2010-10-01
Mathematics , Indiana University Northwest, Gary, IN 3Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, NY 4H...however, is mathematically more parsimonious. The original DCA formulation required several mathematical manipulations making the simplicity of regret...into treatment administration examples; IH developed the mathematical formulation of the model; AV is the author of DCA; BD proposed the regret theory
Holm, René; Olesen, Niels Erik; Alexandersen, Signe Dalgaard; Dahlgaard, Birgitte N; Westh, Peter; Mu, Huiling
2016-05-25
Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Integrated Formulation of Beacon-Based Exception Analysis for Multimissions
NASA Technical Reports Server (NTRS)
Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail
2003-01-01
Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,
Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability
ERIC Educational Resources Information Center
Saragih, Sahat; Napitupulu, Elvis
2015-01-01
The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
IRT Models for Ability-Based Guessing
ERIC Educational Resources Information Center
Martin, Ernesto San; del Pino, Guido; De Boeck, Paul
2006-01-01
An ability-based guessing model is formulated and applied to several data sets regarding educational tests in language and in mathematics. The formulation of the model is such that the probability of a correct guess does not only depend on the item but also on the ability of the individual, weighted with a general discrimination parameter. By so…
A Framework of Mathematics Inductive Reasoning
ERIC Educational Resources Information Center
Christou, Constantinos; Papageorgiou, Eleni
2007-01-01
Based on a synthesis of the literature in inductive reasoning, a framework for prescribing and assessing mathematics inductive reasoning of primary school students was formulated and validated. The major constructs incorporated in this framework were students' cognitive abilities of finding similarities and/or dissimilarities among attributes and…
Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.
NASA Astrophysics Data System (ADS)
Velichkin, Vladimir A.; Zavyalov, Vladimir A.
2018-03-01
This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.
Students’ Mathematical Literacy in Solving PISA Problems Based on Keirsey Personality Theory
NASA Astrophysics Data System (ADS)
Masriyah; Firmansyah, M. H.
2018-01-01
This research is descriptive-qualitative research. The purpose is to describe students’ mathematical literacy in solving PISA on space and shape content based on Keirsey personality theory. The subjects are four junior high school students grade eight with guardian, artisan, rational or idealist personality. Data collecting methods used test and interview. Data of Keirsey Personality test, PISA test, and interview were analysed. Profile of mathematical literacy of each subject are described as follows. In formulating, guardian subject identified mathematical aspects are formula of rectangle area and sides length; significant variables are terms/conditions in problem and formula of ever encountered question; translated into mathematical language those are measurement and arithmetic operations. In employing, he devised and implemented strategies using ease of calculation on area-subtraction principle; declared truth of result but the reason was less correct; didn’t use and switch between different representations. In interpreting, he declared result as area of house floor; declared reasonableness according measurement estimation. In formulating, artisan subject identified mathematical aspects are plane and sides length; significant variables are solution procedure on both of daily problem and ever encountered question; translated into mathematical language those are measurement, variables, and arithmetic operations as well as symbol representation. In employing, he devised and implemented strategies using two design comparison; declared truth of result without reason; used symbol representation only. In interpreting, he expressed result as floor area of house; declared reasonableness according measurement estimation. In formulating, rational subject identified mathematical aspects are scale and sides length; significant variables are solution strategy on ever encountered question; translated into mathematical language those are measurement, variable, arithmetic operation as well as symbol and graphic representation. In employing, he devised and implemented strategies using additional plane forming on area-subtraction principle; declared truth of result according calculation process; used and switched between symbol and graphic representation. In interpreting, he declared result as house area within terrace and wall; declared reasonableness according measurement estimation. In formulating, idealist subject identified mathematical aspects are sides length; significant variables are terms/condition in problem; translated into mathematical language those are measurement, variables, arithmetic operations as well as symbol and graphic representation. In employing, he devised and implemented strategies using trial and error and two design in process of finding solutions; declared truth of result according the use of two design of solution; used and switched between symbol and graphic representation. In interpreting, he declared result as floor area of house; declared reasonableness according measurement estimation.
Mathematical Metaphors: Problem Reformulation and Analysis Strategies
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.
Mathematical Modeling of Diverse Phenomena
NASA Technical Reports Server (NTRS)
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Teaching Students to Formulate Questions
ERIC Educational Resources Information Center
Jensen-Vallin, Jacqueline
2017-01-01
As STEM educators, we know it is beneficial to train students to think critically and mathematically during their early mathematical lives. To this end, the author teaches the College Algebra/Precalculus course in a flipped classroom version of an inquiry-based learning style. However, the techniques described in this paper can be applied to a…
NASA Technical Reports Server (NTRS)
Goorevich, C. E.
1975-01-01
The mathematical formulation is presented of CNTRLF, the maneuver control program for the Applications Technology Satellite-F (ATS-F). The purpose is to specify the mathematical models that are included in the design of CNTRLF.
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Equilibrium Fluid Interface Behavior Under Low- and Zero-Gravity Conditions. 2
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1996-01-01
The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir is described. Our mathematical work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface of liquid partly filling a container or otherwise in contact with solid support surfaces. The anticipated liquid behavior used in the apparatus design is also illustrated.
The challenge of computer mathematics.
Barendregt, Henk; Wiedijk, Freek
2005-10-15
Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Crazing in Polymeric and Composite Systems
1990-04-23
these physical variations into consideration in any mathematical modeling and formulation in analyzing the stresses from the time when crazes incept to...as boundary tractions with great strength; any governing mathematical formulation must include this feature for any adequate analysis. Crazes of...constants the mathematical model describing the crazing mechanism have been successful [25-29]. References 1 J. A. Sauer, J. Marin and C. C. Hsiao, J. App
Rubin, Jacob
1983-01-01
Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.
Approaching mathematical model of the immune network based DNA Strand Displacement system.
Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio
2013-12-01
One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
Suñé-Negre, Josep M; Pérez-Lozano, Pilar; Miñarro, Montserrat; Roig, Manel; Fuster, Roser; Hernández, Carmen; Ruhí, Ramon; García-Montoya, Encarna; Ticó, Josep R
2008-08-01
Application of the new SeDeM Method is proposed for the study of the galenic properties of excipients in terms of the applicability of direct-compression technology. Through experimental studies of the parameters of the SeDeM Method and their subsequent mathematical treatment and graphical expression (SeDeM Diagram), six different DC diluents were analysed to determine whether they were suitable for direct compression (DC). Based on the properties of these diluents, a mathematical equation was established to identify the best DC diluent and the optimum amount to be used when defining a suitable formula for direct compression, depending on the SeDeM properties of the active pharmaceutical ingredient (API) to be used. The results obtained confirm that the SeDeM Method is an appropriate system, effective tool for determining a viable formulation for tablets prepared by direct compression, and can thus be used as the basis for the relevant pharmaceutical development.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Probability of stress-corrosion fracture under random loading
NASA Technical Reports Server (NTRS)
Yang, J. N.
1974-01-01
Mathematical formulation is based on cumulative-damage hypothesis and experimentally-determined stress-corrosion characteristics. Under both stationary random loadings, mean value and variance of cumulative damage are obtained. Probability of stress-corrosion fracture is then evaluated, using principle of maximum entropy.
The Construction of Mathematical Literacy Problems for Geometry
NASA Astrophysics Data System (ADS)
Malasari, P. N.; Herman, T.; Jupri, A.
2017-09-01
The students of junior high school should have mathematical literacy ability to formulate, apply, and interpret mathematics in problem solving of daily life. Teaching these students are not enough by giving them ordinary mathematics problems. Teaching activities for these students brings consequence for teacher to construct mathematical literacy problems. Therefore, the aim of this study is to construct mathematical literacy problems to assess mathematical literacy ability. The steps of this study that consists of analysing, designing, theoretical validation, revising, limited testing to students, and evaluating. The data was collected with written test to 38 students of grade IX at one of state junior high school. Mathematical literacy problems consist of three essays with three indicators and three levels at polyhedron subject. The Indicators are formulating and employing mathematics. The results show that: (1) mathematical literacy problems which are constructed have been valid and practical, (2) mathematical literacy problems have good distinguishing characteristics and adequate distinguishing characteristics, (3) difficulty levels of problems are easy and moderate. The final conclusion is mathematical literacy problems which are constructed can be used to assess mathematical literacy ability.
Sloshing dynamics on rotating helium dewar tank
NASA Technical Reports Server (NTRS)
Hung, R. J.
1993-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.
Numerical studies of the surface tension effect of cryogenic liquid helium
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.
1977-01-01
The theoretical fundamentals and mathematical definitions for calculations involved with dual polarized radio links are given. Detailed derivations and results are discussed for several formulations applied to a general dual polarized radio link.
Which Kind of Mathematics for Quantum Mechanics? the Relevance of H. Weyl's Program of Research
NASA Astrophysics Data System (ADS)
Drago, Antonino
In 1918 Weyl's book Das Kontinuum planned to found anew mathematics upon more conservative bases than both rigorous mathematics and set theory. It gave birth to the so-called Weyl's elementary mathematics, i.e. an intermediate mathematics between the mathematics rejecting at all actual infinity and the classical one including it almost freely. The present paper scrutinises the subsequent Weyl's book Gruppentheorie und Quantenmechanik (1928) as a program for founding anew theoretical physics - through quantum theory - and at the same time developing his mathematics through an improvement of group theory; which, according to Weyl, is a mathematical theory effacing the old distinction between discrete and continuous mathematics. Evidence from Weyl's writings is collected for supporting this interpretation. Then Weyl's program is evaluated as unsuccessful, owing to some crucial difficulties of both physical and mathematical nature. The present clear-cut knowledge of Weyl's elementary mathematics allows us to re-evaluate Weyl's program in order to look for more adequate formulations of quantum mechanics in any weaker kind of mathematics than the classical one.
ERIC Educational Resources Information Center
O'Brien, Tom
2011-01-01
This article features a mathematical game called "Mystery Person." The author describes how the Mystery Person game was tried with first-graders [age 6]. The Mystery games involve the generation of key questions, the coordination of information--often very complex information--and the formulation of consequences based on this…
Avian seasonal productivity is often modeled as a time-limited stochastic process. Many mathematical formulations have been proposed, including individual based models, continuous-time differential equations, and discrete Markov models. All such models typically include paramete...
ERIC Educational Resources Information Center
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-01-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking,…
Some Applications of Gröbner Bases in Robotics and Engineering
NASA Astrophysics Data System (ADS)
Abłamowicz, Rafał
Gröbner bases in polynomial rings have numerous applications in geometry, applied mathematics, and engineering. We show a few applications of Gröbner bases in robotics, formulated in the language of Clifford algebras, and in engineering to the theory of curves, including Fermat and Bézier cubics, and interpolation functions used in finite element theory.
Formulating a stand-growth model for mathematical programming problems in Appalachian forests
Gary W. Miller; Jay Sullivan
1993-01-01
Some growth and yield simulators applicable to central hardwood forests can be formulated for use in mathematical programming models that are designed to optimize multi-stand, multi-resource management problems. Once in the required format, growth equations serve as model constraints, defining the dynamics of stand development brought about by harvesting decisions. In...
Modeling of Bulk Evaporation and Condensation
NASA Technical Reports Server (NTRS)
Anghaie, S.; Ding, Z.
1996-01-01
This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.
Mathematical modeling of fluxgate magnetic gradiometers
NASA Astrophysics Data System (ADS)
Milovzorov, D. G.; Yasoveev, V. Kh.
2017-07-01
Issues of designing fluxgate magnetic gradiometers are considered. The areas of application of fluxgate magnetic gradiometers are determined. The structure and layout of a two-component fluxgate magnetic gradiometer are presented. It is assumed that the fluxgates are strictly coaxial in the gradiometer body. Elements of the classical approach to the mathematical modeling of the spatial arrangement of solids are considered. The bases of the gradiometer body and their transformations during spatial displacement of the gradiometer are given. The problems of mathematical modeling of gradiometers are formulated, basic mathematical models of a two-component fluxgate gradiometer are developed, and the mathematical models are analyzed. A computer experiment was performed. Difference signals from the gradiometer fluxgates for the vertical and horizontal position of the gradiometer body are shown graphically as functions of the magnitude and direction of the geomagnetic field strength vector.
Modeling Flow in Porous Media with Double Porosity/Permeability.
NASA Astrophysics Data System (ADS)
Seyed Joodat, S. H.; Nakshatrala, K. B.; Ballarini, R.
2016-12-01
Although several continuum models are available to study the flow of fluids in porous media with two pore-networks [1], they lack a firm theoretical basis. In this poster presentation, we will present a mathematical model with firm thermodynamic basis and a robust computational framework for studying flow in porous media that exhibit double porosity/permeability. The mathematical model will be derived by appealing to the maximization of rate of dissipation hypothesis, which ensures that the model is in accord with the second law of thermodynamics. We will also present important properties that the solutions under the model satisfy, along with an analytical solution procedure based on the Green's function method. On the computational front, a stabilized mixed finite element formulation will be derived based on the variational multi-scale formalism. The equal-order interpolation, which is computationally the most convenient, is stable under this formulation. The performance of this formulation will be demonstrated using patch tests, numerical convergence study, and representative problems. It will be shown that the pressure and velocity profiles under the double porosity/permeability model are qualitatively and quantitatively different from the corresponding ones under the classical Darcy equations. Finally, it will be illustrated that the surface pore-structure is not sufficient in characterizing the flow through a complex porous medium, which pitches a case for using advanced characterization tools like micro-CT. References [1] G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]," Journal of Applied Mathematics and Mechanics, vol. 24, pp. 1286-1303, 1960.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.
NASA Astrophysics Data System (ADS)
Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.
2013-07-01
Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
DOT National Transportation Integrated Search
2001-09-01
The goal of this project is to comprehensively model the activity-travel patterns of workers as well as non-workers in a household. The activity-travel system will take as input various land use, socio-demographic, activity system, and transportation...
DOT National Transportation Integrated Search
2014-07-01
The formulation of constitutive equations for asphaltic pavement is based on rheological models which include the asphalt mixture, additives, and the bitumen. In terms of the asphalt, the rheology addresses the flow and permanent deformation in time,...
Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations
NASA Astrophysics Data System (ADS)
Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav
2018-01-01
Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).
Applied Mathematics in the Undergraduate Curriculum.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
After considering the growth in the use of mathematics in the past 25 years, this report makes four major recommendations regarding the undergraduate curriculum: (1) The mathematics department should offer a course or two in applied mathematics which treat some realistic situations completely, including the steps of problem formulation, model…
The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands
USDA-ARS?s Scientific Manuscript database
In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...
From Lobatto Quadrature to the Euler Constant "e"
ERIC Educational Resources Information Center
Khattri, Sanjay Kumar
2010-01-01
Based on the Lobatto quadrature, we develop several new closed form approximations to the mathematical constant "e." For validating effectiveness of our approximations, a comparison of our results to the existing approximations is also presented. Another objective of our work is to inspire students to formulate other better approximations by using…
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Semsey, Sándor; Molnár, László; Ránky, Soma; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos
2017-10-30
Particle size reduction of drug crystals in the presence of surfactants (often called "top-down" production methods) is a standard approach used in the pharmaceutical industry to improve bioavailability of poorly soluble drugs. Based on the mathematical model used to predict the fraction dose absorbed this formulation approach is successful when dissolution rate is the main rate limiting factor of oral absorption. In case compound solubility is also a major factor this approach might not result in an adequate improvement in bioavailability. Abiraterone acetate is poorly water soluble which is believed to be responsible for its very low bioavailability in the fasted state and its significant positive food effect. In this work, we have successfully used in vitro dissolution, solubility and permeability measurements in biorelevant media to describe the dissolution characteristics of different abiraterone acetate formulations. Mathematical modeling of fraction dose absorbed indicated that reducing the particle size of the drug cannot be expected to result in significant improvement in bioavailability in the fasted state. In the fed state, the same formulation approach can result in a nearly complete absorption of the dose; thereby, further increasing the food effect. Using a "bottom-up" formulation method we improved both the dissolution rate and the apparent solubility of the compound. In beagle dog studies, this resulted in a ≫>10-fold increase in bioavailability in the fasted state when compared to the marketed drug and the elimination of the food effect. Calculated values of fraction dose absorbed were in agreement with the observed relative bioavailability values in beagle dogs. Copyright © 2017 Elsevier B.V. All rights reserved.
The mathematical modeling of rapid solidification processing. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Gutierrez-Miravete, E.
1986-01-01
The detailed formulation of and the results obtained from a continuum mechanics-based mathematical model of the planar flow melt spinning (PFMS) rapid solidification system are presented and discussed. The numerical algorithm proposed is capable of computing the cooling and freezing rates as well as the fluid flow and capillary phenomena which take place inside the molten puddle formed in the PFMS process. The FORTRAN listings of some of the most useful computer programs and a collection of appendices describing the basic equations used for the modeling are included.
Mathematical models for principles of gyroscope theory
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2017-01-01
Gyroscope devices are primary units for navigation and control systems that have wide application in engineering. The main property of the gyroscope device is maintaining the axis of a spinning rotor. This gyroscope peculiarity is represented in terms of gyroscope effects in which known mathematical models have been formulated on the law of kinetic energy conservation and the change in the angular momentum. The gyroscope theory is represented by numerous publications, which mathematical models do not match the actual torques and motions in these devices.. The nature of gyroscope effects is more complex than represented in known publications. Recent investigations in this area have demonstrated that on a gyroscope can act until eleven internal torques simultaneously and interdependently around two axes. These gyroscope torques are generated by spinning rotor's mass-elements and by the gyroscope center-mass based on action of several inertial forces. The change in the angular momentum does not play first role for gyroscope motions. The external load generates several internal torques which directions may be distinguished. This situation leads changing of the angular velocities of gyroscope motions around two axes. Formulated mathematical models of gyroscope internal torques are representing the fundamental principle of gyroscope theory. In detail, the gyroscope is experienced the resistance torque generated by the centrifugal and Coriolis forces of the spinning rotor and the precession torque generated by the common inertial forces and the change in the angular momentum. The new mathematical models for the torques and motions of the gyroscope confirmed for most unsolvable problems. The mathematical models practically tested and the results are validated the theoretical approach.
NASA Astrophysics Data System (ADS)
She, Yuchen; Li, Shuang
2018-01-01
The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.
NASA Astrophysics Data System (ADS)
Putri, Arrival Rince; Nova, Tertia Delia; Watanabe, M.
2016-02-01
Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction.
Chen, Liang-Hsuan; Hsueh, Chan-Ching
2007-06-01
Fuzzy regression models are useful to investigate the relationship between explanatory and response variables with fuzzy observations. Different from previous studies, this correspondence proposes a mathematical programming method to construct a fuzzy regression model based on a distance criterion. The objective of the mathematical programming is to minimize the sum of distances between the estimated and observed responses on the X axis, such that the fuzzy regression model constructed has the minimal total estimation error in distance. Only several alpha-cuts of fuzzy observations are needed as inputs to the mathematical programming model; therefore, the applications are not restricted to triangular fuzzy numbers. Three examples, adopted in the previous studies, and a larger example, modified from the crisp case, are used to illustrate the performance of the proposed approach. The results indicate that the proposed model has better performance than those in the previous studies based on either distance criterion or Kim and Bishu's criterion. In addition, the efficiency and effectiveness for solving the larger example by the proposed model are also satisfactory.
Nine formulations of quantum mechanics
NASA Astrophysics Data System (ADS)
Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.
2002-03-01
Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.
Experimenting with Mathematical Biology
ERIC Educational Resources Information Center
Sanft, Rebecca; Walter, Anne
2016-01-01
St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.
NASA Astrophysics Data System (ADS)
Ballard, Patrick; Charles, Alexandre
2018-03-01
In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable dynamics of rigid bodies with contact and dry friction in the light of more recent mathematics. One claimed objective was to reach, for the first time, a mathematically consistent formulation of an initial value problem associated with the dynamics. The purpose of this article is to make a review of the today state-of-art concerning not only the formulation, but also the issues of existence and uniqueness of solution. xml:lang="fr"
Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M
2016-09-12
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.
Dual Treatments as Starting Point for Integrative Perceptions in Teaching Mathematics
ERIC Educational Resources Information Center
Kërënxhi, Svjetllana; Gjoci, Pranvera
2015-01-01
In this paper, we recommend mathematical teaching through dual treatments. The dual treatments notion, classified in dual interpretations, dual analyses, dual solutions, and dual formulations, is explained through concrete examples taken from mathematical textbooks of elementary education. Dual treatments provide opportunities for creating…
A survey on the measure of combat readiness
NASA Astrophysics Data System (ADS)
Wen, Kwong Fook; Nor, Norazman Mohamad; Soon, Lee Lai
2014-09-01
Measuring the combat readiness in military forces involves the measures of tangible and intangible elements of combat power. Though these measures are applicable, the mathematical models and formulae used focus mainly on either the tangible or the intangible elements. In this paper, a review is done to highlight the research gap in the formulation of a mathematical model that incorporates tangible elements with intangible elements to measure the combat readiness of a military force. It highlights the missing link between the tangible and intangible elements of combat power. To bridge the gap and missing link, a mathematical model could be formulated that measures both the tangible and intangible aspects of combat readiness by establishing the relationship between the causal (tangible and intangible) elements and its effects on the measure of combat readiness. The model uses multiple regression analysis as well as mathematical modeling and simulation which digest the capability component reflecting its assets and resources, the morale component reflecting human needs, and the quality of life component reflecting soldiers' state of satisfaction in life. The results of the review provide a mean to bridge the research gap through the formulation of a mathematical model that shows the total measure of a military force's combat readiness. The results also significantly identify parameters for each of the variables and factors in the model.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Rajoli, Rajith KR; Back, David J; Rannard, Steve; Meyers, Caren Freel; Flexner, Charles; Owen, Andrew; Siccardi, Marco
2014-01-01
Background and Objectives Antiretrovirals (ARVs) are currently used for the treatment and prevention of HIV infection. Poor adherence and low tolerability of some existing oral formulations can hinder their efficacy. Long-acting (LA) injectable nanoformulations could help address these complications by simplifying ARV administration. The aim of this study is to inform the optimisation of intramuscular LA formulations for eight ARVs through physiologically-based pharmacokinetic (PBPK) modelling. Methods A whole-body PBPK model was constructed using mathematical descriptions of molecular, physiological and anatomical processes defining pharmacokinetics. These models were validated against available clinical data and subsequently used to predict the pharmacokinetics of injectable LA formulations Results The predictions suggest that monthly intramuscular injections are possible for dolutegravir, efavirenz, emtricitabine, raltegravir, rilpivirine and tenofovir provided that technological challenges to control release rate can be addressed. Conclusions These data may help inform the target product profiles for LA ARV reformulation strategies. PMID:25523214
NASA Astrophysics Data System (ADS)
Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.
2017-11-01
A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.
NASA Astrophysics Data System (ADS)
Kazakova, E. I.; Medvedev, A. N.; Kolomytseva, A. O.; Demina, M. I.
2017-11-01
The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.
NASA Technical Reports Server (NTRS)
Palusinski, O. A.; Allgyer, T. T.; Mosher, R. A.; Bier, M.; Saville, D. A.
1981-01-01
A mathematical model of isoelectric focusing at the steady state has been developed for an M-component system of electrochemically defined ampholytes. The model is formulated from fundamental principles describing the components' chemical equilibria, mass transfer resulting from diffusion and electromigration, and electroneutrality. The model consists of ordinary differential equations coupled with a system of algebraic equations. The model is implemented on a digital computer using FORTRAN-based simulation software. Computer simulation data are presented for several two-component systems showing the effects of varying the isoelectric points and dissociation constants of the constituents.
NASA Technical Reports Server (NTRS)
Mosher, R. A.; Palusinski, O. A.; Bier, M.
1982-01-01
A mathematical model has been developed which describes the steady state in an isoelectric focusing (IEF) system with ampholytes or monovalent buffers. The model is based on the fundamental equations describing the component dissociation equilibria, mass transport due to diffusion and electromigration, electroneutrality, and the conservation of charge. The validity and usefulness of the model has been confirmed by using it to formulate buffer systems in actual laboratory experiments. The model has been recently extended to include the evolution of transient states not only in IEF but also in other modes of electrophoresis.
On Double-Entry Bookkeeping: The Mathematical Treatment
ERIC Educational Resources Information Center
Ellerman, David
2014-01-01
Double-entry bookkeeping (DEB) implicitly uses a specific mathematical construction, the group of differences using pairs of unsigned numbers ("T-accounts"). That construction was only formulated abstractly in mathematics in the nineteenth century, even though DEB had been used in the business world for over five centuries. Yet the…
Mathematical Problem Solving. Issues in Research.
ERIC Educational Resources Information Center
Lester, Frank K., Jr., Ed.; Garofalo, Joe, Ed.
This set of papers was originally developed for a conference on Issues and Directions in Mathematics Problem Solving Research held at Indiana University in May 1981. The purpose is to contribute to the clear formulation of the key issues in mathematical problem-solving research by presenting the ideas of actively involved researchers. An…
NASA Astrophysics Data System (ADS)
Rohrlich, Fritz
2011-12-01
Classical and the quantum mechanical sciences are in essential need of mathematics. Only thus can the laws of nature be formulated quantitatively permitting quantitative predictions. Mathematics also facilitates extrapolations. But classical and quantum sciences differ in essential ways: they follow different laws of logic, Aristotelian and non-Aristotelian logics, respectively. These are explicated.
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron
2008-01-01
Different technological artefacts may offer distinct opportunities for students to develop resources and strategies to formulate, comprehend and solve mathematical problems. In particular, the use of dynamic software becomes relevant to assemble geometric configurations that may help students reconstruct and examine mathematical relationships. In…
Investigating the Impact of Field Trips on Teachers' Mathematical Problem Posing
ERIC Educational Resources Information Center
Courtney, Scott A.; Caniglia, Joanne; Singh, Rashmi
2014-01-01
This study examines the impact of field trip experiences on teachers' mathematical problem posing. Teachers from a large urban public school system in the Midwest participated in a professional development program that incorporated experiential learning with mathematical problem formulation experiences. During 2 weeks of summer 2011, 68 teachers…
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-01-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121
Variable thickness transient ground-water flow model. Volume 1. Formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented.
A Curricular-Sampling Approach to Progress Monitoring: Mathematics Concepts and Applications
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Zumeta, Rebecca O.
2008-01-01
Progress monitoring is an important component of effective instructional practice. Curriculum-based measurement (CBM) is a form of progress monitoring that has been the focus of rigorous research. Two approaches for formulating CBM systems exist. The first is to assess performance regularly on a task that serves as a global indicator of competence…
A Qualitative Simulation Framework in Smalltalk Based on Fuzzy Arithmetic
Richard L. Olson; Daniel L. Schmoldt; David L. Peterson
1996-01-01
For many systems, it is not practical to collect and correlate empirical data necessary to formulate a mathematical model. However, it is often sufficient to predict qualitative dynamics effects (as opposed to system quantities), especially for research purposes. In this effort, an object-oriented application framework (AF) was developed for the qualitative modeling of...
Dermol, Janja; Miklavčič, Damijan
2014-12-01
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Adamu, L. E.
2015-01-01
The purpose of the study was to determine the relationship between scores in mathematics knowledge and teaching practice of Diploma mathematics students. A sample of 39 students was used. Two research questions and two hypotheses were asked and formulated respectively. An ex-post facto correlation design was used. The data were analyzed using…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.
2016-01-01
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...
2016-09-12
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less
Ait-Oudhia, Sihem; Mager, Donald E.; Straubinger, Robert M.
2014-01-01
Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers. PMID:24647104
Turino, Ludmila N; Mariano, Rodolfo N; Mengatto, Luciano N; Luna, Julio A
2015-01-01
One possibility to obtain a higher dose of drug in a lower formulation volume can be by using of saturated quantity of drug in one of the phases of an emulsion. These formulations are called suspoemulsions (S/O/W). When a hydrophobic polymer is added to the organic phase of suspoemulsions, these formulations can be used to entrap the drug inside microspheres after in situ precipitation of the polymer-drug-excipients mix. In this work, performance and stability of progesterone suspensions in triacetin as organic phase of suspoemulsions were evaluated. These formulations were compared with O/W emulsions. Mathematical models were used to study in vitro release profiles. The results confirmed that S/O/W systems could be an attractive alternative to O/W formulations for the entrapment of progesterone inside poly(d,l-lactide-co-glycolide) microspheres. Diffusive-based models fit the in vitro release of progesterone from in situ-formed microspheres. For longer release periods, a time-dependent diffusion coefficient was successfully estimated.
NASA Astrophysics Data System (ADS)
Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.
2012-12-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.
Cross-Cultural Predictors of Mathematical Talent and Academic Productivity
ERIC Educational Resources Information Center
Nokelainen, Petri; Tirri, Kirsi; Campbell, James Reed
2004-01-01
The main goal of this paper is to investigate cross-cultural factors that predict academic ability among mathematically gifted Olympians in Finland and the United States. The following two research problems are formulated: (1) What factors contribute to or impede the development of the Olympians' mathematic talent? and (2) Do the Olympians fulfill…
GENERAL REPORT OF MATHEMATICS CONFERENCE AND TWO SPECIFIC REPORTS. (TITLE SUPPLIED).
ERIC Educational Resources Information Center
Educational Services, Inc., Watertown, MA.
THE FIRST PAPER, "REPORT OF MATHEMATICS CONFERENCE," IS A SUMMARY OF DISCUSSIONS BY 29 PARTICIPANTS IN A CONFERENCE ON CURRENT PROBLEMS IN MATHEMATICS EDUCATION RESEARCH. REPORTED ARE (1) RECENT PROGRESS, PROBLEMS, AND PLANS OF CURRICULUM DEVELOPMENT GROUPS, (2) GENERAL FORMULATION OF CURRICULUM AND METHODS, (3) TEACHER TRAINING, (4)…
Formulating the Fibonacci Sequence: Paths or Jumps in Mathematical Understanding.
ERIC Educational Resources Information Center
Kieren, Thomas; And Others
In dynamical theory, mathematical understanding is considered to be that of a person (or group) of a topic (or problem) in a situation or setting. This paper compares the interactions between the situations and the mathematical understandings of two students by comparing the growth in understanding within a Fibonacci sequence setting in which…
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
The Nuclear Energy Density Functional Formalism
NASA Astrophysics Data System (ADS)
Duguet, T.
The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.
A mathematical theorem as the basis for the second law: Thomson's formulation applied to equilibrium
NASA Astrophysics Data System (ADS)
Allahverdyan, A. E.; Nieuwenhuizen, Th. M.
2002-03-01
There are several formulations of the second law, and they may, in principle, have different domains of validity. Here a simple mathematical theorem is proven which serves as the most general basis for the second law, namely the Thomson formulation (“cyclic changes cost energy”), applied to equilibrium. This formulation of the second law is a property akin to particle conservation (normalization of the wave function). It has been strictly proven for a canonical ensemble, and made plausible for a micro-canonical ensemble. As the derivation does not assume time-inversion invariance, it is applicable to situations where persistent currents occur. This clear-cut derivation allows to revive the “no perpetuum mobile in equilibrium” formulation of the second law and to criticize some assumptions which are widespread in literature. The result puts recent results devoted to foundations and limitations of the second law in proper perspective, and structurizes this relatively new field of research.
Crossing over...Markov meets Mendel.
Mneimneh, Saad
2012-01-01
Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage-one of the first efforts towards a computational approach to biology-relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition.
Crossing Over…Markov Meets Mendel
Mneimneh, Saad
2012-01-01
Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage—one of the first efforts towards a computational approach to biology—relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition. PMID:22629235
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.
2015-12-01
Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.
A Comparative Analysis of the Minuteman Education Programs as Currently Offered at Six SAC Bases.
1980-06-01
Principles of Marketing 3 Business Statistics 3 Business Law 3 Management Total... Principles of Marketing 3 Mathematics Methods I Total prerequisite hours 26 Required Graduate Courses Policy Formulation and Administration 3 Management...Business and Economic Statistics 3 Intermediate Business and Economic Statistics 3 Principles of Management 3 Corporation Finance 3 Principles of Marketing
Babiloni, F; Babiloni, C; Carducci, F; Fattorini, L; Onorati, P; Urbano, A
1996-04-01
This paper presents a realistic Laplacian (RL) estimator based on a tensorial formulation of the surface Laplacian (SL) that uses the 2-D thin plate spline function to obtain a mathematical description of a realistic scalp surface. Because of this tensorial formulation, the RL does not need an orthogonal reference frame placed on the realistic scalp surface. In simulation experiments the RL was estimated with an increasing number of "electrodes" (up to 256) on a mathematical scalp model, the analytic Laplacian being used as a reference. Second and third order spherical spline Laplacian estimates were examined for comparison. Noise of increasing magnitude and spatial frequency was added to the simulated potential distributions. Movement-related potentials and somatosensory evoked potentials sampled with 128 electrodes were used to estimate the RL on a realistically shaped, MR-constructed model of the subject's scalp surface. The RL was also estimated on a mathematical spherical scalp model computed from the real scalp surface. Simulation experiments showed that the performances of the RL estimator were similar to those of the second and third order spherical spline Laplacians. Furthermore, the information content of scalp-recorded potentials was clearly better when the RL estimator computed the SL of the potential on an MR-constructed scalp surface model.
Mathematical biodescriptors of proteomics maps: background and applications.
Basak, Subhash C; Gute, Brian D
2008-05-01
This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, R. W.
1992-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable, and another one of our goals is to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulation). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
A new sensitivity analysis for structural optimization of composite rotor blades
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An
1993-01-01
This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.
Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Reddy, C. J.
2011-01-01
This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.
A formulation of the foundations of genetics and evolution.
Bahr, Brian Edward
2016-05-01
This paper proposes a formulation of theories of the foundations of genetics and evolution that can be used to mathematically simulate phenotype expression, reproduction, mutation, and natural selection. It will be shown that Mendelian inheritance can be mathematically simulated with expressions involving matrices and that these expressions can also simulate phenomena that are modifications to Mendel's basic principles, like alleles that give rise to quantitative effects and traits that are the expression of multiple alleles and/or multiple genetic loci. Copyright © 2016 Elsevier Inc. All rights reserved.
Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics
Major, J.J.
2013-01-01
This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
A density based algorithm to detect cavities and holes from planar points
NASA Astrophysics Data System (ADS)
Zhu, Jie; Sun, Yizhong; Pang, Yueyong
2017-12-01
Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.
Access point selection game with mobile users using correlated equilibrium.
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation.
Access Point Selection Game with Mobile Users Using Correlated Equilibrium
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation. PMID:25785726
Mathematical properties and bounds on haplotyping populations by pure parsimony.
Wang, I-Lin; Chang, Chia-Yuan
2011-06-01
Although the haplotype data can be used to analyze the function of DNA, due to the significant efforts required in collecting the haplotype data, usually the genotype data is collected and then the population haplotype inference (PHI) problem is solved to infer haplotype data from genotype data for a population. This paper investigates the PHI problem based on the pure parsimony criterion (HIPP), which seeks the minimum number of distinct haplotypes to infer a given genotype data. We analyze the mathematical structure and properties for the HIPP problem, propose techniques to reduce the given genotype data into an equivalent one of much smaller size, and analyze the relations of genotype data using a compatible graph. Based on the mathematical properties in the compatible graph, we propose a maximal clique heuristic to obtain an upper bound, and a new polynomial-sized integer linear programming formulation to obtain a lower bound for the HIPP problem. Copyright © 2011 Elsevier Inc. All rights reserved.
Models, Data, and War: a Critique of the Foundation for Defense Analyses.
1980-03-12
scientific formulation 6 An "objective" solution 8 Analysis of a squishy problem 9 A judgmental formulation 9 A potential for distortion 11 A subjective...inextricably tied to those judgments. Different analysts, with apparently identical knowledge of a real world problem, may develop plausible formulations ...configured is a concrete theoretical statement." 2/ The formulation of a computer model--conceiving a mathematical representation of the real world
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael
2013-12-01
Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.
Space structures insulating material's thermophysical and radiation properties estimation
NASA Astrophysics Data System (ADS)
Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.
2007-11-01
In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.
Using Wavelet Bases to Separate Scales in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Michlin, Tracie L.
This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
NASA Astrophysics Data System (ADS)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.
Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.
Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun
2015-12-22
Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.
Santos, Adriana; García, Magda; Cotes, Alba Marina; Villamizar, Laura
2012-01-01
Four biopesticide prototypes formulated as dispersible granules and dry powders based on 2 Colombian isolates of Trichoderma koningiopsis (Th003) and T. asperellum (Th034) were developed. These microorganisms have antagonist activity against Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani with a reduction in incidence of between 70 and 100% in tomato crops and potato crops, respectively. To determine the effect of the formulation on the shelf-life of 4 biopesticides based on T. koningiopsis Th003 and Trichoderma asperellum Th034 at 3 different temperatures. The formulation effect was determined by evaluating the germination of unformulated and formulated conidia (dispersible granules and dry powder) stored at 8, 18 and 28°C for 18 months. Germination kinetics were used to estimate the shelf-life by using different mathematical models (zero order, first order, second order, Higuchi model, Korsmeyer-Peppas model and polynomial model). The products showed high stability of the conidia germination when they were stored at 8 and 18° C, with shelf-lives of 14.4 and 13.9 months for dry powder based on Th003, and 12.0 and 10.8 months for dry powder based on Th034, respectively. Prototypes formulated as dispersible granules stored at the same temperatures (8 and 18°C) showed lower shelf-lives, with values of 11.6 and 10.9 months for the Th003 product, and 10.7 and 7.2 months for the dispersible granules based on Th034. Significant reductions in germination were observed on unformulated conidia at all storage temperatures evaluated. The formulation type affected the conidia stability of the 2 Trichoderma spp. Colombian isolates. Dry powder was the prototype with the highest stability and shelf-life at all temperatures evaluated. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
What Can Other Areas Teach Us about Numeracy?
ERIC Educational Resources Information Center
Ferme, Elizabeth
2014-01-01
Education professionals, regardless of their specialist area, are broadly aware of the importance of numeracy. Internationally, definitions of numeracy (known elsewhere as mathematical literacy or quantitative reasoning), describe "an individual's capacity to formulate, employ and interpret mathematics in a variety of contexts... reasoning…
A formulation for studying dynamics of N connected flexible deployable members
NASA Astrophysics Data System (ADS)
Ibrahim, A. M.; Modi, V. J.
A relatively general formulation for studying dynamics of a system, consisting of N connected flexible deployable members (beams, plates, shells, membranes, strings) forming a topological tree or a closed configuration, is presented. The mathematical description of the system can be, in general, a combination of discrete and distributed coordinates. Joints, elastic and dissipative, permit relative rotation and translation between bodies. The elastic deformations (lateral, axial, and torsional) can be discretized using admissible functions, finite elements or lumped mass method. Rotations of the members, as well as of the entire system, can be described using a set of orientation angles, Euler parameters or Rodrigues vectors. The formulation accounts for: the presence of momentum or reaction wheels (gimballed or fixed); thrusters distributed over the flexible and rigid portions; and any prescribed forms of energy dissipation mechanisms. Of course, the generalized forces can simulate desired environmental effects. The formulation is valid for orbiting as well as ground based and marine systems. Application of the formulation is illustrated through several examples, in spacecraft dynamics, which are of contemporary interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael
In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less
pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article
NASA Astrophysics Data System (ADS)
Perez Velazquez, Jose Luis
2005-12-01
Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.
Rival approaches to mathematical modelling in immunology
NASA Astrophysics Data System (ADS)
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
NASA Astrophysics Data System (ADS)
Furbish, D. J.; Roering, J. J.
2013-12-01
Recent discussions of local versus nonlocal sediment transport on hillslopes offer a lens for considering uncertainty in formulations of transport rates that are aimed at characterizing patchy, intermittent sediment motions in steeplands. Here we describe a general formulation for transport that is based on a convolution integral of the factors controlling the entrainment and disentrainment of sediment particles on a hillslope. In essence, such a formulation represents a ';flux' version of the Master equation, a general probabilistic (kinematic) formulation of mass conservation. As such, with the relevant physics invoked to represent entrainment and disentrainment, a nonlocal formulation quite happily accommodates local transport (and looks/behaves like a local formulation), as well as nonlocal transport, depending on the characteristic length scale of particle motions relative to the length scale at which the factors controlling particle transport are defined or measured. Nonetheless, nonlocal formulations of the sediment flux have mostly (but not entirely) outpaced experimental and field-based observations needed to inform the theory. At risk is bringing to bear a sophisticated mathematics that is not supported by our uncertain understanding of the processes involved. Experimental and field-based measurements of entrainment rates and particle travel distances are difficult to obtain, notably given the intermittency of many hillslope transport processes and the slow rates of change in hillslope morphology. A ';test' of a specific nonlocal formulation applied to hillslope evolution must therefore in part rest on consistency between measured hillslope configurations and predicted (i.e., modeled) hillslope configurations predicated on the proposed nonlocal formulation, assuming sufficient knowledge of initial and boundary conditions. On the other hand, because of its probabilistic basis, the formulation is in principle well suited to the task of describing transport relevant to geomorphic timescales -- in view of the stochastic nature of the transport processes occurring over these timescales and the uncertainty of our understanding of the physics involved. Moreover, in its basic form, the nonlocal formulation of the sediment flux is such that appropriate physics can be readily embedded within it as we learn more. And, the formulation is space-time averaged in a way that accommodates discontinuous (patchy, intermittent) sediment motions.
Arteyeva, Natalia V; Azarov, Jan E
The aim of the study was to differentiate the effect of dispersion of repolarization (DOR) and action potential duration (APD) on T-wave parameters being considered as indices of DOR, namely, Tpeak-Tend interval, T-wave amplitude and T-wave area. T-wave was simulated in a wide physiological range of DOR and APD using a realistic rabbit model based on experimental data. A simplified mathematical formulation of T-wave formation was conducted. Both the simulations and the mathematical formulation showed that Tpeak-Tend interval and T-wave area are linearly proportional to DOR irrespectively of APD range, while T-wave amplitude is non-linearly proportional to DOR and inversely proportional to the minimal repolarization time, or minimal APD value. Tpeak-Tend interval and T-wave area are the most accurate DOR indices independent of APD. T-wave amplitude can be considered as an index of DOR when the level of APD is taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.
An adhesive contact mechanics formulation based on atomistically induced surface traction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Houfu; Ren, Bo; Li, Shaofan, E-mail: shaofan@berkeley.edu
2015-12-01
In this work, we have developed a novel multiscale computational contact formulation based on the generalized Derjuguin approximation for continua that are characterized by atomistically enriched constitutive relations in order to study macroscopic interaction between arbitrarily shaped deformable continua. The proposed adhesive contact formulation makes use of the microscopic interaction forces between individual particles in the interacting bodies. In particular, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a special partitioning technique. The proposed contact model is formulatedmore » in the nonlinear continuum mechanics framework and implemented using the standard finite element method. With no large penalty constant, the stiffness matrix of the system will in general be well-conditioned, which is of great significance for quasi-static analysis. Three numerical examples are presented to illustrate the capability of the proposed method. Results indicate that with the same mesh configuration, the finite element computation based on the surface integral approach is faster and more accurate than the volume integral based approach. In addition, the proposed approach is energy preserving even in a very long dynamic simulation.« less
New Mathematical Strategy Using Branch and Bound Method
NASA Astrophysics Data System (ADS)
Tarray, Tanveer Ahmad; Bhat, Muzafar Rasool
In this paper, the problem of optimal allocation in stratified random sampling is used in the presence of nonresponse. The problem is formulated as a nonlinear programming problem (NLPP) and is solved using Branch and Bound method. Also the results are formulated through LINGO.
A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1988-01-01
The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.
Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-08-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Applications of fuzzy theories to multi-objective system optimization
NASA Technical Reports Server (NTRS)
Rao, S. S.; Dhingra, A. K.
1991-01-01
Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.
Aeroelastic stability analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Popelka, D.
1982-02-01
An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Autonomous control of production networks using a pheromone approach
NASA Astrophysics Data System (ADS)
Armbruster, D.; de Beer, C.; Freitag, M.; Jagalski, T.; Ringhofer, C.
2006-04-01
The flow of parts through a production network is usually pre-planned by a central control system. Such central control fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks according to low work-in-progress and short throughput times, an autonomous control approach is proposed. Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their way to communicate with following ants. The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model with limited service rates in a general network topology is derived and compared to a discrete-event simulation model. Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g. discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.
The transition to formal thinking in mathematics
NASA Astrophysics Data System (ADS)
Tall, David
2008-09-01
This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts towards a formal framework of axiomatic systems and mathematical proof. In this paper, the transition in thinking is formulated within a framework of `three worlds of mathematics'- the `conceptual-embodied' world based on perception, action and thought experiment, the `proceptual-symbolic' world of calculation and algebraic manipulation compressing processes such as counting into concepts such as number, and the `axiomatic-formal' world of set-theoretic concept definitions and mathematical proof. Each `world' has its own sequence of development and its own forms of proof that may be blended together to give a rich variety of ways of thinking mathematically. This reveals mathematical thinking as a blend of differing knowledge structures; for instance, the real numbers blend together the embodied number line, symbolic decimal arithmetic and the formal theory of a complete ordered field. Theoretical constructs are introduced to describe how genetic structures set before birth enable the development of mathematical thinking, and how experiences that the individual has met before affect their personal growth. These constructs are used to consider how students negotiate the transition from school to university mathematics as embodiment and symbolism are blended with formalism. At a higher level, structure theorems proved in axiomatic theories link back to more sophisticated forms of embodiment and symbolism, revealing the intimate relationship between the three worlds.
The Value of Information in Distributed Decision Networks
2016-03-04
formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1
Satellite orbit computation methods
NASA Technical Reports Server (NTRS)
1977-01-01
Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.
The transformation of aerodynamic stability derivatives by symbolic mathematical computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1975-01-01
The formulation of mathematical models of aeronautical systems for simulation or other purposes, involves the transformation of aerodynamic stability derivatives. It is shown that these derivatives transform like the components of a second order tensor having one index of covariance and one index of contravariance. Moreover, due to the equivalence of covariant and contravariant transformations in orthogonal Cartesian systems of coordinates, the transformations can be treated as doubly covariant or doubly contravariant, if this simplifies the formulation. It is shown that the tensor properties of these derivatives can be used to facilitate their transformation by symbolic mathematical computation, and the use of digital computers equipped with formula manipulation compilers. When the tensor transformations are mechanised in the manner described, man-hours are saved and the errors to which human operators are prone can be avoided.
Reflection on Cuboid Net with Mathematical Learning Quality
NASA Astrophysics Data System (ADS)
Sari, Atikah; Suryadi, Didi; Syaodih, Ernawulan
2017-09-01
This research aims to formulate an alternative to the reflection in mathematics learning activities related to the activities of the professionalism of teachers motivated by a desire to improve the quality of learning. This study is a qualitative study using the Didactical Design research. This study was conducted in one of the elementary schools. The data collection techniques are triangulation with the research subject is teacher 5th grade. The results of this study indicate that through deep reflection, teachers can design learning design in accordance with the conditions of the class. Also revealed that teachers have difficulty in choosing methods of learning and contextual learning media. Based on the implementation of activities of reflection and make the learning design based on the results of reflection can be concluded that the quality of learning in the class will develop.
NASA Astrophysics Data System (ADS)
Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.
2018-04-01
Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.
A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.
2016-01-01
A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.
A finite element-boundary integral method for cavities in a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.
Model Eliciting Activities: A Home Run
ERIC Educational Resources Information Center
Magiera, Marta T.
2013-01-01
An important goal of school mathematics is to enable students to formulate, approach, and refine problems beyond those they have studied, allowing them to organize and consolidate their mathematical thinking. To achieve this goal, students should be encouraged to develop expertise in a variety of areas, such as problem solving, reasoning and…
Two-fluid models of turbulence
NASA Technical Reports Server (NTRS)
Spalding, D. B.
1985-01-01
The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.
Governing the Modern, Neoliberal Child through ICT Research in Mathematics Education
ERIC Educational Resources Information Center
Valero, Paola; Knijnik, Gelsa
2015-01-01
Research on the pedagogical uses of ICT for the learning of mathematics formulates cultural thesis about the desired subject of education and society, and thereby contribute to fabricate the rational, Modern, self-regulated, entrepreneurial neoliberal child. Using the Foucauldian notion of governmentality, the section Technology in the…
Some Fundamental Issues of Mathematical Simulation in Biology
NASA Astrophysics Data System (ADS)
Razzhevaikin, V. N.
2018-02-01
Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.
High-Order Entropy Stable Formulations for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.
2013-01-01
A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.
Mathematical models to characterize early epidemic growth: A Review
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-01-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336
Mathematical models to characterize early epidemic growth: A review
NASA Astrophysics Data System (ADS)
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-09-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.
Anisotropic norm-oriented mesh adaptation for a Poisson problem
NASA Astrophysics Data System (ADS)
Brèthes, Gautier; Dervieux, Alain
2016-10-01
We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.
Cartan gravity, matter fields, and the gauge principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westman, Hans F., E-mail: hwestman74@gmail.com; Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top ofmore » it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions. -- Highlights: •Develops Cartan gravity to include matter fields. •Coupling to gravity is done using the standard gauge prescription. •Matter actions are manifestly polynomial in all field variables. •Standard equations recovered on-shell for scalar, spinor and Yang–Mills fields. •Unification of a U(1) field with gravity based on the orthogonal group SO(1,5)« less
Data Reduction Algorithm Using Nonnegative Matrix Factorization with Nonlinear Constraints
NASA Astrophysics Data System (ADS)
Sembiring, Pasukat
2017-12-01
Processing ofdata with very large dimensions has been a hot topic in recent decades. Various techniques have been proposed in order to execute the desired information or structure. Non- Negative Matrix Factorization (NMF) based on non-negatives data has become one of the popular methods for shrinking dimensions. The main strength of this method is non-negative object, the object model by a combination of some basic non-negative parts, so as to provide a physical interpretation of the object construction. The NMF is a dimension reduction method thathasbeen used widely for numerous applications including computer vision,text mining, pattern recognitions,and bioinformatics. Mathematical formulation for NMF did not appear as a convex optimization problem and various types of algorithms have been proposed to solve the problem. The Framework of Alternative Nonnegative Least Square(ANLS) are the coordinates of the block formulation approaches that have been proven reliable theoretically and empirically efficient. This paper proposes a new algorithm to solve NMF problem based on the framework of ANLS.This algorithm inherits the convergenceproperty of the ANLS framework to nonlinear constraints NMF formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu
2016-03-01
Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less
Problem solving in the borderland between mathematics and physics
NASA Astrophysics Data System (ADS)
Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas
2017-01-01
The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization.
A knowledge representation of local pandemic influenza planning models.
Islam, Runa; Brandeau, Margaret L; Das, Amar K
2007-10-11
Planning for pandemic flu outbreak at the small-government level can be aided through the use of mathematical policy models. Formulating and analyzing policy models, however, can be a time- and expertise-expensive process. We believe that a knowledge-based system for facilitating the instantiation of locale- and problem-specific policy models can reduce some of these costs. In this work, we present the ontology we have developed for pandemic influenza policy models.
Frequency-dependent FDTD methods using Z transforms
NASA Technical Reports Server (NTRS)
Sullivan, Dennis M.
1992-01-01
While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.
1990-01-01
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.
1991-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative, manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. These results are highlighted. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable. Another one of our goals is to examine the stability of our predicted flows. Because time-dependent three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Novikova, V.; Nikolaeva, O.
2017-11-01
In the article the authors consider a cognitive management method of the investment-building complex in the crisis conditions. The factors influencing the choice of an investment strategy are studied, the basic lines of the activity in the field of crisis-management from a position of mathematical modelling are defined. The general approach to decision-making on investment in real assets on the basis of the discrete systems based on the optimum control theory is offered. With the use of a discrete maximum principle the task in view of the decision is found. The numerical algorithm to define the optimum control is formulated by investments. Analytical decisions for the case of constant profitability of the basic means are obtained.
An electromagnetism-like metaheuristic for open-shop problems with no buffer
NASA Astrophysics Data System (ADS)
Naderi, Bahman; Najafi, Esmaeil; Yazdani, Mehdi
2012-12-01
This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem.
Li, Junning; Jin, Yan; Shi, Yonggang; Dinov, Ivo D.; Wang, Danny J.; Toga, Arthur W.; Thompson, Paul M.
2014-01-01
Human brain connectivity can be studied using graph theory. Many connectivity studies parcellate the brain into regions and count fibres extracted between them. The resulting network analyses require validation of the tractography, as well as region and parameter selection. Here we investigate whole brain connectivity from a different perspective. We propose a mathematical formulation based on studying the eigenvalues of the Laplacian matrix of the diffusion tensor field at the voxel level. This voxelwise matrix has over a million parameters, but we derive the Kirchhoff complexity and eigen-spectrum through elegant mathematical theorems, without heavy computation. We use these novel measures to accurately estimate the voxelwise connectivity in multiple biomedical applications such as Alzheimer’s disease and intelligence prediction. PMID:24505723
Modification of the Mathematical Model of the Thermoelectric Module of a Thermostating Coating
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Kuvyrkin, G. N.; Savel'eva, I. Yu.
2017-03-01
A modification has been made of the previously constructed mathematical model of a fragment of a flat thermostating coating including a thermoelectric module based on the variation formulation of the stationary problem of heat conduction in an inhomogeneous solid body. With the use of the Fourier finite integral transform the dependences have been obtained for calculating the temperature distribution in the heat insulating layer in the vicinity of the thermoelectric element and commutating conductors. This enabled us to refine one of the diagnostic variables of the model — the total heat resistance of the heat insulator between commutating plates and conductors of the thermoelectric module influencing the energy characteristics of the thermostating coating under investigation.
Adewumi, Aderemi Oluyinka; Chetty, Sivashan
2017-01-01
The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA's results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems.
The Mathematics of High School Physics: Models, Symbols, Algorithmic Operations and Meaning
ERIC Educational Resources Information Center
Kanderakis, Nikos
2016-01-01
In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and…
Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?
Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...
The Force-Frequency Relationship: Insights from Mathematical Modeling
ERIC Educational Resources Information Center
Puglisi, Jose L.; Negroni, Jorge A.; Chen-Izu, Ye; Bers, Donald M.
2013-01-01
The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by…
Watching Sandy's Understanding Grow.
ERIC Educational Resources Information Center
Pirie, Susan E. B.; Kieren, Thomas E.
1992-01-01
Reviews recent research in the area of mathematical understanding and compares and contrasts it with a model formulated for the growth of understanding. Uses the analysis of a transcript from an interview with an eight-year-old boy to illustrate the power of the model to describe and map the growth of his mathematical understanding. (18…
The Effects of Mathematical Modelling on Students' Achievement-Meta-Analysis of Research
ERIC Educational Resources Information Center
Sokolowski, Andrzej
2015-01-01
Using meta-analytic techniques this study examined the effects of applying mathematical modelling to support student math knowledge acquisition at the high school and college levels. The research encompassed experimental studies published in peer-reviewed journals between January 1, 2000, and February 27, 2013. Such formulated orientation called…
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1972-01-01
A mathematical model and computer program were implemented to study the main rotor free wake geometry effects on helicopter rotor blade air loads and response in steady maneuvers. The theoretical formulation and analysis of results are presented.
A chance constraint estimation approach to optimizing resource management under uncertainty
Michael Bevers
2007-01-01
Chance-constrained optimization is an important method for managing risk arising from random variations in natural resource systems, but the probabilistic formulations often pose mathematical programming problems that cannot be solved with exact methods. A heuristic estimation method for these problems is presented that combines a formulation for order statistic...
Variational formulation for Black-Scholes equations in stochastic volatility models
NASA Astrophysics Data System (ADS)
Gyulov, Tihomir B.; Valkov, Radoslav L.
2012-11-01
In this note we prove existence and uniqueness of weak solutions to a boundary value problem arising from stochastic volatility models in financial mathematics. Our settings are variational in weighted Sobolev spaces. Nevertheless, as it will become apparent our variational formulation agrees well with the stochastic part of the problem.
A critical review of the field application of a mathematical model of malaria eradication
Nájera, J. A.
1974-01-01
A malaria control field research trial in northern Nigeria was planned with the aid of a computer simulation based on Macdonald's mathematical model of malaria epidemiology. Antimalaria attack was based on a combination of mass drug administration (chloroquine and pyrimethamine) and DDT house spraying. The observed results were at great variance with the predictions of the model. The causes of these discrepancies included inadequate estimation of the model's basic variables, and overestimation, in planning the simulation, of the effects of the attack measures and of the degree of perfection attainable by their application. The discrepancies were to a great extent also due to deficiencies in the model. An analysis is made of those considered to be the most important. It is concluded that research efforts should be encouraged to increase our knowledge of the basic epidemiological factors, their variation and correlations, and to formulate more realistic and useful theoretical models. PMID:4156197
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
On Two-Scale Modelling of Heat and Mass Transfer
NASA Astrophysics Data System (ADS)
Vala, J.; Št'astník, S.
2008-09-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
Numerical Technology for Large-Scale Computational Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R; Champagne, N; White, D
The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less
Solving Connected Subgraph Problems in Wildlife Conservation
NASA Astrophysics Data System (ADS)
Dilkina, Bistra; Gomes, Carla P.
We investigate mathematical formulations and solution techniques for a variant of the Connected Subgraph Problem. Given a connected graph with costs and profits associated with the nodes, the goal is to find a connected subgraph that contains a subset of distinguished vertices. In this work we focus on the budget-constrained version, where we maximize the total profit of the nodes in the subgraph subject to a budget constraint on the total cost. We propose several mixed-integer formulations for enforcing the subgraph connectivity requirement, which plays a key role in the combinatorial structure of the problem. We show that a new formulation based on subtour elimination constraints is more effective at capturing the combinatorial structure of the problem, providing significant advantages over the previously considered encoding which was based on a single commodity flow. We test our formulations on synthetic instances as well as on real-world instances of an important problem in environmental conservation concerning the design of wildlife corridors. Our encoding results in a much tighter LP relaxation, and more importantly, it results in finding better integer feasible solutions as well as much better upper bounds on the objective (often proving optimality or within less than 1% of optimality), both when considering the synthetic instances as well as the real-world wildlife corridor instances.
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.
Analytical Expressions for Thermo-Osmotic Permeability of Clays
NASA Astrophysics Data System (ADS)
Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.
2018-01-01
In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sen; Zhang, Wei; Lian, Jianming
This paper focuses on the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. Using the mechanism design approach, we propose a market-based coordination framework, which can effectively incorporate heterogeneous load dynamics, systematically deal with user preferences, account for the unknown load model parameters, and enable the real-world implementation with limited communication resources. This paper is divided into two parts. Part I presents a mathematical formulation of themore » problem and develops a coordination framework using the mechanism design approach. Part II presents a learning scheme to account for the unknown load model parameters, and evaluates the proposed framework through realistic simulations.« less
Pressure distribution under flexible polishing tools. I - Conventional aspheric optics
NASA Astrophysics Data System (ADS)
Mehta, Pravin K.; Hufnagel, Robert E.
1990-10-01
The paper presents a mathematical model, based on Kirchoff's thin flat plate theory, developed to determine polishing pressure distribution for a flexible polishing tool. A two-layered tool in which bending and compressive stiffnesses are equal is developed, which is formulated as a plate on a linearly elastic foundation. An equivalent eigenvalue problem and solution for a free-free plate are created from the plate formulation. For aspheric, anamorphic optical surfaces, the tool misfit is derived; it is defined as the result of movement from the initial perfect fit on the optic to any other position. The Polisher Design (POD) software for circular tools on aspheric optics is introduced. NASTRAN-based finite element analysis results are compared with the POD software, showing high correlation. By employing existing free-free eigenvalues and eigenfunctions, the work may be extended to rectangular polishing tools as well.
Differential equations with applications in cancer diseases.
Ilea, M; Turnea, M; Rotariu, M
2013-01-01
Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. The cancer modeling is a highly challenging problem at the frontier of applied mathematics. A variety of modeling strategies have been developed, each focusing on one or more aspects of cancer. The vast majority of mathematical models in cancer diseases biology are formulated in terms of differential equations. We propose an original mathematical model with small parameter for the interactions between these two cancer cell sub-populations and the mathematical model of a vascular tumor. We work on the assumption that, the quiescent cells' nutrient consumption is long. One the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. MATLAB simulations obtained for transition rate from the quiescent cells' nutrient consumption is long, we show a similar asymptotic behavior for two solutions of the perturbed problem. In this system, the small parameter is an asymptotic variable, different from the independent variable. The graphical output for a mathematical model of a vascular tumor shows the differences in the evolution of the tumor populations of proliferating, quiescent and necrotic cells. The nutrient concentration decreases sharply through the viable rim and tends to a constant level in the core due to the nearly complete necrosis in this region. Many mathematical models can be quantitatively characterized by ordinary differential equations or partial differential equations. The use of MATLAB in this article illustrates the important role of informatics in research in mathematical modeling. The study of avascular tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.
Coupled oscillators and Feynman's three papers
NASA Astrophysics Data System (ADS)
Kim, Y. S.
2007-05-01
According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the "rest of the universe" contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.
Mittapalli, Rajendar K; Marroum, Patrick; Qiu, Yihong; Apfelbaum, Kathleen; Xiong, Hao
2017-07-01
To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations. Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability. With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (A e0-24h ) and maximum urinary excretion rate (R max ) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%. A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.
Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process
NASA Astrophysics Data System (ADS)
Yan, Wei; Chang, Yuwen
2016-12-01
Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram
1989-01-01
The extension of the known flux-vector and flux-difference splittings to real gases via rigorous mathematical procedures is demonstrated. Formulations of both equilibrium and finite-rate chemistry for real-gas flows are described, with emphasis on derivations of finite-rate chemistry. Split-flux formulas from other authors are examined. A second-order upwind-based TVD scheme is adopted to eliminate oscillations and to obtain a sharp representation of discontinuities.
Non-invasive method for quantitative evaluation of exogenous compound deposition on skin.
Stamatas, Georgios N; Wu, Jeff; Kollias, Nikiforos
2002-02-01
Topical application of active compounds on skin is common to both pharmaceutical and cosmetic industries. Quantification of the concentration of a compound deposited on the skin is important in determining the optimum formulation to deliver the pharmaceutical or cosmetic benefit. The most commonly used techniques to date are either invasive or not easily reproducible. In this study, we have developed a noninvasive alternative to these techniques based on spectrofluorimetry. A mathematical model based on diffusion approximation theory is utilized to correct fluorescence measurements for the attenuation caused by endogenous skin chromophore absorption. The limitation is that the compound of interest has to be either fluorescent itself or fluorescently labeled. We used the method to detect topically applied salicylic acid. Based on the mathematical model a calibration curve was constructed that is independent of endogenous chromophore concentration. We utilized the method to localize salicylic acid in epidermis and to follow its dynamics over a period of 3 d.
Classification of materials for conducting spheroids based on the first order polarization tensor
NASA Astrophysics Data System (ADS)
Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB
2017-09-01
Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.
Alternative mathematical programming formulations for FSS synthesis
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.
1986-01-01
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.
Oakland and San Francisco Create Course Pathways through Common Core Mathematics. White Paper
ERIC Educational Resources Information Center
Daro, Phil
2014-01-01
The Common Core State Standards for Mathematics (CCSS-M) set rigorous standards for each of grades 6, 7 and 8. Strategic Education Research Partnership (SERP) has been working with two school districts, Oakland Unified School District and San Francisco Unified School District, to evaluate extant policies and practices and formulate new policies…
ERIC Educational Resources Information Center
Sriraman, Bharath
2003-01-01
Nine freshmen in a ninth-grade accelerated algebra class were asked to solve five nonroutine combinatorial problems. The four mathematically gifted students were successful in discovering and verbalizing the generality that characterized the solutions to the five problems, whereas the five nongifted students were unable to discover the hidden…
Computer-Aided Assessment Questions in Engineering Mathematics Using "MapleTA"[R
ERIC Educational Resources Information Center
Jones, I. S.
2008-01-01
The use of "MapleTA"[R] in the assessment of engineering mathematics at Liverpool John Moores University (JMU) is discussed with particular reference to the design of questions. Key aspects in the formulation and coding of questions are considered. Problems associated with the submission of symbolic answers, the use of randomly generated numbers…
ERIC Educational Resources Information Center
Perry, Bob; Gervasoni, Ann; Dockett, Sue
2012-01-01
The "Let's Count" pilot early mathematics program was implemented in five early childhood educational contexts across Australia during 2011. The program used specifically formulated materials and workshops to enlist the assistance of early childhood educators to work with parents and other family members of children in their settings to…
Challenges of Blended E-Learning Tools in Mathematics: Students' Perspectives University of Uyo
ERIC Educational Resources Information Center
Umoh, Joseph B.; Akpan, Ekemini T.
2014-01-01
An in-depth knowledge of pedagogical approaches can help improve the formulation of effective and efficient pedagogy, tools and technology to support and enhance the teaching and learning of Mathematics in higher institutions. This study investigated students' perceptions of the challenges of blended e-learning tools in the teaching and learning…
NASA Astrophysics Data System (ADS)
Huang, Qingdao; Qian, Hong
2009-09-01
We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-05-01
In the last few years, reflective thinking becomes very popular term in the world of education, especially in professional education of teachers. One of goals of the educational personnel and teacher institutions create responsible prospective teachers and they are able reflective thinking. Reflective thinking is a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. Reflective thinking can be applied in mathematics becauseby reflective thinking, students can improve theircuriosity to solve mathematical problem. In solving mathematical problem is assumed that cognitive style has an impact on prospective teacher's mental activity. As a consequence, reflective thinking and cognitive style are important things in solving mathematical problem. The subject, in this research paper, isa female-prospective teacher who has fielddependent cognitive style. The purpose of this research paperis to investigate the ability of prospective teachers' reflective thinking in solving mathematical problem. This research paper is a descriptive by using qualitativeapproach. To analyze the data related to prospectiveteacher's reflective thinking in solving contextual mathematicalproblem, the researchers focus in four main categories which describe prospective teacher's activities in using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.
Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František
2016-03-16
The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K.; Roy, Soumya; Jassal, Kanan; Kalyan Mohanti, Bidhu
2018-04-01
The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between ≤ft< TPSCAL{\\text -}0MES \\right> and ≤ft< 3DMES{\\text -6DMES} \\right> . The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y = 1X with a goodness of fit as R 2 = 0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1 ± 1.9%, 96.3 ± 1.8%, 74.3 ± 1.9% and 72.6 ± 2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample ≤ft< 3DMES{\\text -6DMES} \\right> and 0.01 for ≤ft< 0MES{\\text -TPSCAL} \\right> . In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.
Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K; Roy, Soumya; Jassal, Kanan; Mohanti, Bidhu Kalyan
2018-03-22
The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between [Formula: see text] and [Formula: see text]. The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y = 1X with a goodness of fit as R 2 = 0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1 ± 1.9%, 96.3 ± 1.8%, 74.3 ± 1.9% and 72.6 ± 2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample [Formula: see text] and 0.01 for [Formula: see text]. In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.
NASA Astrophysics Data System (ADS)
Sulistiani, E.; Waluya, S. B.; Masrukan
2018-03-01
This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.
Vibration of rotating-shaft design spindles with flexible bases
NASA Astrophysics Data System (ADS)
Tseng, Chaw-Wu
The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.
2017-01-01
The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA’s results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems. PMID:28792495
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru
2015-11-17
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.
Conditions for quantum interference in cognitive sciences.
Yukalov, Vyacheslav I; Sornette, Didier
2014-01-01
We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.
2015-11-01
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
ERIC Educational Resources Information Center
Adani, Anthony; Eskay, Michael; Onu, Victoria
2012-01-01
This quasi-experimental study examined the effect of self-instruction strategy on the achievement in algebra of students with learning difficulty in mathematics. Two research questions and one null hypothesis were formulated to guide the study. The study adopted a non-randomized pre-test and post-test control group design with one experimental…
ERIC Educational Resources Information Center
Kondratieva, Margo; Winsløw, Carl
2018-01-01
We present a theoretical approach to the problem of the transition from Calculus to Analysis within the undergraduate mathematics curriculum. First, we formulate this problem using the anthropological theory of the didactic, in particular the notion of praxeology, along with a possible solution related to Klein's "Plan B": here,…
ERIC Educational Resources Information Center
Alordiah, Caroline Ochuko; Akpadaka, Grace; Oviogbodu, Christy Oritseweyimi
2015-01-01
The study investigated the influence of gender, school location, and socio-economic status (SES) on students' academic achievement in mathematics. The study was an ex-post factor design in which the variables were not manipulated nor controlled. Four research questions and three hypotheses were formulated to guide the study. The stratified random…
Multidimensional Methods for the Formulation of Biopharmaceuticals and Vaccines
Maddux, Nathaniel R.; Joshi, Sangeeta B.; Volkin, David B.; Ralston, John P.; Middaugh, C. Russell
2013-01-01
Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics. PMID:21647886
The Bean model in suprconductivity: Variational formulation and numerical solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigozhin, L.
The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.
A mathematical model for interpreting in vitro rhGH release from laminar implants.
Santoveña, A; García, J T; Oliva, A; Llabrés, M; Fariña, J B
2006-02-17
Recombinant human growth hormone (rhGH), used mainly for the treatment of growth hormone deficiency in children, requires daily subcutaneous injections. The use of controlled release formulations with appropriate rhGH release kinetics reduces the frequency of medication, improving patient compliance and quality of life. Biodegradable implants are a valid alternative, offering the feasibility of a regular release rate after administering a single dose, though it exists the slight disadvantage of a very minor surgical operation. Three laminar implant formulations (F(1), F(2) and F(3)) were produced by different manufacture procedures using solvent-casting techniques with the same copoly(D,L-lactic) glycolic acid (PLGA) polymer (Mw=48 kDa). A correlation in vitro between polymer matrix degradation and drug release rate from these formulations was found and a mathematical model was developed to interpret this. This model was applied to each formulation. The obtained results where explained in terms of manufacture parameters with the aim of elucidate whether drug release only occurs by diffusion or erosion, or by a combination of both mechanisms. Controlling the manufacture method and the resultant changes in polymer structure facilitates a suitable rhGH release profile for different rhGH deficiency treatments.
Awojoyogbe, O B; Faromika, O P; Dada, M; Boubaker, Karem; Ojambati, O S
2011-12-01
Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Reed, P. M.; Giuliani, M.; Castelletti, A.
2017-08-01
Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min-max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.
Mathematic modeling of the Earth's surface and the process of remote sensing
NASA Technical Reports Server (NTRS)
Balter, B. M.
1979-01-01
It is shown that real data from remote sensing of the Earth from outer space are not best suited to the search for optimal procedures with which to process such data. To work out the procedures, it was proposed that data synthesized with the help of mathematical modeling be used. A criterion for simularity to reality was formulated. The basic principles for constructing methods for modeling the data from remote sensing are recommended. A concrete method is formulated for modeling a complete cycle of radiation transformations in remote sensing. A computer program is described which realizes the proposed method. Some results from calculations are presented which show that the method satisfies the requirements imposed on it.
Aeroelastic analysis for propellers - mathematical formulations and program user's manual
NASA Technical Reports Server (NTRS)
Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.
1983-01-01
Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.
NASA Technical Reports Server (NTRS)
Sharma, Naveen
1992-01-01
In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
Formulation of image quality prediction criteria for the Viking lander camera
NASA Technical Reports Server (NTRS)
Huck, F. O.; Jobson, D. J.; Taylor, E. J.; Wall, S. D.
1973-01-01
Image quality criteria are defined and mathematically formulated for the prediction computer program which is to be developed for the Viking lander imaging experiment. The general objective of broad-band (black and white) imagery to resolve small spatial details and slopes is formulated as the detectability of a right-circular cone with surface properties of the surrounding terrain. The general objective of narrow-band (color and near-infrared) imagery to observe spectral characteristics if formulated as the minimum detectable albedo variation. The general goal to encompass, but not exceed, the range of the scene radiance distribution within single, commandable, camera dynamic range setting is also considered.
Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi
2007-09-01
A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p < 0.05) on the response parameters. Numerical optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.
ERIC Educational Resources Information Center
Guner, Necdet
2013-01-01
This study examines and classifies the metaphors that twelfth grade students formulated to describe the concept of "learning mathematics". The sample of the study consists of 669 twelfth grade students (317 female, 352 male) of two Anatolian and two vocational high schools located in the city center of Denizli. The following questions…
Developing a Theoretical Framework for Classifying Levels of Context Use for Mathematical Problems
ERIC Educational Resources Information Center
Almuna Salgado, Felipe
2016-01-01
This paper aims to revisit and clarify the term problem context and to develop a theoretical classification of the construct of levels of context use (LCU) to analyse how the context of a problem is used to formulate a problem in mathematical terms and to interpret the answer in relation to the context of a given problem. Two criteria and six…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David; Hackebeil, Gabe; Laird, Carl Damon
Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This capability is commonly associated with algebraic modeling languages (AMLs), which support the description and analysis of mathematical models with a high-level language. Although most AMLs are implemented in custom modeling languages, Pyomo's modeling objects are embedded within Python, a full- featured high-level programming language that contains a rich set of supporting libraries.
A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines.
Toussaint, Nora C; Dönnes, Pierre; Kohlbacher, Oliver
2008-12-01
Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore, as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.
Cartan gravity, matter fields, and the gauge principle
NASA Astrophysics Data System (ADS)
Westman, Hans F.; Zlosnik, Tom G.
2013-07-01
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.
Parameter Identification Of Multilayer Thermal Insulation By Inverse Problems
NASA Astrophysics Data System (ADS)
Nenarokomov, Aleksey V.; Alifanov, Oleg M.; Gonzalez, Vivaldo M.
2012-07-01
The purpose of this paper is to introduce an iterative regularization method in the research of radiative and thermal properties of materials with further applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (heat capacity, emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the IHTP, based on sensitivity function approach, is presented too. The practical testing was performed for specimen of the real MLI. This paper consists of recent researches, which developed the approach suggested at [1].
Nonlinear scalar forcing based on a reaction analogy
NASA Astrophysics Data System (ADS)
Daniel, Don; Livescu, Daniel
2017-11-01
We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.
NASA Astrophysics Data System (ADS)
Sutrisno, Widowati, Tjahjana, R. Heru
2017-12-01
The future cost in many industrial problem is obviously uncertain. Then a mathematical analysis for a problem with uncertain cost is needed. In this article, we deals with the fuzzy expected value analysis to solve an integrated supplier selection and supplier selection problem with uncertain cost where the costs uncertainty is approached by a fuzzy variable. We formulate the mathematical model of the problems fuzzy expected value based quadratic optimization with total cost objective function and solve it by using expected value based fuzzy programming. From the numerical examples result performed by the authors, the supplier selection problem was solved i.e. the optimal supplier was selected for each time period where the optimal product volume of all product that should be purchased from each supplier for each time period was determined and the product stock level was controlled as decided by the authors i.e. it was followed the given reference level.
Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights
Hines, Daniel J.; Kaplan, David L.
2013-01-01
Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648
Meagher, Alison K.; Forrest, Alan; Dalhoff, Axel; Stass, Heino; Schentag, Jerome J.
2004-01-01
The pharmacokinetics of an extended-release (XR) formulation of ciprofloxacin has been compared to that of the immediate-release (IR) product in healthy volunteers. The only significant difference in pharmacokinetic parameters between the two formulations was seen in the rate constant of absorption, which was approximately 50% greater with the IR formulation. The geometric mean plasma ciprofloxacin concentrations were applied to an in vitro pharmacokinetic-pharmacodynamic model exposing three different clinical strains of Escherichia coli (MICs, 0.03, 0.5, and 2.0 mg/liter) to 24 h of simulated concentrations in plasma. A novel mathematical model was derived to describe the time course of bacterial CFU, including capacity-limited replication and first-order rate of bacterial clearance, and to model the effects of ciprofloxacin concentrations on these processes. A “mixture model” was employed which allowed as many as three bacterial subpopulations to describe the total bacterial load at any moment. Comparing the two formulations at equivalent daily doses, the rates and extents of bacterial killing were similar with the IR and XR formulations at MICs of 0.03 and 2.0 mg/liter. At an MIC of 0.5 mg/liter, however, the 1,000-mg/day XR formulation showed a moderate advantage in antibacterial effect: the area under the CFU-time curve was 45% higher for the IR regimen; the nadir log CFU and 24-h log CFU values for the IR regimen were 3.75 and 2.49, respectively; and those for XR were 4.54 and 3.13, respectively. The mathematical model explained the differences in bacterial killing rate for two regimens with identical AUC/MIC ratios. PMID:15155200
A comparison of approaches for finding minimum identifying codes on graphs
NASA Astrophysics Data System (ADS)
Horan, Victoria; Adachi, Steve; Bak, Stanley
2016-05-01
In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
Identifying the mathematics middle year students use as they address a community issue
NASA Astrophysics Data System (ADS)
Marshman, Margaret
2017-03-01
Middle year students often do not see the mathematics in the real world whereas the Australian Curriculum: Mathematics aims for students to be "confident and creative users and communicators of mathematics" (Australian Curriculum Assessment and Reporting Authority [ACARA] 2012). Using authentic and real mathematics tasks can address this situation. This paper is an account of how, working within a Knowledge Producing Schools' framework, a group of middle year students addressed a real community issue, the problem of the lack of a teenage safe space using mathematics and technology. Data were collected for this case study via journal observations and reflections, semi-structured interviews, samples of the students' work and videos of students working. The data were analysed by identifying the mathematics the students used determining the function and location of the space and focused on problem negotiation, formulation and solving through the statistical investigation cycle. The paper will identify the mathematics and statistics these students used as they addressed a real problem in their local community.
Observations of fallibility in applications of modern programming methodologies
NASA Technical Reports Server (NTRS)
Gerhart, S. L.; Yelowitz, L.
1976-01-01
Errors, inconsistencies, or confusing points are noted in a variety of published algorithms, many of which are being used as examples in formulating or teaching principles of such modern programming methodologies as formal specification, systematic construction, and correctness proving. Common properties of these points of contention are abstracted. These properties are then used to pinpoint possible causes of the errors and to formulate general guidelines which might help to avoid further errors. The common characteristic of mathematical rigor and reasoning in these examples is noted, leading to some discussion about fallibility in mathematics, and its relationship to fallibility in these programming methodologies. The overriding goal is to cast a more realistic perspective on the methodologies, particularly with respect to older methodologies, such as testing, and to provide constructive recommendations for their improvement.
The role of a posteriori mathematics in physics
NASA Astrophysics Data System (ADS)
MacKinnon, Edward
2018-05-01
The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.
Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J
2015-04-01
The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.
NASA Astrophysics Data System (ADS)
Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.
2015-04-01
The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.
Taguchi method for partial differential equations with application in tumor growth.
Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena
2014-01-01
The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
ERIC Educational Resources Information Center
Dodd, Carol Ann
This study explores a technique for evaluating teacher education programs in terms of teaching competencies, as applied to the Indiana University Mathematics Methods Program (MMP). The evaluation procedures formulated for the study include a process product design in combination with a modification of Pophan's performance test paradigm and Gage's…
NASA Astrophysics Data System (ADS)
Wardono; Mariani, S.; Hendikawati, P.; Ikayani
2017-04-01
Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are then the subject of the reflective upper and intermediate group can meet all the MV indicators but to lower groups can only fulfill some MV indicators. The subject is impulsive upper and middle group can meet all the MH indicators but to lower groups can only meet some MH indicator, then the subject is impulsive group can meet all the MV indicators but for middle and the bottom group can only fulfill some MV indicators.
pyomocontrib_simplemodel v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William
2017-03-02
Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This library extends the API of Pyomo to include a simple modeling representation: a list of objectives and constraints.
Extended Hamiltonian approach to continuous tempering
NASA Astrophysics Data System (ADS)
Gobbo, Gianpaolo; Leimkuhler, Benedict J.
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
Care and Feeding of a Paperless, Calculus-based Physics Course
NASA Astrophysics Data System (ADS)
Moore, Christopher; Fuller, Robert; Plano-Clark, Vicki L.; Dunbar, Steven R.
1997-04-01
Technology is playing an increasing role in our lives at home, at work, and in the classroom. We have begun a calculus-based introductory physics course to integrate mathematics and multimedia with the traditional physics content. This course relies on the use of technology to teach physics. We formulated the following rule for the conduct of the course: ''No paper is transferred between instructional staff and students that contains course information or assignments for grading.'' Implementing and maintaining this physics course within the context of the instructor goals will be discussed. Preliminary results of feedback from the students and an evaluation team will be presented.
Gentis, Nicolaos D; Betz, Gabriele
2012-02-01
The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. Copyright © 2011 Wiley Periodicals, Inc.
Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique
NASA Astrophysics Data System (ADS)
Berchane, Nader
2005-11-01
Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.
Focus group discussion in mathematical physics learning
NASA Astrophysics Data System (ADS)
Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.
2018-03-01
The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.
On l(1): Optimal decentralized performance
NASA Technical Reports Server (NTRS)
Sourlas, Dennis; Manousiouthakis, Vasilios
1993-01-01
In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.
Ludwig, Kai; Speiser, Bernd
2004-01-01
We describe a modeling software component Ecco, implemented in the C++ programming language. It assists in the formulation of physicochemical systems including, in particular, electrochemical processes within general geometries. Ecco's kinetic part then translates any user defined reaction mechanism into an object-oriented representation and generates the according mathematical model equations. The input language, its grammar, the object-oriented design of Ecco, based on design patterns, and its integration into the open source software project EChem++ are discussed. Application Strategies are given.
Dynamic modal characterization of musical instruments using digital holography
NASA Astrophysics Data System (ADS)
Demoli, Nazif; Demoli, Ivan
2005-06-01
This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.
Schrödinger equation revisited
Schleich, Wolfgang P.; Greenberger, Daniel M.; Kobe, Donald H.; Scully, Marlan O.
2013-01-01
The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton–Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260
NASA Astrophysics Data System (ADS)
Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.
A design optimization process for Space Station Freedom
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Fox, George; Duquette, William H.
1990-01-01
The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.
Physarum solver: A biologically inspired method of road-network navigation
NASA Astrophysics Data System (ADS)
Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki
2006-04-01
We have proposed a mathematical model for the adaptive dynamics of the transport network in an amoeba-like organism, the true slime mold Physarum polycephalum. The model is based on physiological observations of this species, but can also be used for path-finding in the complicated networks of mazes and road maps. In this paper, we describe the physiological basis and the formulation of the model, as well as the results of simulations of some complicated networks. The path-finding method used by Physarum is a good example of cellular computation.
Bridging meso- and microscopic anisotropic unilateral damage formulations for microcracked solids
NASA Astrophysics Data System (ADS)
Zhu, Qi-Zhi; Yuan, Shuang-Shuang; Shao, Jian-fu
2017-04-01
A mathematically consistent and unified description of induced anisotropy and unilateral effects constitutes one of the central tasks in the continuum damage theories developed so far. This paper aims at bridging constitutive damage formulations on meso- and micro-scales with an emphasis on a complete mesoscopic determination of material effective properties for microcracked solids. The key is to introduce a new set of invariants in terms of strain tensor and fabric tensor by making use of the Walpole's tensorial base. This invariant set proves to be equivalent to the classical one, while the new one provides great conveniences to high-order orientation-dependent tensor manipulations. When limited to the case of parallel microcracks, potential relations between ten combination coefficients are established by applying continuity conditions. It is found that the dilute approximation with penny-shaped microcracks is a particular case of the present one. By originally introducing effective strain effect, interactions between microcracks are taken into account with comparison to the Mori-Tanaka method as well as the Ponte-Castaneda and Willis scheme. For completeness, discussions are also addressed on macroscopic formulations with high-order damage variables.
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Sun, Yan; Lang, Maoxiang; Wang, Danzhu
2016-01-01
The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294
Yang, Xiaoxia; Duan, John; Fisher, Jeffrey
2016-01-01
A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allu, Srikanth; Velamur Asokan, Badri; Shelton, William A
A generalized three dimensional computational model based on unied formulation of electrode- electrolyte-electrode system of a electric double layer supercapacitor has been developed. The model accounts for charge transport across the solid-liquid system. This formulation based on volume averaging process is a widely used concept for the multiphase ow equations ([28] [36]) and is analogous to porous media theory typically employed for electrochemical systems [22] [39] [12]. This formulation is extended to the electrochemical equations for a supercapacitor in a consistent fashion, which allows for a single-domain approach with no need for explicit interfacial boundary conditions as previously employed ([38]).more » In this model it is easy to introduce the spatio-temporal variations, anisotropies of physical properties and it is also conducive for introducing any upscaled parameters from lower length{scale simulations and experiments. Due to the irregular geometric congurations including porous electrode, the charge transport and subsequent performance characteristics of the super-capacitor can be easily captured in higher dimensions. A generalized model of this nature also provides insight into the applicability of 1D models ([38]) and where multidimensional eects need to be considered. In addition, simple sensitivity analysis on key input parameters is performed in order to ascertain the dependence of the charge and discharge processes on these parameters. Finally, we demonstarted how this new formulation can be applied to non-planar supercapacitors« less
Advanced Computational Methods for Security Constrained Financial Transmission Rights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria
Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulationmore » of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.« less
Optimal design of high-rise buildings with respect to fundamental eigenfrequency
NASA Astrophysics Data System (ADS)
Alavi, Arsalan; Rahgozar, Reza; Torkzadeh, Peyman; Hajabasi, Mohamad Ali
2017-12-01
In modern tall and slender structures, dynamic responses are usually the dominant design requirements, instead of strength criteria. Resonance is often a threatening phenomenon for such structures. To avoid this problem, the fundamental eigenfrequency, an eigenfrequency of higher order, should be maximized. An optimization problem with this objective is constructed in this paper and is applied to a high-rise building. Using variational method, the objective function is maximized, contributing to a particular profile for the first mode shape. Based on this preselected profile, a parametric formulation for flexural stiffness is calculated. Due to some near-zero values for stiffness, the obtained formulation will be modified by adding a lower bound constraint. To handle this constraint some new parameters are introduced; thereby allowing for construction of a model relating the unknown parameters. Based on this mathematical model, a design algorithmic procedure is presented. For the sake of convenience, a single-input design graph is presented as well. The main merit of the proposed method, compared to previous researches, is its hand calculation aspect, suitable for parametric studies and sensitivity analysis. As the presented formulations are dimensionless, they are applicable in any dimensional system. Accuracy and practicality of the proposed method is illustrated at the end by applying it to a real-life structure.
Mathematical modeling to predict residential solid waste generation.
Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de
2008-01-01
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.
Experiments with Corn To Demonstrate Plant Growth and Development.
ERIC Educational Resources Information Center
Haldeman, Janice H.; Gray, Margarit S.
2000-01-01
Explores using corn seeds to demonstrate plant growth and development. This experiment allows students to formulate hypotheses, observe and record information, and practice mathematics. Presents background information, materials, procedures, and observations. (SAH)
Mathematical modeling of tomographic scanning of cylindrically shaped test objects
NASA Astrophysics Data System (ADS)
Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.
2018-05-01
The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.
Propagation of Cutaneous Thermal Injury: A Mathematical Model
Xue, Chuan; Chou, Ching-Shan; Kao, Chiu-Yen; Sen, Chandan K.; Friedman, Avner
2012-01-01
Cutaneous burn wounds represent a significant public health problem with 500,000 patients per year in the U.S. seeking medical attention. Immediately after skin burn injury, the volume of the wound burn expands due to a cascade of chemical reactions, including lipid peroxidation chain reactions. Based on these chemical reactions, the present paper develops for the first time a three-dimensional mathematical model to quantify the propagation of tissue damage within 12 hours post initial burn. We use the model to investigate the effect of supplemental antioxidant vitamin E for stopping the propagation. We show, for example, that if the production rate of vitamin E is increased, post burn, by five times the natural production in a healthy tissue, then this would slow down the lipid peroxide propagation by at least 50%. Our model is formulated in terms of differential equations, and sensitivity analysis is performed on the parameters to ensure the robustness of the results. PMID:22211391
Radiative-conductive inverse problem for lumped parameter systems
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2008-11-01
The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.
Study of multilayer thermal insulation by inverse problems method
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2009-11-01
The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.
Mathematical modeling of spinning elastic bodies for modal analysis.
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.; Baddeley, V.
1973-01-01
The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.
Dynamics of local grid manipulations for internal flow problems
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Snyder, Aaron; Choo, Yung K.
1991-01-01
The control point method of algebraic grid generation is briefly reviewed. The review proceeds from the general statement of the method in 2-D unencumbered by detailed mathematical formulation. The method is supported by an introspective discussion which provides the basis for confidence in the approach. The more complex 3-D formulation is then presented as a natural generalization. Application of the method is carried out through 2-D examples which demonstrate the technique.
The conceptual basis of mathematics in cardiology: (II). Calculus and differential equations.
Bates, Jason H T; Sobel, Burton E
2003-04-01
This is the second in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
Bates, Jason H T; Sobel, Burton E
2003-05-01
This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
The conceptual basis of mathematics in cardiology IV: statistics and model fitting.
Bates, Jason H T; Sobel, Burton E
2003-06-01
This is the fourth in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
The conceptual basis of mathematics in cardiology: (I) algebra, functions and graphs.
Bates, Jason H T; Sobel, Burton E
2003-02-01
This is the first in a series of four articles developed for the readers of. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease, abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.
NASA Astrophysics Data System (ADS)
Xie, Songhua; Li, Dehua; Nie, Hui
2009-10-01
There are a large number of fuzzy concepts and fuzzy phenomena in traditional Chinese medicine, which have led to great difficulties for study of traditional Chinese medicine. In this paper, the mathematical methods are used to quantify fuzzy concepts of drugs and prescription. We put forward the process of innovation formulations and selection method in Chinese medicine based on the Possibility Construction Space Theory (PCST) and fuzzy pattern recognition. Experimental results show that the method of selecting medicines from a number of characteristics of traditional Chinese medicine is consistent with the basic theory of traditional Chinese medicine. The results also reflect the integrated effects of the innovation compound. Through the use of the innovation formulations system, we expect to provide software tools for developing new traditional Chinese medicine and to inspire traditional Chinese medicine researchers to develop novel drugs.
Numerical, analytical, experimental study of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.
1992-01-01
NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.
NASA Astrophysics Data System (ADS)
Hawthorne, Bryant; Panchal, Jitesh H.
2014-07-01
A bilevel optimization formulation of policy design problems considering multiple objectives and incomplete preferences of the stakeholders is presented. The formulation is presented for Feed-in-Tariff (FIT) policy design for decentralized energy infrastructure. The upper-level problem is the policy designer's problem and the lower-level problem is a Nash equilibrium problem resulting from market interactions. The policy designer has two objectives: maximizing the quantity of energy generated and minimizing policy cost. The stakeholders decide on quantities while maximizing net present value and minimizing capital investment. The Nash equilibrium problem in the presence of incomplete preferences is formulated as a stochastic linear complementarity problem and solved using expected value formulation, expected residual minimization formulation, and the Monte Carlo technique. The primary contributions in this article are the mathematical formulation of the FIT policy, the extension of computational policy design problems to multiple objectives, and the consideration of incomplete preferences of stakeholders for policy design problems.
A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers
NASA Astrophysics Data System (ADS)
Lindstrom, Michael; Wetton, Brian
2017-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
NASA Astrophysics Data System (ADS)
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Chronobiology of epilepsy: diagnostic and therapeutic implications of chrono-epileptology.
Loddenkemper, Tobias; Lockley, Steven W; Kaleyias, Joseph; Kothare, Sanjeev V
2011-04-01
The combination of chronobiology and epilepsy offers novel diagnostic and therapeutic management options. Knowledge of the interactions between circadian periodicity, entrainment, sleep patterns, and epilepsy may provide additional diagnostic options beyond sleep deprivation and extended release medication formulations. It may also provide novel insights into the physiologic, biochemical, and genetic regulation processes of epilepsy and the circadian clock, rendering new treatment options. Temporal fluctuations of seizure susceptibility based on sleep homeostasis and circadian phase in selected epilepsies may provide predictability based on mathematical models. Chrono-epileptology offers opportunities for individualized patient-oriented treatment paradigms based on chrono-pharmacology, differential medication dosing, chrono-drug delivery systems, and utilization of "zeitgebers" such as chronobiotics or light-therapy and desynchronization strategies among others.
Quod erat demonstrandum: Understanding and Explaining Equations in Physics Teacher Education
NASA Astrophysics Data System (ADS)
Karam, Ricardo; Krey, Olaf
2015-07-01
In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this inconsistency, one crucial step is to improve physics teacher education. In this work, we describe the structure of a course that was given to physics teacher students at the end of their master's degree in two European universities. The course had two main goals: (1) To investigate the complex interplay between physics and mathematics from a historical and philosophical perspective and (2) To expand students' repertoire of explanations regarding possible ways to derive certain school-relevant equations. A qualitative analysis on a case study basis was conducted to investigate the learning outcomes of the course. Here, we focus on the comparative analysis of two students who had considerably different views of the math-physics interplay in the beginning of the course. Our general results point to important changes on some of the students' views on the role of mathematics in physics, an increase in the participants' awareness of the difficulties faced by learners to understand physics equations and a broadening in the students' repertoire to answer "Why?" questions formulated to equations. Based on this analysis, further implications for physics teacher education are derived.
Mathematical models for Isoptera (Insecta) mound growth.
Buschini, M L T; Abuabara, M A P; Petrere, Miguel
2008-08-01
In this research we proposed two mathematical models for Isoptera mound growth derived from the Von Bertalanffy growth curve, one appropriated for Nasutitermes coxipoensis, and a more general formulation. The mean height and the mean diameter of ten small colonies were measured each month for twelve months, from April, 1995 to April, 1996. Through these data, the monthly volumes were calculated for each of them. Then the growth in height and in volume was estimated and the models proposed.
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
Gibiansky, Leonid; Gibiansky, Ekaterina
2018-02-01
The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.
Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval
2018-01-05
It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.
Undergraduate paramedic students cannot do drug calculations.
Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett
2012-01-01
Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they 'did not have any drug calculations issues'. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment.
Evaluation of candidate working fluid formulations for the electrothermal - chemical wind tunnel
NASA Technical Reports Server (NTRS)
Akyurtlu, Jale F.; Akyurtlu, Ates
1991-01-01
Various candidate chemical formulations are evaluated as a precursor for the working fluid to be used in the electrothermal hypersonic test facility which was under study at the NASA LaRC Hypersonic Propulsion Branch, and the formulations which would most closely satisfy the goals set for the test facility are identified. Out of the four tasks specified in the original proposal, the first two, literature survey and collection of kinetic data, are almost completed. The third task, work on a mathematical model of the ET wind tunnel operation, was started and concentrated on the expansion in the nozzle with finite rate kinetics.
Prediction of helicopter rotor noise in hover
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2015-05-01
Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalashilin, Dmitrii V.; Burghardt, Irene
2008-08-28
In this article, two coherent-state based methods of quantum propagation, namely, coupled coherent states (CCS) and Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH), are put on the same formal footing, using a derivation from a variational principle in Lagrangian form. By this approach, oscillations of the classical-like Gaussian parameters and oscillations of the quantum amplitudes are formally treated in an identical fashion. We also suggest a new approach denoted here as coupled coherent states trajectories (CCST), which completes the family of Gaussian-based methods. Using the same formalism for all related techniques allows their systematization and a straightforward comparison of their mathematical structuremore » and cost.« less
Turbulence and fire-spotting effects into wild-land fire simulators
NASA Astrophysics Data System (ADS)
Kaur, Inderpreet; Mentrelli, Andrea; Bosseur, Frédéric; Filippi, Jean-Baptiste; Pagnini, Gianni
2016-10-01
This paper presents a mathematical approach to model the effects and the role of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of a drifting component (obtained from an existing wildfire simulator without turbulence and fire-spotting) and a random fluctuating component. The modelling of the random effects is embodied in a probability density function accounting for the fluctuations around the fire perimeter which is given by the drifting component. In past, this formulation has been applied to include these random effects into a wildfire simulator based on an Eulerian moving interface method, namely the Level Set Method (LSM), but in this paper the same formulation is adapted for a wildfire simulator based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS). The main highlight of the present study is the comparison of the performance of a Lagrangian and an Eulerian moving interface method when applied to wild-land fire propagation. Simple idealised numerical experiments are used to investigate the potential applicability of the proposed formulation to DEVS and to compare its behaviour with respect to the LSM. The results show that DEVS based wildfire propagation model qualitatively improves its performance (e.g., reproducing flank and back fire, increase in fire spread due to pre-heating of the fuel by hot air and firebrands, fire propagation across no fuel zones, secondary fire generation, ...) when random effects are included according to the present formulation. The performance of DEVS and LSM based wildfire models is comparable and the only differences which arise among the two are due to the differences in the geometrical construction of the direction of propagation. Though the results presented here are devoid of any validation exercise and provide only a proof of concept, they show a strong inclination towards an intended operational use. The existing LSM or DEVS based operational simulators like WRF-SFIRE and ForeFire respectively can serve as an ideal basis for the same.
Dynamic Stochastic Control of Freeway Corridor Systems : Summary and Project Overview
DOT National Transportation Integrated Search
1978-12-01
Systematic methodological approaches to overall traffic management from both short-term (real-time) and long-term (planning) perspectives have been developed. The approach embodies formulation and solution of interrelated mathematical problems from o...
Richard P. Feynman and the Feynman Diagrams
available in full-text and on the Web. Documents: A Theorem and Its Application to Finite Tampers, DOE Fermi-Thomas Theory; DOE Technical Report, April 28, 1947 Mathematical Formulation of the Quantum Theory
NASA Astrophysics Data System (ADS)
Stöckl, Stefan; Rotach, Mathias W.; Kljun, Natascha
2018-01-01
We discuss the results of Gibson and Sailor (Boundary-Layer Meteorol 145:399-406, 2012) who suggest several corrections to the mathematical formulation of the Lagrangian particle dispersion model of Rotach et al. (Q J R Meteorol Soc 122:367-389, 1996). While most of the suggested corrections had already been implemented in the 1990s, one suggested correction raises a valid point, but results in a violation of the well-mixed criterion. Here we improve their idea and test the impact on model results using a well-mixed test and a comparison with wind-tunnel experimental data. The new approach results in similar dispersion patterns as the original approach, while the approach suggested by Gibson and Sailor leads to erroneously reduced concentrations near the ground in convective and especially forced convective conditions.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A; Smith, David L
2015-08-01
Since the original Ross-Macdonald formulations of vector-borne disease transmission, there has been a broad proliferation of mathematical models of vector-borne disease, but many of these models retain most to all of the simplifying assumptions of the original formulations. Recently, there has been a new expansion of mathematical frameworks that contain explicit representations of the vector life cycle including aquatic stages, multiple vector species, host heterogeneity in biting rate, realistic vector feeding behavior, and spatial heterogeneity. In particular, there are now multiple frameworks for spatially explicit dynamics with movements of vector, host, or both. These frameworks are flexible and powerful, but require additional data to take advantage of these features. For a given question posed, utilizing a range of models with varying complexity and assumptions can provide a deeper understanding of the answers derived from models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Zilinskas, Julius; Lančinskas, Algirdas; Guarracino, Mario Rosario
2014-01-01
In this paper we propose some mathematical models to plan a Next Generation Sequencing experiment to detect rare mutations in pools of patients. A mathematical optimization problem is formulated for optimal pooling, with respect to minimization of the experiment cost. Then, two different strategies to replicate patients in pools are proposed, which have the advantage to decrease the overall costs. Finally, a multi-objective optimization formulation is proposed, where the trade-off between the probability to detect a mutation and overall costs is taken into account. The proposed solutions are devised in pursuance of the following advantages: (i) the solution guarantees mutations are detectable in the experimental setting, and (ii) the cost of the NGS experiment and its biological validation using Sanger sequencing is minimized. Simulations show replicating pools can decrease overall experimental cost, thus making pooling an interesting option.
Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel
2015-01-01
Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440–3450, 2015 PMID:26073446
Search algorithm complexity modeling with application to image alignment and matching
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2014-05-01
Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.
Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. F.; Conesa, M.; Alhama, I.
2016-11-01
Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.
A special protection scheme utilizing trajectory sensitivity analysis in power transmission
NASA Astrophysics Data System (ADS)
Suriyamongkol, Dan
In recent years, new measurement techniques have provided opportunities to improve the North American Power System observability, control and protection. This dissertation discusses the formulation and design of a special protection scheme based on a novel utilization of trajectory sensitivity techniques with inputs consisting of system state variables and parameters. Trajectory sensitivity analysis (TSA) has been used in previous publications as a method for power system security and stability assessment, and the mathematical formulation of TSA lends itself well to some of the time domain power system simulation techniques. Existing special protection schemes often have limited sets of goals and control actions. The proposed scheme aims to maintain stability while using as many control actions as possible. The approach here will use the TSA in a novel way by using the sensitivities of system state variables with respect to state parameter variations to determine the state parameter controls required to achieve the desired state variable movements. The initial application will operate based on the assumption that the modeled power system has full system observability, and practical considerations will be discussed.
Patel, Niketkumar; Jain, Shashank; Madan, Parshotam; Lin, Senshang
2016-11-01
The objective of this investigation is to develop mathematical equation to understand the impact of variables and establish statistical control over transdermal iontophoretic delivery of tacrine hydrochloride. In addition, possibility of using conductivity measurements as a tool of predicting ionic mobility of the participating ions for the application of iontophoretic delivery was explored. Central composite design was applied to study effect of independent variables like current strength, buffer molarity, and drug concentration on iontophoretic tacrine permeation flux. Molar conductivity was determined to evaluate electro-migration of tacrine ions with application of Kohlrausch's law. The developed mathematic equation not only reveals drug concentration as the most significant variable regulating tacrine permeation, followed by current strength and buffer molarity, but also is capable to optimize tacrine permeation with respective combination of independent variables to achieve desired therapeutic plasma concentration of tacrine in treatment of Alzheimer's disease. Moreover, relative higher mobility of sodium and chloride ions was observed as compared to estimated tacrine ion mobility. This investigation utilizes the design of experiment approach and extends the primary understanding of imapct of electronic and formulation variables on the tacrine permeation for the formulation development of iontophoretic tacrine delivery.
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Shafei, A. M.
2013-02-01
The goal of this paper is to describe the application of Gibbs-Appell (G-A) formulation and the assumed modes method to the mathematical modeling of N-viscoelastic link manipulators. The paper's focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin-Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.
Let’s have a coffee with the Standard Model of particle physics!
NASA Astrophysics Data System (ADS)
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-05-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.
NASA Technical Reports Server (NTRS)
Lebiedzik, Catherine
1995-01-01
Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Ray Alden; Zou, Ling; Zhao, Haihua
This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Can hydro-economic river basin models simulate water shadow prices under asymmetric access?
Kuhn, A; Britz, W
2012-01-01
Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
2016-05-25
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Butler, Troy; Graham, L.; Estep, D.; ...
2015-02-03
The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less
A mathematical model for computer image tracking.
Legters, G R; Young, T Y
1982-06-01
A mathematical model using an operator formulation for a moving object in a sequence of images is presented. Time-varying translation and rotation operators are derived to describe the motion. A variational estimation algorithm is developed to track the dynamic parameters of the operators. The occlusion problem is alleviated by using a predictive Kalman filter to keep the tracking on course during severe occlusion. The tracking algorithm (variational estimation in conjunction with Kalman filter) is implemented to track moving objects with occasional occlusion in computer-simulated binary images.
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
NASA Astrophysics Data System (ADS)
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
1983-12-01
grade levels. Chapter 2 discusses the formulation of the model. It highlights the theoretical and mathematical concepts perti- nant to the model...assignments. This is to insure the professional development of the soldier and is in accordance with the "whole man" concept. 11. IALUI2U Lvels !Wii...objective function can be mathematically expressed as: (aijk (bk ijk This objective function assesses the same penalty to each vacancy of each type of
NASA Astrophysics Data System (ADS)
Neustupa, Tomáš
2017-07-01
The paper presents the mathematical model of a steady 2-dimensional viscous incompressible flow through a radial blade machine. The corresponding boundary value problem is studied in the rotating frame. We provide the classical and weak formulation of the problem. Using a special form of the so called "artificial" or "natural" boundary condition on the outflow, we prove the existence of a weak solution for an arbitrarily large inflow.
Elementary and brief introduction of hadronic chemistry
NASA Astrophysics Data System (ADS)
Tangde, Vijay M.
2013-10-01
The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.
Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage
NASA Astrophysics Data System (ADS)
Perera, Gayathri; Ratnayake, Vijitha
2018-05-01
This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is validated based on data collected from three different factories in apparel industry, manufacturing fast fashion products. A program code is developed using Lingo 16.0 software package to generate optimal cells for developed model and to determine the possible cost-saving percentage when the existing layouts used in three factories are replaced by generated optimal cells. The optimal cells generated by developed mathematical model result in significant cost saving when compared with existing product layouts used in production/assembly department of selected factories in apparel industry. The developed model can be considered as effective in minimizing the considered cost terms in dynamic production environment of fast fashion apparel manufacturing industry. Findings of this paper can be used for further researches on minimizing the changeover-related costs in fast fashion apparel production stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
The mathematical model of dynamic stabilization system for autonomous car
NASA Astrophysics Data System (ADS)
Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.
2018-02-01
Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.
Vibrational relaxation in hypersonic flow fields
NASA Technical Reports Server (NTRS)
Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.
1993-01-01
Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.
From Loss of Memory to Poisson.
ERIC Educational Resources Information Center
Johnson, Bruce R.
1983-01-01
A way of presenting the Poisson process and deriving the Poisson distribution for upper-division courses in probability or mathematical statistics is presented. The main feature of the approach lies in the formulation of Poisson postulates with immediate intuitive appeal. (MNS)
Seebeck Changes Due to Residual Cold-Work and Reversible Effects in Type K Bare-Wire Thermocouples
NASA Astrophysics Data System (ADS)
Webster, E. S.
2017-09-01
Type K thermocouples are the most commonly used thermocouple for industrial measurements because of their low cost, wide temperature range, and durability. As with all base-metal thermocouples, Type K is made to match a mathematical temperature-to-emf relationship and not a prescribed alloy formulation. Because different manufacturers use varying alloy formulations and manufacturing techniques, different Type K thermocouples exhibit a range of drift and hysteresis characteristics, largely due to ordering effects in the positive (K+) thermoelement. In this study, these effects are assessed in detail for temperatures below 700°C in the Type K wires from nine manufacturers. A linear gradient furnace and a high-resolution homogeneity scanner combined with the judicious use of annealing processes allow measurements that separately identify the effects of cold-work, ordering, and oxidation to be made. The results show most K+ alloys develop significant errors, but the magnitudes of the contributions of each process vary substantially between the different K+ wires. In practical applications, the measurement uncertainties achievable with Type K therefore depend not only on the wire formulation but also on the temperature, period of exposure, and, most importantly, the thermal treatments prior to use.
Transport of fluid and solutes in the body I. Formulation of a mathematical model.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.
Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis
2008-10-01
We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*)
Singularity-free dynamic equations of spacecraft-manipulator systems
NASA Astrophysics Data System (ADS)
From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.
2011-12-01
In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.
Investigating adaptive reasoning and strategic competence: Difference male and female
NASA Astrophysics Data System (ADS)
Syukriani, Andi; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
The series of adaptive reasoning and strategic competencies represent the five components of mathematical proficiency to describe the students' mathematics learning success. Gender contribute to the problem-solving process. This qualitative research approach investigated the adaptive reasoning and strategic competence aspects of a male student and a female student when they solved mathematical problem. They were in the eleventh grade of high school in Makassar. Both also had similar mathematics ability and were in the highest category. The researcher as the main instrument used secondary instrument to obtain the appropriate subject and to investigate the aspects of adaptive reasoning and strategic competence. Test of mathematical ability was used to locate the subjects with similar mathematical ability. The unstructured guideline interview was used to investigate aspects of adaptive reasoning and strategic competence when the subject completed the task of mathematical problem. The task of mathematical problem involves several concepts as the right solution, such as the circle concept, triangle concept, trigonometry concept, and Pythagoras concept. The results showed that male and female subjects differed in applying a strategy to understand, formulate and represent the problem situation. Furthermore, both also differed in explaining the strategy used and the relationship between concepts and problem situations.
Koch, Ina; Nöthen, Joachim; Schleiff, Enrico
2017-01-01
Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem. Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana . We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs. Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to nearly all parts of the network, especially to the citric acid cycle. There is a close cooperation of important metabolic pathways, e.g., the de novo synthesis of uridine-5-monophosphate, the γ-aminobutyric acid shunt, and the urea cycle. The presented approach extends the established methods for a feasible interpretation of biological network models, in particular of large and complex models.
Koch, Ina; Nöthen, Joachim; Schleiff, Enrico
2017-01-01
Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem. Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs. Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to nearly all parts of the network, especially to the citric acid cycle. There is a close cooperation of important metabolic pathways, e.g., the de novo synthesis of uridine-5-monophosphate, the γ-aminobutyric acid shunt, and the urea cycle. The presented approach extends the established methods for a feasible interpretation of biological network models, in particular of large and complex models. PMID:28713420
Kristó, Katalin; Pintye-Hódi, Klára
2013-02-01
The main aim of this study was to investigate the effects of pharmaceutical technological methods on pepsin activity during the formulation of solid dosage forms. The circumstances of direct compression and wet granulation were modeled. During direct compression, the heat and the compression force must be taken into consideration. The effects of these parameters were investigated in three materials (pure pepsin, and 1:1 (w/w) pepsin-tartaric acid and 1:1 (w/w) pepsin-citric acid powder mixtures). It was concluded that direct compression is appropriate for the formulation of solid dosage forms containing pepsin through application without acids or with acids at low compression force. The effects of wet granulation were investigated with a factorial design for the same three materials. The factors were time, temperature and moisture content. There was no significant effect of the factors when acids were not applied. Temperature was a significant factor when acids were applied. The negative effect was significantly higher for citric acid than for tartaric acid. It was found that wet granulation can be utilized for the processing of pepsin into solid dosage forms under well-controlled circumstances. The application of citric acid is not recommended during the formulation of solid dosage forms through wet granulation. A mathematically based optimization may be necessary for preformulation studies of the preparation of dosage forms containing sensitive enzymes.
2012-01-01
Background Formulation and evaluation of public health policy commonly employs science-based mathematical models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and latently infected populations. Thus modelling is central in planning public health intervention. However, models are highly uncertain because they are based on observations that are geographically and temporally distinct from the population to which they are applied. Aims We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncertainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable. Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making. Methods Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection. Results We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified. In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also be more vulnerable to model error. Conclusions The info-gap framework is useful for managing model uncertainty and is attractive when uncertainties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory provides valuable insight into the confidence of achieving agreed-upon goals. PMID:23249291
Ben-Haim, Yakov; Dacso, Clifford C; Zetola, Nicola M
2012-12-19
Formulation and evaluation of public health policy commonly employs science-based mathematical models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and latently infected populations. Thus modelling is central in planning public health intervention. However, models are highly uncertain because they are based on observations that are geographically and temporally distinct from the population to which they are applied. We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncertainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable. Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making. Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection. We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified. In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also be more vulnerable to model error. The info-gap framework is useful for managing model uncertainty and is attractive when uncertainties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory provides valuable insight into the confidence of achieving agreed-upon goals.
Locating an imaging radar in Canada for identifying spaceborne objects
NASA Astrophysics Data System (ADS)
Schick, William G.
1992-12-01
This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman
2008-10-01
The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.
From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''
NASA Astrophysics Data System (ADS)
Bergeron, H.
2001-09-01
Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].
Hamiltonian closures in fluid models for plasmas
NASA Astrophysics Data System (ADS)
Tassi, Emanuele
2017-11-01
This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and connections with previously discussed fluid models are pointed out.
Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A
2008-12-01
The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.
Special Issue on a Fault Tolerant Network on Chip Architecture
NASA Astrophysics Data System (ADS)
Janidarmian, Majid; Tinati, Melika; Khademzadeh, Ahmad; Ghavibazou, Maryam; Fekr, Atena Roshan
2010-06-01
In this paper a fast and efficient spare switch selection algorithm is presented in a reliable NoC architecture based on specific application mapped onto mesh topology called FERNA. Based on ring concept used in FERNA, this algorithm achieves best results equivalent to exhaustive algorithm with much less run time improving two parameters. Inputs of FERNA algorithm for response time of the system and extra communication cost minimization are derived from simulation of high transaction level using SystemC TLM and mathematical formulation, respectively. The results demonstrate that improvement of above mentioned parameters lead to advance whole system reliability that is analytically calculated. Mapping algorithm has been also investigated as an effective issue on extra bandwidth requirement and system reliability.
Undergraduate paramedic students cannot do drug calculations
Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett
2012-01-01
BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067
Inconclusive quantum measurements and decisions under uncertainty
NASA Astrophysics Data System (ADS)
Yukalov, Vyacheslav; Sornette, Didier
2016-04-01
We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.
Xiu, G H; Jiang, L; Li, P
2001-07-05
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.
Formulation and Testing of a Novel River Nitrification Model
The nitrification process in many riverwater quality models has been approximated by a simple first order dependency on the water column ammonia concentration, while the benthic contribution has routinely been neglected. In this study a mathematical framework was developed for se...
ERIC Educational Resources Information Center
Hillen, Amy F.; Watanabe, Tad
2013-01-01
Recent documents suggest that all students, even young children, should have opportunities to engage in reasoning and proof (CCSSI 2010; NCTM 2000, 2006, 2009). One mathematical practice that is central to reasoning and proof is making conjectures (CCSSI 2010; NCTM 2000; Stylianides 2008). In the elementary grades, "formulating conjectures…
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
Parallel Reconstruction Using Null Operations (PRUNO)
Zhang, Jian; Liu, Chunlei; Moseley, Michael E.
2011-01-01
A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droppo, J.G.; Buck, J.W.
1996-03-01
The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a multimedia model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations. The MEPAS atmospheric component for the air mediamore » documented in this report includes models for emission from a source to the air, initial plume rise and dispersion, airborne pollutant transport and dispersion, and deposition to soils and crops. The material in this report is documentation for MEPAS Versions 3.0 and 3.1 and the MEPAS version used in the Remedial Action Assessment System (RAAS) Version 1.0.« less
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel
2015-10-01
Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
A gist of comprehensive review of hadronic chemistry and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangde, Vijay M.
20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less
Mathematical literacy skills of students' in term of gender differences
NASA Astrophysics Data System (ADS)
Lailiyah, Siti
2017-08-01
Good mathematical literacy skills will hopefully help maximize the tasks and role of the prospective teacher in activities. Mathematical literacy focus on students' ability to analyze, justify, and communicate ideas effectively, formulate, solve and interpret mathematical problems in a variety of forms and situations. The purpose of this study is to describe the mathematical literacy skills of the prospective teacher in term of gender differences. This research used a qualitative approach with a case study. Subjects of this study were taken from two male students and two female students of the mathematics education prospective teacher who have followed Community Service Program (CSP) in literacy. Data were collected through methods think a loud and interviews. Four prospective teachers were asked to fill mathematical literacy test and video taken during solving this test. Students are required to convey loud what he was thinking when solving problems. After students get the solution, researchers grouped the students' answers and results think aloud. Furthermore, the data are grouped and analyzed according to indicators of mathematical literacy skills. Male students have good of each indicator in mathematical literacy skills (the first indicator to the sixth indicator). Female students have good of mathematical literacy skills (the first indicator, the second indicator, the third indicator, the fourth indicator and the sixth indicator), except for the fifth indicators that are enough.
Modeling and optimization of dough recipe for breadsticks
NASA Astrophysics Data System (ADS)
Krivosheev, A. Yu; Ponomareva, E. I.; Zhuravlev, A. A.; Lukina, S. I.; Alekhina, N. N.
2018-05-01
During the work, the authors studied the combined effect of non-traditional raw materials on indicators of quality breadsticks, mathematical methods of experiment planning were applied. The main factors chosen were the dosages of flaxseed flour and grape seed oil. The output parameters were the swelling factor of the products and their strength. Optimization of the formulation composition of the dough for bread sticks was carried out by experimental- statistical methods. As a result of the experiment, mathematical models were constructed in the form of regression equations, adequately describing the process of studies. The statistical processing of the experimental data was carried out by the criteria of Student, Cochran and Fisher (with a confidence probability of 0.95). A mathematical interpretation of the regression equations was given. Optimization of the formulation of the dough for bread sticks was carried out by the method of uncertain Lagrange multipliers. The rational values of the factors were determined: the dosage of flaxseed flour - 14.22% and grape seed oil - 7.8%, ensuring the production of products with the best combination of swelling ratio and strength. On the basis of the data obtained, a recipe and a method for the production of breadsticks "Idea" were proposed (TU (Russian Technical Specifications) 9117-443-02068106-2017).
Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant
NASA Astrophysics Data System (ADS)
Kuznetsova, Svetlana A.
2015-01-01
Presents results of mathematical modeling of convection of a viscous incompressible fluid in a rectangular cavity with conducting walls of finite thickness in the presence of a local source of heat in the bottom of the field in terms of convective heat exchange with the environment. A mathematical model is formulated in terms of dimensionless variables "stream function - vorticity vector speed - temperature" in the Cartesian coordinate system. As the results show the distributions of hydrodynamic parameters and temperatures using different boundary conditions on the local heat source.
Carl Neumann versus Rudolf Clausius on the propagation of electrodynamic potentials
NASA Astrophysics Data System (ADS)
Archibald, Thomas
1986-09-01
In the late 1860's, German electromagnetic theorists employing W. Weber's velocity-dependent force law were forced to confront the issue of energy conservation. One attempt to formulate a conservation law for such forces was due to Carl Neumann, who introduced a model employing retarded potentials in 1868. Rudolf Clausius quickly pointed out certain problems with the physical interpretation of Neumann's mathematical formalism. The debate between the two men continued until the 1880's and illustrates the strictures facing mathematical approaches to physical problems during this prerelativistic, pre-Maxwellian period.
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).
Aerodynamic mathematical modeling - basic concepts
NASA Technical Reports Server (NTRS)
Tobak, M.; Schiff, L. B.
1981-01-01
The mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers is reviewed. Bryan's original formulation, linear aerodynamic indicial functions, and superposition are considered. These concepts are extended into the nonlinear regime. The nonlinear generalization yields a form for the aerodynamic response that can be built up from the responses to a limited number of well defined characteristic motions, reproducible in principle either in wind tunnel experiments or flow field computations. A further generalization leads to a form accommodating the discontinuous and double valued behavior characteristics of hysteresis in the steady state aerodynamic response.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
An analytical approach to top predator interference on the dynamics of a food chain model
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Vijayalakshmi, T.
2018-04-01
In this paper, a nonlinear mathematical model is proposed and analyzed to study of top predator interference on the dynamics of a food chain model. The mathematical model is formulated using the system of non-linear ordinary differential equations. In this model, there are three state dimensionless variables, viz, size of prey population x, size of intermediate predator y and size of top predator population z. The analytical results are compared with the numerical simulation using MATLAB software and satisfactory results are noticed.
Sequential Medical Trials Involving Paired Data.
1979-05-22
and A. John Petkau Depar~~~nt of MathematicsUniversity of British Columbia I Accession For N?IS GRiA-&I DDC TAB Una~mounced - Justification...John Petkau Department of Mathematics University of British Columbia SUMMARY A continuous time version of Anscombe ’ s formulation of the problem of...AIlS 1970 subject classifications : Primary 62Ll0; secondary 62C10, 62Ll5. — — -- m.~~, -- -~ —— - -- ~~~~~~~~ ~~~~~~~~~~~~ 1. INTRODUCTION A natural
NASA Technical Reports Server (NTRS)
Austin, F.; Markowitz, J.; Goldenberg, S.; Zetkov, G. A.
1973-01-01
The formulation of a mathematical model for predicting the dynamic behavior of rotating flexible space station configurations was conducted. The overall objectives of the study were: (1) to develop the theoretical techniques for determining the behavior of a realistically modeled rotating space station, (2) to provide a versatile computer program for the numerical analysis, and (3) to present practical concepts for experimental verification of the analytical results. The mathematical model and its associated computer program are described.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
NASA Technical Reports Server (NTRS)
Sun, D. C.; Yuan, Qin
1995-01-01
The geometrical parameters for a wormgear intended to be used as the transmission in advanced helicopters are finalized. The resulting contact pattern of the meshing tooth surfaces is suitable for the implementation of hydrostatic lubrication Fluid film lubrication of the contact is formulated considering external pressurization as well as hydrodynamic wedge and squeeze actions. The lubrication analysis is aimed at obtaining the oil supply pressure needed to separate the worm and gear surfaces by a prescribed minimum film thickness. The procedure of solving the mathematical problem is outlined.
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
Discrete-time model reduction in limited frequency ranges
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.
On the RNG theory of turbulence
NASA Technical Reports Server (NTRS)
Lam, S. H.
1992-01-01
The Yakhot and Orszag (1986) renormalization group (RNG) theory of turbulence has generated a number of scaling law constants in reasonable quantitative agreement with experiments. The theory itself is highly mathematical, and its assumptions and approximations are not easily appreciated. The present paper reviews the RNG theory and recasts it in more conventional terms using a distinctly different viewpoint. A new formulation based on an alternative interpretation of the origin of the random force is presented, showing that the artificially introduced epsilon in the original theory is an adjustable parameter, thus offering a plausible explanation for the remarkable record of quantitative success of the so-called epsilon-expansion procedure.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena
NASA Astrophysics Data System (ADS)
Yang, Jianqiang; Ma, Hong; Zhong, Suchuang
2018-03-01
In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.
NASA Astrophysics Data System (ADS)
Clavijo, H. W.
2016-12-01
Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.
Utterance selection model of language change
NASA Astrophysics Data System (ADS)
Baxter, G. J.; Blythe, R. A.; Croft, W.; McKane, A. J.
2006-04-01
We present a mathematical formulation of a theory of language change. The theory is evolutionary in nature and has close analogies with theories of population genetics. The mathematical structure we construct similarly has correspondences with the Fisher-Wright model of population genetics, but there are significant differences. The continuous time formulation of the model is expressed in terms of a Fokker-Planck equation. This equation is exactly soluble in the case of a single speaker and can be investigated analytically in the case of multiple speakers who communicate equally with all other speakers and give their utterances equal weight. Whilst the stationary properties of this system have much in common with the single-speaker case, time-dependent properties are richer. In the particular case where linguistic forms can become extinct, we find that the presence of many speakers causes a two-stage relaxation, the first being a common marginal distribution that persists for a long time as a consequence of ultimate extinction being due to rare fluctuations.
Mathematical programming formulations for satellite synthesis
NASA Technical Reports Server (NTRS)
Bhasin, Puneet; Reilly, Charles H.
1987-01-01
The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T
1997-03-01
A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.
A new mathematical formulation of the line-by-line method in case of weak line overlapping
NASA Technical Reports Server (NTRS)
Ishov, Alexander G.; Krymova, Natalie V.
1994-01-01
A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
Defining Computational Thinking for Mathematics and Science Classrooms
NASA Astrophysics Data System (ADS)
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-02-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.
Documentation for the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6
Provost, Alden M.; Langevin, Christian D.; Hughes, Joseph D.
2017-08-10
This report describes the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6. The XT3D option extends the capabilities of MODFLOW by enabling simulation of fully three-dimensional anisotropy on regular or irregular grids in a way that properly takes into account the full, three-dimensional conductivity tensor. It can also improve the accuracy of groundwater-flow simulations in cases in which the model grid violates certain geometric requirements. Three example problems demonstrate the use of the XT3D option to simulate groundwater flow on irregular grids and through three-dimensional porous media with anisotropic hydraulic conductivity.Conceptually, the XT3D method of estimating flow between two MODFLOW 6 model cells can be viewed in terms of three main mathematical steps: construction of head-gradient estimates by interpolation; construction of fluid-flux estimates by application of the full, three-dimensional form of Darcy’s Law, in which the conductivity tensor can be heterogeneous and anisotropic; and construction of the flow expression by enforcement of continuity of flow across the cell interface. The resulting XT3D flow expression, which relates the flow across the cell interface to the values of heads computed at neighboring nodes, is the sum of terms in which conductance-like coefficients multiply head differences, as in the conductance-based flow expression the NPF Package uses by default. However, the XT3D flow expression contains terms that involve “neighbors of neighbors” of the two cells for which the flow is being calculated. These additional terms have no analog in the conductance-based formulation. When assembled into matrix form, the XT3D formulation results in a larger stencil than the conductance-based formulation; that is, each row of the coefficient matrix generally contains more nonzero elements. The “RHS” suboption can be used to avoid expanding the stencil by placing the additional terms on the right-hand side of the matrix equation and evaluating them at the previous iteration or time step.The XT3D option can be an alternative to the Ghost-Node Correction (GNC) Package. However, the XT3D formulation is typically more computationally intensive than the conductance-based formulation the NPF Package uses by default, either with or without ghost nodes. Before deciding whether to use the GNC Package or XT3D option for production runs, the user should consider whether the conductance-based formulation alone can provide acceptable accuracy for the particular problem being solved.
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Chen, Duan; Wei, Guo-Wei
2013-01-01
Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.
Sound scattering by several zooplankton groups. II. Scattering models.
Stanton, T K; Chu, D; Wiebe, P H
1998-01-01
Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups--fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225-235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Astrophysics Data System (ADS)
Ipsen, Andreas; Ebbels, Timothy M. D.
2014-10-01
In a recent article, we derived a probability distribution that was shown to closely approximate that of the data produced by liquid chromatography time-of-flight mass spectrometry (LC/TOFMS) instruments employing time-to-digital converters (TDCs) as part of their detection system. The approach of formulating detailed and highly accurate mathematical models of LC/MS data via probability distributions that are parameterized by quantities of analytical interest does not appear to have been fully explored before. However, we believe it could lead to a statistically rigorous framework for addressing many of the data analytical problems that arise in LC/MS studies. In this article, we present new procedures for correcting for TDC saturation using such an approach and demonstrate that there is potential for significant improvements in the effective dynamic range of TDC-based mass spectrometers, which could make them much more competitive with the alternative analog-to-digital converters (ADCs). The degree of improvement depends on our ability to generate mass and chromatographic peaks that conform to known mathematical functions and our ability to accurately describe the state of the detector dead time—tasks that may be best addressed through engineering efforts.
NASA Technical Reports Server (NTRS)
Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Truszkowski, Walter F. (Inventor); Hinchey, Michael G. (Inventor); Gracanin, Denis (Inventor); Rash, James L. (Inventor)
2011-01-01
Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.
Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair
NASA Astrophysics Data System (ADS)
Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail
2017-10-01
The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.
On Exact and Inexact Differentials and Applications
ERIC Educational Resources Information Center
Cortez, L. A. B.; de Oliveira, E. Capelas
2017-01-01
Considering the important role played by mathematical derivatives in the study of physical-chemical processes, this paper discusses the different possibilities and formulations of this concept and its application. In particular, in Chemical Thermodynamics, we study exact differentials associated with the so-called state functions and inexact…
Spatially homogeneous rotating world models.
NASA Technical Reports Server (NTRS)
Ozsvath, I.
1971-01-01
The mathematical problem encountered when looking for the simplest expanding and rotating model of the universe without the compactness condition for the space sections is formulated. The Lagrangian function is derived for four different rotating universes simultaneously. These models correspond in a certain sense to Godel's (1950) ?symmetric case.'
Minimization search method for data inversion
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
Technique has been developed for determining values of selected subsets of independent variables in mathematical formulations. Required computation time increases with first power of the number of variables. This is in contrast with classical minimization methods for which computational time increases with third power of the number of variables.
Integrating Technology, Pedagogy and Content in Mathematics Education
ERIC Educational Resources Information Center
Handal, Boris; Campbell, Chris; Cavanagh, Michael; Petocz, Peter; Kelly, Nick
2012-01-01
The need for appraising the effective integration of technologies into teaching and learning within a disciplinary context is crucial for upholding quality teaching standards in schools and formulating professional development programs. This paper describes the development and validation of an instrument aimed at characterising the integration of…
Critical Constructivism: Interpreting Mathematics Education for Social Justice
ERIC Educational Resources Information Center
Skovsmose, Ole
2018-01-01
The notion of social justice has been addressed from the perspective of 'ethical realism' and 'ethical anarchistic'. Here, however, the possibility of 'ethical constructivism' becomes formulated. With departure in Rawls' description of an idealised meeting defining social justice, the initial steps into ethical constructivism become taken.…
Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock
NASA Technical Reports Server (NTRS)
Fallon, D. J.; Costanzo, F. A.; Handleton, R. T.; Camp, G. C.; Smith, D. C.
1987-01-01
The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results.
A University Admissions System
ERIC Educational Resources Information Center
Ittig, Peter T.
1977-01-01
Presents a mathematical programming model that will make admit/reject decisions for freshman university applicants. The model is intended to aid reviewers in producing better, more consistent decisions. The author shows that a linear programming formulation will provide an efficient and practical solution for all but a very few applicants.…
Finite element meshing approached as a global minimization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less
Multiplicative Multitask Feature Learning
Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu
2016-01-01
We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735
Fugit, Kyle D; Anderson, Bradley D
2017-04-01
Actively loaded liposomal formulations of anticancer agents have been widely explored due to their high drug encapsulation efficiencies and prolonged drug retention. Mathematical models to predict and optimize drug loading and release kinetics from these nanoparticle formulations would be useful in their development and may allow researchers to tune release profiles. Such models must account for the driving forces as influenced by the physicochemical properties of the drug and the microenvironment, and the liposomal barrier properties. This study employed mechanistic modeling to describe the active liposomal loading and release kinetics of the anticancer agent topotecan (TPT). The model incorporates ammonia transport resulting in generation of a pH gradient, TPT dimerization, TPT lactone ring-opening and -closing interconversion kinetics, chloride transport, and transport of TPT-chloride ion-pairs to describe the active loading and release kinetics of TPT in the presence of varying chloride concentrations. Model-based predictions of the kinetics of active loading at varying loading concentrations of TPT and release under dynamic dialysis conditions were in reasonable agreement with experiments. These findings identify key attributes to consider in optimizing and predicting loading and release of liposomal TPT that may also be applicable to liposomal formulations of other weakly basic pharmaceuticals. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatsonis, Nikolaos A.; Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
NASA Astrophysics Data System (ADS)
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
Asymmetric cryptography based on wavefront sensing.
Peng, Xiang; Wei, Hengzheng; Zhang, Peng
2006-12-15
A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.
Structure-preserving operators for thermal-nonequilibrium hydrodynamics
NASA Astrophysics Data System (ADS)
Shiroto, Takashi; Kawai, Soshi; Ohnishi, Naofumi
2018-07-01
Radiation hydrodynamics simulations based on a single fluid two-temperature model may violate the law of energy conservation, because the governing equations are expressed in a nonconservative formulation. In this study, we maintain the important physical requirements by employing a strategy based on the key concept that mathematical structures associated with conservative and nonconservative equations are preserved, even at the discrete level. To this end, we discretize the conservation laws and transform them using exact algebraic operations. The proposed scheme maintains global conservation errors within the round-off level. In addition, a numerical experiment concerning the shock tube problem suggests that the proposed scheme agrees well with the jump conditions at the discontinuities regulated by the Rankine-Hugoniot relationship. The generalized derivation allows us to employ arbitrary central difference, artificial dissipation, and Runge-Kutta methods.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma
As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.
Use of RORA for Complex Ground-Water Flow Conditions
Rutledge, A.T.
2004-01-01
The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.
NASA Astrophysics Data System (ADS)
Nishino, Takayuki
The face hobbing process has been widely applied in automotive industry. But so far few analytical tools have been developed. This makes it difficult for us to optimize gear design. To settle this situation, this study aims at developing a computerized tool to predict the running performances such as loaded tooth contact pattern, static transmission error and so on. First, based upon kinematical analysis of a cutting machine, a mathematical description of tooth surface generation is given. Second, based upon the theory of gearing and differential geometry, conjugate tooth surfaces are studied. Then contact lines are generated. Third, load distribution along contact lines is formulated. Last, the numerical model is validated by measuring loaded transmission error and loaded tooth contact pattern.
A Framework for Assessing Reading Comprehension of Geometric Construction Texts
ERIC Educational Resources Information Center
Yang, Kai-Lin; Li, Jian-Lin
2018-01-01
This study investigates one issue related to reading mathematical texts by presenting a two-dimensional framework for assessing reading comprehension of geometric construction texts. The two dimensions of the framework were formulated by modifying categories of reading literacy and drawing on key elements of geometric construction texts. Three…
The Effect of Math Modeling on Student's Emerging Understanding
ERIC Educational Resources Information Center
Sokolowski, Andrzej
2015-01-01
This study investigated the effects of applying mathematical modeling on revising students' preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic…
Understanding the Theory of Multiple Intelligences. Staff Workshop Handout
ERIC Educational Resources Information Center
Early Childhood Today, 2005
2005-01-01
In his "Theory of Multiple Intelligences," Dr. Howard Gardner expands the concept of intelligence to include such areas as music, spatial relations, and interpersonal knowledge in addition to the traditional view of two intelligences--mathematical and linguistic. Using biological as well as cultural research, Gardner formulated a list of seven…
A Graphical Introduction to the Derivative
ERIC Educational Resources Information Center
Samuels, Jason
2017-01-01
Calculus has frequently been called one the greatest intellectual achievements of humankind. As a key transitional course to college mathematics, it combines such elementary ideas as rate with new abstract ideas--such as infinity, instantaneous change, and limit--to formulate the derivative and the integral. Most calculus texts begin with the…
A Mathematical Optimization Problem in Bioinformatics
ERIC Educational Resources Information Center
Heyer, Laurie J.
2008-01-01
This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…
Mathematical Formulation of Multivariate Euclidean Models for Discrimination Methods.
ERIC Educational Resources Information Center
Mullen, Kenneth; Ennis, Daniel M.
1987-01-01
Multivariate models for the triangular and duo-trio methods are described, and theoretical methods are compared to a Monte Carlo simulation. Implications are discussed for a new theory of multidimensional scaling which challenges the traditional assumption that proximity measures and perceptual distances are monotonically related. (Author/GDC)
Genetic algorithms - What fitness scaling is optimal?
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac
1993-01-01
A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.
Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.
ERIC Educational Resources Information Center
Glasser, L.
1987-01-01
Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)
This paper presents the formulation and evaluation of a mechanistic mathematical model of fathead minnow ovarian steroidogenesis. The model presented in the present study was adpated from other models developed as part of an integrated, multi-disciplinary computational toxicolog...
Non Locality Proofs in Quantum Mechanics Analyzed by Ordinary Mathematical Logic
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe
2014-10-01
The so-called non-locality theorems aim to show that Quantum Mechanics is not consistent with the Locality Principle. Their proofs require, besides the standard postulates of Quantum Theory, further conditions, as for instance the Criterion of Reality, which cannot be formulated in the language of Standard Quantum Theory; this difficulty makes the proofs not verifiable according to usual logico-mathematical methods, and therefore it is a source of the controversial debate about the real implications of these theorems. The present work addresses this difficulty for Bell-type and Stapp's arguments of non-locality. We supplement the formalism of Quantum Mechanics with formal statements inferred from the further conditions in the two different cases. Then an analysis of the two arguments is performed according to ordinary mathematical logic.
Mathematical Formulation used by MATLAB Code to Convert FTIR Interferograms to Calibrated Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Derek Elswick
This report discusses the mathematical procedures used to convert raw interferograms from Fourier transform infrared (FTIR) sensors to calibrated spectra. The work discussed in this report was completed as part of the Helios project at Los Alamos National Laboratory. MATLAB code was developed to convert the raw interferograms to calibrated spectra. The report summarizes the developed MATLAB scripts and functions, along with a description of the mathematical methods used by the code. The first step in working with raw interferograms is to convert them to uncalibrated spectra by applying an apodization function to the raw data and then by performingmore » a Fourier transform. The developed MATLAB code also addresses phase error correction by applying the Mertz method. This report provides documentation for the MATLAB scripts.« less
Using mathematics to solve real world problems: the role of enablers
NASA Astrophysics Data System (ADS)
Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens
2018-03-01
The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to successfully begin the modelling process, that is, formulate and mathematise a real world problem. The 3-year study will take a design research approach in working intensively with six schools across two educational jurisdictions. It is anticipated that this research will generate new theoretical and practical insights into the role of "enablers" within the process of mathematisation, leading to the development of principles for the design and implementation for tasks that support students' development as modellers.
Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.
Allen, Edward J
2014-06-01
Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
Computing Linear Mathematical Models Of Aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.
1991-01-01
Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.
Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar
2016-04-01
The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.
Reactive transport codes for subsurface environmental simulation
Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...
2014-09-26
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less
"MAPHICS", its development and influence on the future of Science.
NASA Astrophysics Data System (ADS)
Castellano, Doc
2001-11-01
On the fifth 'anniversary' of his conferences with Einstein, the Author reviewed the State of the Art of Mathematical Physics. During this review, 1960, the Author formulated an Omega Science. Namely, combining the Philosophy of Mathematics with the Philosophy of Physics into ONE Philosophy, "MAPHICS". "MA from MAthematics and PH--ICS" from Physics; "MAPHICS" (TM). The PhD co. views Science in general, and Mathematical Physics in particular, from a Historic-Philosophical viewpoint. Thus, it remained anonymous and 'in the background' as publicly known Mathematicians and Physicists, with their great reservoir of rhetoric expertise in said Fields; gradually presented and refined the essence of what the Author calls "Spirito Mathematics". A Philosophical concept that now appears to be publicly developing, with the utilization of some its speed and resolution power. The Author will give at least three examples of its speed and resolution power. One being the partial differential equation in the development of Wave Mechanics & Quantum Mechanics. Namely, [(-ih bar(squared)/2m)(2nd Part.Der. psi/ respect to x)] + V psi = ih bar -(Part.Der. psi/respect to t).
Modeling human target acquisition in ground-to-air weapon systems
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Mohr, R. L.; Vikmanis, M.; Wei, K. C.
1982-01-01
The problems associated with formulating and validating mathematical models for describing and predicting human target acquisition response are considered. In particular, the extension of the human observer model to include the acquisition phase as well as the tracking segment is presented. Relationship of the Observer model structure to the more complex Standard Optimal Control model formulation and to the simpler Transfer Function/Noise representation is discussed. Problems pertinent to structural identifiability and the form of the parameterization are elucidated. A systematic approach toward the identification of the observer acquisition model parameters from ensemble tracking error data is presented.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Simulation of noise involved in synthetic aperture radar
NASA Astrophysics Data System (ADS)
Grandchamp, Myriam; Cavassilas, Jean-Francois
1996-08-01
The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading
Vernerey, Franck J.; Farsad, Mehdi
2013-01-01
Recent research has shown that cell spreading is highly dependent on the contractililty of its cytoskeleton and the mechanical properties of the environment it is located in. The dynamics of such process is critical for the development of tissue engineering strategy but is also a key player in wound contraction, tissue maintenance and angiogenesis. To better understand the underlying physics of such phenomena, the paper describes a mathematical formulation of cell spreading and contraction that couples the processes of stress fiber formation, protrusion growth through actin polymerization at the cell edge and dynamics of cross-membrane protein (integrins) enabling cell-substrate attachment. The evolving cell’s cytoskeleton is modeled as a mixture of fluid, proteins and filaments that can exchange mass and generate contraction. In particular, besides self-assembling into stress fibers, actin monomers able to polymerize into an actin meshwork at the cell’s boundary in order to push the membrane forward and generate protrusion. These processes are possible via the development of cell-substrate attachment complexes that arise from the mechano-sensitive equilibrium of membrane proteins, known as integrins. After deriving the governing equation driving the dynamics of cell evolution and spreading, we introduce a numerical solution based on the extended finite element method, combined with a level set formulation. Numerical simulations show that the proposed model is able to capture the dependency of cell spreading and contraction on substrate stiffness and chemistry. The very good agreement between model predictions and experimental observations suggests that mechanics plays a strong role into the coupled mechanisms of contraction, adhesion and spreading of adherent cells. PMID:23463540
A global solution to the Schrödinger equation: From Henstock to Feynman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanson, Ekaterina S., E-mail: enathanson@ggc.edu; Jørgensen, Palle E. T., E-mail: palle-jorgensen@uiowa.edu
2015-09-15
One of the key elements of Feynman’s formulation of non-relativistic quantum mechanics is a so-called Feynman path integral. It plays an important role in the theory, but it appears as a postulate based on intuition, rather than a well-defined object. All previous attempts to supply Feynman’s theory with rigorous mathematics underpinning, based on the physical requirements, have not been satisfactory. The difficulty comes from the need to define a measure on the infinite dimensional space of paths and to create an integral that would possess all of the properties requested by Feynman. In the present paper, we consider a newmore » approach to defining the Feynman path integral, based on the theory developed by Muldowney [A Modern Theory of Random Variable: With Applications in Stochastic Calcolus, Financial Mathematics, and Feynman Integration (John Wiley & Sons, Inc., New Jersey, 2012)]. Muldowney uses the Henstock integration technique and deals with non-absolute integrability of the Fresnel integrals, in order to obtain a representation of the Feynman path integral as a functional. This approach offers a mathematically rigorous definition supporting Feynman’s intuitive derivations. But in his work, Muldowney gives only local in space-time solutions. A physical solution to the non-relativistic Schrödinger equation must be global, and it must be given in the form of a unitary one-parameter group in L{sup 2}(ℝ{sup n}). The purpose of this paper is to show that a system of one-dimensional local Muldowney’s solutions may be extended to yield a global solution. Moreover, the global extension can be represented by a unitary one-parameter group acting in L{sup 2}(ℝ{sup n})« less
The Laws of Nature and the Effectiveness of Mathematics
NASA Astrophysics Data System (ADS)
Dorato, Mauro
In this paper I try to evaluate what I regard as the main attempts at explaining the effectiveness of mathematics in the natural sciences, namely (1) Antinaturalism, (2) Kantism, (3) Semanticism, (4) Algorithmic Complexity Theory. The first position has been defended by Mark Steiner, who claims that the "user friendliness" of nature for the applied mathematician is the best argument against a naturalistic explanation of the origin of the universe. The second is naturalistic and mixes the Kantian tradition with evolutionary studies about our innate mathematical abilities. The third turns to the Fregean tradition and considers mathematics a particular kind of language, thus treating the effectiveness of mathematics as a particular instance of the effectiveness of natural languages. The fourth hypothesis, building on formal results by Kolmogorov, Solomonov and Chaitin, claims that mathematics is so useful in describing the natural world because it is the science of the abbreviation of sequences, and mathematically formulated laws of nature enable us to compress the information contained in the sequence of numbers in which we code our observations. In this tradition, laws are equivalent to the shortest algorithms capable of generating the lists of zeros and ones representing the empirical data. Along the way, I present and reject the "deflationary explanation", which claims that in wondering about the applicability of so many mathematical structures to nature, we tend to forget the many cases in which no application is possible.
Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M
2016-06-01
Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.
2016-12-01
This work presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid-structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian-Eulerian Navier-Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the fluid-solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.
A hybridizable discontinuous Galerkin method for modeling fluid–structure interaction
Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.
2016-08-31
This study presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid–structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian–Eulerian Navier–Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modelingmore » is coupling together their disparate mathematics on the fluid–solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.« less
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
NASA Astrophysics Data System (ADS)
Efimov, A. E.; Maksarov, V. V.; Timofeev, D. Y.
2018-03-01
The present paper states the impact of a technological system on piece’s roughness and shape accuracy via simulation modeling. For this purpose, a theory was formulated and a mathematical model was generated to justify self-oscillations in a system. The method of oscillations eliminations based on workpiece’s high-energy laser irradiation with the purpose of further processing were suggested in compliance with the adopted theory and model. Modeling the behaviour of a system with the transient phenomenon indicated the tendency of reducing self-oscillations in unstable processing modes, which has a positive effect under the conditions of practical implementation over piece’s roughness and accuracy.
Design Mining Interacting Wind Turbines.
Preen, Richard J; Bull, Larry
2016-01-01
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
Multiscale modelling and analysis of collective decision making in swarm robotics.
Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey
2014-01-01
We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.
Stock price prediction using geometric Brownian motion
NASA Astrophysics Data System (ADS)
Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM
2018-03-01
Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.
NASA Astrophysics Data System (ADS)
Efstratiou, P.
2013-09-01
This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.
Matos, Ely Edison; Campos, Fernanda; Braga, Regina; Palazzi, Daniele
2010-02-01
The amount of information generated by biological research has lead to an intensive use of models. Mathematical and computational modeling needs accurate description to share, reuse and simulate models as formulated by original authors. In this paper, we introduce the Cell Component Ontology (CelO), expressed in OWL-DL. This ontology captures both the structure of a cell model and the properties of functional components. We use this ontology in a Web project (CelOWS) to describe, query and compose CellML models, using semantic web services. It aims to improve reuse and composition of existent components and allow semantic validation of new models.
Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame
NASA Astrophysics Data System (ADS)
Jiang, Z.; Wang, F.; Bai, J.; Li, Z.
2018-04-01
The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.
Use of symbolic computation in robotics education
NASA Technical Reports Server (NTRS)
Vira, Naren; Tunstel, Edward
1992-01-01
An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.
Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I
2016-04-01
Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it possible to distinguish cancerous cells from normal cells. A typical example of liver distinguished from gray matter, white matter and kidney is demonstrated. Bessel functions and properties are specifically needed to show the direct effect of the instantaneous velocity on the NMR signal originating from normal and abnormal tissues.
Nitanai, Yuta; Agata, Yasuyoshi; Iwao, Yasunori; Itai, Shigeru
2012-05-30
From wax matrix dosage forms, drug and water-soluble polymer are released into the external solvent over time. As a consequence, the pore volume inside the wax matrix particles is increased and the diffusion coefficient of the drug is altered. In the present study, we attempted to derive a novel empirical mathematical model, namely, a time-dependent diffusivity (TDD) model, that assumes the change in the drug's diffusion coefficient can be used to predict the drug release from spherical wax matrix particles. Wax matrix particles were prepared by using acetaminophen (APAP), a model drug; glyceryl monostearate (GM), a wax base; and aminoalkyl methacrylate copolymer E (AMCE), a functional polymer that dissolves below pH 5.0 and swells over pH 5.0. A three-factor, three-level (3(3)) Box-Behnken design was used to evaluate the effects of several of the variables in the model formulation, and the release of APAP from wax matrix particles was evaluated by the paddle method at pH 4.0 and pH 6.5. When comparing the goodness of fit to the experimental data between the proposed TDD model and the conventional pure diffusion model, a better correspondence was observed for the TDD model in all cases. Multiple regression analysis revealed that an increase in AMCE loading enhanced the diffusion coefficient with time, and that this increase also had a significant effect on drug release behavior. Furthermore, from the results of the multiple regression analysis, a formulation with desired drug release behavior was found to satisfy the criteria of the bitter taste masking of APAP without lowering the bioavailability. That is to say, the amount of APAP released remains below 15% for 10 min at pH 6.5 and exceeds 90% within 30 min at pH 4.0. The predicted formulation was 15% APAP loading, 8.25% AMCE loading, and 400 μm mean particle diameter. When wax matrix dosage forms were prepared accordingly, the predicted drug release behavior agreed well with experimental values at each pH level. Therefore, the proposed model is feasible as a useful tool for predicting drug release behavior, as well as for designing the formulation of wax matrix dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of open-ended problems as the basis for the mathematical creativity growth disclosure of student
NASA Astrophysics Data System (ADS)
Suyitno, A.; Suyitno, H.; Rochmad; Dwijanto
2018-03-01
Mathematical creativity is the essence of learning in mathematics. However, mathematical creativity had not yet grown among students. Means there was a gap between needs and reality. This gap must be bridged through by scientific studies, and there were novelty findings, namely the discovery of stages to cultivate of Mathematical Creativity. The problem formulation: How to use of open-ended problems as the basis for the mathematical creativity growth disclosure of student? The goal was to use of open issues as the basis for the mathematical creativity growth disclosure of student. Research method with a qualitative approach. After data was collected then activity in data analysis, include data reduction, data presentation, data interpretation, and conclusion/verification. The results of the research: After the learning by applying the modification of RTTW learning model, then the students were trained to do the open-ended problems and by looking at the UTS and UAS values then qualitatively the results: (1) There was a significant increase of the student's final score. (2) The category of the growth of mathematical creativity of students, the Very Good there were three students, the Good there were six students, There were 17 students, and there were six students. The validation of these results was reinforced by interviews and triangulation. (3) Stage to cultivate mathematical creativity: lecturers should need to provide inputs on student work; Apply an appropriate learning model, and train students to work on the continuing problems.
A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty
Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...
2016-11-21
Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less
A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab
Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less
Lenas, Petros; Moos, Malcolm; Luyten, Frank P
2009-12-01
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Mathematical modeling of microstructural development in hypoeutectic cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maijer, D.; Cockcroft, S.L.; Patt, W.
A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less
An unsteady lifting surface method for single rotation propellers
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1990-01-01
The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.
Mathematics applied to the climate system: outstanding challenges and recent progress
Williams, Paul D.; Cullen, Michael J. P.; Davey, Michael K.; Huthnance, John M.
2013-01-01
The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions. PMID:23588054
Gauge symmetries of the free supersymmetric string field theories
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P. C.
1985-12-01
The gauge covariant local formulations of the free supersymmetric strings that contained a finite number of supplementary fields are extended so as to place all the generators of the Ramond-Neveu-Schwarz algebra on a more equal footing. Permanent address: King's College, Mathematics Department, London WC2R 2LS, UK.
Optimization Techniques for Analysis of Biological and Social Networks
2012-03-28
analyzing a new metaheuristic technique, variable objective search. 3. Experimentation and application: Implement the proposed algorithms , test and fine...alternative mathematical programming formulations, their theoretical analysis, the development of exact algorithms , and heuristics. Originally, clusters...systematic fashion under a unifying theoretical and algorithmic framework. Optimization, Complex Networks, Social Network Analysis, Computational
ERIC Educational Resources Information Center
Conrad, Shawn; Clarke-Midura, Jody; Klopfer, Eric
2014-01-01
Educational games offer an opportunity to engage and inspire students to take interest in science, technology, engineering, and mathematical (STEM) subjects. Unobtrusive learning assessment techniques coupled with machine learning algorithms can be utilized to record students' in-game actions and formulate a model of the students' knowledge…
Introduction to Population Modeling.
ERIC Educational Resources Information Center
Frauenthal, James C.
The focus is on the formulation and solution of mathematical models with the idea of a population employed mainly as a pedogogical tool. If the biological setting is stripped away, the material can be interpreted as topics or the qualitative behavior of differential and difference equations. The first group of models investigate the dynamics of a…
NASA Astrophysics Data System (ADS)
Tscharnuter, W. M.
1980-02-01
Modes and model concept of star formation are reviewed, beginning with the theory of Kant (1755), via Newton's exact mathematical formulation of the laws of motion, his recognition of the universal validity of general gravitation, to modern concepts and hypotheses. Axisymmetric and spherically symmetric collapse models are discussed, and the origin of double and multiple star systems is examined.
Plausibility Arguments and Universal Gravitation
ERIC Educational Resources Information Center
Cunha, Ricardo F. F.; Tort, A. C.
2017-01-01
Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…
Modeling Spring Mass System with System Dynamics Approach in Middle School Education
ERIC Educational Resources Information Center
Nuhoglu, Hasret
2008-01-01
System Dynamics is a well formulated methodology for analyzing the components of a system including causeeffect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…
Modeling Spring Mass System with System Dynamics Approach in Middle School Education
ERIC Educational Resources Information Center
Nuhoglu, Hasret
2008-01-01
System Dynamics is a well formulated methodology for analyzing the components of a system including cause-effect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…
A Geometric Puzzle That Leads To Fibonacci Sequences.
ERIC Educational Resources Information Center
Rulf, Benjamin
1998-01-01
Illustrates how mathematicians work and do mathematical research through the use of a puzzle. Demonstrates how general rules, then theorems develop from special cases. This approach may be used as a research project in high school classrooms or math club settings with the teacher helping to formulate questions, set goals, and avoid becoming…
High Speed Cylindrical Roller Bearing Analysis, SKF Computer Program CYBEAN. Volume 1: Analysis
NASA Technical Reports Server (NTRS)
Kleckner, R. J.; Pirvics, J.
1978-01-01
The CYBEAN (CYlindrical BEaring ANalysis) program was created to detail radially loaded, aligned and misaligned Cylindrical roller bearing performance under a variety of operating conditions. The models and associated mathematics used within CYBEAN are described. The user is referred to the material for formulation assumptions and algorithm detail.
Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics
ERIC Educational Resources Information Center
Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim
2018-01-01
Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…
ERIC Educational Resources Information Center
Ginsberg, Edw S.
2018-01-01
The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to…
Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem
ERIC Educational Resources Information Center
Contreras, José
2014-01-01
This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…
Let's Have a Coffee with the Standard Model of Particle Physics!
ERIC Educational Resources Information Center
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-01-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called "Lagrangian," which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only…
Simulation modeling of forest landscape disturbances: An overview
Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse
2015-01-01
Quantification of ecological processes and formulation of the mathematical expressions that describe those processes in computer models has been a cornerstone of landscape ecology research and its application. Consequently, the body of publications on simulation models in landscape ecology has grown rapidly in recent decades. This trend is also evident in the subfield...
Side slope stability of articulated-frame logging tractors
H.G. Gibson; K.C. Elliott; S.P.E. Persson
1971-01-01
Many log or pulpwood transporting machines have hinged or articulated frames for steering. The articulated frame offers advantages for these machines, but the design introduces some problems in stability. We formulated and analyzed a mathematical model simulating stability of a 4-wheel-drive, articulated frame logging tractor (wheeled skidder) at static or low constant...
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Fluid dynamics model of mitral valve flow: description with in vitro validation.
Thomas, J D; Weyman, A E
1989-01-01
A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.
NASA Technical Reports Server (NTRS)
Aggarwal, Arun K.
1993-01-01
Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.
Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy.
Schättler, Heinz; Ledzewicz, Urszula; Amini, Behrooz
2016-04-01
A minimally parameterized mathematical model for low-dose metronomic chemotherapy is formulated that takes into account angiogenic signaling between the tumor and its vasculature and tumor inhibiting effects of tumor-immune system interactions. The dynamical equations combine a model for tumor development under angiogenic signaling formulated by Hahnfeldt et al. with a model for tumor-immune system interactions by Stepanova. The dynamical properties of the model are analyzed. Depending on the parameter values, the system encompasses a variety of medically realistic scenarios that range from cases when (i) low-dose metronomic chemotherapy is able to eradicate the tumor (all trajectories converge to a tumor-free equilibrium point) to situations when (ii) tumor dormancy is induced (a unique, globally asymptotically stable benign equilibrium point exists) to (iii) multi-stable situations that have both persistent benign and malignant behaviors separated by the stable manifold of an unstable equilibrium point and finally to (iv) situations when tumor growth cannot be overcome by low-dose metronomic chemotherapy. The model forms a basis for a more general study of chemotherapy when the main components of a tumor's microenvironment are taken into account.
NASA Astrophysics Data System (ADS)
Latif, I. A.; Saputro, D. R. S.; Riyadi
2018-03-01
2013 Curriculum (K13) provides an opportunity for students to develop the potential attitudes, knowledge, and skills necessary for life and society and contribute to the welfare of human life. The K13 2017 revision requires teachers to integrate 21st-century skills in the learning process. They are consist of critical thinking and problem-solving, communication, creativity and innovation, and collaboration (4C skills), Higher Order Thinking Skills (HOTS), literacy movement, and character education. This study is a qualitative research that aims to describe the steps performed by a high school mathematics teacher in preparing the Lesson Plan (RPP) in accordance with K13 2017 revision. The subject of this study is a Civil Servant Mathematics teacher at SMAN 1 Wuryantoro, Wonogiri Regency. This study used interview method with time triangulation technique to obtain valid data. Based on the interviews it is concluded that in preparing the RPP in accordance with K13 revision 2017, the teacher is guided by The Minister of Education and Culture Regulation (Permendikbud) Number 22 of 2016 and Pedoman Penyusunan RPP Abad 21. The first step taken by the teacher in preparing and developing RPP is quoting KI from Permendikbud Number 21 2016 and KD from Permendikbud Number 24 of 2016. After that, teacher formulates Indicators of Competency Achievement (IPK) in accordance with KD, learning objectives in accordance with IPK, learning materials in accordance with IPK, learning activities integrating 21st-century skills and in line with learning objectives, learning assessment instruments, and learning reflection activities.
A facility location model for municipal solid waste management system under uncertain environment.
Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K
2017-12-15
In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
A Low Mach Number Model for Moist Atmospheric Flows
Duarte, Max; Almgren, Ann S.; Bell, John B.
2015-04-01
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun
2004-03-01
In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.
A Low Mach Number Model for Moist Atmospheric Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, Max; Almgren, Ann S.; Bell, John B.
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Why morphology matters in birds and UAV's: How scale affects attitude wind sensitivity
NASA Astrophysics Data System (ADS)
Gamble, L. L.; Inman, D. J.
2017-11-01
Although natural fliers have been shown to morph their geometry to adapt to unfavorable wind loading, there exists heavy skepticism within the aviation community regarding the benefits and necessity of morphing aircraft technology. Here, we develop a vector derivation that characterizes how high winds affect the overall flight velocity and sideslip for both natural and manmade fliers. This derivation is formulated in such a way that only a single non-dimensional velocity parameter is needed to quantify the response. We show mathematically that in high winds, low-altitude fliers are more prone to substantial changes in the sideslip angle, struggle to maintain gliding velocity, and experience five times the peak sideslip sensitivity when compared to high-altitude fliers. In order to counteract these adverse changes, low-altitude fliers require a high degree of controllability which can be achieved through extreme morphological changes. The results presented here highlight the importance of integrating morphing concepts into future low-altitude aircraft designs and provide a formulation to help designers decide whether or not to pursue adaptive morphing technology based on a single readily determinable parameter.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Formulating accident occurrence as a survival process.
Chang, H L; Jovanis, P P
1990-10-01
A conceptual framework for accident occurrence is developed based on the principle of the driver as an information processor. The framework underlies the development of a modeling approach that is consistent with the definition of exposure to risk as a repeated trial. Survival theory is proposed as a statistical technique that is consistent with the conceptual structure and allows the exploration of a wide range of factors that contribute to highway operating risk. This survival model of accident occurrence is developed at a disaggregate level, allowing safety researchers to broaden the scope of studies which may be limited by the use of traditional aggregate approaches. An application of the approach to motor carrier safety is discussed as are potential applications to a variety of transportation industries. Lastly, a typology of highway safety research methodologies is developed to compare the properties of four safety methodologies: laboratory experiments, on-the-road studies, multidisciplinary accident investigations, and correlational studies. The survival theory formulation has a mathematical structure that is compatible with each safety methodology, so it may facilitate the integration of findings across methodologies.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Fundamental theories of waves and particles formulated without classical mass
NASA Astrophysics Data System (ADS)
Fry, J. L.; Musielak, Z. E.
2010-12-01
Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.
On the Correct Formulation of the Law of the External Photoelectric Effect
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2017-01-01
The critical and correct scientific analysis of the generally accepted theory of the external photoelectric effect is proposed. The methodological basis for the analysis is the unity of formal logic and of rational dialectics. It is shown that Einstein's formulation of the law of the photoelectric effect is not free from the following objection. The terms of Einstein's formula characterize the quantitative determinacy (i.e., energy) which belongs and is related to the different material objects: ``photon'', ``electron in metal'', and ``electron not in metal''. This signifies that Einstein's formula represents violation of the formal-logical laws of identity and absence (lack) of contradiction. The correct mathematical formulation of the law of the external photoelectric effect within the framework of the system approach is proposed. The correct formulation represents the proportion by relative increments of the energy of the incident photon and the energy of the emitted electron. The proportion describes the linear relationship between the energy of the incident photon and the energy of the emitted electron.
Cournot games with network effects for electric power markets
NASA Astrophysics Data System (ADS)
Spezia, Carl John
The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.
Theory and applications survey of decentralized control methods
NASA Technical Reports Server (NTRS)
Athans, M.
1975-01-01
A nonmathematical overview is presented of trends in the general area of decentralized control strategies which are suitable for hierarchical systems. Advances in decentralized system theory are closely related to advances in the so-called stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools pertaining to the classical stochastic control problem are outlined. Particular attention is devoted to pitfalls in the mathematical problem formulation for decentralized control. Major conclusions are that any purely deterministic approach to multilevel hierarchical dynamic systems is unlikely to lead to realistic theories or designs, that the flow of measurements and decisions in a decentralized system should not be instantaneous and error-free, and that delays in information exchange in a decentralized system lead to reasonable approaches to decentralized control. A mathematically precise notion of aggregating information is not yet available.
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2018-03-01
A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul
2017-10-01
This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.
Projection model for flame chemiluminescence tomography based on lens imaging
NASA Astrophysics Data System (ADS)
Wan, Minggang; Zhuang, Jihui
2018-04-01
For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.
Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; ...
2015-09-10
Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less
Analysis of measured data of human body based on error correcting frequency
NASA Astrophysics Data System (ADS)
Jin, Aiyan; Peipei, Gao; Shang, Xiaomei
2014-04-01
Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.
Verhagen, Peter J
2012-12-01
Although there is still a lot of controversy surrounding the debates on religion and psychiatry, working toward consensus based on clinical experience and research seems to be far more fruitful. DISCOURSE: The main idea in this contribution runs as follows. It is no longer appropriate to treat psychiatry and religion as enemies. It is argued here that they are in fact allies. This position is elucidated in the light of two statements. (1) The World Psychiatric Association, indeed representing world psychiatry, needs to change its position toward religion and psychiatry. It should do so by crossing narrow-minded scientific boundaries like reductionist and materialistic boundaries. (2) Science and religion should not be regarded as opposing adversaries against each other, but as allies against nonsense and superstition. Two recommendations are formulated. First, science-and-religion, and in our case psychiatry-and-religion, is not purely about description based on gathering evidence, systematic empirical testing and mathematical modeling. We need an approach of both descriptive and prescriptive aspects of our daily reality, not only how our world is, but also how it should be. Secondly, science-and-religion, in our case psychiatry-and-religion as allies should formulate sensible criteria and develop an appropriate attitude to discernment based on intellectual, moral and spiritual sincerity. Copyright © 2012 Elsevier B.V. All rights reserved.
Biomechanics-based in silico medicine: the manifesto of a new science.
Viceconti, Marco
2015-01-21
In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.
Continued research on selected parameters to minimize community annoyance from airplane noise
NASA Technical Reports Server (NTRS)
Frair, L.
1981-01-01
Results from continued research on selected parameters to minimize community annoyance from airport noise are reported. First, a review of the initial work on this problem is presented. Then the research focus is expanded by considering multiobjective optimization approaches for this problem. A multiobjective optimization algorithm review from the open literature is presented. This is followed by the multiobjective mathematical formulation for the problem of interest. A discussion of the appropriate solution algorithm for the multiobjective formulation is conducted. Alternate formulations and associated solution algorithms are discussed and evaluated for this airport noise problem. Selected solution algorithms that have been implemented are then used to produce computational results for example airports. These computations involved finding the optimal operating scenario for a moderate size airport and a series of sensitivity analyses for a smaller example airport.
Regulatory design governing progression of population growth phases in bacteria.
Martínez-Antonio, Agustino; Lomnitz, Jason G; Sandoval, Santiago; Aldana, Maximino; Savageau, Michael A
2012-01-01
It has long been noted that batch cultures inoculated with resting bacteria exhibit a progression of growth phases traditionally labeled lag, exponential, pre-stationary and stationary. However, a detailed molecular description of the mechanisms controlling the transitions between these phases is lacking. A core circuit, formed by a subset of regulatory interactions involving five global transcription factors (FIS, HNS, IHF, RpoS and GadX), has been identified by correlating information from the well- established transcriptional regulatory network of Escherichia coli and genome-wide expression data from cultures in these different growth phases. We propose a functional role for this circuit in controlling progression through these phases. Two alternative hypotheses for controlling the transition between the growth phases are first, a continuous graded adjustment to changing environmental conditions, and second, a discontinuous hysteretic switch at critical thresholds between growth phases. We formulate a simple mathematical model of the core circuit, consisting of differential equations based on the power-law formalism, and show by mathematical and computer-assisted analysis that there are critical conditions among the parameters of the model that can lead to hysteretic switch behavior, which--if validated experimentally--would suggest that the transitions between different growth phases might be analogous to cellular differentiation. Based on these provocative results, we propose experiments to test the alternative hypotheses.
NASA Technical Reports Server (NTRS)
Simitses, George J.; Carlson, Robert L.; Riff, Richard
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications.
Reliability based design optimization: Formulations and methodologies
NASA Astrophysics Data System (ADS)
Agarwal, Harish
Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.
Mathematics Ab Ovo: Hans Driesch and Entwicklungsmechanik.
Priven, Silvia Waisse; Alfonso-Goldfarb, Ana M
2009-01-01
One of the factors leading to the creation of embryology as a modern discipline at the end of the 19th century was Wilhelm Roux's formulation of the program of Entwicklungsmechanik (developmental mechanics). A look into the work of Hans Driesch, an equal contributor to developmental mechanics, may shed further light on this process. For Roux, developmental mechanics was an anatomical science, but for Driesch it was associated with a mathematical and physical approach to the natural world. Likewise, Roux used the concept of mechanics as an analogy, but Driesch used it literally. Driesch's generation had been trained in a pedagogic context that emphasized mathematics and physics, which may explain why he went a step further than Roux to state that a true "mechanics" of development required the reduction of morphogenetic problems to the known laws of physics. It is argued here that this difference in background is behind the enthusiastic adoption and further development of Roux's program by Driesch's generation, a generation that conceived Entwicklungsmechanik to be the reduction of embryological processes to "the laws of matter in motion." This same mathematical and physical mindset would underscore Driesch's later construction of entelechy as a regulating factor in embryogenesis, through mathematical analysis grounded on the notion of mathematical functions.
Green's function solution to heat transfer of a transparent gas through a tube
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1989-01-01
A heat transfer analysis of a transparent gas flowing through a circular tube of finite thickness is presented. This study includes the effects of wall conduction, internal radiative exchange, and convective heat transfer. The natural mathematical formulation produces a nonlinear, integrodifferential equation governing the wall temperature and an ordinary differential equation describing the gas temperature. This investigation proposes to convert the original system of equations into an equivalent system of integral equations. The Green's function method permits the conversion of an integrodifferential equation into a pure integral equation. The proposed integral formulation and subsequent computational procedure are shown to be stable and accurate.
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.
NASA Astrophysics Data System (ADS)
Li, Will X. Y.; Cui, Ke; Zhang, Wei
2017-04-01
Cognitive neural prosthesis is a manmade device which can be used to restore or compensate for lost human cognitive modalities. The generalized Laguerre-Volterra (GLV) network serves as a robust mathematical underpinning for the development of such prosthetic instrument. In this paper, a hardware implementation scheme of Gauss error function for the GLV network targeting reconfigurable platforms is reported. Numerical approximations are formulated which transform the computation of nonelementary function into combinational operations of elementary functions, and memory-intensive look-up table (LUT) based approaches can therefore be circumvented. The computational precision can be made adjustable with the utilization of an error compensation scheme, which is proposed based on the experimental observation of the mathematical characteristics of the error trajectory. The precision can be further customizable by exploiting the run-time characteristics of the reconfigurable system. Compared to the polynomial expansion based implementation scheme, the utilization of slice LUTs, occupied slices, and DSP48E1s on a Xilinx XC6VLX240T field-programmable gate array has decreased by 94.2%, 94.1%, and 90.0%, respectively. While compared to the look-up table based scheme, 1.0 ×1017 bits of storage can be spared under the maximum allowable error of 1.0 ×10-3 . The proposed implementation scheme can be employed in the study of large-scale neural ensemble activity and in the design and development of neural prosthetic device.
Prediction of nonlinear soil effects
Hartzell, S.; Bonilla, L.F.; Williams, R.A.
2004-01-01
Mathematical models of soil nonlinearity in common use and recently developed nonlinear codes compared to investigate the range of their predictions. We consider equivalent linear formulations with and without frequency-dependent moduli and damping ratios and nonlinear formulations for total and effective stress. Average velocity profiles to 150 m depth with midrange National Earthquake Hazards Reduction Program site classifications (B, BC, C, D, and E) in the top 30 m are used to compare the response of a wide range of site conditions from rock to soft soil. Nonlinear soil models are compared using the amplification spectrum, calculated as the ratio of surface ground motion to the input motion at the base of the velocity profile. Peak input motions from 0.1g to 0.9g are considered. For site class B, no significant differences exist between the models considered in this article. For site classes BC and C, differences are small at low input motions (0.1g to 0.2g), but become significant at higher input levels. For site classes D and E the overdamping of frequencies above about 4 Hz by the equivalent linear solution with frequency-independent parameters is apparent for the entire range of input motions considered. The equivalent linear formulation with frequency-dependent moduli and damping ratios under damps relative to the nonlinear models considered for site class C with larger input motions and most input levels for site classes D and E. At larger input motions the underdamping for site classes D and E is not as severe as the overdamping with the frequency-independent formulation, but there are still significant differences in the time domain. A nonlinear formulation is recommended for site classes D and E and for site classes BC and C with input motions greater than a few tenths of the acceleration of gravity. The type of nonlinear formulation to use is driven by considerations of the importance of water content and the availability of laboratory soils data. Our average amplification curves from a nonlinear effective stress formulation compare favorably with observed spectral amplification at class D and E sites in the Seattle area for the 2001 Nisqually earthquake.
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
NASA Astrophysics Data System (ADS)
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.