechanism exerts a similar effect on voltage, the firing properties change distinctly with the inclusion of additional Ca(2+)-related mechanisms: BK channels, Ca(2+) buffering, and diffusion of [Ca(2+)]i modeled via a linear diffusion partial differential equation. While an exponential decay of Ca(2+) seems to adequately capture short-term changes in firing frequency seen in biological data, internal diffusion of Ca(2+) appears to be necessary for capturing longer term frequency changes. © 2014 Elsevier B.V. All rights reserved.

  13. Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1).

    PubMed

    Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K

    2016-07-01

    A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell.

  14. A BOD monitoring disposable reactor with alginate-entrapped bacteria.

    PubMed

    Villalobos, Patricio; Acevedo, Cristian A; Albornoz, Fernando; Sánchez, Elizabeth; Valdés, Erika; Galindo, Raúl; Young, Manuel E

    2010-10-01

    Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that is required for the biochemical oxidation of the organic compounds in 5 days. New biosensor-based methods have been conducted for a faster determination of BOD. In this study, a mathematical model to evaluate the feasibility of using a BOD sensor, based on disposable alginate-entrapped bacteria, for monitoring BOD in situ was applied. The model considers the influences of alginate bead size and bacterial concentration. The disposable biosensor can be adapted according to specific requirements depending on the organic load contained in the wastewater. Using Klein and Washausen parameter in a Lineweaver-Burk plot, the glucose diffusivity was calculated in 6.4 × 10(-10) (m2/s) for beads of 1 mm in diameter and slight diffusion restrictions were observed (n = 0.85). Experimental results showed a correlation (p < 0.05) between the respirometric peak and the standard BOD test. The biosensor response was representative of BOD.

  15. In vitro evaluation of suspoemulsions for in situ-forming polymeric microspheres and controlled release of progesterone.

    PubMed

    Turino, Ludmila N; Mariano, Rodolfo N; Mengatto, Luciano N; Luna, Julio A

    2015-01-01

    One possibility to obtain a higher dose of drug in a lower formulation volume can be by using of saturated quantity of drug in one of the phases of an emulsion. These formulations are called suspoemulsions (S/O/W). When a hydrophobic polymer is added to the organic phase of suspoemulsions, these formulations can be used to entrap the drug inside microspheres after in situ precipitation of the polymer-drug-excipients mix. In this work, performance and stability of progesterone suspensions in triacetin as organic phase of suspoemulsions were evaluated. These formulations were compared with O/W emulsions. Mathematical models were used to study in vitro release profiles. The results confirmed that S/O/W systems could be an attractive alternative to O/W formulations for the entrapment of progesterone inside poly(d,l-lactide-co-glycolide) microspheres. Diffusive-based models fit the in vitro release of progesterone from in situ-formed microspheres. For longer release periods, a time-dependent diffusion coefficient was successfully estimated.

  16. The Limitation of Species Range: A Consequence of Searching Along Resource Gradients

    PubMed Central

    Rowell, Jonathan T.

    2009-01-01

    Ecological modelers have long puzzled over the spatial distribution of species. The random walk or diffusive approach to dispersal has yielded important results for biology and mathematics, yet it has been inadequate in explaining all phenomenological features. Ranges can terminate non-smoothly absent a complementary shift in the characteristics of the environment. Also unexplained is the absence of a species from nearby areas of adequate, or even abundant, resources. In this paper, I show how local searching behavior - keyed to a density-dependent fitness - can limit the speed and extent of a species’ spread. In contrast to standard diffusive processes, pseudo-rational movement facilitates the clustering of populations. It also can be used to estimate the speed of an expanding population range, explain expansion stall, and provides a mechanism by which a population can colonize seemingly removed regions - biogeographic islands in a continental framework. Finally, I discuss the effect of resource degradation and different resource impact/utilization curves on the model. PMID:19303032

  17. A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions

    PubMed Central

    Wolfenson, Haguy; Lubelski, Ariel; Regev, Tamar; Klafter, Joseph; Henis, Yoav I.; Geiger, Benjamin

    2009-01-01

    Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and play crucial roles in cell-matrix sensing. Considerable information is available on the complex molecular composition of these sites, yet the regulation of FA dynamics is largely unknown. Based on a combination of FRAP studies in live cells, with in silico simulations and mathematical modeling, we show that the FA plaque proteins paxillin and vinculin exist in four dynamic states: an immobile FA-bound fraction, an FA-associated fraction undergoing exchange, a juxtamembrane fraction experiencing attenuated diffusion, and a fast-diffusing cytoplasmic pool. The juxtamembrane region surrounding FAs displays a gradient of FA plaque proteins with respect to both concentration and dynamics. Based on these findings, we propose a new model for the regulation of FA dynamics in which this juxtamembrane domain acts as an intermediary layer, enabling an efficient regulation of FA formation and reorganization. PMID:19172999

  18. Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic acid.

    PubMed

    Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

    2014-11-19

    A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples.

  19. Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation

    NASA Astrophysics Data System (ADS)

    Pikulin, S. V.

    2018-02-01

    We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.

  20. Texture formation mechanism and constitutive equation for anisotropic thermorheological rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhu, Minggang; Li, Wei

    2017-05-01

    The study investigates the mechanism and constitutive equations describing oriented texture formation in anisotropic thermorheological rare-earth permanent magnets. The thermorheological process cannot be considered as creep, since the related phenomena are not suitably explained by the diffusion creep model. A mathematical model describing the relationship between the rheological deformation rate and texture orientation was established, and a theoretical expression was obtained for the orientation factor of thermorheological magnets. In addition, nanocrystalline Nd-Fe-B magnets were fabricated, with intrinsic coercivity Hcj=760.1 kA/m, remanence Br=1.469 T, and maximum energy product (BH)max=427.1 kJ/m3.

Top