Mathematics, Engineering Science Achievement (MESA). Washington's Community and Technical Colleges
ERIC Educational Resources Information Center
Washington State Board for Community and Technical Colleges, 2014
2014-01-01
Growing Science, Technology, Education, and Mathematics (STEM) talent Washington MESA--Mathematics Engineering Science Achievement--helps under-represented community college students excel in school and ultimately earn STEM bachelor's degrees. MESA has two key programs: one for K-12 students, and the other for community and technical college…
ERIC Educational Resources Information Center
Edwards, Timothy I.; Roberson, Clarence E., Jr.
A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…
The Mathematical Education of Engineers.
ERIC Educational Resources Information Center
Gnedenko, B. V.; Khalil, Z.
1979-01-01
Several general aspects are discussed. These include the role of mathematics in scientific and technical progress, some deficiencies in training, the role of mathematics in engineering faculties, and methods of improving mathematical training. (MP)
Evaluating a technical university's placement test using the Rasch measurement model
NASA Astrophysics Data System (ADS)
Salleh, Tuan Salwani; Bakri, Norhayati; Zin, Zalhan Mohd
2016-10-01
This study discusses the process of validating a mathematics placement test at a technical university. The main objective is to produce a valid and reliable test to measure students' prerequisite knowledge to learn engineering technology mathematics. It is crucial to have a valid and reliable test as the results will be used in a critical decision making to assign students into different groups of Technical Mathematics 1. The placement test which consists of 50 mathematics questions were tested on 82 new diplomas in engineering technology students at a technical university. This study employed rasch measurement model to analyze the data through the Winsteps software. The results revealed that there are ten test questions lower than less able students' ability. Nevertheless, all the ten questions satisfied infit and outfit standard values. Thus, all the questions can be reused in the future placement test at the technical university.
ERIC Educational Resources Information Center
Mativo, John M.; Hill, Roger B.; Godfrey, Paul W.
2013-01-01
The focus of this study was to examine four characteristics for successful and unsuccessful students enrolled in basic mathematics courses at a technical college. The characteristics, considered to be in part effects of human factors in engineering and design, examined the preferred learning styles, computer information systems competency,…
Situated mathematics teaching within electrical engineering courses
NASA Astrophysics Data System (ADS)
Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic
2015-11-01
The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a fundamentals of electrical engineering course is presented. The concept focuses on gaining specific mathematical knowledge and competencies in the technical context of this course. For this purpose, a complementary blended learning scenario centring around a web-based learning platform and involving an adaptation of the course was developed. The concept particularly considers the heterogeneity of today's student groups and is discussed with regard to related approaches, didactical considerations, and technical implementation. For the interventions, the results of a questionnaire-based evaluation proving students' acceptance and positive influence on examination performance are presented.
ERIC Educational Resources Information Center
Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay
2017-01-01
As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…
Suggested criteria for evaluating systems engineering methodologies
NASA Technical Reports Server (NTRS)
Gates, Audrey; Paul, Arthur S.; Gill, Tepper L.
1989-01-01
Systems engineering is the application of mathematical and scientific principles to practical ends in the life-cycle of a system. A methodology for systems engineering is a carefully developed, relatively complex procedure or process for applying these mathematical and scientific principles. There are many systems engineering methodologies (or possibly many versions of a few methodologies) currently in use in government and industry. These methodologies are usually designed to meet the needs of a particular organization. It has been observed, however, that many technical and non-technical problems arise when inadequate systems engineering methodologies are applied by organizations to their systems development projects. Various criteria for evaluating systems engineering methodologies are discussed. Such criteria are developed to assist methodology-users in identifying and selecting methodologies that best fit the needs of the organization.
Technical/Engineering. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge and skills that have been identified and validated by industry as necessary to all Georgia students in secondary-level technical/engineering programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking); thinking…
Navigating Community College Transfer in Science, Technical, Engineering, and Mathematics Fields
ERIC Educational Resources Information Center
Packard, Becky Wai-Ling; Gagnon, Janelle L.; Senas, Arleen J.
2012-01-01
Given financial barriers facing community college students today, and workforce projections in science, technical, engineering, and math (STEM) fields, the costs of unnecessary delays while navigating transfer pathways are high. In this phenomenological study, we analyzed the delay experiences of 172 students (65% female) navigating community…
ERIC Educational Resources Information Center
Jackson, G.
1972-01-01
Describes attempts in Britain to unite physics and technical studies in the new GCE A level engineering students (college bound). (Advocates more interdisciplinary efforts and greater use of mathematics.) (TS)
Scientific and Technical English.
ERIC Educational Resources Information Center
Vaclavik, Jaroslav
Technical English differs from everyday English because of the specialized contexts in which it is used and because of the specialized interests of scientists and engineers. This text provides exercises in technical and scientific exposition in the following fields: mathematics, physics, temperature effects, mechanics, dynamics, conservation of…
Idaho Science, Technology, Engineering and Mathematics Overview
None
2017-12-09
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
Idaho Science, Technology, Engineering and Mathematics Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P
2011-02-11
Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.
[Mathematical model of technical equipment of a clinical-diagnostic laboratory].
Bukin, S I; Busygin, D V; Tilevich, M E
1990-01-01
The paper is concerned with the problems of technical equipment of standard clinico-diagnostic laboratories (CDL) in this country. The authors suggest a mathematic model that may minimize expenditures for laboratory studies. The model enables the following problems to be solved: to issue scientifically-based recommendations for technical equipment of CDL; to validate the medico-technical requirements for newly devised items; to select the optimum types of uniform items; to define optimal technical decisions at the stage of the design; to determine the lab assistant's labour productivity and the cost of some investigations; to compute the medical laboratory engineering requirement for treatment and prophylactic institutions of this country.
Characteristics of the Navy Laboratory Warfare Center Technical Workforce
2013-09-29
Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
This document contains the transcript of a Senate hearing on the crisis in science and math education. The document includes mathematics, science, and engineering education; enhance the scientific and technical literacy of the U.S. public; stimulate the professional from the state of Oregon; Carl Sagan, Cornell women and minorities in careers in…
NASA Astrophysics Data System (ADS)
Widuri, S. Y. S.; Almash, L.; Zuzano, F.
2018-04-01
The students activity and responsible in studying mathematic is still lack. It gives an effect for the bad result in studying mathematic. There is one of learning technic to increase students activity in the classroom and the result of studying mathematic with applying a learning technic. It is “Thinking Aloud Pair Problem Solving (TAPPS)”. The purpose of this research is to recognize the developing of students activity in mathematic subject during applying that technic “TAPPS” in seven grade at SMPN 15 Padang and compare the students proportion in learning mathematic with TAPPS between learning process without it in seven grade at SMPN 15 Padang. Students activity for indicators 1, 2, 3, 4, 5, 6 at each meeting is likely to increase and students activity for indicator 7 at each meeting is likely to decrease. The finding of this research is χ 2 = 9,42 and the value of p is 0,0005 < p < 0,005. Therefore p < 0,05 has means H 0 was rejected and H 1 was accepted. Thus, it was concluded that the activities and result in studying mathematic increased after applying learning technic the TAPPS.
Advancing the "E" in K-12 STEM Education
ERIC Educational Resources Information Center
Rockland, Ronald; Bloom, Diane S.; Carpinelli, John; Burr-Alexander, Levelle; Hirsch, Linda S.; Kimmel, Howard
2010-01-01
Technological fields, like engineering, are in desperate need of more qualified workers, yet not enough students are pursuing studies in science, technology, engineering, or mathematics (STEM) that would prepare them for technical careers. Unfortunately, many students have no interest in STEM careers, particularly engineering, because they are not…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, andmore » technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.« less
NASA Astrophysics Data System (ADS)
Kalvius, G. M.; Kienle, P.
Mössbauer and one of the authors (PK) started in 1949 studying physics at the Technische Hochschule München (THM), which was still under reconstruction from the war damages. It offered two directions for studying physics: "Physik A" and "Physik B." I took courses in "Physik A," which meant Technical Physics; Mössbauer studied "Physik B," which was General Physics. Actually, the lectures of both directions were not too different up to the forth semester, followed by a "pre-diploma" examination, which Mössbauer passed in 1952. I as "Physik A" student had besides the various physics, chemistry, and mathematics courses, in addition lectures in Technical Electricity, Technical Mechanics, Technical Thermodynamics, and later Measurement Engineering offered by very famous professors, such as W.O. Schumann, L. Föppl, W. Nußelt, and H. Piloty. Our physics teachers were G. Joos (Experimental physics), G. Hettner (Theoretical Physics), and W. Meissner (Technical Physics); in mathematics, we enjoyed lectures by J. Lense and R. Sauer, and interesting chemistry lectures by W. Hieber. Thus we received a high-class classical education, but quantum mechanics was not a compulsory subject. Mössbauer complained about this deficiency when he realized that the effect he found was a quantum mechanical phenomenon. Quantum mechanics was offered as an optional subject by Prof. Fick and Prof. Haug. Mössbauer just missed to take these advanced lectures, although he was highly talented in mathematics and received even a tutoring position in the mathematics institute of Prof. R. Sauer, while I worked in engineering projects and had extensive industrial training.
Building on the foundation for an engineering career
NASA Technical Reports Server (NTRS)
White, Susan; White, Ruth
1994-01-01
A predictable and preventable hurdle stops a majority of young women from entering the scientific and technical fields. This cuts down the individual's career possibilities and cuts in half the pool of potential U.S. engineers later available to industry. The waste of talent does not advance our country's competitive position. The typical American adolescent girl has acquired all the basic mathematical skills needed to pursue science and math, but, from adolescence on, she does not build the foundation of science and math courses that she would need later in life to work in engineering. Several questions are addressed: Why are some young women stopped cold in their mathematical tracks during adolescence? What is the influence of psychology, including discussion of the personality traits quantifiably shared by women in technical fields? and How should the school system adapt to keep their female charges learning math and science?
ERIC Educational Resources Information Center
Azodo, Adinife Patrick
2018-01-01
Qualitative occupational training and assessment through acquaintance with the knowledge and insight for transference of concepts and procedure of the fundamental scientific and mathematical skills obtainable in engineering profession produces effective and efficient engineering graduates. Thus, it is a guarantee of effective technical manpower…
1994-02-01
within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3
Design and Assessment of an Associate Degree-Level Plant Operations Technical Education Program
ERIC Educational Resources Information Center
Selwitz, Jason Lawrence
2017-01-01
Research was undertaken to develop and evaluate an associate degree-level technical education program in Plant Operations oriented towards training students in applied science, technology, engineering, and mathematics (STEM) skills and knowledge relevant to a spectrum of processing industries. This work focuses on four aspects of the curriculum…
ERIC Educational Resources Information Center
Wegner, Claas; Strehlke, Friederike; Weber, Phillip
2014-01-01
Science, technology, engineering and mathematics (STEM) are subjects comprising knowledge whose schooling is essential for every country striving after long-term economic success. Despite the already existing shortage of skilled labour within the mathematic-technical-scientific professional field, men still dominate the respective subjects and…
Partnerships, Policy, and Educational Change: The Role of Mathematics and Science in K-16 Reform
ERIC Educational Resources Information Center
Maloney, Patricia A.
2007-01-01
Concerns about American competitiveness and innovation have led to increasing scrutiny of science, technical, engineering, and mathematics (STEM) education. Leaders in the higher education, business, and legislative communities have all issued calls for expanded opportunities and training in STEM fields to improve the skills of the U.S. workforce.…
22 CFR 120.10 - Technical data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... scientific, mathematical or engineering principles commonly taught in schools, colleges and universities or information in the public domain as defined in § 120.11. It also does not include basic marketing information...
ERIC Educational Resources Information Center
HARDWICK, ARTHUR LEE
AT THIS WORKSHOP OF INDUSTRIAL REPRESENTATIVE AND TECHNICAL EDUCATORS, A TECHNICIAN WAS DEFINED AS ONE WITH BROAD-BASED MATHEMATICAL AND SCIENTIFIC TRAINING AND WITH COMPETENCE TO SUPPORT PROFESSIONAL SYSTEMS, ENGINEERING, AND OTHER SCIENTIFIC PERSONNEL. HE SHOULD RECEIVE A RIGOROUS, 2-YEAR, POST SECONDARY EDUCATION ESPECIALLY DESIGNED FOR HIS…
ERIC Educational Resources Information Center
Asunda, Paul A.
2012-01-01
At a minimum, employers rely on career and technical education (CTE) and workforce training systems to supply workers able to perform in their jobs. In CTE classes that seek to integrate science, technology, engineering, and mathematics (STEM) concepts, it falls to the instructors to design and sequence the learning experiences that will promote…
NASA Technical Reports Server (NTRS)
Ross, Elizabeth G.
1997-01-01
This document presents findings based on a third-year evaluation of Trenholm State (AL) Technical College's National Aeronautics and Space Administration (NASA) - supported High School Science Enrichment Program (HSSEP). HSSEP is an external (to school) program for area students from groups that are underrepresented in the mathematics, science, engineering and technology (MSET) professions. In addition to gaining insight into scientific careers, HSSEP participants learn about and deliver presentations that focus on mathematics applications, scientific problem-solving and computer programming during a seven-week summer or 10-week Academic-Year Saturday session.
ERIC Educational Resources Information Center
National Science Foundation, 2016
2016-01-01
Graduate education plays a central role in advancing the Nation's science and engineering research enterprise. It is also increasingly the means by which the Nation develops a diverse and highly technical Science Technology Engineering and Mathematics (STEM) professional workforce. The view that graduate education in STEM disciplines is an…
[The Engineering and Technical Services Directorate at the Glenn Research Center
NASA Technical Reports Server (NTRS)
Moon, James
2004-01-01
My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.
Innovative educational modules for the next generation of transportation professionals.
DOT National Transportation Integrated Search
2012-07-01
Basic science and mathematics competence, including awareness of engineering careers, gained in grades K12 forms the foundation of an educated, capable, and technical future transportation workforce. This project developed a series of educational ...
Aeronautical engineering: A continuing bibliography with indexes (supplement 316)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
ERIC Educational Resources Information Center
Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred V.
2016-01-01
Spatial abilities, specifically visualization, play a significant role in the achievement in a wide array of professions including, but not limited to, engineering, technical, mathematical, and scientific professions. However, there is little correlation between the advantages of spatial ability as measured through the creation of a sectional-view…
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
NASA Astrophysics Data System (ADS)
Demaine, Erik
2012-02-01
Our understanding of the mathematics and algorithms behind paper folding, and geometric folding in general, has increased dramatically over the past several years. These developments have found a surprisingly broad range of applications. In the art of origami, it has helped spur the technical origami revolution. In engineering and science, it has helped solve problems in areas such as manufacturing, robotics, graphics, and protein folding. On the recreational side, it has led to new kinds of folding puzzles and magic. I will give an overview of the mathematics and algorithms of folding, with a focus on new mathematics and sculpture.
The Economic Vitality Formula of Success
ERIC Educational Resources Information Center
Konopnicki, Patrick M.
2012-01-01
An economic vitality formula of success can be accomplished by creating partnerships between local career and technical education (CTE), and workforce development and economic development entities. Student industry certifications; dynamic partnerships; programs and projects focused on science, technology, engineering, and mathematics (STEM); and…
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
Spectrum orbit utilization program technical manual SOUP5 Version 3.8
NASA Technical Reports Server (NTRS)
Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.
1984-01-01
The underlying engineering and mathematical models as well as the computational methods used by the SOUP5 analysis programs, which are part of the R2BCSAT-83 Broadcast Satellite Computational System, are described. Included are the algorithms used to calculate the technical parameters and references to the relevant technical literature. The system provides the following capabilities: requirements file maintenance, data base maintenance, elliptical satellite beam fitting to service areas, plan synthesis from specified requirements, plan analysis, and report generation/query. Each of these functions are briefly described.
What a Chemist Needs to Know--Other than Chemistry.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1980
1980-01-01
Recommends a range of courses of study which may be important for one pursuing a career in chemistry. Discusses courses in computer science, statistics, public speaking, technical writing, mathematics, physics, economics, market research, psychology, chemical engineering, toxicology, history, foreign language, and science history. (CS)
The Case for Evaluating Student Outcomes and Equity Gaps to Improve Pathways and Programs of Study
ERIC Educational Resources Information Center
Bragg, Debra D.
2017-01-01
When linked to program review and improvement, program evaluation can help practitioners to ensure that career-technical education (CTE) and science, technology, engineering, and mathematics (STEM) programs offer equitable access and outcomes for underserved student groups.
Symposium Promotes Technological Literacy through STEM
ERIC Educational Resources Information Center
Havice, Bill; Marshall, Jerry
2009-01-01
This article describes a symposium which promotes technological literacy through science, technology, engineering, and mathematics (STEM). The three-day symposium titled, "The Anderson, Oconee, Pickens Symposium on Teaching and Learning STEM Standards for the 21st Century," was held August 4-6, 2008 at the Tri-County Technical College…
Engaging Faculty for Innovative STEM Bridge Programs
ERIC Educational Resources Information Center
Goldfien, Andrea C.; Badway, Norena Norton
2014-01-01
Bridge programs, in which underprepared students gain the academic and technical skills necessary for college level courses and entry-level employment, are a promising initiative for expanding access to, and success in, community college education. For career pathways related to science, technology, engineering, or mathematics (STEM), bridge…
XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin
2017-01-01
The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.
NASA Astrophysics Data System (ADS)
Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.
2016-10-01
Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.
NASA Technical Reports Server (NTRS)
Kazem, Sayyed M.
1992-01-01
Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.
CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 5. Sep/Oct 2012
2012-10-01
the threat actors it faces (be they nation states, empowered small agents or cyber-criminals), but also to have an actuarial view of the likelihood...systems thinking, which is full of technical jargon and mathematics . He wanted non-expert educators to be able to teach the concepts to K-12 students...able to conjecture mathematically that decreasing the exposure time window will improve the resilience of a SCIT-based system. To adapt SCIT we
NASA Astrophysics Data System (ADS)
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
Diversifying the STEM Pipeline: Recommendations from the Model Replication Institutions Program
ERIC Educational Resources Information Center
Institute for Higher Education Policy, 2010
2010-01-01
Launched in 2006 to address issues of national competitiveness and equity in science, technology, engineering, and mathematics (STEM) fields, the National Science Foundation-funded Model Replication Institutions (MRI) program sought to improve the quality, availability, and diversity of STEM education. The project offered technical assistance to…
Exploring in Aeronautics. An Introduction to Aeronautical Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.
This curriculum guide is based on a year of lectures and projects of a contemporary special-interest Explorer program intended to provide career guidance and motivation for promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoids technicality and rigorous mathematics and stresses real…
Math 3310--Technical Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for a college pre-calculus designed as the first course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes engineering technology applications and verbal problems. Topics include a review of elementary algebra; factoring…
HIGHWAY ENGINEERING AIDE, A SUGGESTED TRAINING PROGRAM.
ERIC Educational Resources Information Center
ARNOLD, WALTER M.; AND OTHERS
TO AID ADMINISTRATORS, SUPERVISORS, TEACHER TRAINEES, AND TEACHERS IN THE DEVELOPMENT AND PROMOTION OF A POSTSECONDARY COURSE, THIS CURRICULUM GUIDE WAS DEVELOPED PURSUANT TO A U.S. OFFICE OF EDUCATION (USOE) CONTRACT BY THE UNIVERSITY OF ILLINOIS. THE CONTENT COVERS -- (1) ORIENTATION AND COMMUNICATION SKILLS, (2) TECHNICAL MATHEMATICS, (3)…
Possibility of Engineering Education That Makes Use of Algebraic Calculators by Various Scenes
NASA Astrophysics Data System (ADS)
Umeno, Yoshio
Algebraic calculators are graphing calculators with a feature of computer algebra system. It can be said that we can solve mathematics only by pushing some keys of these calculators in technical colleges or universities. They also possess another feature, so we can make extensive use in engineering education. For example, we can use them for a basic education, a programming education, English education, and creative thinking tools for excellent students. In this paper, we will introduce the summary of algebraic calculators, then, consider how we utilize them in engineer education.
NASA Astrophysics Data System (ADS)
Williams, Brian Anthony
Many educational researchers are concerned with the apparent poor performance of different racial and ethnic groups in the fields of science, engineering, and mathematics in the United States. Despite improvements in the performance of African Americans, Hispanic Americans, and Native Americans in these areas over the past decade, these groups are still less likely to enroll in advanced math and science courses or score at or above the proficient level in mathematics. Furthermore, these groups continue to be underrepresented in the nation's technical and scientific workforce. The purpose of this study was to identify the critical elements related to the success of African Americans in science, engineering, and mathematics. Specifically, this study was designed to answer the following questions as they pertained to African American graduate students: What factors were perceived to have contributed to the students' initial interest in science, engineering, or mathematics? What factors were perceived to have contributed to the students' decisions to continue their studies in their specific areas of interest? What factors, associated with the K--12 schooling experience, were perceived to have contributed to the students' success in science, engineering, or mathematics? The data for the study were acquired from interviews with 32 African American students (16 males and 16 females) who were engaged in graduate work in science, engineering, or mathematics. Four major themes emerged from the analysis of the interview data. The first was that all students were involved in experiences that allowed a significant level of participation in science, engineering, and mathematics. Second, all of the students experienced some form of positive personal intervention by another person. Third, all students possessed perceptions of these fields that involved some sort of positive outcome. Finally, all of the of the students believed they possessed intrinsic qualities that qualified and prepared them for their involvement with science, engineering, and mathematics. These four themes exhibited themselves in different ways during the course of the students' lives. As a result, the discussion of the results of the study was divided among the three developmental periods: the interest-building phase, the knowledge-acquisition phase, and the careerbuilding phase. The study's findings provide valuable information to schools, educators, policy makers, and researchers on how to prepare effectively all children for a science and technology driven society, and for some, induction into tomorrow's scientific community.
NASA Astrophysics Data System (ADS)
Simcik, John C.
1989-04-01
Texas State Technical Institute-Waco (TSTI-WACO) was the first school in the United States to offer an Associate of Applied Science degree in Laser Electro-Optics Technology. The program began in September 1969 and has produced 1,827 graduates since inception. These graduates are readily adaptable to any area of the laser electro-optics industry. Areas of study include Optics, Electronics, Vacuum, Physics, Mathematics, and English with emphasis on Electro-Optics. Graduate placement is centered around research and development, life sciences and manufacturing in technical and engineering areas.
Interests and attitudes of engineering students
NASA Astrophysics Data System (ADS)
Rutherford, Brian
2007-12-01
Engineering programs have been less successful than other professions in achieving gender equity. Analyses of gender differences in the attitudes and interests of engineering students may help illuminate ways to combat the underrepresentation of women in engineering. This study examined data collected from 863 engineering students who attended 15 American universities from fall 2005 through spring 2006 using an online survey. The survey was designed to understand the backgrounds, academic preparation, motivation, interests, and attitudes of engineering students. To determine whether males and females received different academic preparation prior to entering engineering, the survey examined participants' mathematics, science, and technical coursework taken in high school. The questions probed students' comfort and interest level in mathematics, science, and technology/engineering and investigated student interest in the three fundamental engineering activities by asking 49 design, build, and analyze questions on topics covering a variety of engineering disciplines. A combination of question formats was used including pre-categorized demographic information, 5-point Likert scales, and open-ended responses. Gender similarities and differences were identified and their implications were considered for the recruitment and retention of engineers. Female engineering students in this study were equally or better prepared than males to major in engineering based on the number and types of science and mathematics classes taken in high school. However, statistically significant gender differences were found in the attitudes and interests of engineering students. The difference in the comfort level, interest in learning, being able to demonstrate, or in performing stem skills depended on the question topic rather than gender. The areas with the highest comfort and interest level were often different for females and males. Several topics and curriculum areas of high interest to both genders related to engineering education in several engineering disciplines were identified. It appears that females and males were motivated to choose engineering as a career for different reasons. Analysis revealed that female engineering students are generally more altruistic and less interested in "things" than male engineering students. This study also found that females were comfortable in mathematics or science, but were less comfortable using computers, tools, and machines---all essential engineering skills.
NASA's Elementary and Secondary Education Program: Review and Critique
ERIC Educational Resources Information Center
Feder, Michael A., Ed.; Schweingruber, Heidi A., Ed.; Quinn, Helen R., Ed.
2008-01-01
The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics…
ERIC Educational Resources Information Center
Maat, Siti Mistima; Zakaria, Effandi
2011-01-01
Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…
Evaluation, Integration and Institutionalization of Initiatives to Enhance STEM Student Success
ERIC Educational Resources Information Center
Dickson, Lisa; Mandell, Marv; Maton, Kenneth; Marcotte, Dave; Rous, Philip; McDermott, Patrice; Rutledge, Janet; LaCourse, William R.; Sutphin, Kathy Lee
2013-01-01
Many researchers, policymakers, and university administrators have called for more students to major in Science, Technology, Engineering and Mathematics (STEM) fields to address the critical need for a diverse and technically skilled workforce that is prepared to address national problems and educate its future STEM leaders. One of the questions…
Real Integration--Where the Rubber Meets the Road
ERIC Educational Resources Information Center
Moye, Johnny J.
2011-01-01
Integration of core academics into career and technical education (CTE) is not new. Putting core academics into context, CTE courses provide an excellent platform for students to learn the relevance of science, technology, engineering, and mathematics (STEM) as well as literature, arts, and social studies. Students learn to use this information by…
Gender Equity Issues in CTE and STEM Education: Economic and Social Implications
ERIC Educational Resources Information Center
Toglia, Thomas V.
2013-01-01
Title IX of the Educational Amendments of 1972 has significant implications for gender equity in career and technical education (CTE) and science, technology, engineering, and mathematics (STEM) programs--and the relatively low number of women and girls pursuing nontraditional careers has significant economic and social implications. From an…
ERIC Educational Resources Information Center
Salvatore, Gerald
This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…
Role Models and Informal STEM-Related Activities Positively Impact Female Interest in STEM
ERIC Educational Resources Information Center
Weber, Katherine
2011-01-01
The United States' economy depends greatly on a citizenry that possesses scientific and technical skills within the fields of science, technology, engineering, and mathematics (STEM) for economic growth. In the past few decades, technological advancement has created a demand for a highly skilled workforce possessing scientific and mathematical…
NASA's Elementary and Secondary Education Program: Review and Critique
NASA Technical Reports Server (NTRS)
Quinn, Helen R. (Editor); Schweingruber, Heidi A. (Editor); Feder, Michael A. (Editor)
2008-01-01
The federal role in precollege science, technology, engineering, and mathematics (STEM) education is receiving increasing attention in light of the need to support public understanding of science and to develop a strong scientific and technical workforce in a competitive global economy. Federal science agencies, such as the National Aeronautics and Space Administration (NASA), are being looked to as a resource for enhancing precollege STEM education and bringing more young people to scientific and technical careers. For NASA and other federal science agencies, concerns about workforce and public understanding of science also have an immediate local dimension. The agency faces an aerospace workforce skewed toward those close to retirement and job recruitment competition for those with science and engineering degrees. In addition, public support for the agency s missions stems in part from public understanding of the importance of the agency s contributions in science, engineering, and space exploration.
On the solving of one type of problems of mathematical physics
NASA Astrophysics Data System (ADS)
Chebakova, V. J.; Gerasimov, A. V.; Kirpichnikov, A. P.
2016-11-01
A relationship between generalized hypergeometric functions of a special type and modified Bessel functions has been established. Using this relationship the solution of inhomogeneous differential equations of Bessel type containing even degrees of an independent variable in the right-hand part can be expressed in a form convenient for engineering and technical applications.
The Results of a Longitudinal Study of the Effects of Network Delays on Learning
ERIC Educational Resources Information Center
Sullivan, Jay; Bush, Francis; Squire, James; Walsh, Vonda
2013-01-01
The use of interactive web-based teaching materials has become an indelible feature of the educational landscape over the last decade especially for technical subjects such as engineering and mathematics. While web-based simulations present great opportunity to provide students with the feedback needed for the acquisition of new concepts, it has…
European aerospace science and technology, 1992: A bibliography with indexes
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography contains 1916 annotated references to reports and journal articles of European intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include: spacecraft and aircraft design, propulsion technology, chemistry and materials, engineering and mechanics, earth and life sciences, communications, computers and mathematics, and the natural space sciences.
Descriptive Geometry in Educational Process of Technical University in Russia Today
ERIC Educational Resources Information Center
Voronina, Marianna V.; Tretyakova, Zlata O.; Moroz, Olga N.; Folomkin, Andrey I.
2016-01-01
The relevance of the investigated problem is caused by the need for monitoring the impact of the Unified State Examination (USE) on the level of mathematical culture and the level of geometric literacy of applicants and students of modern engineering universities of Russia. The need to determine the position of Descriptive Geometry in the…
The Common Topoi of STEM Discourse: An Apologia and Methodological Proposal, with Pilot Survey
ERIC Educational Resources Information Center
Walsh, Lynda
2010-01-01
In this article, the author proposes a methodology for the rhetorical analysis of scientific, technical, mathematical, and engineering (STEM) discourse based on the common topics (topoi) of this discourse. Beginning with work by Miller, Prelli, and other rhetoricians of STEM discourse--but factoring in related studies in cognitive linguistics--she…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.C.
In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.
It's Not What You Know, It's Where You Know It: Lessons from CPD in STEM Education
ERIC Educational Resources Information Center
Monk, Martin
2008-01-01
In technologically advanced countries, there is a general concern over the recruitment and retention to science, technology, engineering and mathematics (STEM). In the UK, there are much commented upon shortages of qualified STEM secondary teachers. In an effort to produce change, Gatsby Technical Education Projects (GTEP) was set up specifically…
A Basic Vocabulary and a Bibliography for Scientific and Technical English.
ERIC Educational Resources Information Center
Brunt, Richard J.
The selection of 594 words in this basic vocabulary list was compiled from various dictionaries and frequency lists for physics, mathematics and civil engineering. The list attempts to include those words which have been found to be unknown by German students learning English for science and technology. In addition to the word list, a bibliography…
Cognitive Levels and Approaches Taken by Students Failing Written Examinations in Mathematics
ERIC Educational Resources Information Center
Roegner, Katherine
2013-01-01
A study was conducted at the Technical University Berlin involving students who twice failed the written examination in the first semester course Linear Algebra for Engineers in order to better understand the reasons behind their failure. The study considered student understanding in terms of Bloom's taxonomy and the ways in which students…
International Baccalaureate Diploma Programs (IBDP) in Oklahoma: A Mixed Methods Study
ERIC Educational Resources Information Center
Hood, Susan J.
2012-01-01
Scope and Method of Study: As Oklahoma grows in technical markets, the need for science, technology, engineering, and mathematics (STEM) educated individuals will continue to increase. Our focus in aviation should be at focusing to attract students into STEM related fields, however, a stronger focus needs to be in retaining the top tier category…
Reader-Centered Technical Writing
NASA Astrophysics Data System (ADS)
Narayanan, M.
2012-12-01
Technical writing is an essential part of professional communication and in recent years it has shifted from a genre-based approach. Formerly, technical writing primarily focused on generating templates of documents and sometimes it was creating or reproducing traditional forms with minor modifications and updates. Now, technical writing looks at the situations surrounding the need to write. This involves deep thinking about the goals and objectives of the project on hand. Furthermore, one observes that it is very important for any participatory process to have the full support of management. This support needs to be well understood and believed by employees. Professional writing may be very persuasive in some cases. When presented in the appropriate context, technical writing can persuade a company to improve work conditions ensuring employee safety and timely production. However, one must recognize that lot of professional writing still continues to make use of reports and instruction manuals. Normally, technical and professional writing addresses four aspects. Objective: The need for generating a given professionally written technical document and the goals the document is expected to achieve and accomplish. Clientele: The clientele who will utilize the technical document. This may include the people in the organization. This may also include "unintended readers." Customers: The population that may be affected by the content of the technical document generated. This includes the stakeholders who will be influenced. Environment: The background in which the document is created. Also, the nature of the situation that warranted the generation of the document. Swiss Psychologist Jean Piaget's view of Learning focuses on three aspects. The author likes to extend Jean Piaget's ideas to students, who are asked to prepare and submit Reader-Centered Technical Writing reports and exercises. Assimilation: Writers may benefit specifically, by assimilating a new object into an old schema. This reinforces basic engineering and mathematical design concepts. Accommodation: Here, it may work in a different manner. Writers may have to accommodate an old schema to a new object. This helps engineers to focus more on applications. Adaptation: Assimilation and accommodation are the two sides of adaptation, Jean Piaget's term for what most of us would call learning. Mathematical design concepts generated by students should be suitable for creative engineering applications. References : Phillips, D. C. and Soltis, Jonas F. (2003) "Piagetian Structures and Psychological Constructivism," in Perspectives on Learning (4th edition). New York: Teachers College Press. Salvo, Michael J. (2001). Ethics of Engagement: User-Centered Design and Rhetorical Methodology. Technical Communication Quarterly Volume 10, Issue 3, 2001. pages 273-290. http://www.ship.edu/~cgboeree/piaget.html http://owl.english.purdue.edu/owl/resource/624/01/
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences.
2010 NRL Review: Power, Energy, Synergy
2010-01-01
scientific, technical, engineering, and mathematics (STEM) fields. To this end, NRL has brought 399 students on board as employees, tutored another...Employees — Recent Ph.D., Faculty Member, and College Graduate Programs, Professional Appointments, and College and High School Student Programs 278...information with higher-level cognitive reasoning; gesture recognition for shoulder-to- shoulder human-robot interaction; and anticipation and learning on a
1994-01-01
defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4
Introduction to computers: Reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligon, F.V.
1995-04-01
The ``Introduction to Computers`` program establishes formal partnerships with local school districts and community-based organizations, introduces computer literacy to precollege students and their parents, and encourages students to pursue Scientific, Mathematical, Engineering, and Technical careers (SET). Hands-on assignments are given in each class, reinforcing the lesson taught. In addition, the program is designed to broaden the knowledge base of teachers in scientific/technical concepts, and Brookhaven National Laboratory continues to act as a liaison, offering educational outreach to diverse community organizations and groups. This manual contains the teacher`s lesson plans and the student documentation to this introduction to computer course.
The Starflight Handbook: A Pioneer's Guide to Interstellar Travel
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.; Matloff, Gregory L.
1989-06-01
The Starflight Handbook A Pioneer's Guide to Interstellar Travel "The Starflight Handbook is an indispensable compendium of the many and varied methods for traversing the vast interstellar gulf--don't leave the Solar System without it!" --Robert Forward "Very sensible, very complete and useful. Its good use of references and technical `sidebars' adds to the book and allows the nontechnical text to be used by ordinary readers in an easy fashion. I certainly would recommend this book to anyone doing any thinking at all about interstellar flight or the notion of possibilities of contacts between hypothetical civilizations in different stat systems." --Louis Friedman Executive Director, The Planetary Society The Starflight Handbook is the first and only compendium on planet Earth of the radical new technologies now on the drawing boards of some of our smartest and most imaginative space scientists and engineers. Scientists and engineers as well as general readers will be captivated by its: In-depth discussions of everything from nuclear pulse propulsion engines to in-flight navigation, in flowing, non-technical language Sidebars and appendices cover technical and mathematical concepts in detail Seventy-five elegant and enlightening illustrations depicting starships and their hardware
ERIC Educational Resources Information Center
Cunningham, Brittany C.; Hoyer, Kathleen Mulvaney; Sparks, Dinah
2015-01-01
As technical and scientific innovation continue to drive the global economy, educators, policymakers, and scientists seek to promote students' interest and achievement in the STEM fields to maintain the nation's competitive position (National Academy of Sciences 2006; National Science Board 2007; President's Council of Advisors on Science and…
Laboratory directed research and development. FY 1995 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1996-03-01
This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.
ERIC Educational Resources Information Center
Korkmaz, Özgen
2018-01-01
Engineering education plays a prominent role in the development of technologies, society, nation, production, economy and employment. It is the art of applying scientific and mathematical principles, and experience to produce a technical product or system to meet out a specific need in the society. Based on the literature, it was thought that…
The Cognitive, Perceptual, and Neural Bases of Skilled Performance
1994-02-01
technical report 3/15/90-3/14/93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS The Cognitive , Perceptual, and Neural Bases AFOSR 90-0175 of Skilled... COGNITIVE , PERCEPTUAL, AND NEURAL BASES OF SKILLED PERFORMANCE March 15, 1990-March 14, 1993 Principal Investigator: Stephen Grossberg Wang Professor of... Cognitive and Neural Systems Professor of Mathematics, Psychology, and Biomedical Engineering Director, Center for Adaptive Systems Chairman, Department
Research Institute for Technical Careers
NASA Technical Reports Server (NTRS)
Glenn, Ronald L.
1996-01-01
The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.
A Revision of Technical Mathematics Based on the NCTM Standards. Final Report.
ERIC Educational Resources Information Center
Near, Barbara
Between 1993 and 1996, Henry Ford Community College (Michigan) worked with business, industry, and technical instructors to revise their Technical Mathematics program in accordance with the National Council of Teachers of Mathematics (NCTM) Standards. The purpose of the project was to restructure the technical math curriculum and create a context…
Anderson, Misti Ault; Giordano, James
2013-04-23
The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine - as profession and practice - can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture.
ERIC Educational Resources Information Center
National Academies Press, 2010
2010-01-01
The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development,…
Coordination and Control for Multi-Quadrotor UAV Missions
2012-03-01
space equation uses a set of matrices to set up a series of first-order differential equations of the vehicle states. Some flexibility exists in...challenges with autonomous micro aerial vehicles.” Int. Symp. On Robotics Research, 2011 [11] M. Turpin , N. Michael, & V. Kumar, (2012). “Trajectory design...Mathematics and Engineer- ingAnalysis, TechnicalDocumentMEA-LR-085. Boeing Information and Support Services, The Boeing Company, Seattle ( 1997 ) [23] O
Research project for increasing pool of minority engineers
NASA Technical Reports Server (NTRS)
Rogers, Decatur B.
1995-01-01
The Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers is designed to develop engineers who have academic and research experiences in technical areas of interest to NASA. These engineers will also have some degree of familiarity with NASA Lewis Research Center as a result of interaction with Lewis engineers, field trips and internships at Lewis. The Research Project has four components, which are: (1) Minority Introduction to Engineering (MITE), a high school precollege program, (2) engineering and technology previews, (3) the NASA LeRC Scholars program which includes scholarships and summer internships, and (4) undergraduate research experiences on NASA sponsored research. MITE is a two-week summer engineering camp designed to introduce minority high school students to engineering by exposing them to: (1) engineering role models (engineering students and NASA engineer), (2) field trips to engineering firms, (3) in addition to introducing youth to the language of the engineer (i.e., science, mathematics, technical writing, computers, and the engineering laboratory). Three MITE camps are held on the campus of TSU with an average of 40 participants. MITE has grown from 25 participants at its inception in 1990 to 118 participants in 1994 with participants from 17 states, including the District of Columbia, and 51 percent of the participants were female. Over the four-year period, 77 percent of the seniors who participated in MITE have gone to college, while 53 percent of those seniors in college are majoring in science, engineering or mathematics (SEM). This first Engineering and Technology Previews held in 1993 brought 23 youths from Cleveland, Ohio to TSU for a two-day preview of engineering and college life. Two previews are scheduled for 1994-1995. The NASA LeRC Scholars program provides scholarships and summer internships for minority engineering students majoring in electrical or mechanical engineering. Presently six (6) engineering students are in the Scholars program. The average GPA for the scholars is 3.239. Each scholar must maintain a minimum GPA of 3.000/4.000. NASA LeRC Fred Higgs has been awarded a GEM Fellowship. In addition, he will be presenting a paper entitled 'Design of Helical Spring Using Probabilistic Design Methodology' at the Middle Tennessee Section ASME Student Design Presentations in Nashville on March 23rd and at the National Conference on Undergraduate Research to be held at Union College, Schenectady, New York on April 20-22, 1995. Each of the scholars is working on one of the three NASA sponsored research projects in the college.
Technical Mathematics: Restructure of Technical Mathematics.
ERIC Educational Resources Information Center
Flannery, Carol A.
Designed to accompany a series of videotapes, this textbook provides information, examples, problems, and solutions relating to mathematics and its applications in technical fields. Chapter I deals with basic arithmetic, providing information on fractions, decimals, ratios, proportions, percentages, and order of operations. Chapter II focuses on…
Aircraft dual-shaft jet engine with indirect action fuel flow controller
NASA Astrophysics Data System (ADS)
Tudosie, Alexandru-Nicolae
2017-06-01
The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.
Wheatley Award 2017 Winner: How Physics Can Help Africa Transform, from a Problem to an Opportunity
NASA Astrophysics Data System (ADS)
Turok, Neil
2017-01-01
Africa represents the world's greatest untapped pool of scientific and technical talent. The African Institute for Mathematical Sciences (AIMS) is providing outstanding postgraduate training and research opportunities to gifted students across the continent. Its alumni proceed to employment in fields ranging from epidemiology to natural resource management, information technology and mathematical finance, to engineering and pure research in physics and mathematics. Many have already had a major impact in revitalising Africa's universities, in tackling major epidemics, and in raising skills levels in industry and government. AIMS has opened six centres of excellence so far, in South Africa, Senegal, Ghana, Cameroon, Tanzania, and, most recently, Rwanda, and plans to grow to a network of fifteen centres over the next decade. Its 1200 alumni are at the leading edge of Africa's transformation into a knowledge-based society.
Students' perceptions of the relevance of mathematics in engineering
NASA Astrophysics Data System (ADS)
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-09-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
From Searle's Chinese Room to the Mathematics Classroom: Technical and Cognitive Mathematics
ERIC Educational Resources Information Center
Gavalas, Dimitris
2007-01-01
Employing Searle's views, I begin by arguing that students of Mathematics behave similarly to machines that manage symbols using a set of rules. I then consider two types of Mathematics, which I call "Cognitive Mathematics" and "Technical Mathematics" respectively. The former type relates to concepts and meanings, logic and sense, whilst the…
A Hydrodynamic Study of Davis Pond, Near New Orleans, LA
2008-08-01
District 2004). This project will make the Barataria estuary a more prolific producer of oysters, shrimp, crab , and fish, as well as a major habitat...yards 0.9144 meters ERDC/CHL TR-08-11 1 1 Introduction The Davis Pond freshwater diversion project is a salinity -control structure located in St...Mathematical model of estuarial sediment transport. Technical Report D-77-12. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
Community College Technical Mathematics Project. Final Report.
ERIC Educational Resources Information Center
Self, Samuel L.
The purpose of the research project was to develop an applied or technical mathematics curriculum which would meet the needs of vocational-technical students at the community college level. The research project was divided into three distinct phases: Identifying the mathematical concepts requisite for job-entry competencies in each of the…
An Internship Model for Culturally Relevant Success for Native American High School Students
NASA Astrophysics Data System (ADS)
Nall, J.; Graham, E. M.
2004-12-01
Culturally relevant educational practices can be challenging to implement in the workplace. In an effort to support equity in access to undergraduate internship opportunities for Native American students, NASA Jet Propulsion Laboratory's (JPL) Education Office, Minority Education Initiatives offers a unique approach to supporting students from Native American reservation high schools in Washington State to participate in eight-week technical (Science, Technology, Engineering and Mathematics related) summer internships. This talk will address the Alliance for Learning and Vision for Americans (ALVA) program's twelve years of success based on four programmatic principals, annual review and the critical support of scientists and engineers.
Creating scientific and technical talent through educational outreach
NASA Astrophysics Data System (ADS)
Diggs, Darnell E.; Grote, James G.; Fielding, Jennifer; Jones, Keith W.; Jenkins, Larry C.; Turner, I. Leon
2007-09-01
Using descriptive and explanatory research methodologies, researchers have qualitatively investigated factors influential in causing our nation's youth to decide whether to select science, technology, engineering, and mathematics (STEM) as their academic majors. Furthermore, researchers have also examined what causes African American men and women to decide whether they desire to become engineers and scientists. Using preexisting studies numerous themes have emerged from these data, which supports educational outreach as a powerful tool for encouraging our youth to consider the STEM disciplines. This paper highlights Air Force Research Laboratory researchers' efforts in combating the forces that could jeopardize our nation's position as one of the leaders in technology and scientific innovations.
NASA Astrophysics Data System (ADS)
2014-04-01
2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar
Technical Subjects. Mathematics. Science. Curriculum RP-27.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
GRADES OR AGES: Grades 9-12. SUBJECT MATTER: Technical subjects and special mathematics and science courses for technical students. Technical subjects include air conditioning, auto mechanics, carpentry, drafting, applied electronics, masonry, painting, plumbing, service station operation, welding, and woodworking. ORGANIZATION AND PHYSICAL…
2013-01-01
Background The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. Discussion In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine – as profession and practice – can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. Summary We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture. PMID:23617840
Mathematics and its value for engineering students: what are the implications for teaching?
NASA Astrophysics Data System (ADS)
Harris, Diane; Black, Laura; Hernandez-Martinez, Paul; Pepin, Birgit; Williams, Julian; with the TransMaths Team
2015-04-01
Mathematics has long been known to be problematic for university engineering students and their teachers, for example, Scanlan.[1] This paper presents recent data gathered from interviews with engineering students who experienced problems with mathematics and their lecturers during their transition through the first year in different programme contexts. Our interviews with the students reveal how they understand the relation between engineering and mathematics and we draw on the concept of 'use- and exchange-value' to explore this relationship more fully. This paper challenges both the pedagogical practice of teaching non-contextualized mathematics and the lack of transparency regarding the significance of mathematics to engineering. We conclude that the value of mathematics in engineering remains a central problem, and argue that mathematics should be a fundamental concern in the design and practice of first-year engineering.
Conceptual or procedural mathematics for engineering students at University of Samudra
NASA Astrophysics Data System (ADS)
Saiman; Wahyuningsih, Puji; Hamdani
2017-06-01
This study we investigate whether the emphasis in mathematics courses for engineering students would benefit from being more conceptually oriented than more procedurally oriented way of teaching. In this paper, we report in some detail from twenty-five engineering students comes from three departements ; mechanical engineering, civil engineering and industrial engineering. The aim was to explore different kinds of arguments regarding the role of mathematics in engineering courses, as well as some common across contexts. The result of interview showed that most of engineering students feel that conceptual mathematics is more important than procedural mathematics for their job the future.
ERIC Educational Resources Information Center
Flannery, Carol A.
This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…
NASA Astrophysics Data System (ADS)
Sabag, Nissim
2017-10-01
The importance of knowledge and skills in mathematics for electrical engineering students is well known. Engineers and engineering educators agree that any engineering curriculum must include plenty of mathematics studies to enrich the engineer's toolbox. Nevertheless, little attention has been given to the possible contribution of examples from engineering fields for the clarification of mathematical issues.
ERIC Educational Resources Information Center
Edge, D. Michael
2011-01-01
This non-experimental study attempted to determine how the different prescribed mathematic tracks offered at a comprehensive technical high school influenced the mathematics performance of low-achieving students on standardized assessments of mathematics achievement. The goal was to provide an analysis of any statistically significant differences…
Turbine Engine Mathematical Model Validation
1976-12-01
AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less
2007-06-01
Social Science Research Methods. M. S. Lewis-Beck, A . Bryman and T. F. Liao. Thousand Oaks CA, SAGE. 2: 440-442. Checkland, P. (1999). Systems...E. (1948). " A Mathematical Theory of Communication." The Bell System Technical Journal 27(3): 379-423. Simon, H. A . (1962). "The Architecture of...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
NASA Astrophysics Data System (ADS)
Khiat, Henry
2012-03-01
This study aims to understand how engineering mathematics students form intentions in mathematics learning from a socio-psychological perspective. A grounded theory approach was adopted and 21 engineering students and six tutors participated in the study. The main findings in this study show that a student's intention in engineering mathematics learning is made up of a number of sequential components - their critical trigger, internalized significance, aim and perceived intention-related consequences in engineering mathematics learning. Accordingly, the participants may be broadly classified into five types of learners: idealistic learners, competitive learners, pragmatic learners, fatalistic learners and dissonant learners according to their intentions in engineering mathematics learning.
ERIC Educational Resources Information Center
Capps, Joan P.
An instructional method using flow-chart symbols to make mathematical abstractions more concrete was implemented for a year in a technical mathematics course. Students received instruction in computer applications and programming in the BASIC language in order to increase motivation and firm the mathematical skills and problem-solving approaches…
Investigating Engineering Practice Is Valuable for Mathematics Learning
ERIC Educational Resources Information Center
Goold, Eileen
2015-01-01
While engineering mathematics curricula often prescribe a fixed body of mathematical knowledge, this study takes a different approach; second-year engineering students are additionally required to investigate and document an aspect of mathematics used in engineering practice. A qualitative approach is used to evaluate the impact that students'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-02-01
This annual report of Brookhaven National Laboratory describes its program and activities for the fiscal year 1958. The progress and trends of the research program are presented along with a description of the operational, service, and administrative activities of the Laboratory. The scientific and technical details of the many research and development activities are covered more fully in scientific and technical periodicals and in the quarterly scientific progress reports and other scientiflc reports of the Laboratory. A list of all publications for July 1, 1957 to June 30, 1958, is given. Status and progress are given in fields of physics,more » accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medical research. (For preceding period see BNL-462.) (W.D.M.)« less
NASA Technical Reports Server (NTRS)
Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.
1985-01-01
The underlying engineering and mathematical models as well as the computational methods used by the Spectrum Orbit Utilization Program 5 (SOUP5) analysis programs are described. Included are the algorithms used to calculate the technical parameters, and references to the technical literature. The organization, capabilities, processing sequences, and processing and data options of the SOUP5 system are described. The details of the geometric calculations are given. Also discussed are the various antenna gain algorithms; rain attenuation and depolarization calculations; calculations of transmitter power and received power flux density; channelization options, interference categories, and protection ratio calculation; generation of aggregrate interference and margins; equivalent gain calculations; and how to enter a protection ratio template.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buneman, R.; Barker, R.J.; Peratt, A.L.
Highlights are presented from among the many contributions made by Oscar Buneman to the science, engineering, and mathematics communities. Emphasis is placed not only on ''what'' this pioneer of computational plasma physics contributed but, of equal importance, on ''how'' he made his contributions. Therein lies the difference between technical competence and scientific greatness. The picture which emerges illustrates the open-mindedness, enthusiasm, intellectual/physical stamina, imagination, intellectual integrity, interdisciplinary curiosity, and deep humanity that made this individual unique. As a gentleman and a scholar, he had mastered the art of making cold technical facts ''come to life.'' Oscar Buneman died peacefully atmore » his home near Stanford University on Sunday, January 24th, 1993. The profound influence he has had on many of his colleagues guarantees his immortality.« less
Technical books and monographs. 1979 compilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This booklet lists technical books and monographs published since the issuance of Technical Books and Monographs, 1978 Catalog, a bibliography of books and monographs sponsored by the US Department of Energy (DOE) or by one of the earlier organizations that were brought together to form DOE. In general, information for each published book, and for each book in press when known, includes title, author and author affiliation, publisher and publication date, page count, size of book, price, availability information if the book is not available from the publisher, Library of Congress card number, International Standard Book Number (ISBN), a briefmore » descriptive statement concerning the book, and a list or a description of the contents. The books and monographs are grouped under twelve subject categories: general reference, biology and medicine, chemistry, computers and mathematics, energy, engineering and instrumentation, environment, health and safety, isotope separation, metallurgy and materials, physics, and reactors. (RWR)« less
Group by Subject or by Ability? Tertiary Mathematics for Engineering Students
ERIC Educational Resources Information Center
Plank, Michael; James, Alex; Hannah, John
2011-01-01
The mathematics topics taught to engineering students at university are ostensibly no different to those taught to mathematics majors, so should these students be taught together or separately? Should engineering students be segregated by ability in their mathematics classes? This study analyses the grades of over 1000 engineering students, and…
Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle
NASA Technical Reports Server (NTRS)
Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.
2003-01-01
A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.
NASA Astrophysics Data System (ADS)
Peiris, T. S. G.; Nanayakkara, K. A. D. S. A.
2017-09-01
Mathematics plays a key role in engineering sciences as it assists to develop the intellectual maturity and analytical thinking of engineering students and exploring the student academic performance has received great attention recently. The lack of control over covariates motivates the need for their adjustment when measuring the degree of association between two sets of variables in Canonical Correlation Analysis (CCA). Thus to examine the individual effects of mathematics in Level 1 and Level 2 on engineering performance in Level 2, two adjusted analyses in CCA: Part CCA and Partial CCA were applied for the raw marks of engineering undergraduates for three different disciplines, at the Faculty of Engineering, University of Moratuwa, Sri Lanka. The joint influence of mathematics in Level 1 and Level 2 is significant on engineering performance in Level 2 irrespective of the engineering disciplines. The individual effect of mathematics in Level 2 is significantly higher compared to the individual effect of mathematics in Level 1 on engineering performance in Level 2. Furthermore, the individual effect of mathematics in Level 1 can be negligible. But, there would be a notable indirect effect of mathematics in Level 1 on engineering performance in Level 2. It can be concluded that the joint effect of mathematics in both Level 1 and Level 2 is immensely beneficial to improve the overall academic performance at the end of Level 2 of the engineering students. Furthermore, it was found that the impact mathematics varies among engineering disciplines. As partial CCA and partial CCA are not widely explored in applied work, it is recommended to use these techniques for various applications.
Adaptation of abbreviated mathematics anxiety rating scale for engineering students
NASA Astrophysics Data System (ADS)
Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah
2015-05-01
Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.
Conceptual Complexity and Apparent Contradictions in Mathematics Language
ERIC Educational Resources Information Center
Gough, John
2007-01-01
Mathematics is like a language, although technically it is not a natural or informal human language, but a formal, that is, artificially constructed language. Importantly, educators use their natural everyday language to teach the formal language of mathematics. At times, however, instructors encounter problems when the technical words they use,…
Engineering physics and mathematics division
NASA Astrophysics Data System (ADS)
Sincovec, R. F.
1995-07-01
This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.
System principles, mathematical models and methods to ensure high reliability of safety systems
NASA Astrophysics Data System (ADS)
Zaslavskyi, V.
2017-04-01
Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.
ERIC Educational Resources Information Center
Sabag, Nissim
2017-01-01
Background: The importance of knowledge and skills in mathematics for electrical engineering students is well known. Engineers and engineering educators agree that any engineering curriculum must include plenty of mathematics studies to enrich the engineer's toolbox. Nevertheless, little attention has been given to the possible contribution of…
IBM techexplorer and MathML: Interactive Multimodal Scientific Documents
NASA Astrophysics Data System (ADS)
Diaz, Angel
2001-06-01
The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org
Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.
ERIC Educational Resources Information Center
Carr, Robin; And Others
1995-01-01
Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…
Marshalling Corporate Resources for Public and K-12 Technical Education Outreach and Engagement
NASA Astrophysics Data System (ADS)
Wynne, James
2011-03-01
In 1988, the Education Task Force of the Business Roundtable recommended that American corporations invest in pre-college education. Prior to that date, corporate investment was targeted at higher education. IBM and other corporations responded by encouraging their employees and their corporate philanthropic organizations to develop programs aimed at enhancing pre-college education. The IBM TJ Watson Research Center initiated a Local Education Outreach program, active for these past 23 years, that marshals the resources of our science-rich institution to enhance STEM education in our local schools. We have broad and deep partnerships between the Research Center and local school districts, including New York City. We have just completed our 19th consecutive year of Family Science Saturdays, which brings 4th and 5th grade children, along with their parents, to our Research Center for hands-on workshops in topics like States of Matter, Polymer Science, Kitchen Chemistry, and Sound and Light. The workshops are staffed by IBM volunteers, assisted by local high school student ``Peer Teachers.'' Since 1990, the IBM Corporation has joined with a coalition of other companies, professional engineering societies, and government agencies to sponsor the annual Engineers Week (EWeek) campaign of technical education outreach, serving as Corporate Chair in 1992, 2001, and 2008. In recent years, we have annually recruited around 5000 IBM volunteers to reach out to more than 200,000 K-12 students in order to increase their awareness and appreciation of technical careers and encourage them to continue their studies of STEM (science, technology, engineering, and mathematics). The speaker, who helped found the APS Forum on Education (FED) and served as FED Councillor for 8 years, will review these and other programs for Public and K-12 Technical Education Outreach and Engagement.
Graphing techniques for materials laboratory using Excel
NASA Technical Reports Server (NTRS)
Kundu, Nikhil K.
1994-01-01
Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Dubrovskaya, A. S.; Dongauser, K. A.; Trufanov, N. A.
2015-06-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation.
NASA Astrophysics Data System (ADS)
Rooch, Aeneas; Junker, Philipp; Härterich, Jörg; Hackl, Klaus
2016-03-01
Too difficult, too abstract, too theoretical - many first-year engineering students complain about their mathematics courses. The project MathePraxis aims to resolve this disaffection. It links mathematical methods as they are taught in the first semesters with practical problems from engineering applications - and thereby shall give first-year engineering students a vivid and convincing impression of where they will need mathematics in their later working life. But since real applications usually require more than basic mathematics and first-year engineering students typically are not experienced with construction, mensuration and the use of engineering software, such an approach is hard to realise. In this article, we show that it is possible. We report on the implementation of MathePraxis at Ruhr-Universität Bochum. We describe the set-up and the implementation of a course on designing a mass damper which combines basic mathematical techniques with an impressive experiment. In an accompanying evaluation, we have examined the students' motivation relating to mathematics. This opens up new perspectives how to address the need for a more practically oriented mathematical education in engineering sciences.
Practicing Engineers' Perspective on Mathematics and Mathematics Education in College
ERIC Educational Resources Information Center
Tosmur-Bayazit, Nermin; Ubuz, Behiye
2013-01-01
This paper reports on a qualitative study focusing on engineers' point of view in regard to university mathematics and mathematics education. An individual interview was conducted with three electrical and two mechanical engineers between the ages of 25-40, all engaged in successful careers. The subjects were requested to reflect upon themselves…
A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.
ERIC Educational Resources Information Center
Miller, G. H.
The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…
ERIC Educational Resources Information Center
Anderson, Daniel; Irvin, P. Shawn; Patarapichayatham, Chalie; Alonzo, Julie; Tindal, Gerald
2012-01-01
In the following technical report, we describe the development and scaling of the easyCBM CCSS middle school mathematics measures, designed for use within a response to intervention framework. All items were developed in collaboration with experienced middle school mathematics teachers and were written to align with the Common Core State…
Mathematics and online learning experiences: a gateway site for engineering students
NASA Astrophysics Data System (ADS)
Masouros, Spyridon D.; Alpay, Esat
2010-03-01
This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.
The Electronic Encyclopedia of Earthquakes
NASA Astrophysics Data System (ADS)
Benthien, M.; Marquis, J.; Jordan, T.
2003-12-01
The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will complete 450 entries, which will populate the E3 collection to a level that fully spans earthquake science and engineering. Scientists, engineers, and educators who have suggestions for content to be included in the Encyclopedia can visit www.earthquake.info now to complete the "Suggest a Web Page" form.
ERIC Educational Resources Information Center
Darlington, Ellie; Bowyer, Jessica
2017-01-01
An ongoing reform programme of the post-16 Advanced "A"-level qualifications in England and Wales means that pre-university mathematics content and assessment will change from 2017. Undergraduate engineering is a subject that relies heavily on mathematics, and applicants to engineering degree programmes in the UK are required to have…
ERIC Educational Resources Information Center
Engelbrecht, Johann; Bergsten, Christer; Kågesten, Owe
2017-01-01
The research interest underpinning this paper concerns the type of mathematical knowledge engineering students may acquire during their specialised education in terms of the conceptual and procedural dimensions of doing and using mathematics. This study draws on interviews with 25 qualified engineers from South Africa and Sweden regarding their…
A Study of Competence in Mathematics and Mechanics in an Engineering Curriculum
ERIC Educational Resources Information Center
Munns, Andrew
2017-01-01
Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as "The Mathematics Problem", with students not demonstrating understanding of the subject. This…
Mind map learning for advanced engineering study: case study in system dynamics
NASA Astrophysics Data System (ADS)
Woradechjumroen, Denchai
2018-01-01
System Dynamics (SD) is one of the subjects that were use in learning Automatic Control Systems in dynamic and control field. Mathematical modelling and solving skills of students for engineering systems are expecting outcomes of the course which can be further used to efficiently study control systems and mechanical vibration; however, the fundamental of the SD includes strong backgrounds in Dynamics and Differential Equations, which are appropriate to the students in governmental universities that have strong skills in Mathematics and Scientifics. For private universities, students are weak in the above subjects since they obtained high vocational certificate from Technical College or Polytechnic School, which emphasize the learning contents in practice. To enhance their learning for improving their backgrounds, this paper applies mind maps based problem based learning to relate the essential relations of mathematical and physical equations. With the advantages of mind maps, each student is assigned to design individual mind maps for self-leaning development after they attend the class and learn overall picture of each chapter from the class instructor. Four problems based mind maps learning are assigned to each student. Each assignment is evaluated via mid-term and final examinations, which are issued in terms of learning concepts and applications. In the method testing, thirty students are tested and evaluated via student learning backgrounds in the past. The result shows that well-design mind maps can improve learning performance based on outcome evaluation. Especially, mind maps can reduce time-consuming and reviewing for Mathematics and Physics in SD significantly.
ERIC Educational Resources Information Center
Bergsten, Christer; Engelbrecht, Johann; Kågesten, Owe
2017-01-01
One challenge for an optimal design of the mathematical components in engineering education curricula is to understand how the procedural and conceptual dimensions of mathematical work can be matched with different demands and contexts from the education and practice of engineers. The focus in this paper is on how engineering students respond to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less
NASA Astrophysics Data System (ADS)
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus
2008-09-01
Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.
NASA Technical Reports Server (NTRS)
Eisley, Joe T.
1990-01-01
The declining pool of graduates, the lack of rigorous preparation in science and mathematics, and the declining interest in science and engineering careers at the precollege level promises a shortage of technically educated personnel at the college level for industry, government, and the universities in the next several decades. The educational process, which starts out with a large number of students at the elementary level, but with an ever smaller number preparing for science and engineering at each more advanced educational level, is in a state of crisis. These pipeline issues, so called because the educational process is likened to a series of ever smaller constrictions in a pipe, were examined in a workshop at the Space Grant Conference and a summary of the presentations and the results of the discussion, and the conclusions of the workshop participants are reported.
A study of competence in mathematics and mechanics in an engineering curriculum
NASA Astrophysics Data System (ADS)
Munns, Andrew
2017-11-01
Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as 'The Mathematics Problem', with students not demonstrating understanding of the subject. This paper will suggest that students are constructing different concept images in engineering and mathematics, based on their perception of either the use or exchange-value for the topics. Using a mixed methods approach, the paper compares 10 different types of concept image constructed by students, which suggests that familiar procedural images are preferred in mathematics. In contrast strategic and conceptual images develop for mechanics throughout the years of the programme, implying that different forms of competence are being constructed by students between the two subjects. The paper argues that this difference is attributed to the perceived use-value of mechanics in the career of the engineer, compared to the exchange-value associated with mathematics. Questions are raised about the relevance of current definitions of competence given that some routine mathematical operations previously performed by engineers are now being replaced by technology, in the new world of work.
ERIC Educational Resources Information Center
Loch, Birgit; Lamborn, Julia
2016-01-01
Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering…
Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)
2013-08-29
educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology
NASA Astrophysics Data System (ADS)
Tully, D.; Jacobs, B.
2010-08-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.
ERIC Educational Resources Information Center
Nese, Joseph F. T.; Lai, Cheng-Fei; Anderson, Daniel; Jamgochian, Elisa M.; Kamata, Akihito; Saez, Leilani; Park, Bitnara J.; Alonzo, Julie; Tindal, Gerald
2010-01-01
In this technical report, data are presented on the practical utility, reliability, and validity of the easyCBM[R] mathematics (2009-2010 version) measures for students in grades 3-8 within four districts in two states. Analyses include: minimum acceptable within-year growth; minimum acceptable year-end benchmark performance; internal and…
NASA Astrophysics Data System (ADS)
Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.
2018-03-01
A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).
NASA Astrophysics Data System (ADS)
Alves, Manuela; Rodrigues, Cristina S.; Rocha, Ana Maria A. C.; Coutinho, Clara
2016-01-01
The accomplishment in mathematics has gained attention from educators and arises as an emerging field of study, including in engineering education. However, in Portugal, there is still incipient research in the area; so it is high time to explore factors that might enlighten the gap in the study of the relationship between Portuguese engineering students and the learning of mathematics. The main purpose of this study is to explore three factors identified in the literature as influencing the learning of mathematical concepts - self-efficacy, anxiety towards mathematics and perceived importance of mathematics - and search for differences by gender and by type of engineering course, a dimension not much reported in the literature but which was revealed as important in the team's previous research. Based on a sample of 140 undergraduate students of different engineering courses from University of Minho, results only identify differences in the type of course and not in gender. These results constitute a contribution and open new paths for future research in the engineering education.
NASA Astrophysics Data System (ADS)
Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel
2013-12-01
There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.
CTE's Role in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Hyslop, Alisha
2010-01-01
For the last several years, concern has been brewing about America's underinvestment and underperformance in science, technology, engineering and mathematics--the fields collectively known as STEM. STEM can be described as an initiative for securing America's leadership in science, technology, engineering and mathematics fields and identifying…
ERIC Educational Resources Information Center
Garnier, Helen E.; Lemmens, Meike; Druker, Stephen L.; Roth, Kathleen J.
2011-01-01
This second volume of the Third International Mathematics and Science Study (TIMSS) 1999 Video Study Technical Report focuses on every aspect of the planning, implementation, processing, analysis, and reporting of the science components of the TIMSS 1999 Video Study. The report is intended to serve as a record of the actions and documentation of…
The Amateurs' Love Affair with Large Datasets
NASA Astrophysics Data System (ADS)
Price, Aaron; Jacoby, S. H.; Henden, A.
2006-12-01
Amateur astronomers are professionals in other areas. They bring expertise from such varied and technical careers as computer science, mathematics, engineering, and marketing. These skills, coupled with an enthusiasm for astronomy, can be used to help manage the large data sets coming online in the next decade. We will show specific examples where teams of amateurs have been involved in mining large, online data sets and have authored and published their own papers in peer-reviewed astronomical journals. Using the proposed LSST database as an example, we will outline a framework for involving amateurs in data analysis and education with large astronomical surveys.
NASA aerospace database subject scope: An overview
NASA Technical Reports Server (NTRS)
1993-01-01
Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.
Space science curriculum design and research at NC A&T state university
NASA Astrophysics Data System (ADS)
Kebede, Abebe; Nair, Jyoti; Smith, Galen
2007-12-01
Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.
Developing Teaching of Mathematics to First Year Engineering Students
ERIC Educational Resources Information Center
Jaworski, Barbara; Matthews, Janette
2011-01-01
Engineering Students Understanding Mathematics (ESUM) is a developmental research project at a UK university. The motivating aim is that engineering students should develop a more conceptual understanding of mathematics through their participation in an innovation in teaching. A small research team has both studied and contributed to innovation,…
On the Role of Engineering in Mathematical Development
ERIC Educational Resources Information Center
Fernandez, Isabel; Pacheco, Jose
2005-01-01
It is customary for engineering syllabuses to include a substantial amount of mathematics, a fact traditionally justified through their usefulness in the analysis and resolution of many technological problems. In other words, usually the role of mathematics in engineering is emphasized. Nevertheless, the opposite viewpoint could be considered as…
The use of mathematical models in teaching wastewater treatment engineering.
Morgenroth, E; Arvin, E; Vanrolleghem, P
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
[Styles of programming 1952-1972].
van den Bogaard, Adrienne
2008-01-01
In the field of history of computing, the construction of the early computers has received much scholarly attention. However, these machines have not only been important because of their logical design and their engineering, but also because of the programming practices that emerged around these first machines. This article compares two styles of programming that developed around Dutch 'first computers'. The first style is represented by Edsger Wybe Dijkstra (1930-2002), who would receive the Turing Award for his work in 1972. Dijkstra developed a mathematical style of programming--a program was something you should be able to design mathematically and prove it logically. The second style is represented by Willem Louis van der Poel (born 1926). For him, programming is 'trickology'. A program is primarily a technical artefact that should work: a program is something you play with, comparable to the way one solves a puzzle.
NASA Technical Reports Server (NTRS)
1990-01-01
President Bush endorsed a package of six goals developed by the governors of the 50 states, among them making the United States first in the world in mathematics and science achievement. The crux of the technical manpower problem is that too few people in the workforce today have the skills required to function in a technologically advanced society. All over the U.S., government, industry and academic organizations, individually and in concert, at the national, state and local levels, are accelerating efforts to find remedies for the educational and training maladies that threaten America's scientific and technological future. NASA is among the leading education promoting organizations and the agency is expanding its effort. In May 1990, NASA and the Department of Energy concluded an agreement for a cooperative program directed at encouraging more U.S. students to pursue careers in science, engineering and mathematics, and at improving the instructional process in those areas at the precollege and university levels.
What is the problem in problem-based learning in higher education mathematics
NASA Astrophysics Data System (ADS)
Dahl, Bettina
2018-01-01
Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.
NASA Astrophysics Data System (ADS)
Loch, Birgit; Lamborn, Julia
2016-01-01
Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to 'make maths relevant' for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.
Engineering and public health at CDC.
Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J
2006-12-22
Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.
Mathematics for Physicists and Engineers.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
The text is a report of the OEEC Seminar on "The Mathematical Knowledge Required by the Physicist and Engineer" held in Paris, 1961. There are twelve major papers presented: (1) An American Parallel (describes the work of the Panel on Physical Sciences and Engineering of the Committee on the Undergraduate Program in Mathematics of the Mathematical…
ERIC Educational Resources Information Center
National Academies Press, 2010
2010-01-01
"Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty" presents new and surprising findings about career differences between female and male full-time, tenure-track, and tenured faculty in science, engineering, and mathematics at the nation's top research universities. Much of this…
Measurement System for Energetic Materials Decomposition
2015-01-05
scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated during this period and...will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields
Mathematics and Its Value for Engineering Students: What Are the Implications for Teaching?
ERIC Educational Resources Information Center
Harris, Diane; Black, Laura; Hernandez-Martinez, Paul; Pepin, Birgit; Williams, Julian
2015-01-01
Mathematics has long been known to be problematic for university engineering students and their teachers, for example, Scanlan. This paper presents recent data gathered from interviews with engineering students who experienced problems with mathematics and their lecturers during their transition through the first year in different programme…
Situated Mathematics Teaching within Electrical Engineering Courses
ERIC Educational Resources Information Center
Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic
2015-01-01
The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a "fundamentals of electrical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atcitty, Stanley
The overall goal of this project is to establish a network of TCUs with essential advanced manufacturing (AM) facilities, associated training and education programs, and private sector and federal agency partnerships to both prepare an American Indian AM workforce and create economic and employment opportunities within Tribal communities through design, manufacturing, and marketing of high quality products. Some examples of high quality products involve next generation grid components such as mechanical energy storage, cabling for distribution of energy, and electrochemical energy storage enclosures. Sandia National Laboratories (Sandia) is tasked to provide technical advising, planning, and academic program development support formore » the TCU/American Indian Higher Education Consortium (AIHEC) Advanced Manufacturing Project. The TCUs include Bay Mills Community College (BMCC), Cankdeska Cikana Community College (CCCC), Navajo Technical University (NTU), Southwestern Indian Polytechnic Institute (SIPI), and Salish Kooteani College. AIHEC and Sandia, with collaboration from SIPI, will be establishing an 8-week summer institute on the SIPI campus during the summer of 2017. Up to 20 students from TCUs are anticipated to take part in the summer program. The goal of the program is to bring AM science, technology, engineering, and mathematics (STEM) awareness and opportunities for the American Indian students. Prior to the summer institute, Sandia will be providing reviews on curriculum plans at the each of the TCUs to ensure the content is consistent with current AM design and engineering practice. In addition, Sandia will provide technical assistance to each of the TCUs in regards to their current AM activities.« less
Validating the Use of pPerformance Risk Indices for System-Level Risk and Maturity Assessments
NASA Astrophysics Data System (ADS)
Holloman, Sherrica S.
With pressure on the U.S. Defense Acquisition System (DAS) to reduce cost overruns and schedule delays, system engineers' performance is only as good as their tools. Recent literature details a need for 1) objective, analytical risk quantification methodologies over traditional subjective qualitative methods -- such as, expert judgment, and 2) mathematically rigorous system-level maturity assessments. The Mahafza, Componation, and Tippett (2005) Technology Performance Risk Index (TPRI) ties the assessment of technical performance to the quantification of risk of unmet performance; however, it is structured for component- level data as input. This study's aim is to establish a modified TPRI with systems-level data as model input, and then validate the modified index with actual system-level data from the Department of Defense's (DoD) Major Defense Acquisition Programs (MDAPs). This work's contribution is the establishment and validation of the System-level Performance Risk Index (SPRI). With the introduction of the SPRI, system-level metrics are better aligned, allowing for better assessment, tradeoff and balance of time, performance and cost constraints. This will allow system engineers and program managers to ultimately make better-informed system-level technical decisions throughout the development phase.
NASA Astrophysics Data System (ADS)
White, Laurel Ann
This study examined course enrollments for female and male Latino and Caucasian students with disabilities (SWD) in Science, Technology, Engineering, and Math (STEM) to establish baseline data in one region of the state of Washington. The study analyzed five academic years of STEM course enrollment in one high school Career and Technical Education (CTE) program and one comprehensive community college. The study uncovered the following findings: (a) Latino and Caucasian SWD STEM enrollment percentages were not significantly different in the high school CTE program, but were significantly different in the STEM program in the comprehensive community college; (b) more females enrolled in Science and males in Engineering than anticipated, (c) Mathematics had the smallest enrollment pattern by ethnicity and gender in both settings, and (d) more males than females enrolled in Technology courses in the comprehensive community college. This research suggests the use of universal design of learning, theory of mind, and the ecological learning theory to encourage STEM enrollment for students with disabilities. Keywords: Career and Technical Education (CTE), Caucasian, comprehensive community college, disability, enrollment, female, high school, Latino, male, STEM, student enrollment, and students with disabilities.
NASA Astrophysics Data System (ADS)
Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah
2014-06-01
In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.
ERIC Educational Resources Information Center
Stevenson, Heidi J.
2014-01-01
The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…
ERIC Educational Resources Information Center
Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret
2016-01-01
The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…
Students' Perceptions of the Relevance of Mathematics in Engineering
ERIC Educational Resources Information Center
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-01-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, "Education for Civil…
ERIC Educational Resources Information Center
Jehopio, Peter J.; Wesonga, Ronald
2017-01-01
Background: The main objective of the study was to examine the relevance of engineering mathematics to the emerging industries. The level of abstraction, the standard of rigor, and the depth of theoretical treatment are necessary skills expected of a graduate engineering technician to be derived from mathematical knowledge. The question of whether…
A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia
ERIC Educational Resources Information Center
Salmon, Aliénor
2015-01-01
What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…
ERIC Educational Resources Information Center
Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel
2013-01-01
There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…
Warwick, Peter D.; Verma, Mahendra K.; Attanasi, Emil; Olea, Ricardo A.; Blondes, Madalyn S.; Freeman, Philip; Brennan, Sean T.; Merrill, Matthew; Jahediesfanjani, Hossein; Roueche, Jacqueline; Lohr, Celeste D.
2017-01-01
The U.S. Geological Survey (USGS) has developed an assessment methodology for estimating the potential incremental technically recoverable oil resources resulting from carbon dioxide-enhanced oil recovery (CO2-EOR) in reservoirs with appropriate depth, pressure, and oil composition. The methodology also includes a procedure for estimating the CO2 that remains in the reservoir after the CO2-EOR process is complete. The methodology relies on a reservoir-level database that incorporates commercially available geologic and engineering data. The mathematical calculations of this assessment methodology were tested and produced realistic results for the Permian Basin Horseshoe Atoll, Upper Pennsylvanian-Wolfcampian Play (Texas, USA). The USGS plans to use the new methodology to conduct an assessment of technically recoverable hydrocarbons and associated CO2 sequestration resulting from CO2-EOR in the United States.
DOT National Transportation Integrated Search
1980-03-01
This volume is the technical manual for the general simulation. Mathematical modelling of the vehicle and of the human driver is presented in detail, as are differences between the APL simulation and the current one. Information on model validation a...
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
A Report on the Present Status of Engineering Mathematics Test (EMaT)
NASA Astrophysics Data System (ADS)
Watanabe, Toshimasa; Takafuji, Daisuke
The aim of Engineering Mathematics Test (EMaT) is to make sure what essentials in curriculum of Engineering Mathematics is, and to assess university students’ core academic competence and achievement of Engineering Mathematics, helping assurance of students’ academic ability. It is useful for professors to evaluate teaching effect of the classes, and this evaluation would help them improve curricula. Scores can be available for both graduate school entrance examinations and employment tests, leading to selecting persons with basic academic ability in Engineering Mathematics. The scope includes fundamentals in Calculus, Linear Algebra, Differential Equations, and Probability and Statistics. It is open to all students free of charge, and is annually given once in December. In 2007, 2,396 students from 35 universities took EMaT, and the total number of students who have taken EMaT in these 5 years is 6,240.
Handbook of applied mathematics for engineers and scientists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, M.
1991-12-31
This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.
Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study
ERIC Educational Resources Information Center
Valtorta, Clara G.; Berland, Leema K.
2015-01-01
Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…
ERIC Educational Resources Information Center
Daugherty, Jenny L.
2011-01-01
Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…
48 CFR 9.505-1 - Providing systems engineering and technical direction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...
48 CFR 9.505-1 - Providing systems engineering and technical direction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...
48 CFR 9.505-1 - Providing systems engineering and technical direction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...
48 CFR 9.505-1 - Providing systems engineering and technical direction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...
48 CFR 9.505-1 - Providing systems engineering and technical direction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...
ERIC Educational Resources Information Center
Shim, George Tan Geok; Shakawi, Abang Mohammad Hudzaifah Abang; Azizan, Farah Liyana
2017-01-01
Educators have always highlighted the importance of mathematics mastery in education for many years. With the current emphasis of Science, Technology, Engineering and Mathematics (STEMs) education, mathematics mastery is even more vital because it supports the learning and mastery of science fields such as engineering and science. Furthermore, in…
ERIC Educational Resources Information Center
Egerton, Patricia, Ed.
The 27th Undergraduate Mathematics Teaching Conference took place in September of 2001 at the University of Birmingham. Major topics of the conference included preparing a teaching portfolio, engineering mathematics should be taught by engineers, issues in teaching discrete mathematics, action research, study skills, and issues for web-delivered…
ERIC Educational Resources Information Center
Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James
2012-01-01
The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…
Modelling Mathematical Reasoning in Physics Education
NASA Astrophysics Data System (ADS)
Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche
2012-04-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
ERIC Educational Resources Information Center
Litzler, Elizabeth; Samuelson, Cate C.; Lorah, Julie A.
2014-01-01
It is generally accepted that engineering requires a strong aptitude for mathematics and science; therefore, students' judgments regarding their competence in these areas as well as engineering likely influence their confidence in engineering. Little is known about how self-confidence in science, mathematics, and engineering courses (STEM…
Engineering in K-12 Education: Understanding the Status and Improving the Prospects
ERIC Educational Resources Information Center
Katehi, Linda, Ed.; Pearson, Greg, Ed.; Feder, Michael, Ed.
2009-01-01
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects--science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work…
ERIC Educational Resources Information Center
Cox, Monica F.; Berry, Carlotta A.; Smith, Karl A.
2009-01-01
This paper describes a graduate level engineering education course, "Leadership, Policy, and Change in Science, Technology, Engineering, and Mathematics (STEM) Education." Offered for the first time in 2007, the course integrated the perspectives of three instructors representing disciplines of engineering, education, and engineering education.…
Training Program for Teachers of Technical Mathematics in Two-Year Curricula.
ERIC Educational Resources Information Center
Queensborough Community Coll., Bayside, NY.
This handbook is designed to assist teachers of technical mathematics in developing practically-oriented curricula for their students. The underlying assumption is that, while technology students are not a breed apart, their needs and orientation are to the concrete, rather than the abstract. It describes the nature, scope, and content of…
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO. National Assessment of Educational Progress.
Included in Chapter 1 of this report are background information on the 1972-73 mathematics assessment; details of the computational formulas used in reporting results; and explanations of the technical documentation, exercise presentation, documentation pages, scoring guides, and data tables for released and unreleased exercises. The remainder of…
Special Issue: Big data and predictive computational modeling
NASA Astrophysics Data System (ADS)
Koutsourelakis, P. S.; Zabaras, N.; Girolami, M.
2016-09-01
The motivation for this special issue stems from the symposium on "Big Data and Predictive Computational Modeling" that took place at the Institute for Advanced Study, Technical University of Munich, during May 18-21, 2015. With a mindset firmly grounded in computational discovery, but a polychromatic set of viewpoints, several leading scientists, from physics and chemistry, biology, engineering, applied mathematics, scientific computing, neuroscience, statistics and machine learning, engaged in discussions and exchanged ideas for four days. This special issue contains a subset of the presentations. Video and slides of all the presentations are available on the TUM-IAS website http://www.tum-ias.de/bigdata2015/.
Business involvement in science education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, P.
1995-12-31
Science and math education in grades K through 12 directly affects America`s ability to meet tomorrow`s challenges. If America is to stay competitive in the world, we will need highly qualified scientists and engineers in industry and government and at universities. Jobs of the future will require greater technical and mathematical literacy than jobs of the past. Our goal is both to improve the quality of science education and to encourage more students to pursue science careers. General Atomics, a privately held research and development company, has joined the growing list of businesses that are committed to helping educators preparemore » students to meet these challenges.« less
Remote sensing/global change. A special bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-11-01
The first portion of this bibliography contains citations (with abstracts, when available) to unclassified literature contained in the NASA STI Database. These citations also appeared in issues of the abstract journal 'Scientific and Technical Aerospace Reports (STAR)', or in other announcement products offered by the NASA STI Program. The citations appear in ascending accession number order. A second section provides several indexes to the citations. They are subject term, personal author, report number, and accession number. The citations are included for the following disciplines as they relate to remote sensing and global change: astronautics, engineering, geosciences, life sciences, mathematical andmore » computer sciences, social sciences, and space sciences.« less
Remote sensing/global change. A special bibliography
NASA Technical Reports Server (NTRS)
1994-01-01
The first portion of this bibliography contains citations (with abstracts, when available) to unclassified literature contained in the NASA STI Database. These citations also appeared in issues of the abstract journal 'Scientific and Technical Aerospace Reports (STAR)', or in other announcement products offered by the NASA STI Program. The citations appear in ascending accession number order. A second section provides several indexes to the citations. They are subject term, personal author, report number, and accession number. The citations are included for the following disciplines as they relate to remote sensing and global change: astronautics, engineering, geosciences, life sciences, mathematical and computer sciences, social sciences, and space sciences.
ERIC Educational Resources Information Center
Basitere, Moses; Ivala, Eunice
2015-01-01
This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…
Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills
ERIC Educational Resources Information Center
Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven
2015-01-01
How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…
ERIC Educational Resources Information Center
James, Jamie Smith
2014-01-01
The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…
ERIC Educational Resources Information Center
Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Sirinterlikci, Arif
2015-01-01
The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…
ERIC Educational Resources Information Center
Tully, D.; Jacobs, B.
2010-01-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's…
77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
...] Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; technical amendment. SUMMARY: This amendment clarifies aircraft engine... from applicants requesting FAA engine type certifications and aftermarket certifications, such as...
How Engineers Perceive the Importance of Ethics in Finland
ERIC Educational Resources Information Center
Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki
2018-01-01
Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical "engineering-like" focus and demand have made educators and students overlook the…
NASA Astrophysics Data System (ADS)
Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar
2017-08-01
This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.
ERIC Educational Resources Information Center
Fitzsimons, Gail E.
This book, aimed at mathematics and vocational educators and researchers, analyzes the historical, sociological, and practical elements of mathematics within vocational education against the emerging impact of technology. Focus is on the current situation of mathematics within Australian vocational and technical education and how that might be…
Computer Tutorial "Higher Mathematics" for Engineering Specialties.
ERIC Educational Resources Information Center
Slivina, Natalia A.; Krivosheev, Anatoly O.; Fomin, Sergey S.
This paper presents a CD-ROM computer tutorial titled "Higher Mathematics," that contains 17 educational mathematical programs and is intended for use in Russian university engineering education. The first section introduces the courseware climate in Russia and outlines problems with commercially available universal mathematical…
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
ERIC Educational Resources Information Center
Benbow, Camilla Persson
2012-01-01
Calls to strengthen education in science, technology, engineering, and mathematics (STEM) are underscored by employment trends and the importance of STEM innovation for the economy. The Study of Mathematically Precocious Youth (SMPY) has been tracking over 5,000 talented individuals longitudinally for 40 years, throwing light on critical questions…
ERIC Educational Resources Information Center
Lee, Stephen; Harrison, Martin C.; Robinson, Carol L.
2007-01-01
In the past 6 years changes have occurred in GCE A-levels. In particular, there have been several major changes in A-level Mathematics courses. As engineering students are usually required to have studied A-level Mathematics, or its equivalent, these changes have had an effect on their prior mathematical knowledge. Moreover, engineering students…
ERIC Educational Resources Information Center
Kinnari-Korpela, Hanna
2015-01-01
Mathematics' skills and knowledge lay the basis for engineering studies. However, the resources targeted to mathematics' teaching are in many cases very limited. During the past years in our university the reduction of mathematics' contact hours has been significant while at the same time the study groups have grown. However, the mathematical…
A Novel Supercritical Fluid-Assisted Fabrication Technique for Producing Transparent Nanocomposites
2013-10-03
period with a degree in science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated...during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: Number of...fellowships for further studies in science, mathematics, engineering or technology fields: 1.00 0.00 1.00 0.00 0.00 0.00
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
Emerging Engineers Design a Paper Table
ERIC Educational Resources Information Center
Enderson, Mary C.; Grant, Melva R.
2013-01-01
With the advancement of specialized middle schools and high schools focusing on the arts, communication, engineering, mathematics, and science, many students who attend traditional schools miss out on valuable learning opportunities--in particular, when it comes to learning mathematics. Mathematics classrooms can be filled with real-world…
Selling Technical Sales to Engineering Learners
ERIC Educational Resources Information Center
Bumblauskas, Daniel P.; Carberry, Adam R.; Sly, David P.
2017-01-01
Sales engineering or technical sales programs bridge engineering and business to educate engineering students in sales specific to their discipline. Students develop business awareness through such programs, providing the sales workforce with technically knowledgeable salespeople. The following study analyzed cohorts of students enrolled in a…
ERIC Educational Resources Information Center
Deis, Timothy; Julius, Julie
2017-01-01
Science, engineering, and mathematics are fields that many students see as separate entities. But if these fields are combined with technology, they become STEM. This investigation provides a context and allows students to explore mathematics, science, and engineering within that context. It requires students to model with mathematics and find…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
..., Engineering, and Mathematics (STEM) Programs (DFARS Case 2012-D027); Withdrawal AGENCY: Defense Acquisition... mathematics (STEM) programs. FOR FURTHER INFORMATION CONTACT: Mr. Dustin Pitsch: telephone 571-372- 6090... develop science, technology, engineering, and mathematics (STEM) programs. The purpose of this Notice is...
South Carolina Guide for Mathematics for the Technologies (Applied Vocational Mathematics).
ERIC Educational Resources Information Center
Moore, Charles; And Others
In this instructional guide, a third-level, two-semester mathematics course specifically for the student who plans a career in a vocational field is presented. The course is designed to meet the needs of students with varying mathematical backgrounds and to teach the mathematical skills required by various technical areas. In this practical…
The Unit of Analysis in Mathematics Education: Bridging the Political-Technical Divide?
ERIC Educational Resources Information Center
Ernest, Paul
2016-01-01
Mathematics education is a complex, multi-disciplinary field of study which treats a wide range of diverse but interrelated areas. These include the nature of mathematics, the learning of mathematics, its teaching, and the social context surrounding both the discipline and applications of mathematics itself, as well as its teaching and learning.…
ERIC Educational Resources Information Center
Shepherd, Mary D.; Selden, Annie; Selden, John
2009-01-01
This exploratory study examined the experiences and difficulties certain first-year university students displayed in reading new passages from their mathematics textbooks. We interviewed eleven precalculus and calculus students who were considered to be good at mathematics, as indicated by high ACT mathematics scores. These students were also …
Houston prefreshman enrichment program (Houston PREP). Final report, June 10, 1996--August 1, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The 1996 Houston Pre-freshman Enrichment Program (PREP) was conducted on the campus of the University of Houston-Downtown from June 10 to August 1, 1996. Program Participants were recruited from the Greater Houston area. All participants were identified as high achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Crockett, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 197 students starting the program, 170 completed, 142 students were from economically and socially disadvantage groups underrepresented in the engineering and science professions, and 121 of the 197 were female. Our First Year group for 1996 composed of 96% minority and women students. Our Second and Third Year students were 100% and 93.75% minority or women respectively. This gave an overall minority and female population of 93.75%. This year, special efforts were again made to recruit students from minority groups, which caused a significant increase in qualified applicants. However, due to space limitations, 140 applicants were rejected. Investigative and discovery learning were key elements of PREP. The academic components of the program included Algebraic Structures, Engineering, Introduction to Computer Science, Introduction to Physics, Logic and Its Application to Mathematics, Probability and Statistics, Problem Solving Seminar using computers and PLATO software, SAT Preparatory Seminars, and Technical Writing.« less
High School Mathematics at Work: Essays and Examples for the Education of All Students.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Mathematical Sciences Education Board.
Traditionally, vocational mathematics and precollege mathematics have been separate in schools. This book illuminates the interplay between technical and academic mathematics. This collection of essays by mathematicians, educators, and other experts is enhanced with illustrative tasks from workplace and everyday contexts that suggest ways to…
76 FR 37158 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM) program. In 2003... representative scientific or engineering organization.'' On the basis of these recommendations, the Committee was... individual's work on the current state of physical, biological, mathematical, engineering or social and...
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2010-01-01
In this technical report, we present the results of a study examining the relation between the math measures available on the easyCBM[R] online benchmark and progress monitoring assessment system and the Oregon statewide assessment of mathematics. Designed for use within a response to intervention (RTI) framework, easyCBM[R] is intended to help…
ERIC Educational Resources Information Center
Parr, Brian A.; Edwards, M. Craig; Leising, James G.
2008-01-01
The purpose of this study was to empirically test the hypothesis that students who participated in a contextualized, mathematics-enhanced high school agricultural power and technology curriculum and aligned instructional approach would not experience significant diminishment in acquisition of technical skills related to agricultural power and…
ERIC Educational Resources Information Center
Pierce, Kristin B.; Hernandez, Victor M.
2015-01-01
A quasi experimental study tested a contextual teaching and learning model for integrating reading and mathematics competencies through 13 introductory career and technical education (CTE) courses. The treatment group consisted of students in the 13 introductory courses taught by the CTE teachers who designed the units and the control group…
ERIC Educational Resources Information Center
Carr, M.; Fidalgo, C.; Bigotte de Almeida, M. E.; Branco, J. R.; Santos, V.; Murphy, E.; Ní Fhloinn, E.
2015-01-01
Concern has been expressed throughout Europe about the significant deficiencies in the basic mathematical skills of many engineering undergraduates. Mathematics diagnostic tests in the UK, Ireland and Portugal have shown these shortcomings, which provide a challenge to those striving to introduce more innovative educational practices into…
Research in progress in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1990-01-01
Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.
iSTEM: Learning Mathematics through Minecraft
ERIC Educational Resources Information Center
Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan
2014-01-01
The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.
NASA Engineering Excellence: A Case Study on Strengthening an Engineering Organization
NASA Technical Reports Server (NTRS)
Shivers, C. Herbert; Wessel, Vernon W.
2006-01-01
NASA implemented a system of technical authority following the Columbia Accident Investigation Board (CAE) report calling for independent technical authority to be exercised on the Space Shuttle Program activities via a virtual organization of personnel exercising specific technical authority responsibilities. After the current NASA Administrator reported for duty, and following the first of two planned "Shuttle Return to Flight" missions, the NASA Chief Engineer and the Administrator redirected the Independent Technical Authority to a program of Technical Excellence and Technical Authority exercised within the existing engineering organizations. This paper discusses the original implementation of technical authority and the transition to the new implementation of technical excellence, including specific measures aimed at improving safety of future Shuttle and space exploration flights.
Engineering Education in K-12 Schools
NASA Astrophysics Data System (ADS)
Spence, Anne
2013-03-01
Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.
Computer-Based Mathematics Instructions for Engineering Students
NASA Technical Reports Server (NTRS)
Khan, Mustaq A.; Wall, Curtiss E.
1996-01-01
Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.
Engineering directorate technical facilities catalog
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.
1993-01-01
The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).
Which Techno-Mathematical Literacies Are Essential for Future Engineers?
ERIC Educational Resources Information Center
van der Wal, Nathalie J.; Bakker, Arthur; Drijvers, Paul
2017-01-01
Due to increased use of technology, the workplace practices of engineers have changed. So-called techno-mathematical literacies (TmL) are necessary for engineers of the 21st century. Because it is still unknown which TmL engineers actually use in their professional practices, the purpose of this study was to identify these TmL. Fourteen…
Automatic mathematical modeling for space application
NASA Technical Reports Server (NTRS)
Wang, Caroline K.
1987-01-01
A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Haocen; Ye, Zhifeng
2017-08-01
Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.
ERIC Educational Resources Information Center
Federal Coordinating Council for Science, Engineering and Technology, Washington, DC.
Despite efforts to improve the quality and equity of science, mathematics, engineering, and technology (SMET) education at all educational levels, the nation remains at risk of losing its competitive edge. This report presents the findings of a special panel convened for two purposes: (1) to review federal programs in SMET education at all levels;…
76 FR 21715 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
...: Revision. Title of Collection: Hispanic-Serving Institutions Science Technology Engineering, Mathematics... Technology Engineering, Mathematics and Articulation Program, authorized under section 371 of Part F of the...
ERIC Educational Resources Information Center
Dinehart, David W.; Gross, Shawn P.
2010-01-01
The primary role of a civil engineer is to serve the community; thus, it is essential that students understand the impact of engineering projects on, and the context of engineering projects within, society. One goal of an engineering capstone design course should be to mesh the technical knowledge of the discipline with an encompassing engineering…
76 FR 21073 - Notice of Intent To Seek Approval To Continue an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM) program. In 2003, to comply with E... would ``receive recommendations made by any other nationally representative scientific or engineering..., biological, mathematical, engineering or social and behavioral sciences. 2. Achievements of an unusually...
Mathematical Education of Engineers.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
The seminar reported in this document examined the university mathematics courses which should be available to future engineers, and was especially concerned with the introduction of computer science education. There are four major sections. The first reports a survey of electrical engineers in the United Kingdom which investigated how often they…
Scientific and technical training in the Soviet Union
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
Specific features and observations on the Soviet educational system and areas of apparent effectiveness are presented, noting that the literacy rate is over 98 percent in 1982. Educational goals are reoriented every five years to match with other projections of five-year plans. The Soviet constitution established strong educational goals, including schools, correspondence courses, lectures in native tongues, free tuition, and vocational training. The educational pattern from pre-school through graduate school lasts over 28 yr and contains two 2-yr periods of work, confined to specialties after graduate school. Mathematics is emphasized, as are physics, Marxism, and a foreign language. Approximately 300,000 engineers were graduated in the Soviet Union in 1982, compared with the 20-yr U.S. average of 50,000/yr. About 2/3 of Soviet engineers participate in defense work, a number which is four times the total number of U.S. engineers. It is asserted that the continual indoctrination, organization, and practical work experience will guarantee that the Soviet state will remain a dominant force in the world as long as centralized state control can be carried out.
High school students as science researchers: Opportunities and challenges
NASA Astrophysics Data System (ADS)
Smith, W. R.; Grannas, A. M.
2007-12-01
Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.
ERIC Educational Resources Information Center
McGee, Ebony O.
2009-01-01
This study analyzes the experiences of 23 African Americans, who are all academically high achieving college mathematics and engineering junior, senior and graduate students. Counter-narrative methodology and in-depth case studies accounted for the students' racial and mathematical identities as they were revealed through their experiences in the…
A Mathematics Support Programme for First-Year Engineering Students
ERIC Educational Resources Information Center
Hillock, Poh Wah; Jennings, Michael; Roberts, Anthony; Scharaschkin, Victor
2013-01-01
This article describes a mathematics support programme at the University of Queensland, targeted at first-year engineering students identified as having a high risk of failing a first-year mathematics course in calculus and linear algebra. It describes how students were identified for the programme and the main features of the programme. The…
Teaching Mathematics in Seven Countries: Results from the TIMSS 1999 Video Study.
ERIC Educational Resources Information Center
Hiebert, James; Gallimore, Ronald; Garnier, Helen; Givvin, Karen Bogard; Hollingsworth, Hilary; Jacobs, Jennifer; Chui, Angel Miu-Ying; Wearne, Diana; Smith, Margaret; Kersting, Nicole; Manaster, Alfred; Tseng, Ellen; Etterbeek, Wallace; Manaster, Carl; Gonzales, Patrick; Stigler, James
This book reports teaching practices in mathematics in seven countries from the Third International Mathematics and Science Study (TIMSS) 1999 video study. A detailed description of the methods in the mathematics portion of the study is presented in an accompanying technical report from an international perspective. Contexts of the lessons, the…
Business Mathematics Curriculum.
ERIC Educational Resources Information Center
EASTCONN Regional Educational Services Center, North Windham, CT.
This curriculum guide for teaching business mathematics in the Connecticut Vocational-Technical School System is based on the latest thinking of instructors in the field, suggestions from mathematics authorities, and current instructional approaches in education. The curriculum guide consists of six sections: (1) career relationships and…
ERIC Educational Resources Information Center
Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in kindergarten. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from…
ERIC Educational Resources Information Center
Bobronnikov, Ellen; Rhodes, Hilary; Bradley, Cay
2010-01-01
This final report culminates the evaluation and technical assistance provided for the U.S. Department of Education's Mathematics and Science Partnership (MSP) Program and its projects since 2005. As part of this support, Abt Associates looked across the portfolio of projects funded by the MSP program to draw lessons on best practices. This…
ERIC Educational Resources Information Center
Filby, Nikola N.; Dishaw, Marilyn
Major analyses of the achievement tests used in the Beginning Teacher Evaluation Study were conducted to determine test reactivity to instruction. Reading and mathematics tests were administered to second and fifth grade children. Classroom teachers' records were examined to determine the amount of opportunity students had to learn the content…
Laboratory-directed research and development: FY 1996 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1997-05-01
This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less
The first Latin American workshop on professional skills for young female scientists
NASA Astrophysics Data System (ADS)
Ávila, A.; Meza-Montes, Lilia; Ponce-Dawson, Silvina
2015-12-01
To effectively build capacity for research and training in science, technology, engineering, and mathematics (STEM) across Latin America and the Caribbean, a gender perspective must be factored in. Working from an awareness of the gender situation as well as of the multiple personal challenges experienced due to gender disparity, a group of Latin American female scientists organized a workshop with the goal of empowering young female scientists and assessing the challenges they face. In this paper we summarize the outcomes of the workshop, highlighting the barriers that are common in the region. Among other aspects, the workshop stressed the need for resource platforms for finding technical and professional networks, jobs, and scholarships.
NASA Astrophysics Data System (ADS)
Martins, T. M.; Kelman, R.; Metello, M.; Ciarlini, A.; Granville, A. C.; Hespanhol, P.; Castro, T. L.; Gottin, V. M.; Pereira, M. V. F.
2015-12-01
The hydroelectric potential of a river is proportional to its head and water flows. Selecting the best development alternative for Greenfield projects watersheds is a difficult task, since it must balance demands for infrastructure, especially in the developing world where a large potential remains unexplored, with environmental conservation. Discussions usually diverge into antagonistic views, as in recent projects in the Amazon forest, for example. This motivates the construction of a computational tool that will support a more qualified debate regarding development/conservation options. HERA provides the optimal head division partition of a river considering technical, economic and environmental aspects. HERA has three main components: (i) pre-processing GIS of topographic and hydrologic data; (ii) automatic engineering and equipment design and budget estimation for candidate projects; (iii) translation of division-partition problem into a mathematical programming model. By integrating an automatic calculation with geoprocessing tools, cloud computation and optimization techniques, HERA makes it possible countless head partition division alternatives to be intrinsically compared - a great advantage with respect to traditional field surveys followed by engineering design methods. Based on optimization techniques, HERA determines which hydro plants should be built, including location, design, technical data (e.g. water head, reservoir area and volume, engineering design (dam, spillways, etc.) and costs). The results can be visualized in the HERA interface, exported to GIS software, Google Earth or CAD systems. HERA has a global scope of application since the main input data area a Digital Terrain Model and water inflows at gauging stations. The objective is to contribute to an increased rationality of decisions by presenting to the stakeholders a clear and quantitative view of the alternatives, their opportunities and threats.
NASA Astrophysics Data System (ADS)
Akkoç, Hatice
2015-11-01
This paper focuses on a specific aspect of formative assessment, namely questioning. Given that computers have gained widespread use in learning and teaching, specific attention should be made when organizing formative assessment in computer learning environments (CLEs). A course including various workshops was designed to develop knowledge and skills of questioning in CLEs. This study investigates how pre-service mathematics teachers used formative questioning with technological tools such as Geogebra and Graphic Calculus software. Participants are 35 pre-service mathematics teachers. To analyse formative questioning, two types of questions are investigated: mathematical questions and technical questions. Data were collected through lesson plans, teaching notes, interviews and observations. Descriptive statistics of the number of questions in the lesson plans before and after the workshops are presented. Examples of two types of questions are discussed using the theoretical framework. One pre-service teacher was selected and a deeper analysis of the way he used questioning during his three lessons was also investigated. The findings indicated an improvement in using technical questions for formative purposes and that the course provided a guideline in planning and using mathematical and technical questions in CLEs.
STEM: Science Technology Engineering Mathematics
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…
Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula
ERIC Educational Resources Information Center
Sabo, Chelsea; Burrows, Andrea; Childers, Lois
2014-01-01
Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…
Choosing STEM College Majors: Exploring the Role of Pre-College Engineering Courses
ERIC Educational Resources Information Center
Phelps, L. Allen; Camburn, Eric M.; Min, Sookweon
2018-01-01
Despite the recent policy proclamations urging state and local educators to implement integrated science, technology, engineering, and mathematics (STEM) curricula, relatively little is known about the role and impact of pre-college engineering courses within these initiatives. When combined with appropriate mathematics and science courses, high…
Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.
ERIC Educational Resources Information Center
Aldrich, Michele, Comp.; Leach, Alicia, Comp.
Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…
STEM - Science, Technology, Engineering, & Mathematics Career Expo
Search STEM - Science, Technology, Engineering, & Mathematics Career Expo Come to Fermilab to meet Career Expo on April 18, 2018! Here's your guide to the event. Meet scientists, engineers, & ; technicians Ask career questions of the experts Ask experts about educational pathways leading to specific
2016-05-01
The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors
MESA/MEP at American River College: Year One Evaluation Report.
ERIC Educational Resources Information Center
Lee, Beth S.; And Others
In 1989, the Mathematics, Engineering, and Science Achievement (MESA)/Minority Engineering Program (MEP) was initiated at American River College. The MESA/MEP program recruits Black, Hispanic, and Native American students and provides assistance, encouragement, and enrichment programs to help them succeed in the fields of mathematics, engineering,…
ERIC Educational Resources Information Center
Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin
2018-01-01
The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…
Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics
ERIC Educational Resources Information Center
Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth
2012-01-01
On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…
ERIC Educational Resources Information Center
Pinelli, Thomas E.; And Others
1991-01-01
Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…
Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum
NASA Technical Reports Server (NTRS)
Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.
2008-01-01
The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen R
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. Themore » CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.« less
Computational physics and applied mathematics capability review June 8-10, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen R
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. Themore » CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics. Theme 3: Monte Carlo - Monte Carlo was invented at Los Alamos. This theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology. Theme 4: Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling. Theme 5: Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling. Theme 6: Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The Laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1,2, 3, and 6. Because these reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other five themes). Yearly written status reports will be provided to the CPAM Committee Chair during off-cycle years.« less
Abstraction and Concreteness in the Everyday Mathematics of Structural Engineers.
ERIC Educational Resources Information Center
Gainsburg, Julie
The everyday mathematics processes of structural engineers were studied and analyzed in terms of abstraction. A main purpose of the study was to explore the degree to which the notion of a gap between school and everyday mathematics holds when the scope of practices considered "everyday" is extended. J. Lave (1988) promoted a methodology…
ERIC Educational Resources Information Center
Bingolbali, E.; Monaghan, J.; Roper, T.
2007-01-01
This paper explores Mechanical Engineering students' conceptions of and preferences for conceptions of the derivative, and their views on mathematics. Data comes from pre-, post- and delayed post-tests, a preference test, interviews with students and an analysis of calculus courses. Data from Mathematics students is used to make comparisons with…
Closing the Gap between Formalism and Application--PBL and Mathematical Skills in Engineering
ERIC Educational Resources Information Center
Christensen, Ole Ravn
2008-01-01
A common problem in learning mathematics concerns the gap between, on the one hand, doing the formalisms and calculations of abstract mathematics and, on the other hand, applying these in a specific contextualized setting for example the engineering world. The skills acquired through problem-based learning (PBL), in the special model used at…
Engineering Lessons Learned and Systems Engineering Applications
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.
2005-01-01
Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.
ERIC Educational Resources Information Center
Nadelson, Louis S.; Pfiester, Joshua; Callahan, Janet; Pyke, Patricia
2015-01-01
Science, technology, engineering, and mathematics (STEM) professional development for K-5 teachers often includes engineering design as a focus. Because engineering applications provide perspective to both teachers and their students in terms of how mathematic and scientific principles are employed to solve real-world problems (Baine, 2004; Roden,…
Applied Mathematics for agronomical engineers in Spain at UPM
NASA Astrophysics Data System (ADS)
Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.
2009-04-01
Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several variables are an example, maybe since Leibnitz, of the difficulty of balance rigor and usefulness in limited hours of teaching. In part engineers use of mathematics with manuals and now with computers that use packages, general (MAPLE, MATLAB, may be MATHCAD, et. C. ) or specific, such as for Statistics, Topography, Structural design, Hydraulics, specific Machines,…, and mostly the details of the algorithms are hidden, but the engineer must have in mind the basic mathematical schemas justifying what he is constructing with these tools, the PC being also used for organisation and drawing. The engineers must adapt to the evolution of these packages and computers that get much changed and improved in five or ten years, quicker than the specific engineering environment, and a clear idea of the much more stable mathematical structures behind gives a solid mental ground for that. An initiation to using computers also with a mathematical structure behind is necessary, to be followed in professional life. A specific actualisation of mathematical knowledge is often necessary for some new applications.
ERIC Educational Resources Information Center
Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grade 1. These measures, available as part of easyCBM [TM], an online progress monitoring assessment system, were developed in 2008 and administered to approximately 2800 students from schools…
ERIC Educational Resources Information Center
Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Alonzo, Julie; Lai, Cheng Fei; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Lai, Cheng Fei; Alonzo, Julie; Tindal, Gerald
2009-01-01
In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBM[TM], an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to…
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2011-01-01
In this technical report, we document the results of a cross-validation study designed to identify optimal cut-scores for the use of the easyCBM[R] mathematics test in the state of Washington. A large sample, randomly split into two groups of roughly equal size, was used for this study. Students' performance classification on the Washington state…
A Cross-Validation of easyCBM[R] Mathematics Cut Scores in Oregon: 2009-2010. Technical Report #1104
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2011-01-01
In this technical report, we document the results of a cross-validation study designed to identify optimal cut-scores for the use of the easyCBM[R] mathematics test in Oregon. A large sample, randomly split into two groups of roughly equal size, was used for this study. Students' performance classification on the Oregon state test was used as the…
ERIC Educational Resources Information Center
Filby, Nikola N.; Dishaw, Marilyn
Achievement tests that are maximally sensitive to effective instruction in reading and mathematics for grades 2 and 5 were developed and refined. Important considerations regarding the tests' validity were: its coverage of instructional content (opportunity to learn), and its reactivity to instruction. Student ability must be minimally related to…
K-12 Bolsters Ties to Engineering
ERIC Educational Resources Information Center
Robelen, Erik W.
2013-01-01
When science, technology, engineering and mathematics (STEM) education is discussed in the K-12 sphere, it often seems like shorthand for mathematics and science, with perhaps a nod to technology and even less, if any, real attention to engineering. But recent developments signal that the "e" in STEM may be gaining a firmer foothold at…
NASA Astrophysics Data System (ADS)
Lavrov, V. V.; Spirin, N. A.
2016-09-01
Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
Teaching Mathematics to Civil Engineers
ERIC Educational Resources Information Center
Sharp, J. J.; Moore, E.
1977-01-01
This paper outlines a technique for teaching a rigorous course in calculus and differential equations which stresses applicability of the mathematics to problems in civil engineering. The method involves integration of subject matter and team teaching. (SD)
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.
1991-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.
BOOK REVIEW: Symmetry and the Monster: One of the Greatest Quests of Mathematics
NASA Astrophysics Data System (ADS)
Szabo, R. J.
2007-04-01
The book Symmetry and the Monster: One of the Greatest Quests of Mathematics describes historical events leading up to the discovery of the Monster sporadic group, the largest simple sporadic group. It also expounds the significance and deep relationships between this group and other areas of mathematics and theoretical physics. It begins, in the prologue, with a nice overview of some of the mathematical drama surrounding the discovery of the Monster and its subsequent relationship to number theory (the so-called Moonshine conjectures). From a historical perspective, the book traces back to the roots of group theory, Galois theory, and steadily runs through time through the many famous mathematicians who contributed to group theory, including Lie, Killing and Cartan. Throughout, the author has provided a very nice and deep insight into the sociological and scientific problems at the time, and gives the reader a very prominent inside view of the real people behind the mathematics. The book should be an enjoyable read to anyone with an interest in the history of mathematics. For the non-mathematician the book makes a good, and mostly successful, attempt at being non-technical. Technical mathematical jargon is replaced with more heuristic, intuitive terminology, making the mathematical descriptions in the book fairly easy going. A glossary\\hspace{0.25pc} of\\hspace{0.25pc} terminology for noindent the more scientifically inclined is included in various footnotes throughout the book and in a comprehensive listing at the end of the book. Some more technical material is also included in the form of appendices at the end of the book. Some aspects of physics are also explained in a simple, intuitive way. The author further attempts at various places to give the non-specialist a glimpse into what mathematical proof is all about, and explains the difficulties and technicalities involved in this very nicely (for instance, he mentions the various 100+ page articles that appeared in the hey-day of finite group theory, indicating the enormous technical nature of the subject). The book nicely paints a dramatic landscape leading up to the discovery of the Monster group, and the problems that remain to this day in trying to understand its significance. One can really take from this book a feel of the mathematics leading up to its appearance, and the importance of the classification problem which was responsible for this. One also really gets an appreciation of the efforts and commitments of the mathematicians who contributed to the subject. All in all, this book achieves a nice balance between providing a beautiful historical account of group theory, and explaining the classification problem for finite groups in a way that is accessible to non-scientists. This should prove to be a good read for both the layperson interested in mathematics or mathematical physics, and also both mathematicians and physicists alike.
ERIC Educational Resources Information Center
Wolf, Alison
The structure of education for 16- to 18-year-olds in Great Britain discourages them from making mathematics, science, and engineering serious options for future study. The emerging structure of the labor market, in which a large proportion of high-status jobs do not require higher mathematics, increases the numbers who decide not to commit…
ERIC Educational Resources Information Center
Tolley, Patricia A.; Blat, Catherine; McDaniel, Christopher; Blackmon, Donald; Royster, David
2012-01-01
Several studies strongly support the relationship between mathematics performance and retention of engineering students. There is also substantial evidence that nationally almost half of college freshmen could benefit from some mathematics remediation. The purpose of this study was to determine if the use of WeBWorK as an instructional technology…
ERIC Educational Resources Information Center
Nakakoji, Yoshitaka; Wilson, Rachel
2018-01-01
Transfer of mathematical learning to science is seen as critical to the development of education and industrial societies, yet it is rarely interrogated in applied research. We present here research looking for evidence of transfer from university mathematics learning in semester one to second semester sciences/engineering courses (n = 1125). A…
ERIC Educational Resources Information Center
Dubetz, Terry A.; Wilson, Jo Ann
2013-01-01
Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…
Lemon, Greg; Sjoqvist, Sebastian; Lim, Mei Ling; Feliu, Neus; Firsova, Alexandra B; Amin, Risul; Gustafsson, Ylva; Stuewer, Annika; Gubareva, Elena; Haag, Johannes; Jungebluth, Philipp; Macchiarini, Paolo
2016-01-01
Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine.
Puzzle-based learning in engineering mathematics: students' attitudes
NASA Astrophysics Data System (ADS)
Klymchuk, Sergiy
2017-11-01
The article reports on the results of two case studies on the impact of the regular use of puzzles as a pedagogical strategy in the teaching and learning of engineering mathematics. The intention of using puzzles is to engage students' emotions, creativity and curiosity and also to enhance their generic thinking skills and lateral thinking 'outside the box'. Students' attitudes towards this pedagogical strategy are evaluated via short questionnaires with two groups of university students taking a second-year engineering mathematics course. Students' responses to the questionnaire are presented and analyzed in the paper.
On-line Naval Engineering Skills Supplemental Training Program
2010-01-01
Defense Technical University ( DTU ), the technical content for courses would have to be provided by the Naval technical authorities...of technological knowledge related to design engineering such as the DTU , or expanded within the mission scope of an existing organization such as...management program as a training tool for naval design engineers such as the DTU or a technical extension of the DAU program for acquisition training
Strengthening programs in science, engineering and mathematics. Third annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, S.S.
1997-09-30
The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratorymore » equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.« less
Content-Related Evidence for Validity for Mathematics Tests: Teacher Review. Technical Report # 42
ERIC Educational Resources Information Center
Martinez, Martha I.; Ketterlin-Geller, Leanne; Tindal, Gerald
2007-01-01
Behavioral Research and Teaching (BRT) has developed a series of mathematics tests to assist local school districts in identifying students in grades 1-8 who may be at risk of not meeting year-end mathematics achievement goals. The tests were developed using the state mathematics standards for the relevant grade levels and administered to students…
Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Vaughan, William W.
2003-01-01
The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.
NASA Technical Reports Server (NTRS)
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Technical Reports Server (NTRS)
Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.
2003-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Astrophysics Data System (ADS)
Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh
2015-05-01
Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of engineering program outcomes set by the Engineering Accreditation Council.
Australian Enrolment Trends in Technology and Engineering: Putting the T and E Back into School STEM
ERIC Educational Resources Information Center
Kennedy, JohnPaul; Quinn, Frances; Lyons, Terry
2018-01-01
There has been much political and educational focus on Science, Technology, Engineering and Mathematics (STEM) in Australian schools in recent years and while there has been significant research examining science and mathematics enrolments in senior high school, little is known about the corresponding trends in Technologies and engineering.…
ERIC Educational Resources Information Center
Olund, Jeanine K.
2012-01-01
Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…
Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students
ERIC Educational Resources Information Center
Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein
2014-01-01
Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…
ERIC Educational Resources Information Center
Hossain, Md. Mokter; G. Robinson, Michael
2012-01-01
STEM (science, technology, engineering and mathematics) has been a powerful engine of prosperity in the US since World War II. Currently, American students' performances and enthusiasm in STEM education are inadequate for the US to maintain its leadership in STEM professions unless the government takes more actions to motivate a new generation of…
Design and Assessment of an Associate Degree-Level Plant Operations Technical Education Program
NASA Astrophysics Data System (ADS)
Selwitz, Jason Lawrence
Research was undertaken to develop and evaluate an associate degree-level technical education program in Plant Operations oriented towards training students in applied science, technology, engineering, and mathematics (STEM) skills and knowledge relevant to a spectrum of processing industries. This work focuses on four aspects of the curriculum and course development and evaluation research. First, the context of, and impetus for, what was formerly called vocational education, now referred to as technical or workforce education, is provided. Second, the research that was undertaken to design and evaluate an associate degree-level STEM workforce education program is described. Third, the adaptation of a student self-assessment of learning gains instrument is reviewed, and an analysis of the resulting data using an adapted logic model is provided, to evaluate the extent to which instructional approaches, in two process control/improvement-focused courses, were effective in meeting course-level intended learning outcomes. Finally, eight integrative multiscale exercises were designed from two example process systems, wastewater treatment and fast pyrolysis. The integrative exercises are intended for use as tools to accelerate the formation of an operator-technician's multiscale vision of systems, unit operations, underlying processes, and fundamental reactions relevant to multiple industries. Community and technical colleges serve a vital function in STEM education by training workers for medium- and high-skilled technical careers and providing employers the labor necessary to operate and maintain thriving business ventures. Through development of the curricular, course, and assessment-related instruments and tools, this research helps ensure associate degree-level technical education programs can engage in a continual process of program evaluation and improvement.
Integral Engine Inlet Particle Separator. Volume 2. Design Guide
1975-08-01
herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines . Apprupriate technical personnel...OF INTEGRAL GAS TURBINE ENGINE SOLID PARTICLE INLET SEPARATORS, PHASE I, FEASIBILITY STUDY AND DESIGN, Pratt and Whitney Aircraft ; USAAVLABS Technical...USAAVLABS Technical Report 70-36, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, August 1970 AD 876 584. 13. ENGINES , AIRCRAFT
Soft Skills: The New Curriculum for Hard-Core Technical Professionals
ERIC Educational Resources Information Center
Bancino, Randy; Zevalkink, Claire
2007-01-01
In this article, the authors talk about the importance of soft skills for hard-core technical professionals. In many technical professions, the complete focus of education and training is on technical topics either directly or indirectly related to a career or discipline. Students are generally required to master various mathematics skills,…
ERIC Educational Resources Information Center
Looney, Marilyn A.; Howell, Steven M.
2015-01-01
This article describes the "mathematical criteria" employed by the International Skating Union (ISU) to identify potential judging anomalies within competitive figure skating. The mathematical criteria have greater sensitivity to identify scoring anomalies for technical element scores than for the program component scores. This article…
Progress Monitoring in Middle School Mathematics: Options and Issues
ERIC Educational Resources Information Center
Foegen, Anne
2008-01-01
This study investigated the technical features of six potential progress-monitoring measures in mathematics appropriate for use at the middle school level, including two commercially available measures for sixth-grade mathematics, two measures used in previous middle school studies, and two new measures of numeracy concepts. Five hundred…
The Association between Mathematical Word Problems and Reading Comprehension
ERIC Educational Resources Information Center
Vilenius-Tuohimaa, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik
2008-01-01
This study aimed to investigate the interplay between mathematical word problem skills and reading comprehension. The participants were 225 children aged 9-10 (Grade 4). The children's text comprehension and mathematical word problem-solving performance was tested. Technical reading skills were investigated in order to categorise participants as…
Teachers' Mathematics as Mathematics-at-Work
ERIC Educational Resources Information Center
Bednarz, Nadine; Proulx, Jérôme
2017-01-01
Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…
An Integrated Approach to Engineering Education in a Minority Community
NASA Technical Reports Server (NTRS)
Taylor, Bill
1998-01-01
Northeastern New Mexico epitomizes regions which are economically depressed, rural, and predominantly Hispanic. New Mexico Highlands University (NMHU), with a small student population of approximately 2800, offers a familiar environment attracting students who might otherwise not attend college. An outreach computer network of minority schools was created in northeastern New Mexico with NASA funding. Rural and urban minority schools gained electronic access to each other, to computer resources, to technical help at New Mexico Highlands University and gained access to the world via the Internet. This outreach program was initiated in the fall of 1992 in an effort to attract and to involve minority students in Engineering and the Mathematical Sciences. We installed 56 Kbs Internet connections to eight elementary schools, two middle schools, two high schools, a public library (servicing the home schooling community) and an International Baccalaureate school. For another fourteen rural schools, we provided computers and free dial-up service to servers on the New Mexico Highlands University campus.
Extension of a Kolmogorov Atmospheric Turbulence Model for Time-Based Simulation Implementation
NASA Technical Reports Server (NTRS)
McMinn, John D.
1997-01-01
The development of any super/hypersonic aircraft requires the interaction of a wide variety of technical disciplines to maximize vehicle performance. For flight and engine control system design and development on this class of vehicle, realistic mathematical simulation models of atmospheric turbulence, including winds and the varying thermodynamic properties of the atmosphere, are needed. A model which has been tentatively selected by a government/industry group of flight and engine/inlet controls representatives working on the High Speed Civil Transport is one based on the Kolmogorov spectrum function. This report compares the Dryden and Kolmogorov turbulence forms, and describes enhancements that add functionality to the selected Kolmogorov model. These added features are: an altitude variation of the eddy dissipation rate based on Dryden data, the mapping of the eddy dissipation rate database onto a regular latitude and longitude grid, a method to account for flight at large vehicle attitude angles, and a procedure for transitioning smoothly across turbulence segments.
ERIC Educational Resources Information Center
Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…
ERIC Educational Resources Information Center
Wai, Jonathan; Lubinski, David; Benbow, Camilla P.; Steiger, James H.
2010-01-01
Two studies examined the relationship between precollegiate advanced/enriched educational experiences and adult accomplishments in science, technology, engineering, and mathematics (STEM). In Study 1, 1,467 13-year-olds were identified as mathematically talented on the basis of scores [greater than or equal to] 500 (top 0.5%) on the math section…
ERIC Educational Resources Information Center
Matzakos, Nikolaos M.; Kalogiannakis, Michail
2018-01-01
An online support distance-learning program in Mathematics was developed to aid first year engineering students for their transition from the secondary to the tertiary education in order to reinforce deficiencies they may have in mathematical knowledge. The aim of the present study is to examine, firstly, to what extent the attendance of such a…
ERIC Educational Resources Information Center
Carr, Michael; Prendergast, Mark; Breen, Cormac; Faulkner, Fiona
2017-01-01
In the Dublin Institute of Technology, high threshold core skills assessments are run in mathematics for third-year engineering students. Such tests require students to reach a threshold of 90% on a multiple choice test based on a randomized question bank. The material covered by the test consists of the more important aspects of undergraduate…
NASA Astrophysics Data System (ADS)
Gaol, F. L.
2015-06-01
The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19 countries, and there were six paralell sessions and four keynote speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2015.
2011-12-01
systems engineering technical and technical management processes. Technical Planning, Stakeholders Requirements Development, and Architecture Design were...Stakeholder Requirements Definition, Architecture Design and Technical Planning. A purposive sampling of AFRL rapid development program managers and engineers...emphasize one process over another however Architecture Design , Implementation scored higher among Technical Processes. Decision Analysis, Technical
75 FR 20007 - Advisory Committee for Education and Human Resources; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... Foundation's science, technology, engineering, and mathematics (STEM) education and human resources... Broadening Participation--Undergraduate Science, Technology, Engineering & Mathematics (STEM). III. Discussion of Graduate Education/Career Development Programs. IV. Collaborations with the Department of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Volpi, A.; Fenrick, M. R.; Stanford, G. S.
1980-10-01
Documentation often is a primary residual of research and development. Because of this important role and because of the large amount of time consumed in generating technical reports, particularly those containing formulas and graphics, an existing data-processing computer system has been adapted so as to provide text-processing of technical documents. Emphasis has been on accuracy, turnaround time, and time savings for staff and secretaries, for the types of reports normally produced in the reactor development program. The computer-assisted text-processing system, called TXT, has been implemented to benefit primarily the originator of technical reports. The system is of particular value tomore » professional staff, such as scientists and engineers, who have responsibility for generating much correspondence or lengthy, complex reports or manuscripts - especially if prompt turnaround and high accuracy are required. It can produce text that contains special Greek or mathematical symbols. Written in FORTRAN and MACRO, the program TXT operates on a PDP-11 minicomputer under the RSX-11M multitask multiuser monitor. Peripheral hardware includes videoterminals, electrostatic printers, and magnetic disks. Either data- or word-processing tasks may be performed at the terminals. The repertoire of operations has been restricted so as to minimize user training and memory burden. Spectarial staff may be readily trained to make corrections from annotated copy. Some examples of camera-ready copy are provided.« less
ERIC Educational Resources Information Center
Baker, William E.; And Others
The document is one of five summary reports, all part of a Pre-Technical Curriculum Planning Project for secondary students who aspire to technical employment or post secondary technical education. This report represents the results of an assessment of the northeast Florida area's technical occupations in engineering and industrial fields. A…
Investigating and developing engineering students' mathematical modelling and problem-solving skills
NASA Astrophysics Data System (ADS)
Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven
2015-09-01
How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.
Engineering Technical Support Center Annual Report Fiscal Year 2015
The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provid...
NASA Technical Reports Server (NTRS)
Hirshorn, Steven R.
2017-01-01
Historically, most successful NASA projects have depended on effectively blending project management, systems engineering, and technical expertise among NASA, contractors, and third parties. Underlying these successes are a variety of agreements (e.g., contract, memorandum of understanding, grant, cooperative agreement) between NASA organizations or between NASA and other Government agencies, Government organizations, companies, universities, research laboratories, and so on. To simplify the discussions, the term "contract" is used to encompass these agreements. This section focuses on the NASA systems engineering activities pertinent to awarding a contract, managing contract performance, and completing a contract. In particular, NASA systems engineering interfaces to the procurement process are covered, since the NASA engineering technical team plays a key role in the development and evaluation of contract documentation. Contractors and third parties perform activities that supplement (or substitute for) the NASA project technical team accomplishment of the NASA common systems engineering technical process activities and requirements outlined in this guide. Since contractors might be involved in any part of the systems engineering life cycle, the NASA project technical team needs to know how to prepare for, allocate or perform, and implement surveillance of technical activities that are allocated to contractors.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
ERIC Educational Resources Information Center
Serin, Mehmet Koray; Incikabi, Semahat
2017-01-01
Mathematics educators have reported on many issues regarding students' mathematical education, particularly students who received mathematics education at different departments such as engineering, science or primary school, including their difficulties with mathematical concepts, their understanding of and preferences for mathematical concepts.…
Mathematics and engineering in real life through mathematical competitions
NASA Astrophysics Data System (ADS)
More, M.
2018-02-01
We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.
Collaborating for Success: Team Teaching the Engineering Technical Thesis
ERIC Educational Resources Information Center
Keating, Terrence; Long, Mike
2012-01-01
This paper will examine the collaborative teaching process undertaken at College of the North Atlantic-Qatar (CNA-Q) by Engineering and the Communication faculties to improve the overall quality of engineering students' capstone projects known as the Technical Thesis. The Technical Thesis is divided into two separate components: a proposal stage…
ERIC Educational Resources Information Center
Tatto, Maria Teresa, Ed.
2013-01-01
The Teacher Education and Development Study in Mathematics (TEDS-M), conducted under the aegis of the International Association for the Evaluation of Educational Achievement (IEA), was designed to inform policy and practice in mathematics teacher education. For educational policymakers, TEDS-M contributes data on institutional arrangements that…
1999 LDRD Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rita Spencer; Kyle Wheeler
This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory Directed Research and Development FY 1998 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Vigil; Kyle Wheeler
This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory directed research and development: FY 1997 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1998-05-01
This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, Joanne Roth
2014-11-05
This presentation will provide career advice for individuals seeking to go beyond just having a job to building a successful career in the areas of Science, Technology, Engineering, and Mathematics. Careful planning can be used to turn a job into a springboard for professional advancement and personal satisfaction. Topics to be addressed include setting priorities, understanding career ladders, making tough choices, overcoming stereotypes and assumptions by others, networking, developing a professional identify, and balancing a career with family and other personal responsibilities. Insights on the transition from individual technical work to leadership will also be provided. The author will drawmore » upon experiences gained in academic, industrial, and government laboratory settings, as well as extensive professional service and community involvement.« less
Technical Excellence: A Requirement for Good Engineering
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Vaughan, William W.
2008-01-01
Technical excellence is a requirement for good engineering. Technical excellence has many different ways of expressing itself within engineering. NASA has initiatives that address the enhancement of the Agency's technical excellence and thrust to maintain the associated high level of performance by the Agency on current programs/projects and as it moves into the Constellation Program and the return to the Moon with plans to visit Mars. This paper addresses some of the key initiatives associated with NASA's technical excellence thrust. Examples are provided to illustrate some results being achieved and plans to enhance these initiatives.
[What did bachelard mean by "applied rationalism" ?].
Tiles, Mary
2013-01-01
Bachelard was concerned with the processes whereby scientific knowledge is acquired, including the activity of knowing subjects. He did not equate reasoning with logic but rather argued that reasoning resulted from the use of mathematics in organizing both thought and experimental practices, which is why he conceived science as applied mathematics. This had material and technical implications, for Bachelard was concerned with the element of reason inherent in technical materialism as well as the concrete reality inherent in applied rationalism.
Concepts of Mathematics for Students of Physics and Engineering: A Dictionary
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.
2003-01-01
A physicist with an engineering background, the author presents a mathematical dictionary containing material encountered over many years of study and professional work at NASA. This work is a compilation of the author's experience and progress in the field of study represented and consists of personal notes and observations that can be used by students in physics and engineering.
ERIC Educational Resources Information Center
Denson, Cameron D.
2017-01-01
This article examines the Mathematics, Engineering, Science Achievement (MESA) program and investigates its impact on underrepresented student populations. MESA was started in California during the 1970s to provide pathways to science, technology, engineering, and mathematics careers for underrepresented students and represents an exemplar model…
Formal methods in computer system design
NASA Astrophysics Data System (ADS)
Hoare, C. A. R.
1989-12-01
This note expounds a philosophy of engineering design which is stimulated, guided and checked by mathematical calculations and proofs. Its application to software engineering promises the same benifits as those derived from the use of mathematics in all other branches of modern science.
77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
...,'' NUREG-1432, ``Standard Technical Specifications, Combustion Engineering Plants,'' NUREG-1433, ``Standard..., ``Standard Technical Specifications, Combustion Engineering Plants'' Revision 4, ADAMS Accession No..., Westinghouse Plants''.. NUREG-1432, ``Standard Technical ML12102A165 ML12102A169 Specifications, Combustion...
NASA Astrophysics Data System (ADS)
Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.
2017-04-01
The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.
NASA Astrophysics Data System (ADS)
Looney, Craig W.
2009-10-01
Wolfram|Alpha (http://www.wolframalpha.com/), a free internet-based mathematical engine released earlier this year, represents an orders-of magnitude advance in mathematical power freely available - without money, passwords, or downloads - on the web. Wolfram|Alpha is based on Mathematica, so it can plot functions, take derivatives, solve systems of equations, perform symbolic and numerical integration, and more. These capabilities (especially plotting and integration) will be explored in the context of topics covered in upper level undergraduate physics courses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... personal information provided. FOR FURTHER INFORMATION CONTACT: Bob Sivinski, Mathematical Statistician, Mathematical Analysis Division, NVS-421, National Center for Statistics and Analysis, National Highway Traffic...
Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering
NASA Astrophysics Data System (ADS)
Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García
The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.
Tinkering and Technical Self-Efficacy of Engineering Students at the Community College
ERIC Educational Resources Information Center
Baker, Dale R.; Wood, Lorelei; Corkins, James; Krause, Stephen
2015-01-01
Self-efficacy in engineering is important because individuals with low self-efficacy have lower levels of achievement and persistence in engineering majors. To examine self-efficacy among community college engineering students, an instrument to specifically measure two important aspects of engineering, tinkering and technical self-efficacy, was…
NASA Technical Reports Server (NTRS)
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
2012-11-01
and Mathematics (STEM) programs that duplicate the work of the Department of Education and local school districts ($10.7 billion). The Department of...of science, technology, engineering, and mathematics (STEM).16 The Pentagon recently joined the cooking show craze by partnering with the...of DOD Science, Technology, Engineering, and Mathematics (STEM) Programs,” 2010. 17 The Pentagon Channel, “The Grill Sergeants,” http
Decision Support Tool for Deep Energy Efficiency Retrofits in DoD Installations
2014-01-01
representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 2. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical...models and their Monte Carlo estimates. Mathematics and computers in simulation, 55, 271–280. 3. Sobol , I. and Kucherenko, S., 2009. Derivative based...representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 16. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical models and
Driven by History: Mathematics Education Reform
ERIC Educational Resources Information Center
Permuth, Steve; Dalzell, Nicole
2013-01-01
The advancement of modern societies is fueled by mathematics, and mathematics education provides the foundation upon which future scientists and engineers will build. Society dictates how mathematics will be taught through the development and implementation of mathematics standards. When examining the progression of these standards, it is…
ERIC Educational Resources Information Center
Ryve, Andreas; Nilsson, Per; Pettersson, Kerstin
2013-01-01
Analyzing and designing productive group work and effective communication constitute ongoing research interests in mathematics education. In this article we contribute to this research by using and developing a newly introduced analytical approach for examining effective communication within group work in mathematics education. By using data from…
Web-Based Mathematics: Some "Dos" and "Don'ts"
ERIC Educational Resources Information Center
Loong, Esther Yook-Kin
2011-01-01
This case study describes an "out of field" teacher's use of the Internet to teach a range of mathematical topics in a modified Year 8 mathematics class. It highlights the importance of three factors for implementing a discernible web-based teaching strategy: appropriate choice of web objects, effective "virtual" pedagogy, and technical support…
A Study of Coordination Between Mathematics and Chemistry in the Pre-Technical Program.
ERIC Educational Resources Information Center
Loiseau, Roger A.
This research was undertaken to determine whether the mathematics course offered to students taking courses in chemical technology was adequate. Students in a regular class and an experimental class were given mathematics and chemistry pretests and posttests. The experimental class was taught using a syllabus designed to maximize the coherence…
Language and Mathematics Education.
ERIC Educational Resources Information Center
Zepp, Raymond
This book is designed for those interested in the teaching of mathematics, in both first language and second language contexts, and is based on 15 years' teaching experience in Africa and Asia. The book is designed to present the main issues of language in mathematics teaching, and is therefore not a highly technical work. Chapters included are:…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.
1991-01-01
Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.
ERIC Educational Resources Information Center
Parks, Melissa
2014-01-01
Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.
ERIC Educational Resources Information Center
Sullivan, Patricia; Moore, Kristen
2013-01-01
This article brings together the communication needs and positioning of women in technical areas, and asks "how can technical communication classes contribute to the mentoring of young women engineers at a time when many of those women want to be identified as engineers instead of being spotlighted as women in engineering?" Incorporating…
ERIC Educational Resources Information Center
Smith, Summer
2003-01-01
Presents the results of an empirical study comparing writing and engineering instructors' responses to students' technical writing. Indicates that the gap between engineering and writing teachers' standards for evaluating technical writing is not as wide as is generally assumed. Concludes that the differences that do emerge suggest ways that the…
The role of technology and engineering models in transforming healthcare.
Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey
2013-01-01
The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.
ORD Scientific and Engineering Technical Support for RPMs – Ground Water Technical Support Center
ORD Scientific and Engineering Technical Support for RPMs (and Others) is a hybrid informational and panel session that focuses on the technical support available from EPA’s Office of Research and Development (ORD) to RPMs and other EPA cleanup program staff. Examples of technica...
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.
ERIC Educational Resources Information Center
Albers, Donald J., Ed.; And Others
Conference papers on the state of mathematics in the two-year college are presented. The papers are grouped according to main topic areas and each group of papers is followed by a summary of conference discussions. The topics addressed are: a case for curriculum change, technical mathematics, the influence of new technologies on mathematics…
NASA Astrophysics Data System (ADS)
Showstack, Randy
The Association of Women in Science (AWIS) and the American Indian Science and Engineering Society (AISES) were two of 19 institutions and individuals that received presidential awards for excellence in science, mathematics, and engineering mentoring, on September 11.Neal Lane, Director of the National Science Foundation, says the awards, which include $10,000 grants, recognize “individuals and institutions working to heighten the participation of underrepresented groups in science, mathematics, and engineering.”
ERIC Educational Resources Information Center
Rees, Margaret N. (Peg); Amy, Penny; Jacobson, Ellen; Weistrop, Donna E.
2000-01-01
Introduces a program initiated at the University of Nevada, Las Vegas to stimulate the retention and promotion of women scientists, mathematicians, and engineers and support women graduate students in the same fields. Results of the program suggest that such initiatives can increase the number of women in science, mathematics, and engineering.…
Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context
2014-09-01
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794 P . Rao1 Department of Applied Mathematics and Statistics...scales, 1Corresponding author. Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING...Engineering SEPTEMBER 2014, Vol. 136 / 091206-1Copyright VC 2014 by ASME Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on
26 CFR 1.971-1 - Definitions with respect to export trade corporations.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other... performance for any person of commercial, industrial, financial, technical, scientific, managerial...
26 CFR 1.971-1 - Definitions with respect to export trade corporations.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other... performance for any person of commercial, industrial, financial, technical, scientific, managerial...
1987-06-26
BUREAU OF STANDAR-S1963-A Nw BOM -ILE COPY -. 4eo .?3sa.9"-,,A WIN* MAT HEMATICAL SCIENCES _*INSTITUTE AD-A184 687 DTICS!ELECTE ANNOTATED COMPUTER OUTPUT...intoduction to the use of mixture models in clustering. Cornell University Biometrics Unit Technical Report BU-920-M and Mathematical Sciences Institute...mixture method and two comparable methods from SAS. Cornell University Biometrics Unit Technical Report BU-921-M and Mathematical Sciences Institute
NASA Astrophysics Data System (ADS)
Crenshaw, Mark VanBuren
This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.
Engineering Programs of Tomorrow: The Role of Agricultural Engineering.
ERIC Educational Resources Information Center
Edwards, Donald M.
Due to rapid growth of societal and technological endeavors, engineers of the future will require greater technical competence. At the same time, engineering will become more people oriented with greater emphasis placed on people input into decision making. As a result, engineering education must not only provide improved technical education but…
10 CFR 35.51 - Training for an authorized medical physicist.
Code of Federal Regulations, 2011 CFR
2011-01-01
... on the NRC's Web page.) To have its certification process recognized, a specialty board shall require... physics, other physical science, engineering, or applied mathematics from an accredited college or... physical science, engineering, or applied mathematics from an accredited college or university; and has...
Increasing Interest of Young Women in Engineering
ERIC Educational Resources Information Center
Hinterlong, Diane; Lawrence, Branson; DeVol, Purva
2014-01-01
The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.
Formative Assessment in Mathematics for Engineering Students
ERIC Educational Resources Information Center
Ní Fhloinn, Eabhnat; Carr, Michael
2017-01-01
In this paper, we present a range of formative assessment types for engineering mathematics, including in-class exercises, homework, mock examination questions, table quizzes, presentations, critical analyses of statistical papers, peer-to-peer teaching, online assessments and electronic voting systems. We provide practical tips for the…
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.
NASA Astrophysics Data System (ADS)
Bhathal, Ragbir
2016-09-01
The number of students entering engineering schools in Australian universities has increased tremendously over the last few years because of the Australian Federal Government's policy of increasing the participation rates of Higher School Certificate students and students from low social economic status backgrounds in the tertiary sector. They now come with a diverse background of skills, motivations and prior knowledge. It is imperative that new methods of teaching and learning be developed. This paper describes an online tutorial system used in conjunction with contextual physics and mathematics, and the revision of the relevant mathematical knowledge at the appropriate time before a new topic is introduced in the teaching and learning of engineering physics. Taken as a whole, this study shows that students not only improved their final examination results but there was also an increase in the retention rate of first-year engineering students which has financial implications for the university.
ERIC Educational Resources Information Center
Anderson, Daniel; Lai, Cheng-Fei; Nese, Joseph F. T.; Park, Bitnara Jasmine; Saez, Leilani; Jamgochian, Elisa; Alonzo, Julie; Tindal, Gerald
2010-01-01
In the following technical report, we present evidence of the technical adequacy of the easyCBM[R] math measures in grades K-2. In addition to reliability information, we present criterion-related validity evidence, both concurrent and predictive, and construct validity evidence. The results represent data gathered throughout the 2009/2010 school…
Teaching Mathematics to Non-Mathematics Majors through Applications
ERIC Educational Resources Information Center
Abramovich, Sergei; Grinshpan, Arcadii Z.
2008-01-01
This article focuses on the important role of applications in teaching mathematics to students with career paths other than mathematics. These include the fields as diverse as education, engineering, business, and life sciences. Particular attention is given to instructional computing as a means for concept development in mathematics education…
Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience
ERIC Educational Resources Information Center
Charpin, J. P. F.; O'Hara, S.; Mackey, D.
2013-01-01
In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crumbly, I.J.; Hodges, J.
1994-09-01
During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighthmore » grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.« less
ERIC Educational Resources Information Center
Metraglia, Riccardo; Villa, Valerio; Baronio, Gabriele; Adamini, Riccardo
2015-01-01
Today's students enter engineering colleges with different technical backgrounds and prior graphics experience. This may due to their high school of provenience, which can be technical or non-technical. The prior experience affects students' ability in learning and hence their motivation and self-efficacy beliefs. This study intended to evaluate…
The technical communication practices of Russian and U.S. aerospace engineers and scientists
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.
1993-01-01
As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
ERIC Educational Resources Information Center
Shepherd, Mary D.; Selden, Annie; Selden, John
2011-01-01
This paper reports the observed behaviors and difficulties that eleven precalculus and calculus students exhibited in reading new passages from their mathematics textbooks. To gauge the effectiveness of these students' reading, we asked them to attempt straightforward mathematical tasks, based directly on what they had just read. These …
ERIC Educational Resources Information Center
Achieve, Inc., 2006
2006-01-01
For the past two years, Achieve, Inc. has worked with the Transition Mathematics Project (TMP), a collaborative project of K-12 schools, community and technical colleges, and baccalaureate institutions within the state of Washington, as it developed mathematics standards that "define the core knowledge and skills expected of students entering…
ERIC Educational Resources Information Center
Suppes, P.; And Others
From some simple and schematic assumptions about information processing, a stochastic differential equation is derived for the motion of a student through a computer-assisted elementary mathematics curriculum. The mathematics strands curriculum of the Institute for Mathematical Studies in the Social Sciences is used to test: (1) the theory and (2)…
Mathematics as Liberal Education: Whitehead and the Rhythm of Life
ERIC Educational Resources Information Center
Woodhouse, Howard
2012-01-01
In several of his works, Alfred North Whitehead (1861-1947) presents mathematics as a way of learning about general ideas that increase our understanding of the universe. The danger is that students get bogged down in its technical operations. He argues that mathematics should be an integral part of a new kind of liberal education, incorporating…
Readin', Writin', an' 'Rithmetic: Literacy Strategies in High School Mathematics
ERIC Educational Resources Information Center
Principato, Angela M.
2017-01-01
Stagnant growth on national standardized tests in mathematics and reading and a focus on disciplinary literacy in the Common Core State Standards in ELA, history/social studies, science, and technical subjects has prompted a resurgence in utilizing literacy strategies in the content areas in high school. While literacy standards in mathematics are…
Why so few young women in mathematics, science, and technology classes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieda, K.J.
Many factors influence the success of women in scientific and technical careers. Women represent over 50% of the U.S. population, yet less than 16% of women are employed in scientific and technical careers. Research over the last decade makes it clear that disparities exist in the participation, achievement, and attitudes of young men and young women in science classes. Young women are as interested in science experiences as young men up until age nine. After that age, the number of young women interested in science, mathematics, and technology classes drops. Not enrolling in science and mathematics classes in high schoolmore » limits career options for young women, and their chance to succeed in a scientific or technical field becomes remote. Why is this happening? What can we, as educators, scientists, and parents do to address this problem? The literature identifies three principal factors that relate to the lack of female involvement in science classes: culture, attitude, and education. This paper reviews these factors and provides examples of programs that Pacific Northwest Laboratory (PNL) and others have developed to increase the number of young women entering college ready and wanting to pursue a career in a scientific or technical field.« less
Competences in Demand within the Spanish Agricultural Engineering Sector
ERIC Educational Resources Information Center
Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis
2014-01-01
The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers…
48 CFR 209.571-7 - Systems engineering and technical assistance contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Systems engineering and... Organizational and Consultant Conflicts of Interest 209.571-7 Systems engineering and technical assistance contracts. (a) Agencies shall obtain advice on systems architecture and systems engineering matters with...
48 CFR 209.571-7 - Systems engineering and technical assistance contracts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Systems engineering and... Organizational and Consultant Conflicts of Interest 209.571-7 Systems engineering and technical assistance contracts. (a) Agencies shall obtain advice on systems architecture and systems engineering matters with...
48 CFR 209.571-7 - Systems engineering and technical assistance contracts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Systems engineering and... Organizational and Consultant Conflicts of Interest 209.571-7 Systems engineering and technical assistance contracts. (a) Agencies shall obtain advice on systems architecture and systems engineering matters with...
48 CFR 209.571-7 - Systems engineering and technical assistance contracts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Systems engineering and... Organizational and Consultant Conflicts of Interest 209.571-7 Systems engineering and technical assistance contracts. (a) Agencies shall obtain advice on systems architecture and systems engineering matters with...
ERIC Educational Resources Information Center
Ejiwale, James A.
2014-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
Mathematics in Technology & Engineering Education: Judgments of Grade-Level Appropriateness
ERIC Educational Resources Information Center
Flowers, Jim; Rose, Mary Annette
2014-01-01
Technology and engineering (TE) educators have long championed the infusion of mathematics into technology curriculum, especially to enhance TE learning goals and demonstrate "connections between technology and other fields of study." There is a need for curriculum development and professional development initiatives to purposefully…
Engineering Mathematics Assessment Using "MapleTA"
ERIC Educational Resources Information Center
Jones, Ian S.
2008-01-01
The assessment of degree level engineering mathematics students using the computer-aided assessment package MapleTA is discussed. Experience of academic and practical issues for both online coursework and examination assessments is presented, hopefully benefiting other academics in this novel area of activity. (Contains 6 figures and 1 table.)
The Development of STEAM Educational Policy to Promote Student Creativity and Social Empowerment
ERIC Educational Resources Information Center
Allina, Babette
2018-01-01
The Science, Technology, Engineering, Arts, and Mathematics (STEAM) movement argues that broad-based education that promotes creativity recognizes student learning diversity, increases student engagement and can potentially enhance Science, Technology, Engineering, and Mathematics (STEM) learning by embracing cross-cutting translational skills…
Theorizing the Nexus of STEAM Practice
ERIC Educational Resources Information Center
Peppler, Kylie; Wohlwend, Karen
2018-01-01
Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)-based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM)…
Gendered Microaggressions in Science, Technology, Engineering, and Mathematics
ERIC Educational Resources Information Center
Yang, Yang; Carroll, Doris Wright
2018-01-01
Women remain underrepresented in both science, technology, engineering, and mathematics (STEM) workforce and academia. In this quantitative study, we focused on female faculty across STEM disciplines and their experiences in higher educational institutions through the lens of microaggressions theory. Two questions were addressed: (a) whether and…
NASA Technical Reports Server (NTRS)
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
ERIC Educational Resources Information Center
Pinelli, Thomas E.; And Others
An exploratory study investigated technical communications in aeronautics by surveying aeronautical engineers and scientists. The study had five specific objectives: to solicit the opinions of aeronautical engineers and scientists regarding the importance of technical communications to their profession; to determine their use and production of…
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Integrating ethics into technical courses: micro-insertion.
Davis, Michael
2006-10-01
Perhaps the most common reason science and engineering faculty give for not including 'ethics' (that is, research ethics, engineering ethics, or some discussion of professional responsibility) in their technical classes is that 'there is no room'. This article 1) describes a technique ('micro-insertion') that introduces ethics (and related topics) into technical courses in small enough units not to push out technical material, 2) explains where this technique might fit into the larger undertaking of integrating ethics into the technical (scientific or engineering) curriculum, and 3) concludes with some quantified evidence (collected over more than a decade) suggesting success. Integrating ethics into science and engineering courses is largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem 'more relevant'.
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
ERIC Educational Resources Information Center
Nam, Younkyeong; Lee, Sun-Ju; Paik, Seoung-Hey
2016-01-01
This study investigated how engineering integrated science (EIS) curricula affect first-year technical high school students' attitudes toward science and perceptions of engineering. The effect of the EIS participation period on students' attitudes toward science was also investigated via experimental study design. Two engineering integrated…
Science, Engineering, Mathematics and Aerospace Academy
NASA Technical Reports Server (NTRS)
1996-01-01
The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.
How engineers perceive the importance of ethics in Finland
NASA Astrophysics Data System (ADS)
Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki
2018-01-01
Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical 'engineering-like' focus and demand have made educators and students overlook the importance of ethical awareness and transversal competences. Using two Finnish surveys, conducted in 2014 and 2016, we examine how engineers perceive working life needs regarding ethics. The data consider different age groups. We research whether an engineer's age affects their perception of the importance of ethics in their work and if there are differences between young experts and young managers in their use of ethics within work. The results indicate that practising engineers do not consider ethical issues important in their work. This especially applies to younger engineers; the older an engineer, the more important they consider ethics. No statistically significant difference was found between young engineering experts and managers.
New computer system simplifies programming of mathematical equations
NASA Technical Reports Server (NTRS)
Reinfelds, J.; Seitz, R. N.; Wood, L. H.
1966-01-01
Automatic Mathematical Translator /AMSTRAN/ permits scientists or engineers to enter mathematical equations in their natural mathematical format and to obtain an immediate graphical display of the solution. This automatic-programming, on-line, multiterminal computer system allows experienced programmers to solve nonroutine problems.
Using Aviation to Change Math Attitudes
ERIC Educational Resources Information Center
Wood, Jerra
2013-01-01
Mathematics teachers are constantly looking for real-world applications of mathematics. Aerospace education provides an incredible context for teaching and learning important STEM concepts, inspiring young people to pursue careers in science, technology, engineering, and mathematics. Teaching mathematics within the context of aerospace generates…
Development of a Multidisciplinary Middle School Mathematics Infusion Model
ERIC Educational Resources Information Center
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Design mentoring tool : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves seni...
Partial Withdrawal and Final Rule for Nonroad Technical Amendments
Amendments to the technical hardship provisions under the Transition Program for Equipment Manufacturers related to the Tier 4 standards for nonroad diesel engines, and to the replacement engine exemption generally applicable to new nonroad engines.
Students' Attitude towards STEM Education
ERIC Educational Resources Information Center
Popa, Roxana-Alexandra; Ciascai, Liliana
2017-01-01
STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…
Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context
ERIC Educational Resources Information Center
Stage, Frances K.; Kinzie, Jillian
2009-01-01
This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…
Community Colleges Giving Students a Framework for STEM Careers
ERIC Educational Resources Information Center
Musante, Susan
2012-01-01
Over the coming decade, America will need one million more science, technology, engineering, and mathematics (STEM) professionals than was originally projected. This is the conclusion of a February 2012 report, "Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics".…
"Project NEO": A Video Game to Promote STEM Competency for Preservice Elementary Teachers
ERIC Educational Resources Information Center
Van Eck, Richard N.; Guy, Mark; Young, Timothy; Winger, Austin T.; Brewster, Scott
2015-01-01
The need for science, technology, engineering, and mathematics majors for our future workforce is growing, yet fewer students are choosing to major in science, technology, engineering, and mathematics areas, and many are underprepared, in part because elementary school preservice teachers are also underprepared. This National Science…
Control Engineering, System Theory and Mathematics: The Teacher's Challenge
ERIC Educational Resources Information Center
Zenger, K.
2007-01-01
The principles, difficulties and challenges in control education are discussed and compared to the similar problems in the teaching of mathematics and systems science in general. The difficulties of today's students to appreciate the classical teaching of engineering disciplines, which are based on rigorous and scientifically sound grounds, are…
ERIC Educational Resources Information Center
Martinez, Alina; Cosentino de Cohen, Clemencia
2010-01-01
This report presents findings from a NASA requested evaluation in 2008, which contains both implementation and impact modules. The implementation study investigated how sites implement Science, Engineering, Mathematics, and Aerospace Academy (SEMAA) and the contextual factors important in this implementation. The implementation study used data…
The Need for Alternative Paradigms in Science and Engineering Education
ERIC Educational Resources Information Center
Baggi, Dennis L.
2007-01-01
There are two main claims in this article. First, that the classic pillars of engineering education, namely, traditional mathematics and differential equations, are merely a particular, if not old-fashioned, representation of a broader mathematical vision, which spans from Turing machine programming and symbolic productions sets to sub-symbolic…
Defense Threat Reduction Agency > Careers > Strategic Recruiting Programs
graduate science, mathematics and engineering students. Students are offered these scholarships and graduate science, mathematics and engineering students. Students are offered scholarships and fellowships with disabilities, please call (703) 767-4451. Workforce Recruitment Program for College Students with
Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention
ERIC Educational Resources Information Center
Lin, Kuen-Yi; Williams, P. John
2016-01-01
This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…
STEM: Science Technology Engineering Mathematics. State-Level Analysis
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
The science, technology, engineering, and mathematics (STEM) state-level analysis provides policymakers, educators, state government officials, and others with details on the projections of STEM jobs through 2018. This report delivers a state-by-state snapshot of the demand for STEM jobs, including: (1) The number of forecast net new and…
Ethnographic Evaluation of the MESA Program at a South-Central Phoenix High School.
ERIC Educational Resources Information Center
Jaramillo, James A.
MESA (Mathematics, Engineering, and Science Achievement) is a program designed to increase the number of underrepresented ethnic groups in professions related to mathematics, engineering, and the physical sciences. This paper describes and evaluates the MESA program at Jarama High School, Phoenix (Arizona), using informal interviews and…
Leadership Training in Science, Technology, Engineering and Mathematics Education in Bulgaria
ERIC Educational Resources Information Center
Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra
2011-01-01
This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership…
STEAM by Another Name: Transdisciplinary Practice in Art and Design Education
ERIC Educational Resources Information Center
Costantino, Tracie
2018-01-01
The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…
Artistic Ways of Knowing in Gifted Education: Encouraging Every Student to Think Like an Artist
ERIC Educational Resources Information Center
Haroutounian, Joanne
2017-01-01
After decades of fluctuating presence in gifted education, the arts are surprisingly establishing themselves in academic classrooms, spurred by arts integration with science, technology, engineering, and mathematics (STEM) curricula or science, technology, engineering, art, and mathematics (STEAM). This renewed interest provides the opportunity to…
Laboratory Barriers in Science, Engineering, and Mathematics for Students with Disabilities.
ERIC Educational Resources Information Center
Heidari, Farzin
This report addresses the barriers college students with disabilities face in the laboratory setting. In engineering, mathematics, and science education most courses require laboratory work which may pose challenges to those with disabilities. Instructors should be aware of the individual needs of students with disabilities and make necessary…
Psycho-Social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Nnachi, N. O.; Okpube, M. N.
2015-01-01
This work focused on the "Psycho-social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics (STEM)". The females were found to be underrepresented in STEM fields. The under-representation results from gender stereotype, differences in spatial skills, hierarchical and territorial segregations and…
Mathematical Building-Blocks in Engineering Mechanics
ERIC Educational Resources Information Center
Boyajian, David M.
2007-01-01
A gamut of mathematical subjects and concepts are taught within a handful of courses formally required of the typical engineering student who so often questions the relevancy of being bound to certain lower-division prerequisites. Basic classes at the undergraduate level, in this context, include: Integral and Differential Calculus, Differential…
Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities
ERIC Educational Resources Information Center
Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.
2018-01-01
Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…
Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra
ERIC Educational Resources Information Center
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-01-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…
The Interface between ChE and Mathematics: What Do Students Really Need?
ERIC Educational Resources Information Center
Graham, Michael D.; Ganter, Susan L.
2001-01-01
Summarizes the report given to the Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America (MAA) who is developing new guidelines for instruction in mathematics with a chemical engineering group at Clemson University in order to list specific knowledge and skills in mathematics needed by engineering…
TDmat--Mathematics Diagnosis Evaluation Test for Engineering Sciences Students
ERIC Educational Resources Information Center
Pinto, J. S.; Oliveira, M. P.; Anjo, A. B.; Pais, S. I. Vieira; Isidro, R. O.; Silva, M. H.
2007-01-01
Since 1989, the Mathematics Education Project (PmatE--Projecto Matematica Ensino) has developed several strategies to improve the success of students in Mathematics. The most important of these are mathematical games for all grades above primary school. The online evaluation of Mathematics subjects is one of PmatE's goals. The implementation of an…
A Study of Mathematics Infusion in Middle School Technology Education Classes
ERIC Educational Resources Information Center
Burghardt, M. David; Hecht, Deborah; Russo, Maria; Lauckhardt, James; Hacker, Michael
2010-01-01
The present study examined the impact of introducing a mathematics infused engineering/technology education (ETE) curriculum on students' mathematics content knowledge and attitudes toward mathematics. The purpose of the present study was to: (a) compare the effects of a mathematics infused ETE curriculum and a control curriculum on student…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.
1990-01-01
The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.
Engineering and Technical Education in Russia, in Numbers
ERIC Educational Resources Information Center
Aref'ev, A. L.; Aref'ev, M. A.
2013-01-01
An analysis of the main tendencies in the development of engineering and technical education in Russia during the last 100 years shows that earlier strengths have been lost, and that currently technical education in Russia is far behind modern world standards.
Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine
NASA Astrophysics Data System (ADS)
Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren
2018-07-01
The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.
Why Do Spatial Abilities Predict Mathematical Performance?
ERIC Educational Resources Information Center
Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia
2014-01-01
Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…
ERIC Educational Resources Information Center
Quinn, Bill; Foshay, Rob; Morris, Barbara
The "PLATO[R] Math Expeditions" and "PLATO[R] Projects for the Real World" curricula are designed to implement effective, research-based instructional practices. "Math Expeditions" is designed to give elementary grade users the mathematics skills and practice needed to solve real-life problems. Across the eight…
ERIC Educational Resources Information Center
Paadre, Taimi H.
2011-01-01
This mixed methods outcomes study investigated a summer school mathematics program for all incoming 9th grade students at a suburban New England vocational technical high school. Qualitative data was gathered via survey and interview from administration, faculty, and students involved with the newly introduced online learning program.…
Fringe effects of value engineering. A survey prepared by the technical subcommittee, AOA special committee on value engineering for the office of the assistant secretary of defense (installations and logistics).
Line integral on engineering mathematics
NASA Astrophysics Data System (ADS)
Wiryanto, L. H.
2018-01-01
Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.
Differential forms for scientists and engineers
NASA Astrophysics Data System (ADS)
Blair Perot, J.; Zusi, Christopher J.
2014-01-01
This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.
77 FR 40026 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... and contractor logistics, Quality Assurance Team support services, engineering and technical support..., engineering and technical support, and other related elements of program support. The estimated cost is $49..., maintenance, or training is Confidential. Reverse engineering could reveal Confidential information...
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
The National Technical Association: A Hallmark for Access and Success
NASA Astrophysics Data System (ADS)
Jearld, A., Jr.
2017-12-01
Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.
NASA Technical Reports Server (NTRS)
Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura Frye; Barclay, Rebecca O.
1995-01-01
In this paper we describe the preliminary analysis of four groups of aerospace engineering and science students -- student members of the American Institute of Aeronautics and Astronautics (AIAA) and students from universities in Japan, Russia, and Great Britain. We compare: (1) the demographic characteristics of the students; (2) factors that affected their career decision; (3) their career goals and aspirations; (4) their training in technical communication; and (5) their training in techniques for finding and using aerospace scientific and technical information (STI). Many employers in the US aerospace industry think there is a need for increased training of engineering students in technical communication. Engineers in the US and other countries believe that technical communication skills are critical for engineers' professional success. All students in our study agree about the importance of technical communication training for professional success, yet relatively few are happy with the instruction they receive. Overall, we conclude that additional instruction in technical communication and accessing STI would make it easier for students to achieve their career goals.
An Intersectional Analysis of Latin@ College Women's Counter-Stories in Mathematics
ERIC Educational Resources Information Center
Leyva, Luis A.
2016-01-01
In this article, the author discusses the intersectionality of mathematics experiences for two Latin@ college women pursuing mathematics-intensive STEM (science, technology, engineering, and mathematics) majors at a large, predominantly White university. The author employs intersectionality and poststructural theories to explore and make meaning…
Transitioning to Secondary School: The Case of Mathematics
ERIC Educational Resources Information Center
Carmichael, Colin
2015-01-01
At a time when Australia's international competitiveness is compromised by a shortage of skilled workers in Science, Technology, Engineering and Mathematics (STEM) related careers, reports suggest a decline in Australian secondary school students' performances in international tests of mathematics. This study focuses on the mathematics performance…
Public Views on the Gendering of Mathematics and Related Careers: International Comparisons
ERIC Educational Resources Information Center
Forgasz, Helen; Leder, Gilah; Tan, Hazel
2014-01-01
Mathematics continues to be an enabling discipline for Science, Technology, Engineering, and Mathematics (STEM)-based university studies and related careers. Explanatory models for females' underrepresentation in higher level mathematics and STEM-based courses comprise learner-related and environmental variables--including societal beliefs. Using…
Mathematics and Engineering in Real Life through Mathematical Competitions
ERIC Educational Resources Information Center
More, M.
2018-01-01
We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build…
ERIC Educational Resources Information Center
Kiru, Elisheba W.; Doabler, Christian T.; Sorrells, Audrey M.; Cooc, North A.
2018-01-01
With the increasing availability of technology and the emphasis on science, technology, engineering, and mathematics education, there is an urgent need to understand the impact of technology-mediated mathematics (TMM) interventions on student mathematics outcomes. The purpose of this study was to review studies on TMM interventions that target the…
DOT National Transportation Integrated Search
2005-07-01
The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...
75 FR 12740 - Wyoming Interstate Company, Inc.; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... additional technical, engineering, and operational support for its proposed gas quality allocation procedures... should be prepared to support its position with adequate technical, engineering, and operational information. FERC conferences are accessible under section 508 of the Rehabilitation Act of 1973. For...
ERIC Educational Resources Information Center
Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli
2016-01-01
Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2013-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…
ERIC Educational Resources Information Center
Haruna, Umar Ibrahim
2015-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
ERIC Educational Resources Information Center
Lee, Sang Eun
2017-01-01
This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…
ERIC Educational Resources Information Center
Torcivia, Patrice Prusko
2012-01-01
Numerous studies have addressed science, technology, engineering and mathematics (STEM) and their relation to education and gender ranging from elementary school pedagogy to career choices for traditional-aged college students. Little research has addressed nontraditional female students returning to the university to in the STEM fields. This…
Women of Color in Science, Technology, Engineering, and Mathematics (STEM)
ERIC Educational Resources Information Center
Johnson, Dawn R.
2011-01-01
Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…
ERIC Educational Resources Information Center
Reimers, Jackson E.; Farmer, Cheryl L.; Klein-Gardner, Stacy S.
2015-01-01
The past 30 years have yielded a mature body of research regarding effective professional development for teachers of science and mathematics, leading to a robust selection of professional development programs for these teachers. The current emphasis on connections among science, technology, engineering, and mathematics underscores the need for…
ERIC Educational Resources Information Center
Perry, Paula Christine
2013-01-01
Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…
ERIC Educational Resources Information Center
Egne, Robsan Margo
2014-01-01
Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…
ERIC Educational Resources Information Center
Bancroft, Senetta F.; Benson, Susan Kushner; Johnson-Whitt, Eugenia
2016-01-01
Nationally, racial and gender disparities persist in science, technology, engineering, and mathematics (STEM) disciplines. These disparities are most notable at the doctoral level and are also found in the doctoral outcomes of Ronald E. McNair Postbaccalaureate Achievement Program participants (Scholars) despite opportunities designed to promote…
ERIC Educational Resources Information Center
Wilson, Zakiya S.; McGuire, Saundra Y.; Limbach, Patrick A.; Doyle, Michael P.; Marzilli, Luigi G.; Warner, Isiah M.
2014-01-01
For many years, the U.S. has underutilized its human resources, as evidenced by the pervasive underrepresentation of several racial and ethnic groups within academia in general and the science, technology, engineering, and mathematics (STEM) disciplines, in particular. To address this underutilization, academic departments within U.S. universities…
ERIC Educational Resources Information Center
Leddy, Mark H.
2010-01-01
Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…
ERIC Educational Resources Information Center
DO-IT, 2007
2007-01-01
A series of activities were undertaken to understand the underrepresentation and increase the participation of people with disabilities in science, technology, engineering, and mathematics (STEM) careers. These activities were funded by the Research in Disabilities Education (RDE) program of the National Science Foundation (NSF). They were…
Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors
ERIC Educational Resources Information Center
Watkins, Jessica; Mazur, Eric
2013-01-01
In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…
ERIC Educational Resources Information Center
Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon
2016-01-01
Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…
A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development
ERIC Educational Resources Information Center
DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April
2012-01-01
A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…