Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief
Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H.; Nuerk, Hans-Christoph
2016-01-01
Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors “Mathematical Test Anxiety” (MTA) and “Numerical Anxiety” (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established. PMID:26924996
Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief.
Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H; Nuerk, Hans-Christoph
2016-01-01
Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors "Mathematical Test Anxiety" (MTA) and "Numerical Anxiety" (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established.
Computational modeling of the cell-autonomous mammalian circadian oscillator.
Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L
2017-02-24
This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.
UAH mathematical model of the variable polarity plasma ARC welding system calculation
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
Significant advantages of Variable Polarity Plasma Arc (VPPA) welding process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. A mathematical model is presented to analyze the VPPA welding process. Results of the mathematical model were compared with the experimental observation accomplished by the GDI team.
How Long is my Toilet Roll?--A Simple Exercise in Mathematical Modelling
ERIC Educational Resources Information Center
Johnston, Peter R.
2013-01-01
The simple question of how much paper is left on my toilet roll is studied from a mathematical modelling perspective. As is typical with applied mathematics, models of increasing complexity are introduced and solved. Solutions produced at each step are compared with the solution from the previous step. This process exposes students to the typical…
1987-03-01
model is one in which words or numerical descriptions are used to represent an entity or process. An example of a symbolic model is a mathematical ...are the third type of model used in modeling combat attrition. Analytical models are symbolic models which use mathematical symbols and equations to...simplicity and the ease of tracing through the mathematical computations. In this section I will discuss some of the shortcoming which have been
Neutral model analysis of landscape patterns from mathematical morphology
Kurt H. Riitters; Peter Vogt; Pierre Soille; Jacek Kozak; Christine Estreguil
2007-01-01
Mathematical morphology encompasses methods for characterizing land-cover patterns in ecological research and biodiversity assessments. This paper reports a neutral model analysis of patterns in the absence of a structuring ecological process, to help set standards for comparing and interpreting patterns identified by mathematical morphology on real land-cover maps. We...
Mathematical model comparing of the multi-level economics systems
NASA Astrophysics Data System (ADS)
Brykalov, S. M.; Kryanev, A. V.
2017-12-01
The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.
Gender Differences in Mathematics: Does the Story Need to Be Rewritten?
ERIC Educational Resources Information Center
Brunner, Martin; Krauss, Stefan; Kunter, Mareike
2008-01-01
Empirical studies of high school mathematics typically report small gender differences in favor of boys. The present article challenges this established finding by comparing two competing structural conceptions of mathematical ability. The standard model assumes mathematical ability alone to account for the interindividual differences observed on…
NASA Astrophysics Data System (ADS)
Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi
2017-06-01
This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.
Self-concept mediates the relation between achievement and emotions in mathematics.
Van der Beek, Jojanneke P J; Van der Ven, Sanne H G; Kroesbergen, Evelyn H; Leseman, Paul P M
2017-09-01
Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions. The aims were (1) to investigate the mediating role of mathematical self-concept in the relation between mathematics achievement and the achievement emotions of enjoyment and anxiety in a comprehensive model, and (2) to test possible differences in this mediating role between low-, average-, and high-achieving students. Participants were ninth-grade students (n = 1,014) from eight secondary schools in the Netherlands. Through an online survey including mathematical problems, students were asked to indicate their levels of mathematics enjoyment, anxiety, and self-concept. Structural equation modelling was used to test the mediating role of self-concept in the relation between mathematics achievement and emotions. Multigroup analyses were performed to compare these relations across the three achievement groups. Results confirmed full mediation of the relation between mathematics achievement and emotions by mathematical self-concept. Furthermore, we found higher self-concepts, more enjoyment and less math anxiety in high-achieving students compared to their average and low-achieving peers. No differences across these achievement groups were found in the relations in the mediational model. Mathematical self-concept plays a pivotal role in students' appraisal of mathematics. Mathematics achievement is only one factor explaining students' self-concept. Likely also classroom instruction and teachers' feedback strategies help to shape students' self-concept. © 2017 The British Psychological Society.
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century.
Ganusov, Vitaly V
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest "strong inference in mathematical modeling" as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century
Ganusov, Vitaly V.
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest “strong inference in mathematical modeling” as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century. PMID:27499750
A New Model for the Integration of Science and Mathematics: The Balance Model
ERIC Educational Resources Information Center
Kiray, S. Ahmet
2012-01-01
The aim of this study is to develop an integrated scientific and mathematical model that is suited to the background of Turkish teachers. The dimensions of the model are given and compared to the models which have been previously developed and the findings of earlier studies on the topic. The model is called the balance, reflecting the…
Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation.
Getto, Philipp; Marciniak-Czochra, Anna
2015-01-01
Mathematical modeling is a powerful technique to address key questions and paradigms in a variety of complex biological systems and can provide quantitative insights into cell kinetics, fate determination and development of cell populations. The chapter is devoted to a review of modeling of the dynamics of stem cell-initiated systems using mathematical methods of ordinary differential equations. Some basic concepts and tools for cell population dynamics are summarized and presented as a gentle introduction to non-mathematicians. The models take into account different plausible mechanisms regulating homeostasis. Two mathematical frameworks are proposed reflecting, respectively, a discrete (punctuated by division events) and a continuous character of transitions between differentiation stages. Advantages and constraints of the mathematical approaches are presented on examples of models of blood systems and compared to patients data on healthy hematopoiesis.
NASA Astrophysics Data System (ADS)
Antinah; Kusmayadi, T. A.; Husodo, B.
2018-05-01
This study aims to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students' mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material.
NASA Astrophysics Data System (ADS)
Antinah; Kusmayadi, T. A.; Husodo, B.
2018-03-01
This study aimed to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students’ mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material.
NASA Astrophysics Data System (ADS)
Darma, I. K.
2018-01-01
This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.
Empirical Evaluation of a Mathematical Model of Ethnolinguistic Vitality: The Case of Voro
ERIC Educational Resources Information Center
Ehala, Martin; Niglas, Katrin
2007-01-01
The paper presents the results of an empirical evaluation of a mathematical model of ethnolinguistic vitality. The model adds several new factors to the set used in previous models of ethnolinguistic vitality and operationalises it in a manner that would make it easier to compare the vitality of different groups. According to the model, the…
Stability analysis for a delay differential equations model of a hydraulic turbine speed governor
NASA Astrophysics Data System (ADS)
Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.
2017-01-01
The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Educational standardization and gender differences in mathematics achievement: A comparative study.
Ayalon, Hanna; Livneh, Idit
2013-03-01
We argue that between-country variations in the gender gap in mathematics are related to the level of educational system standardization. In countries with standardized educational systems both genders are exposed to similar knowledge and are motivated to invest in studying mathematics, which leads to similar achievements. We hypothesize that national examinations and between-teacher uniformity in covering major mathematics topics are associated with a smaller gender gap in a country. Based on Trends of International Mathematical and Science Study (TIMSS) 2003, we use multilevel regression models to compare the link of these two factors to the gender gap in 32 countries, controlling for various country characteristics. The use of national examinations and less between-teacher instructional variation prove major factors in reducing the advantage of boys over girls in mathematics scores and in the odds of excelling. Factors representing gender stratification, often analyzed in comparative gender-gap research in mathematics, are at most marginal in respect of the gap. Copyright © 2012 Elsevier Inc. All rights reserved.
Automatic mathematical modeling for real time simulation system
NASA Technical Reports Server (NTRS)
Wang, Caroline; Purinton, Steve
1988-01-01
A methodology for automatic mathematical modeling and generating simulation models is described. The models will be verified by running in a test environment using standard profiles with the results compared against known results. The major objective is to create a user friendly environment for engineers to design, maintain, and verify their model and also automatically convert the mathematical model into conventional code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine Simulation. It is written in LISP and MACSYMA and runs on a Symbolic 3670 Lisp Machine. The program provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. It contains an initial set of component process elements for the Space Shuttle Main Engine Simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. The system is then able to automatically generate the model and FORTRAN code. The future goal which is under construction is to download the FORTRAN code to VAX/VMS system for conventional computation. The SSME mathematical model will be verified in a test environment and the solution compared with the real data profile. The use of artificial intelligence techniques has shown that the process of the simulation modeling can be simplified.
Greig, Chasen J; Cowles, Robert A
2017-07-01
Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.
Parental modelling of mathematical affect: self-efficacy and emotional arousal
NASA Astrophysics Data System (ADS)
Bartley, Sarah R.; Ingram, Naomi
2017-12-01
This study explored the relationship between parents' mathematics self-efficacy and emotional arousal to mathematics and their 12- and 13-year-old children's mathematics self-efficacy and emotional arousal to mathematics. Parental modelling of affective relationships during homework was a focus. Eighty-four parent and child pairings from seven schools in New Zealand were examined using embedded design methodology. No significant correlations were found when the parents' mathematics self-efficacy and emotional arousal to mathematics were compared with the children's mathematics self-efficacy and emotional arousal to mathematics. However, the parents' level of emotional arousal to mathematics was found to have affected their willingness to assist with mathematics homework. For those parents who assisted, a significant positive correlation was found between their mathematics self-efficacy and their children's emotional arousal to mathematics. Parents who did assist were generally reported as being calm, and used techniques associated with positive engagement. Fathers were calmer and more likely to express readiness to assist with mathematics homework than mothers. A further significant positive correlation was found between fathers' emotional arousal to mathematics and children's mathematics self-efficacy. Implications from the study suggest directions for future research.
NASA Astrophysics Data System (ADS)
Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.
2018-07-01
The purpose of this paper is to demonstrate Hispanic students' mathematics achievement growth rate in Inclusive science, technology, engineering, and mathematics (STEM) high schools compared to Hispanic students' mathematics achievement growth rate in traditional public schools. Twenty-eight schools, 14 of which were Texas STEM (T-STEM) academies and 14 of which were matched non-STEM schools, were included in this study. A hierarchical linear modelling method was conducted. The result of the present study revealed that there was no difference in Hispanic students' mathematics achievement growth rate in T-STEM academies compared to Hispanic students' mathematics achievement growth rate in comparison schools. However, in terms of gender, the results indicated that female Hispanic students in T-STEM academies outperformed female Hispanic students in comparison schools in their mathematics growth rate.
Enhancing Students' Communication Skills through Treffinger Teaching Model
ERIC Educational Resources Information Center
Alhaddad, Idrus; Kusumah, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi A.
2015-01-01
This research aims to investigate, compare, and describe the achievement and enhancement of students' mathematical communication skills (MCS). It based on the prior mathematical knowledge (PMK) category (high, medium and low) by using Treffinger models (TM) and conventional learning (CL). This research is an experimental study with the population…
The Mathematical Analysis of Style: A Correlation-Based Approach.
ERIC Educational Resources Information Center
Oppenheim, Rosa
1988-01-01
Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…
NASA Astrophysics Data System (ADS)
Gukasyan, A. V.; Koshevoy, E. P.; Kosachev, V. S.
2018-05-01
A comparative analysis of alternative models for plastic flow in extrusive transportation of oil-bearing materials was conducted; the research was directed at determining the function describing the screw core throughput capacity of the press (extruder). Transition from a one-dimensional model to a two-dimensional model significantly improves the mathematical model and allows using two-dimensional rheological models determining the throughput of the screw core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. A. Wasiolek
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the referencemore » biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).« less
NASA Astrophysics Data System (ADS)
Kristianti, Y.; Prabawanto, S.; Suhendra, S.
2017-09-01
This study aims to examine the ability of critical thinking and students who attain learning mathematics with learning model ASSURE assisted Autograph software. The design of this study was experimental group with pre-test and post-test control group. The experimental group obtained a mathematics learning with ASSURE-assisted model Autograph software and the control group acquired the mathematics learning with the conventional model. The data are obtained from the research results through critical thinking skills tests. This research was conducted at junior high school level with research population in one of junior high school student in Subang Regency of Lesson Year 2016/2017 and research sample of class VIII student in one of junior high school in Subang Regency for 2 classes. Analysis of research data is administered quantitatively. Quantitative data analysis was performed on the normalized gain level between the two sample groups using a one-way anova test. The results show that mathematics learning with ASSURE assisted model Autograph software can improve the critical thinking ability of junior high school students. Mathematical learning using ASSURE-assisted model Autograph software is significantly better in improving the critical thinking skills of junior high school students compared with conventional models.
NASA Astrophysics Data System (ADS)
Rostami, Ali Bakhshandeh; Fernandes, Antonio Carlos
2018-03-01
This paper is dedicated to develop a mathematical model that can simulate nonlinear phenomena of a hinged plate which places into the fluid flow (1 DOF). These phenomena are fluttering (oscillation motion), autorotation (continuous rotation) and chaotic motion (combination of fluttering and autorotation). Two mathematical models are developed for 1 DOF problem using two eminent mathematical models which had been proposed for falling plates (3 DOF). The procedures of developing these models are elaborated and then these results are compared to experimental data. The best model in the simulation of the phenomena is chosen for stability and bifurcation analysis. Based on these analyses, this model shows a transcritical bifurcation and as a result, the stability diagram and threshold are presented. Moreover, an analytical expression is given for finding the boundary of bifurcation from the fluttering to the autorotation.
A Multidimensional Analysis of Changes in Mathematics Motivation and Engagement during High School
ERIC Educational Resources Information Center
Plenty, Stephanie; Heubeck, Bernd G.
2013-01-01
Despite concerns about declining interest and enrolments in mathematics, little research has examined change in a broad range of constructs reflecting mathematics motivation and engagement. The current study used an 11-factor model of motivation and engagement to evaluate levels of maths motivation compared to general academic motivation and to…
Comparison of Intelligent Systems in Detecting a Child's Mathematical Gift
ERIC Educational Resources Information Center
Pavlekovic, Margita; Zekic-Susac, Marijana; Djurdjevic, Ivana
2009-01-01
This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children's mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child's mathematical gift…
ERIC Educational Resources Information Center
Tarr, James E.; Ross, Daniel J.; McNaught, Melissa D.; Chavez, Oscar; Grouws, Douglas A.; Reys, Robert E.; Sears, Ruthmae; Taylan, R. Didem
2010-01-01
The Comparing Options in Secondary Mathematics: Investigating Curriculum (COSMIC) project is a longitudinal study of student learning from two types of mathematics curricula: integrated and subject-specific. Previous large-scale research studies such as the National Assessment of Educational Progress (NAEP) indicate that numerous variables are…
Asian American College Students' Mathematics Success and the Model Minority Stereotype
ERIC Educational Resources Information Center
Jo, Lydia
2012-01-01
The often aggregated reports of academic excellence of Asian American students as a whole, compared to students from other ethnic groups offers compelling evidence that Asian Americans are more academically successful than their ethnic counterparts, particularly in the area of mathematics. These comparative data have generated many topics of…
Evaluation of Limb Load Asymmetry Using Two New Mathematical Models
Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.
2015-01-01
Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372
Schoolwide Mathematics Achievement within the Gifted Cluster Grouping Model
ERIC Educational Resources Information Center
Brulles, Dina; Peters, Scott J.; Saunders, Rachel
2012-01-01
An increasing number of schools are implementing gifted cluster grouping models as a cost-effective way to provide gifted services. This study is an example of comparative action research in the form of a quantitative case study that focused on mathematic achievement for nongifted students in a district that incorporated a schoolwide cluster…
Exploring Student Reflective Practice during a Mathematical Modelling Challenge
ERIC Educational Resources Information Center
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond; Kanasa, Harry
2012-01-01
This paper seeks to compare the reflective writings of two cohorts of students (Year 4/5 and Year 8/9) participating in mathematical modelling challenges. Whilst the reflections of the younger cohort were results oriented, the older cohort's reflections spoke more to the affective domain, group processes, the use of technology and the acquisition…
Watching Sandy's Understanding Grow.
ERIC Educational Resources Information Center
Pirie, Susan E. B.; Kieren, Thomas E.
1992-01-01
Reviews recent research in the area of mathematical understanding and compares and contrasts it with a model formulated for the growth of understanding. Uses the analysis of a transcript from an interview with an eight-year-old boy to illustrate the power of the model to describe and map the growth of his mathematical understanding. (18…
A magneto-rheological fluid mount featuring squeeze mode: analysis and testing
NASA Astrophysics Data System (ADS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2016-05-01
This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.
Yuki, Koichi; DiNardo, James A
2015-02-01
Optimizing systemic oxygen delivery (DO2) and hemodynamics in children with hypoplastic left heart syndrome (HLHS) is a clinical challenge. Mathematical modeling of the HLHS circulation has been used to determine the relationship between oxygen kinetic parameters and DO2 and to determine how DO2 might be optimized. The model demonstrates that neither arterial oxygen saturation (SaO2) nor mixed venous oxygen saturation (SvO2) alone accurately predicts DO2. Oxygen delivery kinetics predicted by previously described mathematical modeling were compared with actual patients' hemodynamic data. We sought to determine which patient derived parameters correlated best with DO2. Patients with HLHS who underwent cardiac catheterization prior to surgery to create a superior cavopulmonary anastomosis from 2007 to 2011 were identified. Hemodynamic data obtained were compared with the data derived from the mathematical model. Correlations between SaO2, SvO2, SaO2-SvO2, SaO2/(SaO2-SvO2), pulmonary-to-systemic blood flow ratio (Qp/Qs), and DO2 were evaluated using both linear and nonlinear analyses, and R(2) was calculated. Patients' data fit most aspects of the mathematical model. DO2 had the best correlation with SaO2/(SaO2-SvO2; R(2) = 0.8755) followed by SaO2 -SvO2 (R(2) = 0.8063), while SaO2 or SvO2 alone did not demonstrate a significant correlation as predicated by the mathematical model (R(2) = 0.09564 and 0.4831, respectively). SaO2/(SaO2 -SvO2) would be useful clinically to track changes in DO2 that occur with changes in patient condition or with interventions. © 2014 John Wiley & Sons Ltd.
A Model for Minimizing Numeric Function Generator Complexity and Delay
2007-12-01
allow computation of difficult mathematical functions in less time and with less hardware than commonly employed methods. They compute piecewise...Programmable Gate Arrays (FPGAs). The algorithms and estimation techniques apply to various NFG architectures and mathematical functions. This...thesis compares hardware utilization and propagation delay for various NFG architectures, mathematical functions, word widths, and segmentation methods
A Gompertzian model with random effects to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
The image of mathematics held by Irish post-primary students
NASA Astrophysics Data System (ADS)
Lane, Ciara; Stynes, Martin; O'Donoghue, John
2014-08-01
The image of mathematics held by Irish post-primary students was examined and a model for the image found was constructed. Initially, a definition for 'image of mathematics' was adopted with image of mathematics hypothesized as comprising attitudes, beliefs, self-concept, motivation, emotions and past experiences of mathematics. Research focused on students studying ordinary level mathematics for the Irish Leaving Certificate examination - the final examination for students in second-level or post-primary education. Students were aged between 15 and 18 years. A questionnaire was constructed with both quantitative and qualitative aspects. The questionnaire survey was completed by 356 post-primary students. Responses were analysed quantitatively using Statistical Package for the Social Sciences (SPSS) and qualitatively using the constant comparative method of analysis and by reviewing individual responses. Findings provide an insight into Irish post-primary students' images of mathematics and offer a means for constructing a theoretical model of image of mathematics which could be beneficial for future research.
ERIC Educational Resources Information Center
Bloom, Allan M.; And Others
In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…
An Investigation of Learning Styles Influencing Mathematics Achievement of Seventh-Grade Students
ERIC Educational Resources Information Center
Sriphai, Sunan; Damrongpanit, Suntonrapot; Sakulku, Jaruwan
2011-01-01
This study aims to investigate the effect of learning styles, as well as compare the effect of two different variable structure models of learning styles on factors influencing mathematics achievement. The research sample was made up of 508 seventh-grade students. The findings were that the model including learning styles as factors influencing…
Mathematical modeling and hydrodynamics of Electrochemical deburring process
NASA Astrophysics Data System (ADS)
Prabhu, Satisha; Abhishek Kumar, K., Dr
2018-04-01
The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.
Rejniak, Katarzyna A.; Gerlee, Philip
2013-01-01
Summary In this review we summarize our recent efforts using mathematical modeling and computation to simulate cancer invasion, with a special emphasis on the tumor microenvironment. We consider cancer progression as a complex multiscale process and approach it with three single-cell based mathematical models that examine the interactions between tumor microenvironment and cancer cells at several scales. The models exploit distinct mathematical and computational techniques, yet they share core elements and can be compared and/or related to each other. The overall aim of using mathematical models is to uncover the fundamental mechanisms that lend cancer progression its direction towards invasion and metastasis. The models effectively simulate various modes of cancer cell adaptation to the microenvironment in a growing tumor. All three point to a general mechanism underlying cancer invasion: competition for adaptation between distinct cancer cell phenotypes, driven by a tumor microenvironment with scarce resources. These theoretical predictions pose an intriguing experimental challenge: test the hypothesis that invasion is an emergent property of cancer cell populations adapting to selective microenvironment pressure, rather than culmination of cancer progression producing cells with the “invasive phenotype”. In broader terms, we propose that fundamental insights into cancer can be achieved by experimentation interacting with theoretical frameworks provided by computational and mathematical modeling. PMID:18524624
NASA Technical Reports Server (NTRS)
Hunt, Mitchell; Sayyah, Rana; Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.
2013-01-01
Mathematical models of the common-source and common-gate amplifiers using metal-ferroelectric- semiconductor field effect transistors (MOSFETs) are developed in this paper. The models are compared against data collected with MOSFETs of varying channel lengths and widths, and circuit parameters such as biasing conditions are varied as well. Considerations are made for the capacitance formed by the ferroelectric layer present between the gate and substrate of the transistors. Comparisons between the modeled and measured data are presented in depth as well as differences and advantages as compared to the performance of each circuit using a MOSFET.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Application of an OCT data-based mathematical model of the foveal pit in Parkinson disease.
Ding, Yin; Spund, Brian; Glazman, Sofya; Shrier, Eric M; Miri, Shahnaz; Selesnick, Ivan; Bodis-Wollner, Ivan
2014-11-01
Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.
Taguchi method for partial differential equations with application in tumor growth.
Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena
2014-01-01
The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.
ERIC Educational Resources Information Center
Wang, Jianjun
2004-01-01
Located at a meeting place between the West and the East, Hong Kong has been chosen in this comparative investigation to reconfirm a theoretical model of "reciprocal relationship" between mathematics achievement and self-concept using the 8th grade databases from TIMSS and TIMSS-R. During the time between these two projects, Hong Kong…
ERIC Educational Resources Information Center
Huang, Shaobo; Fang, Ning
2013-01-01
Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…
ERIC Educational Resources Information Center
Rattanatumma, Tawachai; Puncreobutr, Vichian
2016-01-01
The objective of this study was to compare the effectiveness of teaching methods in improving Mathematics Learning Achievement and Problem solving ability of students at an international college. This is a Quasi-Experimental Research which was done the study with the first year students who have registered to study Mathematics subject at St.…
Validation of a multi-phase plant-wide model for the description of the aeration process in a WWTP.
Lizarralde, I; Fernández-Arévalo, T; Beltrán, S; Ayesa, E; Grau, P
2018-02-01
This paper introduces a new mathematical model built under the PC-PWM methodology to describe the aeration process in a full-scale WWTP. This methodology enables a systematic and rigorous incorporation of chemical and physico-chemical transformations into biochemical process models, particularly for the description of liquid-gas transfer to describe the aeration process. The mathematical model constructed is able to reproduce biological COD and nitrogen removal, liquid-gas transfer and chemical reactions. The capability of the model to describe the liquid-gas mass transfer has been tested by comparing simulated and experimental results in a full-scale WWTP. Finally, an exploration by simulation has been undertaken to show the potential of the mathematical model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method
NASA Astrophysics Data System (ADS)
Trybus, M.
2018-06-01
A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.
Modeling eBook acceptance: A study on mathematics teachers
NASA Astrophysics Data System (ADS)
Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad
2014-12-01
The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.
On mathematical modelling of aeroelastic problems with finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2018-06-01
This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.
Development and validation of a piloted simulation of a helicopter and external sling load
NASA Technical Reports Server (NTRS)
Shaughnessy, J. D.; Deaux, T. N.; Yenni, K. R.
1979-01-01
A generalized, real time, piloted, visual simulation of a single rotor helicopter, suspension system, and external load is described and validated for the full flight envelope of the U.S. Army CH-54 helicopter and cargo container as an example. The mathematical model described uses modified nonlinear classical rotor theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic suspension system, nonlinear load aerodynamics, and a loadground contact model. The implementation of the mathematical model on a large digital computing system is described, and validation of the simulation is discussed. The mathematical model is validated by comparing measured flight data with simulated data, by comparing linearized system matrices, eigenvalues, and eigenvectors with manufacturers' data, and by the subjective comparison of handling characteristics by experienced pilots. A visual landing display system for use in simulation which generates the pilot's forward looking real world display was examined and a special head up, down looking load/landing zone display is described.
Modelling the effect of structural QSAR parameters on skin penetration using genetic programming
NASA Astrophysics Data System (ADS)
Chung, K. K.; Do, D. Q.
2010-09-01
In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.
The Value of 18F-FDG PET/CT Mathematical Prediction Model in Diagnosis of Solitary Pulmonary Nodules
Chen, Yao; Tang, Kun; Lin, Jie
2018-01-01
Purpose To establish an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) mathematical prediction model to improve the diagnosis of solitary pulmonary nodules (SPNs). Materials and Methods We retrospectively reviewed 177 consecutive patients who underwent 18F-FDG PET/CT for evaluation of SPNs. The mathematical model was established by logistic regression analysis. The diagnostic capabilities of the model were calculated, and the areas under the receiver operating characteristic curve (AUC) were compared with Mayo and VA model. Results The mathematical model was y = exp(x)/[1 + exp(x)], x = −7.363 + 0.079 × age + 1.900 × lobulation + 1.024 × vascular convergence + 1.530 × pleural retraction + 0.359 × the maximum of standardized uptake value (SUVmax). When the cut-off value was set at 0.56, the sensitivity, specificity, and accuracy of our model were 86.55%, 74.14%, and 81.4%, respectively. The area under the receiver operating characteristic curve (AUC) of our model was 0.903 (95% confidence interval (CI): 0.860 to 0.946). The AUC of our model was greater than that of the Mayo model, the VA model, and PET (P < 0.05) and has no difference with that of PET/CT (P > 0.05). Conclusion The mathematical predictive model has high accuracy in estimating the malignant probability of patients with SPNs. PMID:29789808
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
An analytical approach to top predator interference on the dynamics of a food chain model
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Vijayalakshmi, T.
2018-04-01
In this paper, a nonlinear mathematical model is proposed and analyzed to study of top predator interference on the dynamics of a food chain model. The mathematical model is formulated using the system of non-linear ordinary differential equations. In this model, there are three state dimensionless variables, viz, size of prey population x, size of intermediate predator y and size of top predator population z. The analytical results are compared with the numerical simulation using MATLAB software and satisfactory results are noticed.
Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.
Modeling Students' Interest in Mathematics Homework
ERIC Educational Resources Information Center
Xu, Jianzhong; Yuan, Ruiping; Xu, Brian; Xu, Melinda
2016-01-01
The authors examine the factors influencing mathematics homework interest for Chinese students and compare the findings with a recent study involving U.S. students. The findings from multilevel analyses revealed that some predictors for homework interest functioned similarly (e.g., affective attitude toward homework, learning-oriented reasons,…
Dermol, Janja; Miklavčič, Damijan
2014-12-01
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathematical (Dis)abilities Within the Opportunity-Propensity Model: The Choice of Math Test Matters
Baten, Elke; Desoete, Annemie
2018-01-01
This study examined individual differences in mathematics learning by combining antecedent (A), opportunity (O), and propensity (P) indicators within the Opportunity-Propensity Model. Although there is already some evidence for this model based on secondary datasets, there currently is no primary data available that simultaneously takes into account A, O, and P factors in children with and without Mathematical Learning Disabilities (MLD). Therefore, the mathematical abilities of 114 school-aged children (grade 3 till 6) with and without MLD were analyzed and combined with information retrieved from standardized tests and questionnaires. Results indicated significant differences in personality, motivation, temperament, subjective well-being, self-esteem, self-perceived competence, and parental aspirations when comparing children with and without MLD. In addition, A, O, and P factors were found to underlie mathematical abilities and disabilities. For the A factors, parental aspirations explained about half of the variance in fact retrieval speed in children without MLD, and SES was especially involved in the prediction of procedural accuracy in general. Teachers’ experience contributed as O factor and explained about 6% of the variance in mathematical abilities. P indicators explained between 52 and 69% of the variance, with especially intelligence as overall significant predictor. Indirect effects pointed towards the interrelatedness of the predictors and the value of including A, O, and P indicators in a comprehensive model. The role parental aspirations played in fact retrieval speed was partially mediated through the self-perceived competence of the children, whereas the effect of SES on procedural accuracy was partially mediated through intelligence in children of both groups and through working memory capacity in children with MLD. Moreover, in line with the componential structure of mathematics, our findings were dependent on the math task used. Different A, O, and P indicators seemed to be important for fact retrieval speed compared to procedural accuracy. Also, mathematical development type (MLD or typical development) mattered since some A, O, and P factors were predictive for MLD only and the other way around. Practical implications of these findings and recommendations for future research on MLD and on individual differences in mathematical abilities are provided. PMID:29867645
Baten, Elke; Desoete, Annemie
2018-01-01
This study examined individual differences in mathematics learning by combining antecedent (A), opportunity (O), and propensity (P) indicators within the Opportunity-Propensity Model. Although there is already some evidence for this model based on secondary datasets, there currently is no primary data available that simultaneously takes into account A, O, and P factors in children with and without Mathematical Learning Disabilities (MLD). Therefore, the mathematical abilities of 114 school-aged children (grade 3 till 6) with and without MLD were analyzed and combined with information retrieved from standardized tests and questionnaires. Results indicated significant differences in personality, motivation, temperament, subjective well-being, self-esteem, self-perceived competence, and parental aspirations when comparing children with and without MLD. In addition, A, O, and P factors were found to underlie mathematical abilities and disabilities. For the A factors, parental aspirations explained about half of the variance in fact retrieval speed in children without MLD, and SES was especially involved in the prediction of procedural accuracy in general. Teachers' experience contributed as O factor and explained about 6% of the variance in mathematical abilities. P indicators explained between 52 and 69% of the variance, with especially intelligence as overall significant predictor. Indirect effects pointed towards the interrelatedness of the predictors and the value of including A, O, and P indicators in a comprehensive model. The role parental aspirations played in fact retrieval speed was partially mediated through the self-perceived competence of the children, whereas the effect of SES on procedural accuracy was partially mediated through intelligence in children of both groups and through working memory capacity in children with MLD. Moreover, in line with the componential structure of mathematics, our findings were dependent on the math task used. Different A, O, and P indicators seemed to be important for fact retrieval speed compared to procedural accuracy. Also, mathematical development type (MLD or typical development) mattered since some A, O, and P factors were predictive for MLD only and the other way around. Practical implications of these findings and recommendations for future research on MLD and on individual differences in mathematical abilities are provided.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.
NASA Astrophysics Data System (ADS)
Kachapova, Farida
2016-07-01
Mathematical and computational models in biology and medicine help to improve diagnostics and medical treatments. Modeling of pathological fibrosis is reviewed by M. Ben Amar and C. Bianca in [4]. Pathological fibrosis is the process when excessive fibrous tissue is deposited on an organ or tissue during a wound healing and can obliterate their normal function. In [4] the phenomena of fibrosis are briefly explained including the causes, mechanism and management; research models of pathological fibrosis are described, compared and critically analyzed. Different models are suitable at different levels: molecular, cellular and tissue. The main goal of mathematical modeling of fibrosis is to predict long term behavior of the system depending on bifurcation parameters; there are two main trends: inhibition of fibrosis due to an active immune system and swelling of fibrosis because of a weak immune system.
Mathematical modelling of intra-aortic balloon pump.
Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran
2010-10-01
Ischemic heart diseases now afflict thousands of Iranians and are the major cause of death in many industrialised countries. Mathematical modelling of an intra-aortic balloon pump (IABP) could provide a better understanding of its performance and help to represent blood flow and pressure in systemic arteries before and after inserting the pump. A mathematical modelling of the whole cardiovascular system was formulated using MATLAB software. The block diagram of the model consists of 43 compartments. All the anatomical data was extracted from the physiological references. In the next stage, myocardial infarction (MI) was induced in the model by decreasing the contractility of the left ventricle. The IABP was mathematically modelled and inserted in the model in the thoracic aorta I artery just before the descending aorta. The effects of IABP on MI were studied using the mathematical model. The normal operation of the cardiovascular system was studied firstly. The pressure-time graphs of the ventricles, atriums, aorta, pulmonary system, capillaries and arterioles were obtained. The volume-time curve of the left ventricle was also presented. The pressure-time curves of the left ventricle and thoracic aorta I were obtained for normal, MI, and inserted IABP conditions. Model verification was performed by comparing the simulation results with the clinical observations reported in the literature. IABP can be described by a theoretical model. Our model representing the cardiovascular system is capable of showing the effects of different pathologies such as MI and we have shown that MI effects can be reduced using IABP in accordance with the modelling results. The mathematical model should serve as a useful tool to simulate and better understand cardiovascular operation in normal and pathological conditions.
Mathematical Modeling of an Oscillating Droplet
NASA Technical Reports Server (NTRS)
Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.
Comparing functional responses in predator-infected eco-epidemics models.
Haque, Mainul; Rahman, Md Sabiar; Venturino, Ezio
2013-11-01
The current paper deals with the mathematical models of predator-prey system where a transmissible disease spreads among the predator species only. Four mathematical models are proposed and analysed with several popular predator functional responses in order to show the influence of functional response on eco-epidemic models. The existence, boundedness, uniqueness of solutions of all the models are established. Mathematical analysis including stability and bifurcation are observed. Comparison among the results of these models allows the general conclusion that relevant behaviour of the eco-epidemic predator-prey system, including switching of stability, extinction, persistence and oscillations for any species depends on four important parameters viz. the rate of infection, predator interspecies competition and the attack rate on susceptible predator. The paper ends with a discussion of the biological implications of the analytical and numerical results. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Shin, Jongho; Lee, Hyunjoo; Kim, Yongnam
2009-01-01
The purpose of the study was to comparatively investigate student- and school-level factors affecting mathematics achievement of Korean, Japanese and American students. For international comparisons, the PISA 2003 data were analysed by using the Hierarchical Linear Modeling method. The variables of competitive-learning preference, instrumental…
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M
2018-04-24
Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Oursland, Mark David
This study compared the modeling achievement of students receiving mathematical modeling instruction using the computer microworld, Interactive Physics, and students receiving instruction using physical objects. Modeling instruction included activities where students applied the (a) linear model to a variety of situations, (b) linear model to two-rate situations with a constant rate, (c) quadratic model to familiar geometric figures. Both quantitative and qualitative methods were used to analyze achievement differences between students (a) receiving different methods of modeling instruction, (b) with different levels of beginning modeling ability, or (c) with different levels of computer literacy. Student achievement was analyzed quantitatively through a three-factor analysis of variance where modeling instruction, beginning modeling ability, and computer literacy were used as the three independent factors. The SOLO (Structure of the Observed Learning Outcome) assessment framework was used to design written modeling assessment instruments to measure the students' modeling achievement. The same three independent factors were used to collect and analyze the interviews and observations of student behaviors. Both methods of modeling instruction used the data analysis approach to mathematical modeling. The instructional lessons presented problem situations where students were asked to collect data, analyze the data, write a symbolic mathematical equation, and use equation to solve the problem. The researcher recommends the following practice for modeling instruction based on the conclusions of this study. A variety of activities with a common structure are needed to make explicit the modeling process of applying a standard mathematical model. The modeling process is influenced strongly by prior knowledge of the problem context and previous modeling experiences. The conclusions of this study imply that knowledge of the properties about squares improved the students' ability to model a geometric problem more than instruction in data analysis modeling. The uses of computer microworlds such as Interactive Physics in conjunction with cooperative groups are a viable method of modeling instruction.
Stochastic growth logistic model with aftereffect for batch fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic growth logistic model with aftereffect for batch fermentation process
NASA Astrophysics Data System (ADS)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Iannazzo, Sergio; Colombatto, Piero; Ricco, Gabriele; Oliveri, Filippo; Bonino, Ferruccio; Brunetto, Maurizia R
2015-03-01
Rapid virologic response is the best predictor of sustained virologic response with dual therapy in genotype-1 chronic hepatitis C, and its evaluation was proposed to tailor triple therapy in F0-F2 patients. Bio-mathematical modelling of viral dynamics during dual therapy has potentially higher accuracy than rapid virologic in the identification of patients who will eventually achieve sustained response. Study's objective was the cost-effectiveness analysis of a personalized therapy in naïve F0-F2 patients with chronic hepatitis C based on a bio-mathematical model (model-guided strategy) rather than on rapid virologic response (guideline-guided strategy). A deterministic bio-mathematical model of the infected cell dynamics was validated in a cohort of 135 patients treated with dual therapy. A decision-analytic economic model was then developed to compare model-guided and guideline-guided strategies in the Italian setting. The outcomes of the cost-effectiveness analysis with model-guided and guideline-guided strategy were 19.1-19.4 and 18.9-19.3 quality-adjusted-life-years. Total per-patient lifetime costs were €25,200-€26,000 with model-guided strategy and €28,800-€29,900 with guideline-guided strategy. When comparing model-guided with guideline-guided strategy the former resulted more effective and less costly. The adoption of the bio-mathematical predictive criterion has the potential to improve the cost-effectiveness of a personalized therapy for chronic hepatitis C, reserving triple therapy for those patients who really need it. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Bove, Edward L; Migliavacca, Francesco; de Leval, Marc R; Balossino, Rossella; Pennati, Giancarlo; Lloyd, Thomas R; Khambadkone, Sachin; Hsia, Tain-Yen; Dubini, Gabriele
2008-08-01
Stage one reconstruction (Norwood operation) for hypoplastic left heart syndrome can be performed with either a modified Blalock-Taussig shunt or a right ventricle-pulmonary artery shunt. Both methods have certain inherent characteristics. It is postulated that mathematic modeling could help elucidate these differences. Three-dimensional computer models of the Blalock-Taussig shunt and right ventricle-pulmonary artery shunt modifications of the Norwood operation were developed by using the finite volume method. Conduits of 3, 3.5, and 4 mm were used in the Blalock-Taussig shunt model, whereas conduits of 4, 5, and 6 mm were used in the right ventricle-pulmonary artery shunt model. The hydraulic nets (lumped resistances, compliances, inertances, and elastances) were identical in the 2 models. A multiscale approach was adopted to couple the 3-dimensional models with the circulation net. Computer simulations were compared with postoperative catheterization data. Good correlation was found between predicted and observed data. For the right ventricle-pulmonary artery shunt modification, there was higher aortic diastolic pressure, decreased pulmonary artery pressure, lower Qp/Qs ratio, and higher coronary perfusion pressure. Mathematic modeling predicted minimal regurgitant flow in the right ventricle-pulmonary artery shunt model, which correlated with postoperative Doppler measurements. The right ventricle-pulmonary artery shunt demonstrated lower stroke work and a higher mechanical efficiency (stroke work/total mechanical energy). The close correlation between predicted and observed data supports the use of mathematic modeling in the design and assessment of surgical procedures. The potentially damaging effects of a systemic ventriculotomy in the right ventricle-pulmonary artery shunt modification of the Norwood operation have not been analyzed.
Clinical study and numerical simulation of brain cancer dynamics under radiotherapy
NASA Astrophysics Data System (ADS)
Nawrocki, S.; Zubik-Kowal, B.
2015-05-01
We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.
Approaching mathematical model of the immune network based DNA Strand Displacement system.
Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio
2013-12-01
One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B
2017-02-21
In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computer modeling of heat pipe performance
NASA Technical Reports Server (NTRS)
Peterson, G. P.
1983-01-01
A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
Mathematical model of a DIC position sensing system within an optical trap
NASA Astrophysics Data System (ADS)
Wulff, Kurt D.; Cole, Daniel G.; Clark, Robert L.
2005-08-01
The quantitative study of displacements and forces of motor proteins and processes that occur at the microscopic level and below require a high level of sensitivity. For optical traps, two techniques for position sensing have been accepted and used quite extensively: quadrant photodiodes and an interferometric position sensing technique based on DIC imaging. While quadrant photodiodes have been studied in depth and mathematically characterized, a mathematical characterization of the interferometric position sensor has not been presented to the authors' knowledge. The interferometric position sensing method works off of the DIC imaging capabilities of a microscope. Circularly polarized light is sent into the microscope and the Wollaston prism used for DIC imaging splits the beam into its orthogonal components, displacing them by a set distance determined by the user. The distance between the axes of the beams is set so the beams overlap at the specimen plane and effectively share the trapped microsphere. A second prism then recombines the light beams and the exiting laser light's polarization is measured and related to position. In this paper we outline the mathematical characterization of a microsphere suspended in an optical trap using a DIC position sensing method. The sensitivity of this mathematical model is then compared to the QPD model. The mathematical model of a microsphere in an optical trap can serve as a calibration curve for an experimental setup.
Eaton, Jeffrey W.; Johnson, Leigh F.; Salomon, Joshua A.; Bärnighausen, Till; Bendavid, Eran; Bershteyn, Anna; Bloom, David E.; Cambiano, Valentina; Fraser, Christophe; Hontelez, Jan A. C.; Humair, Salal; Klein, Daniel J.; Long, Elisa F.; Phillips, Andrew N.; Pretorius, Carel; Stover, John; Wenger, Edward A.; Williams, Brian G.; Hallett, Timothy B.
2012-01-01
Background Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. Methods and Findings Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. Conclusions Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact. Please see later in the article for the Editors' Summary PMID:22802730
Effects of a Reform High School Mathematics Curriculum on Student Achievement: Whom Does It Benefit?
ERIC Educational Resources Information Center
Krupa, Erin E.; Confrey, Jere
2017-01-01
This study compared the effects of an integrated reform-based curriculum to a subject-specific curriculum on student learning of 19,526 high school algebra students. Using hierarchical linear modelling to account for variation in student achievement, the impact of the reform-based "Core-Plus Mathematics" curricular materials on student…
The effects of geometric uncertainties on computational modelling of knee biomechanics
NASA Astrophysics Data System (ADS)
Meng, Qingen; Fisher, John; Wilcox, Ruth
2017-08-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.
Simulation of car movement along circular path
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.
2017-10-01
Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.
1987-06-26
BUREAU OF STANDAR-S1963-A Nw BOM -ILE COPY -. 4eo .?3sa.9"-,,A WIN* MAT HEMATICAL SCIENCES _*INSTITUTE AD-A184 687 DTICS!ELECTE ANNOTATED COMPUTER OUTPUT...intoduction to the use of mixture models in clustering. Cornell University Biometrics Unit Technical Report BU-920-M and Mathematical Sciences Institute...mixture method and two comparable methods from SAS. Cornell University Biometrics Unit Technical Report BU-921-M and Mathematical Sciences Institute
Application of differential transformation method for solving dengue transmission mathematical model
NASA Astrophysics Data System (ADS)
Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.
Clark, Alistair; Moule, Pam; Topping, Annie; Serpell, Martin
2015-05-01
To review research in the literature on nursing shift scheduling / rescheduling, and to report key issues identified in a consultation exercise with managers in four English National Health Service trusts to inform the development of mathematical tools for rescheduling decision-making. Shift rescheduling is unrecognised as an everyday time-consuming management task with different imperatives from scheduling. Poor rescheduling decisions can have quality, cost and morale implications. A systematic critical literature review identified rescheduling issues and existing mathematic modelling tools. A consultation exercise with nursing managers examined the complex challenges associated with rescheduling. Minimal research exists on rescheduling compared with scheduling. Poor rescheduling can result in greater disruption to planned nursing shifts and may impact negatively on the quality and cost of patient care, and nurse morale and retention. Very little research examines management challenges or mathematical modelling for rescheduling. Shift rescheduling is a complex and frequent management activity that is more challenging than scheduling. Mathematical modelling may have potential as a tool to support managers to minimise rescheduling disruption. The lack of specific methodological support for rescheduling that takes into account its complexity, increases the likelihood of harm for patients and stress for nursing staff and managers. © 2013 John Wiley & Sons Ltd.
Szczegielniak, Jan; Łuniewski, Jacek; Stanisławski, Rafał; Bogacz, Katarzyna; Krajczy, Marcin; Rydel, Marek
2018-01-01
Background The six-minute walk test (6MWT) is considered to be a simple and inexpensive tool for the assessment of functional tolerance of submaximal effort. The aim of this work was 1) to background the nonlinear nature of the energy expenditure process due to physical activity, 2) to compare the results/scores of the submaximal treadmill exercise test and those of 6MWT in pulmonary patients and 3) to develop nonlinear mathematical models relating the two. Methods The study group included patients with the COPD. All patients were subjected to a submaximal exercise test and a 6MWT. To develop an optimal mathematical solution and compare the results of the exercise test and the 6MWT, the least squares and genetic algorithms were employed to estimate parameters of polynomial expansion and piecewise linear models. Results Mathematical analysis enabled to construct nonlinear models for estimating the MET result of submaximal exercise test based on average walk velocity (or distance) in the 6MWT. Conclusions Submaximal effort tolerance in COPD patients can be effectively estimated from new, rehabilitation-oriented, nonlinear models based on the generalized MET concept and the 6MWT. PMID:29425213
Rhodes, Katherine T; Branum-Martin, Lee; Morris, Robin D; Romski, MaryAnn; Sevcik, Rose A
2015-11-01
Although it is often assumed that mathematics ability alone predicts mathematics test performance, linguistic demands may also predict achievement. This study examined the role of language in mathematics assessment performance for children with intellectual disability (ID) at less severe levels, on the KeyMath-Revised Inventory (KM-R) with a sample of 264 children, in grades 2-5. Using confirmatory factor analysis, the hypothesis that the KM-R would demonstrate discriminant validity with measures of language abilities in a two-factor model was compared to two plausible alternative models. Results indicated that KM-R did not have discriminant validity with measures of children's language abilities and was a multidimensional test of both mathematics and language abilities for this population of test users. Implications are considered for test development, interpretation, and intervention.
NASA Astrophysics Data System (ADS)
Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana
2016-03-01
A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.
NASA Astrophysics Data System (ADS)
Wardono; Waluya, B.; Kartono; Mulyono; Mariani, S.
2018-03-01
This research is very urgent in relation to the national issue of human development and the nation's competitiveness because of the ability of Indonesian Junior High School students' mathematics literacy results of the Programme for International Student Assessment (PISA) by OECD field of Mathematics is still very low compared to other countries. Curriculum 2013 launched one of them reflect the results of PISA which is still far from the expectations of the Indonesian nation and to produce a better quality of education, PISA ratings that reflect the nation's better competitiveness need to be developed innovative, interactive learning models such as innovative interactive learning Problem Based Learning (PBL) based on the approach of Indonesian Realistic Mathematics Education (PMRI) and the Scientific approach using Information and Communication Technology (ICT).The research was designed using Research and Development (R&D), research that followed up the development and dissemination of a product/model. The result of the research shows the innovative interactive learning PBL model based on PMRI-Scientific using ICT that developed valid, practical and effective and can improve the ability of mathematics literacy and independence-character of junior high school students. While the quality of innovative interactive learning PBL model based on PMRI-Scientific using ICT meet the good category.
NASA Astrophysics Data System (ADS)
Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal
2017-11-01
This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.
A general consumer-resource population model
Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.
2015-01-01
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.
ERIC Educational Resources Information Center
Deering, Pamela Rose
2014-01-01
This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…
Exploring the Ups and Downs of Mathematics Engagement in the Middle Years of School
ERIC Educational Resources Information Center
Martin, Andrew J.; Way, Jennifer; Bobis, Janette; Anderson, Judy
2015-01-01
This study of 1,601 students in the middle years of schooling (Grades 5-8, each student measured twice, 1 year apart) from 200 classrooms in 44 schools sought to identify factors explaining gains and declines in mathematics engagement at key transition points. In multilevel regression modeling, findings showed that compared with Grade 6 students…
A mathematical model of microbial enhanced oil recovery (MEOR) method for mixed type rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitnikov, A.A.; Eremin, N.A.; Ibattulin, R.R.
1994-12-31
This paper deals with the microbial enhanced oil recovery method. It covers: (1) Mechanism of microbial influence on the reservoir was analyzed; (2) The main groups of metabolites affected by the hydrodynamic characteristics of the reservoir were determined; (3) The criterions of use of microbial influence method on the reservoir are defined. The mathematical model of microbial influence on the reservoir was made on this basis. The injection of molasse water solution with Clostridium bacterias into the mixed type of rock was used in this model. And the results of calculations were compared with experimental data.
Konur, Dinçer; Golias, Mihalis M; Darks, Brandon
2013-03-01
State Departments of Transportation (S-DOT's) periodically allocate budget for safety upgrades at railroad-highway crossings. Efficient resource allocation is crucial for reducing accidents at railroad-highway crossings and increasing railroad as well as highway transportation safety. While a specific method is not restricted to S-DOT's, sorting type of procedures are recommended by the Federal Railroad Administration (FRA), United States Department of Transportation for the resource allocation problem. In this study, a generic mathematical model is proposed for the resource allocation problem for railroad-highway crossing safety upgrades. The proposed approach is compared to sorting based methods for safety upgrades of public at-grade railroad-highway crossings in Tennessee. The comparison shows that the proposed mathematical modeling approach is more efficient than sorting methods in reducing accidents and severity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mollard, Séverine; Fanciullino, Raphaelle; Giacometti, Sarah; Serdjebi, Cindy; Benzekry, Sebastien; Ciccolini, Joseph
2016-01-01
This study aimed at evaluating the reliability and precision of Diffuse Luminescent Imaging Tomography (DLIT) for monitoring primary tumor and metastatic spreading in breast cancer mice, and to develop a biomathematical model to describe the collected data. Using orthotopic mammary fat pad model of breast cancer (MDAMB231-Luc) in mice, we monitored tumor and metastatic spreading by three-dimensional (3D) bioluminescence and cross-validated it with standard bioluminescence imaging, caliper measurement and necropsy examination. DLIT imaging proved to be reproducible and reliable throughout time. It was possible to discriminate secondary lesions from the main breast cancer, without removing the primary tumor. Preferential metastatic sites were lungs, peritoneum and lymph nodes. Necropsy examinations confirmed DLIT measurements. Marked differences in growth profiles were observed, with an overestimation of the exponential phase when using a caliper as compared with bioluminescence. Our mathematical model taking into account the balance between living and necrotic cells proved to be able to reproduce the experimental data obtained with a caliper or DLIT imaging, because it could discriminate proliferative living cells from a more composite mass consisting of tumor cells, necrotic cell, or inflammatory tissues. DLIT imaging combined with mathematical modeling could be a powerful and informative tool in experimental oncology. PMID:27812027
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
Assessing adult mortality in HIV-1-afflicted Zimbabwe (1998 -2003).
Lopman, Ben A.; Barnabas, Ruanne; Hallett, Timothy B.; Nyamukapa, Constance; Mundandi, Costa; Mushati, Phyllis; Garnett, Geoff P.; Gregson, Simon
2006-01-01
OBJECTIVE: To compare alternative methods to vital registration systems for estimating adult mortality, and describe patterns of mortality in Manicaland, Zimbabwe, which has been severely affected by HIV. METHODS: We compared estimates of adult mortality from (1) a single question on household mortality, (2) repeated household censuses, and (3) an adult cohort study with linked HIV testing from Manicaland, with a mathematical model fitted to local age-specific HIV prevalence (1998 -2000). FINDINGS: The crude death rate from the single question (29 per 1000 person-years) was roughly consistent with that from the mathematical model (22 -25 per 1000 person-years), but much higher than that from the household censuses (12 per 1000 person-years). Adult mortality in the household censuses (males 0.65; females 0.51) was lower than in the cohort study (males 0.77; females 0.57), while mathematical models gave a much higher estimate, especially for females (males 0.80 -0.83; females 0.75 -0.80). The population attributable fraction of adult deaths due to HIV was 0.61 for men and 0.70 for women, with life expectancy estimated to be 34.3 years for males and 38.2 years for females. CONCLUSION: Each method for estimating adult mortality had limitations in terms of loss to follow-up (cohort study), under-ascertainment (household censuses), transparency of underlying processes (single question), and sensitivity to parameterization (mathematical model). However, these analyses make clear the advantages of longitudinal cohort data, which provide more complete ascertainment than household censuses, highlight possible inaccuracies in model assumptions, and allow direct quantification of the impact of HIV. PMID:16583077
ERIC Educational Resources Information Center
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
Anaerobic Threshold by Mathematical Model in Healthy and Post-Myocardial Infarction Men.
Novais, L D; Silva, E; Simões, R P; Sakabe, D I; Martins, L E B; Oliveira, L; Diniz, C A R; Gallo, L; Catai, A M
2016-02-01
The aim of this study was to determine the anaerobic threshold (AT) in a population of healthy and post-myocardial infarction men by applying Hinkley's mathematical method and comparing its performance to the ventilatory visual method. This mathematical model, in lieu of observer-dependent visual determination, can produce more reliable results due to the uniformity of the procedure. 17 middle-aged men (55±3 years) were studied in 2 groups: 9 healthy men (54±2 years); and 8 men with previous myocardial infarction (57±3 years). All subjects underwent an incremental ramp exercise test until physical exhaustion. Breath-by-breath ventilatory variables, heart rate (HR), and vastus lateralis surface electromyography (sEMG) signal were collected throughout the test. Carbon dioxide output (V˙CO2), HR, and sEMG were studied, and the AT determination methods were compared using correlation coefficients and Bland-Altman plots. Parametric statistical tests were applied with significance level set at 5%. No significant differences were found in the HR, sEMG, and ventilatory variables at AT between the different methods, such as the intensity of effort relative to AT. Moreover, important concordance and significant correlations were observed between the methods. We concluded that the mathematical model was suitable for detecting the AT in both healthy and myocardial infarction subjects. © Georg Thieme Verlag KG Stuttgart · New York.
Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model.
Castillo-Montiel, E; Chimal-Eguía, J C; Tello, J Ignacio; Piñon-Zaráte, G; Herrera-Enríquez, M; Castell-Rodríguez, A E
2015-06-09
The immunotherapy using dendritic cells (DCs) against different varieties of cancer is an approach that has been previously explored which induces a specific immune response. This work presents a mathematical model of DCs immunotherapy for melanoma in mice based on work by Experimental Immunotherapy Laboratory of the Medicine Faculty in the Universidad Autonoma de Mexico (UNAM). The model is a five delay differential equation (DDEs) which represents a simplified view of the immunotherapy mechanisms. The mathematical model takes into account the interactions between tumor cells, dendritic cells, naive cytotoxic T lymphocytes cells (inactivated cytotoxic cells), effector cells (cytotoxic T activated cytotoxic cells) and transforming growth factor β cytokine (T G F-β). The model is validated comparing the computer simulation results with biological trial results of the immunotherapy developed by the research group of UNAM. The results of the growth of tumor cells obtained by the control immunotherapy simulation show a similar amount of tumor cell population than the biological data of the control immunotherapy. Moreover, comparing the increase of tumor cells obtained from the immunotherapy simulation and the biological data of the immunotherapy applied by the UNAM researchers obtained errors of approximately 10 %. This allowed us to use the model as a framework to test hypothetical treatments. The numerical simulations suggest that by using more doses of DCs and changing the infusion time, the tumor growth decays compared with the current immunotherapy. In addition, a local sensitivity analysis is performed; the results show that the delay in time " τ", the maximal growth rate of tumor "r" and the maximal efficiency of tumor cytotoxic cells rate "aT" are the most sensitive model parameters. By using this mathematical model it is possible to simulate the growth of the tumor cells with or without immunotherapy using the infusion protocol of the UNAM researchers, to obtain a good approximation of the biological trials data. It is worth mentioning that by manipulating the different parameters of the model the effectiveness of the immunotherapy may increase. This last suggests that different protocols could be implemented by the Immunotherapy Laboratory of UNAM in order to improve their results.
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
ERIC Educational Resources Information Center
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
ERIC Educational Resources Information Center
Schwerdtfeger, Sara
2017-01-01
This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…
A Case Study of Teachers' Development of Well-Structured Mathematical Modelling Activities
ERIC Educational Resources Information Center
Stohlmann, Micah; Maiorca, Cathrine; Allen, Charlie
2017-01-01
This case study investigated how three teachers developed mathematical modelling activities integrated with content standards through participation in a course on mathematical modelling. The class activities involved experiencing a mathematical modelling activity, reading and rating example mathematical modelling activities, reading articles about…
ERIC Educational Resources Information Center
Sidabutar, Ropinus
2016-01-01
The research was aimed to investigate the effect of various, innovated teaching models to improved the student's achievement in various topic in Mathematics. The study was conduct experiment by using innovated teaching with contextual, media and web which are the compared. with conventional teaching method. The result showed the innovation in the…
NASA Astrophysics Data System (ADS)
Jianjun, X.; Bingjie, Y.; Rongji, W.
2018-03-01
The purpose of this paper was to improve catastrophe insurance level. Firstly, earthquake predictions were carried out using mathematical analysis method. Secondly, the foreign catastrophe insurances’ policies and models were compared. Thirdly, the suggestions on catastrophe insurances to China were discussed. The further study should be paid more attention on the earthquake prediction by introducing big data.
Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.
Mouri, Hideaki
2015-12-01
For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.; Ryzhkov, S. V.; Frolko, P. A.
2017-05-01
The paper presents the results of mathematical modeling of physical processes in electronic devices such as helicon discharge and coaxial pulsed plasma thruster. A mathematical model of coaxial magneto-plasma accelerator (with a preionization helicon discharge), which allows estimating the transformation of one form of energy to another, as well as to evaluate the level of the contribution of different types of energy, the increase in mass of the accelerated plasmoid in the process of changing the speed. Main plasma parameters with experimental data were compared.
The effects of geometric uncertainties on computational modelling of knee biomechanics
Fisher, John; Wilcox, Ruth
2017-01-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models. PMID:28879008
Mathematical Modelling Approach in Mathematics Education
ERIC Educational Resources Information Center
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
ERIC Educational Resources Information Center
Lowe, James; Carter, Merilyn; Cooper, Tom
2018-01-01
Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…
NASA Astrophysics Data System (ADS)
Shahbari, Juhaina Awawdeh
2018-07-01
The current study examines whether the engagement of mathematics teachers in modelling activities and subsequent changes in their conceptions about these activities affect their beliefs about mathematics. The sample comprised 52 mathematics teachers working in small groups in four modelling activities. The data were collected from teachers' Reports about features of each activity, interviews and questionnaires on teachers' beliefs about mathematics. The findings indicated changes in teachers' conceptions about the modelling activities. Most teachers referred to the first activity as a mathematical problem but emphasized only the mathematical notions or the mathematical operations in the modelling process; changes in their conceptions were gradual. Most of the teachers referred to the fourth activity as a mathematical problem and emphasized features of the whole modelling process. The results of the interviews indicated that changes in the teachers' conceptions can be attributed to structure of the activities, group discussions, solution paths and elicited models. These changes about modelling activities were reflected in teachers' beliefs about mathematics. The quantitative findings indicated that the teachers developed more constructive beliefs about mathematics after engagement in the modelling activities and that the difference was significant, however there was no significant difference regarding changes in their traditional beliefs.
Thien, Lei Mee; Ong, Mei Yean
2015-01-01
This paper attempts to identify the extent to which the affective characteristics of Malaysian and Singaporean students' attainment compared to the OECD average in Programme for International Student Assessment (PISA) 2012, and examine the influence of students' affective characteristics, gender, and their socioeconomic status on mathematics performance at both student and school levels. Sample consisted of 5197 and 5546 15-year-old Malaysian and Singaporean students. Data were analysed using hierarchical linear modelling approach with HLM 7.0 software. Results showed that the Index of economic, social, and cultural status (ESCS), mathematics self-efficacy, and mathematics anxiety have significant effects on mathematics performance in Malaysia and Singapore at the student level. Proportion of boys at the school level has no significant effects on mathematics performance for both Malaysian and Singaporean students. ESCS mean at the school level has positive and significant effects on mathematics performance in Malaysia, but not in Singapore. Limitations, implications, and future studies were discussed.
Mathematical modeling of laser lipolysis
Mordon, Serge R; Wassmer, Benjamin; Reynaud, Jean Pascal; Zemmouri, Jaouad
2008-01-01
Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc). The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer) with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s) give similar skin surface temperature (max: 41°C). These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction depends on the applied energy, typically 5 cm3 for 3000 J. At last, skin retraction was observed in patients at 6-month follow up. This observation can be easily explained by mathematical modeling showing that the temperature increase inside the lower dermis is sufficient (48–50°C) to induce skin tightening Discussion and Conclusion Laser lipolysis can be described by a theoretical model. Fat volume reduction observed in patients is in accordance with model calculations. Due to heat diffusion, temperature elevation is also produced inside the lower reticular dermis. This interesting observation can explain remodeling of the collagenous tissue, with clinically evident skin tightening. In conclusion, while the heat generated by interstitial laser irradiation provides stimulate lipolysis of the fat cells, the collagen and elastin are also stimulated resulting in a tightening in the skin. This mathematical model should serve as a useful tool to simulate and better understand the mechanism of action of the laser lipolysis PMID:18312643
Alves, Rui; Vilaprinyo, Ester; Hernádez-Bermejo, Benito; Sorribas, Albert
2008-01-01
There is a renewed interest in obtaining a systemic understanding of metabolism, gene expression and signal transduction processes, driven by the recent research focus on Systems Biology. From a biotechnological point of view, such a systemic understanding of how a biological system is designed to work can facilitate the rational manipulation of specific pathways in different cell types to achieve specific goals. Due to the intrinsic complexity of biological systems, mathematical models are a central tool for understanding and predicting the integrative behavior of those systems. Particularly, models are essential for a rational development of biotechnological applications and in understanding system's design from an evolutionary point of view. Mathematical models can be obtained using many different strategies. In each case, their utility will depend upon the properties of the mathematical representation and on the possibility of obtaining meaningful parameters from available data. In practice, there are several issues at stake when one has to decide which mathematical model is more appropriate for the study of a given problem. First, one needs a model that can represent the aspects of the system one wishes to study. Second, one must choose a mathematical representation that allows an accurate analysis of the system with respect to different aspects of interest (for example, robustness of the system, dynamical behavior, optimization of the system with respect to some production goal, parameter value determination, etc). Third, before choosing between alternative and equally appropriate mathematical representations for the system, one should compare representations with respect to easiness of automation for model set-up, simulation, and analysis of results. Fourth, one should also consider how to facilitate model transference and re-usability by other researchers and for distinct purposes. Finally, one factor that is important for all four aspects is the regularity in the mathematical structure of the equations because it facilitates computational manipulation. This regularity is a mark of kinetic representations based on approximation theory. The use of approximation theory to derive mathematical representations with regular structure for modeling purposes has a long tradition in science. In most applied fields, such as engineering and physics, those approximations are often required to obtain practical solutions to complex problems. In this paper we review some of the more popular mathematical representations that have been derived using approximation theory and are used for modeling in molecular systems biology. We will focus on formalisms that are theoretically supported by the Taylor Theorem. These include the Power-law formalism, the recently proposed (log)linear and Lin-log formalisms as well as some closely related alternatives. We will analyze the similarities and differences between these formalisms, discuss the advantages and limitations of each representation, and provide a tentative "road map" for their potential utilization for different problems.
ECOLOGICAL THEORY. A general consumer-resource population model.
Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M
2015-08-21
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model. Copyright © 2015, American Association for the Advancement of Science.
Personal Value Systems of Union Leaders and Corporate Managers: A Comparative Study.
LABOR UNIONS, LEADERSHIP ), (*SUPERVISORS, BEHAVIOR), (*PERFORMANCE(HUMAN), ANALOG SYSTEMS), MATHEMATICAL MODELS, CORRELATION TECHNIQUES, ATTITUDES(PSYCHOLOGY), PSYCHOLOGICAL TESTS, PROBABILITY, INDUSTRIAL RELATIONS
Mathematical Models of Breast and Ovarian Cancers
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-01-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
Kacerja, Suela; Julie, Cyril; Hadjerrouit, Said
2013-01-01
This paper reports on an investigation on the real-life situations students in grades 8 and 9 in South Africa and Albania prefer to use in Mathematics. The functioning of the instrument used to assess the order of preference learners from both countries have for contextual situations is assessed using Rasch modeling techniques. For both the cohorts, the data fit the Rasch model. The differential item functioning (DIF) analysis rendered 3 items operating differentially for the two cohorts. Explanations for these differences are provided in terms of differences in experiences learners in the two countries have related to some of the contextual situations. Implications for interpretation of international comparative tests are offered, as are the possibilities for the cross-country development of curriculum materials related to contexts that learners prefer to use in Mathematics.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Modelling and extraction technique for micro-doppler signature of aircraft rotor blades
NASA Astrophysics Data System (ADS)
Praveen, N.; Valarmathi, J.
2017-11-01
The process of detecting and distinguishing between different aircrafts has been a major point of interest in Defence applications. Micro-Doppler effect is one such phenomenon unique for aircrafts with different rotor dynamics and design. In this paper, we focus on deducing a mathematical model for micro-Doppler signature, of aircraft rotor blades assumed to be rotating in a plane perpendicular to the flying direction, induced on the incident radar signal. Also, we use the Wigner-Ville Distribution (WVD) to extract this signature from the radar return. This mathematical model is compared with the simulation results obtained from MATLAB, to validate the results and show the accurateness of the developed model.
Vaccination Strategies: a comparative study in an epidemic scenario
NASA Astrophysics Data System (ADS)
Prates, D. B.; Jardim, C. L. T. F.; Ferreira, L. A. F.; da Silva, J. M.; Kritz, M. V.
2016-08-01
Epidemics are an extremely important matter of study within the Mathematical Modeling area and can be widely found in the literature. Some epidemiological models use differential equations, which are very sensible to parameters, to represent and describe the diseases mathematically. For this work, a variation of the SIR model is discussed and applied to a certain epidemic scenario, wherein vaccination is introduced through two different strategies: constant vaccination and vaccination in pulses. Other epidemiological and population aspects are also considered, such as mortality/natality and infection rates. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.
Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V
2001-09-01
A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.
Stepanov, I I; Kuznetsova, N N; Klement'ev, B I; Sapronov, N S
2007-07-01
The effects of intracerebroventricular administration of the beta-amyloid peptide fragment Abeta(25-35) on the dynamics of the acquisition of a conditioned reflex in a Y maze were studied in Wistar and mongrel rats. The dynamics of decreases in the number of errors were assessed using an exponential mathematical model describing the transfer function of a first-order system in response to stepped inputs using non-linear regression analysis. This mathematical model provided a good approximation to the learning dynamics in inbred and mongrel mice. In Wistar rats, beta-amyloid impaired learning, with reduced memory between the first and second training sessions, but without complete blockade of learning. As a result, learning dynamics were no longer approximated by the mathematical model. At the same time, comparison of the number of errors in each training sessions between the control group of Wistar rats and the group given beta-amyloid showed no significant differences (Student's t test). This result demonstrates the advantage of regression analysis based on a mathematical model over the traditionally used statistical methods. In mongrel rats, the effect of beta-amyloid was limited to an a slowing of the process of learning as compared with control mongrel rats, with retention of the approximation by the mathematical model. It is suggested that mongrel animals have some kind of innate, genetically determined protective mechanism against the harmful effects of beta-amyloid.
NASA Astrophysics Data System (ADS)
Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.
2018-06-01
Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
The Modulus of Rupture from a Mathematical Point of View
NASA Astrophysics Data System (ADS)
Quintela, P.; Sánchez, M. T.
2007-04-01
The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.
Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C
Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.
A mathematical model for simulating noise suppression of lined ejectors
NASA Technical Reports Server (NTRS)
Watson, Willie R.
1994-01-01
A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.
Rieger, Marc Oliver; Wang, Mei
2008-01-01
Comments on the article by E. Brandstätter, G. Gigerenzer, and R. Hertwig. The authors discuss the priority heuristic, a recent model for decisions under risk. They reanalyze the experimental validity of this approach and discuss how these results compare with cumulative prospect theory, the currently most established model in behavioral economics. They also discuss how general models for decisions under risk based on a heuristic approach can be understood mathematically to gain some insight in their limitations. They finally consider whether the priority heuristic model can lead to some understanding of the decision process of individuals or whether it is better seen as an as-if model. (c) 2008 APA, all rights reserved
Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna
2008-10-01
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.
Qin, Mohan; Ping, Qingyun; Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen
2015-11-01
Osmotic microbial fuel cells (OsMFCs) are a new type of MFCs with integrating forward osmosis (FO). However, it is not well understood why electricity generation is improved in OsMFCs compared to regular MFCs. Herein, an approach integrating experimental investigation and mathematical model was adopted to address the question. Both an OsMFC and an MFC achieved similar organic removal efficiency, but the OsMFC generated higher current than the MFC with or without water flux, resulting from the lower resistance of FO membrane. Combining NaCl and glucose as a catholyte demonstrated that the catholyte conductivity affected the electricity generation in the OsMFC. A mathematical model of OsMFCs was developed and validated with the experimental data. The model predicated the variation of internal resistance with increasing water flux, and confirmed the importance of membrane resistance. Increasing water flux with higher catholyte conductivity could decrease the membrane resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
[New trends in the evaluation of mathematics learning disabilities. The role of metacognition].
Miranda-Casas, A; Acosta-Escareño, G; Tarraga-Minguez, R; Fernández, M I; Rosel-Remírez, J
2005-01-15
The current trends in the evaluation of mathematics learning disabilities (MLD), based on cognitive and empirical models, are oriented towards combining procedures involving the criteria and the evaluation of cognitive and metacognitive processes, associated to performance in mathematical tasks. The objective of this study is to analyse the metacognitive skills of prediction and evaluation in performing maths tasks and to compare metacognitive performance among pupils with MLD and younger pupils without MLD, who have the same level of mathematical performance. Likewise, we analyse these pupils' desire to learn. Subjects and methods. We compare a total of 44 pupils from the second cycle of primary education (8-10 years old) with and without mathematics learning disabilities. Significant differences are observed between pupils with and without mathematics learning disabilities in their capacity to predict and assess all of the tasks evaluated. As regards their 'desire to learn', no significant differences were found between pupils with and without MLD, which indicated that those with MLD assess their chances of successfully performing maths tasks in the same way as those without MLD. Finally, the findings reveal a similar metacognitive profile in pupils with MLD and the younger pupils with no mathematics learning disabilities. In future studies we consider it important to analyse the influence of the socio-affective belief system in the use of metacognitive skills.
The oxygen uptake slow component at submaximal intensities in breaststroke swimming
Oliveira, Diogo R.; Gonçalves, Lio F.; Reis, António M.; Fernandes, Ricardo J.; Garrido, Nuno D.
2016-01-01
Abstract The present work proposed to study the oxygen uptake slow component (VO2 SC) of breaststroke swimmers at four different intensities of submaximal exercise, via mathematical modeling of a multi-exponential function. The slow component (SC) was also assessed with two different fixed interval methods and the three methods were compared. Twelve male swimmers performed a test comprising four submaximal 300 m bouts at different intensities where all expired gases were collected breath by breath. Multi-exponential modeling showed values above 450 ml·min−1 of the SC in the two last bouts of exercise (those with intensities above the lactate threshold). A significant effect of the method that was used to calculate the VO2 SC was revealed. Higher mean values were observed when using mathematical modeling compared with the fixed interval 3rd min method (F=7.111; p=0.012; η2=0.587); furthermore, differences were detected among the two fixed interval methods. No significant relationship was found between the SC determined by any method and the blood lactate measured at each of the four exercise intensities. In addition, no significant association between the SC and peak oxygen uptake was found. It was concluded that in trained breaststroke swimmers, the presence of the VO2 SC may be observed at intensities above that corresponding to the 3.5 mM-1 threshold. Moreover, mathematical modeling of the oxygen uptake on-kinetics tended to show a higher slow component as compared to fixed interval methods. PMID:28149379
NASA Astrophysics Data System (ADS)
Khusna, H.; Heryaningsih, N. Y.
2018-01-01
The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.
Design-Tradeoff Model For Space Station
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Smith, Jeffrey L.; Borden, Chester S.; Deshpande, Govind K.; Fox, George; Duquette, William H.; Dilullo, Larry A.; Seeley, Larry; Shishko, Robert
1990-01-01
System Design Tradeoff Model (SDTM) computer program produces information which helps to enforce consistency of design objectives throughout system. Mathematical model of set of possible designs for Space Station Freedom. Program finds particular design enabling station to provide specified amounts of resources to users at lowest total (or life-cycle) cost. Compares alternative design concepts by changing set of possible designs, while holding specified services to users constant, and then comparing costs. Finally, both costs and services varied simultaneously when comparing different designs. Written in Turbo C 2.0.
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers
ERIC Educational Resources Information Center
Thrasher, Emily Plunkett
2016-01-01
The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Simulating Microbial Community Patterning Using Biocellion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak
2014-04-17
Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vastmore » space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.« less
Reflective Modeling in Teacher Education.
ERIC Educational Resources Information Center
Shealy, Barry E.
This paper describes mathematical modeling activities from a secondary mathematics teacher education course taken by fourth-year university students. Experiences with mathematical modeling are viewed as important in helping teachers develop a more intuitive understanding of mathematics, generate and evaluate mathematical interpretations, and…
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Application of a Model for Simulating the Vacuum Arc Remelting Process in Titanium Alloys
NASA Astrophysics Data System (ADS)
Patel, Ashish; Tripp, David W.; Fiore, Daniel
Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into system dynamics and to predict the effect of process modifications or upsets on final properties. This article describes the application of a 2-D mathematical VAR model presented in previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in Ti-6Al-4V ingots will be discussed. Model predictions were first validated against the measured characteristics of industrially produced ingots, and process inputs and model formulation were adjusted to match macro-etched pool shapes. The results are compared to published data in the literature. Finally, the model is used to examine ingot chemistry during successive VAR melts.
Deng, Zhimin; Tian, Tianhai
2014-07-29
The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.
NASA Astrophysics Data System (ADS)
Meisel, Edna Marie
The purpose of this study was to examine the practices and perceptions of regular education seventh grade middle school mathematics teachers in West Virginia concerning the integration of mathematics objectives with science concepts. In addition, this study also emphasized the use of integrated curriculum continuum models to study mathematics teachers' practices and perceptions for teaching mathematics objectives in connection with science concepts. It was argued that the integrated curriculum continuum model can be used to help educators begin to form a common definition of integrated curriculum. The population was described as the regular education seventh grade middle school mathematics teachers in West Virginia. The entire population (N = 173) was used as the participants in this study. Data was collected using an integrated curriculum practices and perceptions survey constructed by the researcher. This was a descriptive study that incorporated the Chi Square statistic to show trends in teacher practices and perceptions. Also, an ex post facto design, that incorporated the Mann-Whitney U statistic, was used to compare practices and perceptions between teachers grouped according to factors that influence teaching practices and perceptions. These factors included teaching certificate endorsement and teacher professional preparation. Results showed that the regular education seventh grade middle school mathematics teachers of West Virginia are teaching mathematics objectives mainly at a discipline-based level with no formal attempt for integration with science concepts. However, these teachers perceived that many of the mathematics objectives should be taught at varying levels of integration with science concepts. It was also shown that teachers who experienced professional preparation courses that emphasized integrated curriculum courses did teach many of the mathematics objectives at higher levels of integration with science than those teachers who did not experience integrated curriculum courses.
Towards A Complete Model Of Photopic Visual Threshold Performance
NASA Astrophysics Data System (ADS)
Overington, I.
1982-02-01
Based on a wide variety of fragmentary evidence taken from psycho-physics, neurophysiology and electron microscopy, it has been possible to put together a very widely applicable conceptual model of photopic visual threshold performance. Such a model is so complex that a single comprehensive mathematical version is excessively cumbersome. It is, however, possible to set up a suite of related mathematical models, each of limited application but strictly known envelope of usage. Such models may be used for assessment of a variety of facets of visual performance when using display imagery, including effects and interactions of image quality, random and discrete display noise, viewing distance, image motion, etc., both for foveal interrogation tasks and for visual search tasks. The specific model may be selected from the suite according to the assessment task in hand. The paper discusses in some depth the major facets of preperceptual visual processing and their interaction with instrumental image quality and noise. It then highlights the statistical nature of visual performance before going on to consider a number of specific mathematical models of partial visual function. Where appropriate, these are compared with widely popular empirical models of visual function.
Well test mathematical model for fractures network in tight oil reservoirs
NASA Astrophysics Data System (ADS)
Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming
2018-02-01
Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.
Metamodels for Ozone: Comparison of Three Estimation Techniques
A metamodel for ozone is a mathematical relationship between the inputs and outputs of an air quality modeling experiment, permitting calculation of outputs for scenarios of interest without having to run the model again. In this study we compare three metamodel estimation techn...
NASA Astrophysics Data System (ADS)
Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli
2017-05-01
This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.
ERIC Educational Resources Information Center
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
ERIC Educational Resources Information Center
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
Evolution of Mathematics Teachers' Pedagogical Knowledge When They Are Teaching through Modeling
ERIC Educational Resources Information Center
Aydogan Yenmez, Arzu; Erbas, Ayhan Kursat; Alacaci, Cengiz; Cakiroglu, Erdinc; Cetinkaya, Bulent
2017-01-01
Use of mathematical modeling in mathematics education has been receiving significant attention as a way to develop students' mathematical knowledge and skills. As effective use of modeling in classes depends on the competencies of teachers we need to know more about the nature of teachers' knowledge to use modeling in mathematics education and how…
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
Saadati, Farzaneh; Ahmad Tarmizi, Rohani; Mohd Ayub, Ahmad Fauzi; Abu Bakar, Kamariah
2015-01-01
Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
ERIC Educational Resources Information Center
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1988-01-01
Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
Terzi, R; Catenacci, G; Marcaletti, G
1985-01-01
Some authors proposed mathematical models that, starting from standardized conditions of environmental microclimate parameters, thermal impedance of the clothing, and energetic expenditure allowed the forecast of the body temperature and heart rate variations in respect to the basal values in subjects standing in the same environment. In the present work we verify the usefulness of these models applied to the working tasks characterized by standardized job made under unfavourable thermal conditions. In subject working in an electric power station the values of the body temperature and heart rate are registered and compared with the values obtained by the application of the studied models. The results are discussed in view of the practical use.
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
NASA Astrophysics Data System (ADS)
Wahyuni, A.
2018-05-01
This research is aimed to find out whether the model of cooperative learning type Student Team Achievement Division (STAD) is more effective than cooperative learning type Think-Pair-Share in SMP Negeri 7 Yogyakarta. This research was a quasi-experimental research, using two experimental groups. The population of research was all students of 7thclass in SMP Negeri 7 Yogyakarta that consists of 5 Classes. From the population were taken 2 classes randomly which used as sample. The instrument to collect data was a description test. Measurement of instrument validity use content validity and construct validity, while measuring instrument reliability use Cronbach Alpha formula. To investigate the effectiveness of cooperative learning type STAD and cooperative learning type TPS on the aspect of student’s mathematical method, the datas were analyzed by one sample test. Comparing the effectiveness of cooperative learning type STAD and TPS in terms of mathematical communication skills by using t-test. Normality test was not conducted because the sample of research more than 30 students, while homogeneity tested by using Kolmogorov Smirnov test. The analysis was performed at 5% confidence level.The results show as follows : 1) The model of cooperative learning type STAD and TPS are effective in terms of mathematical method of junior high school students. 2). STAD type cooperative learning model is more effective than TPS type cooperative learning model in terms of mathematical methods of junior high school students.
Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina
2017-02-01
Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
Mathematical Modeling with Middle School Students: The Robot Art Model-Eliciting Activity
ERIC Educational Resources Information Center
Stohlmann, Micah S.
2017-01-01
Internationally mathematical modeling is garnering more attention for the benefits associated with it. Mathematical modeling can develop students' communication skills and the ability to demonstrate understanding through different representations. With the increased attention on mathematical modeling, there is a need for more curricula to be…
ERIC Educational Resources Information Center
Karatas, Ilhan
2014-01-01
This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model (IM)…
Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage
NASA Astrophysics Data System (ADS)
Perera, Gayathri; Ratnayake, Vijitha
2018-05-01
This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is validated based on data collected from three different factories in apparel industry, manufacturing fast fashion products. A program code is developed using Lingo 16.0 software package to generate optimal cells for developed model and to determine the possible cost-saving percentage when the existing layouts used in three factories are replaced by generated optimal cells. The optimal cells generated by developed mathematical model result in significant cost saving when compared with existing product layouts used in production/assembly department of selected factories in apparel industry. The developed model can be considered as effective in minimizing the considered cost terms in dynamic production environment of fast fashion apparel manufacturing industry. Findings of this paper can be used for further researches on minimizing the changeover-related costs in fast fashion apparel production stage.
A Comparative Study of the FET Phase Mathematical Literacy and Mathematics Curriculum
ERIC Educational Resources Information Center
Mhakure, Duncan; Mokoena, Mamolahluwa Amelia
2011-01-01
This article is based on a study that compared the FET (further education and training) phase mathematics literacy curriculum and mathematics curriculum. The study looked into how the conceptualization of a mathematical literacy curriculum enhanced the acquisition of mathematical concepts among the learners. In order to carry out this comparison…
NASA Astrophysics Data System (ADS)
Visayataksin, Noppharat; Sooklamai, Manon
2018-01-01
The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
ERIC Educational Resources Information Center
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
To Assess Students' Attitudes, Skills and Competencies in Mathematical Modeling
ERIC Educational Resources Information Center
Lingefjard, Thomas; Holmquist, Mikael
2005-01-01
Peer-to-peer assessment, take-home exams and a mathematical modeling survey were used to monitor and assess students' attitudes, skills and competencies in mathematical modeling. The students were all in a secondary mathematics, teacher education program with a comprehensive amount of mathematics studies behind them. Findings indicate that…
Mathematical Modeling in the Undergraduate Curriculum
ERIC Educational Resources Information Center
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Mathematical model with autoregressive process for electrocardiogram signals
NASA Astrophysics Data System (ADS)
Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de
2018-04-01
The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.
Curve fitting methods for solar radiation data modeling
NASA Astrophysics Data System (ADS)
Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder
2014-10-01
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Curve fitting methods for solar radiation data modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my
2014-10-24
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both withmore » two terms) gives better results as compare with the other fitting methods.« less
Modelling and validation of Proton exchange membrane fuel cell (PEMFC)
NASA Astrophysics Data System (ADS)
Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.
2018-01-01
This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.
Shin, Mikyung; Bryant, Diane Pedrotty
2015-01-01
The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.
Mathematical analysis of compressive/tensile molecular and nuclear structures
NASA Astrophysics Data System (ADS)
Wang, Dayu
Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.
ERIC Educational Resources Information Center
Demir, Ergül
2017-01-01
In this study, the aim was to construct a significant structural measurement model comparing students' affective characteristics with their mathematic achievement. According to this model, the aim was to test the measurement invariances between gender sub-groups hierarchically. This study was conducted as basic and descriptive research. Secondary…
A Cellular Automata Model of Bone Formation
Van Scoy, Gabrielle K.; George, Estee L.; Asantewaa, Flora Opoku; Kerns, Lucy; Saunders, Marnie M.; Prieto-Langarica, Alicia
2017-01-01
Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. PMID:28189632
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
NASA Astrophysics Data System (ADS)
McGrath, T.; St. Clair, J.; Balachandar, S.
2018-05-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
ERIC Educational Resources Information Center
Daher, Wajeeh M.; Shahbari, Juhaina Awawdeh
2015-01-01
Engaging mathematics students with modelling activities helps them learn mathematics meaningfully. This engagement, in the case of model eliciting activities, helps the students elicit mathematical models by interpreting real-world situation in mathematical ways. This is especially true when the students utilize technology to build the models.…
NASA Astrophysics Data System (ADS)
Stemler, Steven Edward
This study explored school effectiveness in mathematics and science at the fourth grade using data from IEA's Third International Mathematics and Science Study (TIMSS). Fourteen of the 26 countries participating in TIMSS at the fourth grade possessed sufficient between-school variability in mathematics achievement to justify the creation of explanatory models of school effectiveness while 13 countries possessed sufficient between-school variability in science achievement. Exploratory models were developed using variables drawn from student, teacher, and school questionnaires. The variables were chosen to represent the domains of student involvement, instructional methods, classroom organization, school climate, and school structure. Six explanatory models for each subject were analyzed using two-level hierarchical linear modeling (HLM) and were compared to models using only school mean SES as an explanatory variable. The amount of variability in student achievement in mathematics attributable to differences between schools ranged from 16% in Cyprus to 56% in Latvia, while the amount of between-school variance in science achievement ranged from 12% in Korea to 59% in Latvia. In general, about one-quarter of the variability in mathematics and science achievement was found to lie between schools. The research findings revealed that after adjusting for differences in student backgrounds across schools, the most effective schools in mathematics and science had students who reported seeing a positive relationship between hard work, belief in their own abilities, and achievement. In addition, more effective schools had students who reported less frequent use of computers and calculators in the classroom. These relationships were found to be stable across explanatory models, cultural contexts, and subject areas. This study has contributed a unique element to the literature by examining school effectiveness at the fourth grade across two subject areas and across 14 different countries. The results indicate that further exploration of the relationship between school effectiveness and student locus of control warrants serious consideration. Future research on school effectiveness is recommended, perhaps using trend data and looking at different grade levels.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
Mathematical modeling in realistic mathematics education
NASA Astrophysics Data System (ADS)
Riyanto, B.; Zulkardi; Putri, R. I. I.; Darmawijoyo
2017-12-01
The purpose of this paper is to produce Mathematical modelling in Realistics Mathematics Education of Junior High School. This study used development research consisting of 3 stages, namely analysis, design and evaluation. The success criteria of this study were obtained in the form of local instruction theory for school mathematical modelling learning which was valid and practical for students. The data were analyzed using descriptive analysis method as follows: (1) walk through, analysis based on the expert comments in the expert review to get Hypothetical Learning Trajectory for valid mathematical modelling learning; (2) analyzing the results of the review in one to one and small group to gain practicality. Based on the expert validation and students’ opinion and answers, the obtained mathematical modeling problem in Realistics Mathematics Education was valid and practical.
Schwabe, Inga; Boomsma, Dorret I; van den Berg, Stéphanie M
2017-12-01
Genotype by environment interaction in behavioral traits may be assessed by estimating the proportion of variance that is explained by genetic and environmental influences conditional on a measured moderating variable, such as a known environmental exposure. Behavioral traits of interest are often measured by questionnaires and analyzed as sum scores on the items. However, statistical results on genotype by environment interaction based on sum scores can be biased due to the properties of a scale. This article presents a method that makes it possible to analyze the actually observed (phenotypic) item data rather than a sum score by simultaneously estimating the genetic model and an item response theory (IRT) model. In the proposed model, the estimation of genotype by environment interaction is based on an alternative parametrization that is uniquely identified and therefore to be preferred over standard parametrizations. A simulation study shows good performance of our method compared to analyzing sum scores in terms of bias. Next, we analyzed data of 2,110 12-year-old Dutch twin pairs on mathematical ability. Genetic models were evaluated and genetic and environmental variance components estimated as a function of a family's socio-economic status (SES). Results suggested that common environmental influences are less important in creating individual differences in mathematical ability in families with a high SES than in creating individual differences in mathematical ability in twin pairs with a low or average SES.
Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.
Skoneczny, Szymon
2015-01-01
The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics.
NASA Astrophysics Data System (ADS)
Fasni, N.; Turmudi, T.; Kusnandi, K.
2017-09-01
This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.
The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study
ERIC Educational Resources Information Center
Mischo, Christoph; Maaß, Katja
2013-01-01
This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…
Leaning on Mathematical Habits of Mind
ERIC Educational Resources Information Center
Sword, Sarah; Matsuura, Ryota; Cuoco, Al; Kang, Jane; Gates, Miriam
2018-01-01
Mathematical modeling has taken on increasing curricular importance in the past decade due in no small measure to the Common Core State Standards in Mathematics (CCSSM) identifying modeling as one of the Standards for Mathematical Practice (SMP 4, CCSSI 2010, p. 7). Although researchers have worked on mathematical modeling (Lesh and Doerr 2003;…
NASA Technical Reports Server (NTRS)
Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.
1973-01-01
A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.
ERIC Educational Resources Information Center
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical position held by the modeler(s) and the…
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1991-01-01
The mathematical models of space very long base interferometry (VLBI) observables suitable for least squares covariance analysis were derived and estimatability problems inherent in the space VLBI system were explored, including a detailed rank defect analysis and sensitivity analysis. An important aim is to carry out a comparative analysis of the mathematical models of the ground-based VLBI and space VLBI observables in order to describe the background in detail. Computer programs were developed in order to check the relations, assess errors, and analyze sensitivity. In order to investigate the estimatability of different geodetic and geodynamic parameters from the space VLBI observables, the mathematical models for time delay and time delay rate observables of space VLBI were analytically derived along with the partial derivatives with respect to the parameters. Rank defect analysis was carried out both by analytical and numerical testing of linear dependencies between the columns of the normal matrix thus formed. Definite conclusions were formed about the rank defects in the system.
Zhang, Guoqing; Sun, Qingyan; Hou, Ying; Hong, Zhanying; Zhang, Jun; Zhao, Liang; Zhang, Hai; Chai, Yifeng
2009-07-01
The purpose of this paper was to study the enantioseparation mechanism of triadimenol compounds by carboxymethylated (CM)-beta-CD mediated CE. All the enantiomers were separated under the same experimental conditions to study the chiral recognition mechanism using a 30 mM sodium dihydrogen phosphate buffer at pH 2.2 adjusted by phosphoric acid. The inclusion courses between CM-beta-CD and enantiomers were investigated by the means of molecular docking technique. It was found that there were at least three points (one hydrophobic bond and two hydrogen bonds) involved in the interaction of each enantiomer with the chiral selectors. A new mathematic model has been built up based on the results of molecular mechanics calculations, which could analyze the relationship between the resolution of enantioseparation and the interaction energy in the docking area. Comparing the results of the separation by CE, the established mathematic model demonstrated good capability to predict chiral separation of triadimenol enantiomers using CM-beta-CD mediated CE.
How Ordinary Meaning Underpins the Meaning of Mathematics.
ERIC Educational Resources Information Center
Ormell, Christopher
1991-01-01
Discusses the meaning of mathematics by looking at its uses in the real world. Offers mathematical modeling as a way to represent mathematical applications in real or potential situations. Presents levels of applicability, modus operandi, relationship to "pure mathematics," and consequences for education for mathematical modeling. (MDH)
Comparison among cognitive diagnostic models for the TIMSS 2007 fourth grade mathematics assessment.
Yamaguchi, Kazuhiro; Okada, Kensuke
2018-01-01
A variety of cognitive diagnostic models (CDMs) have been developed in recent years to help with the diagnostic assessment and evaluation of students. Each model makes different assumptions about the relationship between students' achievement and skills, which makes it important to empirically investigate which CDMs better fit the actual data. In this study, we examined this question by comparatively fitting representative CDMs to the Trends in International Mathematics and Science Study (TIMSS) 2007 assessment data across seven countries. The following two major findings emerged. First, in accordance with former studies, CDMs had a better fit than did the item response theory models. Second, main effects models generally had a better fit than other parsimonious or the saturated models. Related to the second finding, the fit of the traditional parsimonious models such as the DINA and DINO models were not optimal. The empirical educational implications of these findings are discussed.
Comparison among cognitive diagnostic models for the TIMSS 2007 fourth grade mathematics assessment
Okada, Kensuke
2018-01-01
A variety of cognitive diagnostic models (CDMs) have been developed in recent years to help with the diagnostic assessment and evaluation of students. Each model makes different assumptions about the relationship between students’ achievement and skills, which makes it important to empirically investigate which CDMs better fit the actual data. In this study, we examined this question by comparatively fitting representative CDMs to the Trends in International Mathematics and Science Study (TIMSS) 2007 assessment data across seven countries. The following two major findings emerged. First, in accordance with former studies, CDMs had a better fit than did the item response theory models. Second, main effects models generally had a better fit than other parsimonious or the saturated models. Related to the second finding, the fit of the traditional parsimonious models such as the DINA and DINO models were not optimal. The empirical educational implications of these findings are discussed. PMID:29394257
Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.
2013-01-01
This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.
Improving Odometric Accuracy for an Autonomous Electric Cart.
Toledo, Jonay; Piñeiro, Jose D; Arnay, Rafael; Acosta, Daniel; Acosta, Leopoldo
2018-01-12
In this paper, a study of the odometric system for the autonomous cart Verdino, which is an electric vehicle based on a golf cart, is presented. A mathematical model of the odometric system is derived from cart movement equations, and is used to compute the vehicle position and orientation. The inputs of the system are the odometry encoders, and the model uses the wheels diameter and distance between wheels as parameters. With this model, a least square minimization is made in order to get the nominal best parameters. This model is updated, including a real time wheel diameter measurement improving the accuracy of the results. A neural network model is used in order to learn the odometric model from data. Tests are made using this neural network in several configurations and the results are compared to the mathematical model, showing that the neural network can outperform the first proposed model.
The YAV-8B simulation and modeling. Volume 2: Program listing
NASA Technical Reports Server (NTRS)
1983-01-01
Detailed mathematical models of varying complexity representative of the YAV-8B aircraft are defined and documented. These models are used in parameter estimation and in linear analysis computer programs while investigating YAV-8B aircraft handling qualities. Both a six degree of freedom nonlinear model and a linearized three degree of freedom longitudinal and lateral directional model were developed. The nonlinear model is based on the mathematical model used on the MCAIR YAV-8B manned flight simulator. This simulator model has undergone periodic updating based on the results of approximately 360 YAV-8B flights and 8000 hours of wind tunnel testing. Qualified YAV-8B flight test pilots have commented that the handling qualities characteristics of the simulator are quite representative of the real aircraft. These comments are validated herein by comparing data from both static and dynamic flight test maneuvers to the same obtained using the nonlinear program.
High pressure common rail injection system modeling and control.
Wang, H P; Zheng, D; Tian, Y
2016-07-01
In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Pressure oscillation delivery to the lung: Computer simulation of neonatal breathing parameters.
Al-Jumaily, Ahmed M; Reddy, Prasika I; Bold, Geoff T; Pillow, J Jane
2011-10-13
Preterm newborn infants may develop respiratory distress syndrome (RDS) due to functional and structural immaturity. A lack of surfactant promotes collapse of alveolar regions and airways such that newborns with RDS are subject to increased inspiratory effort and non-homogeneous ventilation. Pressure oscillation has been incorporated into one form of RDS treatment; however, how far it reaches various parts of the lung is still questionable. Since in-vivo measurement is very difficult if not impossible, mathematical modeling may be used as one way of assessment. Whereas many models of the respiratory system have been developed for adults, the neonatal lung remains essentially ill-described in mathematical models. A mathematical model is developed, which represents the first few generations of the tracheo-bronchial tree and the 5 lobes that make up the premature ovine lung. The elements of the model are derived using the lumped parameter approach and formulated in Simulink™ within the Matlab™ environment. The respiratory parameters at the airway opening compare well with those measured from experiments. The model demonstrates the ability to predict pressures, flows and volumes in the alveolar regions of a premature ovine lung. Copyright © 2011 Elsevier Ltd. All rights reserved.
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P
2016-09-13
In 2011 the U.S. Accreditation Council for Graduate Medical Education began limiting first year resident physicians (interns) to shifts of ≤16 consecutive hours. Controversy persists regarding the effectiveness of this policy for reducing errors and accidents while promoting education and patient care. Using a mathematical model of the effects of circadian rhythms and length of time awake on objective performance and subjective alertness, we quantitatively compared predictions for traditional intern schedules to those that limit work to ≤ 16 consecutive hours. We simulated two traditional schedules and three novel schedules using the mathematical model. The traditional schedules had extended duration work shifts (≥24 h) with overnight work shifts every second shift (including every third night, Q3) or every third shift (including every fourth night, Q4) night; the novel schedules had two different cross-cover (XC) night team schedules (XC-V1 and XC-V2) and a Rapid Cycle Rotation (RCR) schedule. Predicted objective performance and subjective alertness for each work shift were computed for each individual's schedule within a team and then combined for the team as a whole. Our primary outcome was the amount of time within a work shift during which a team's model-predicted objective performance and subjective alertness were lower than that expected after 16 or 24 h of continuous wake in an otherwise rested individual. The model predicted fewer hours with poor performance and alertness, especially during night-time work hours, for all three novel schedules than for either the traditional Q3 or Q4 schedules. Three proposed schedules that eliminate extended shifts may improve performance and alertness compared with traditional Q3 or Q4 schedules. Predicted times of worse performance and alertness were at night, which is also a time when supervision of trainees is lower. Mathematical modeling provides a quantitative comparison approach with potential to aid residency programs in schedule analysis and redesign.
Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544
Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Using Covariation Reasoning to Support Mathematical Modeling
ERIC Educational Resources Information Center
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
The comparative hydrodynamics of rapid rotation by predatory appendages.
McHenry, M J; Anderson, P S L; Van Wassenbergh, S; Matthews, D G; Summers, A P; Patek, S N
2016-11-01
Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Zvonarev, I. E.; Ivanov, S. L.
2017-10-01
The influence of individual elements of machines transmissions on the operation of the whole system is shown. The approach of determining the resource of operation of systems elements based on the energy theory is presented. The formulas for determining the total energy resource of the reducer are given. The influence of individual elements of the system on each other is indicated. The principle of researching the system by the method of equivalent circuits is substantiated. The weakest places of transmission (gears, bearing supports and shafts) are determined. A mathematical model of a mechanical transmission was developed. To test the adequacy of the mathematical model, the stand for obtaining experimental data was designed. The description of the stand and the principle of its operation are given. Experimental data are presented. A comparative analysis of modeling and experimental data is carried out and the adequacy of the developed mathematical model is proved. The principle of determining the resource of the system as a whole for the element with the minimal resource of work is suggested.
Using Number Sense to Compare Fractions
ERIC Educational Resources Information Center
Bray, Wendy S.; Abreu-Sanchez, Laura
2010-01-01
One mathematical focus for third graders is to develop deep understanding of fractions and fraction equivalence, including comparing fractions through use of models and reasoning strategies. Before reading further, consider how you might solve the following problem: Which fraction is greater, 14/24 or 17/36? The initial impulse of many adults is…
NASA Astrophysics Data System (ADS)
Mahalakshmi; Murugesan, R.
2018-04-01
This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.
Combat Simulation Using Breach Computer Language
1979-09-01
simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model
Building polyhedra by self-assembly: theory and experiment.
Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind
2014-01-01
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design
NASA Technical Reports Server (NTRS)
Newman, Dava
2003-01-01
The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.
Learning to teach mathematical modelling in secondary and tertiary education
NASA Astrophysics Data System (ADS)
Ferri, Rita Borromeo
2017-07-01
Since 2003 mathematical modelling in Germany is not only a topic for scientific disciplines in university mathematics courses, but also in school starting with primary school. This paper shows what mathematical modelling means in school and how it can be taught as a basis for complex modeling problems in tertiary education.
Mathematical Formulation of Multivariate Euclidean Models for Discrimination Methods.
ERIC Educational Resources Information Center
Mullen, Kenneth; Ennis, Daniel M.
1987-01-01
Multivariate models for the triangular and duo-trio methods are described, and theoretical methods are compared to a Monte Carlo simulation. Implications are discussed for a new theory of multidimensional scaling which challenges the traditional assumption that proximity measures and perceptual distances are monotonically related. (Author/GDC)
We compared two regression models, which are based on the Weibull and probit functions, for the analysis of pesticide toxicity data from laboratory studies on Illinois crop and native plant species. Both mathematical models are continuous, differentiable, strictly positive, and...
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Development of a Multidisciplinary Middle School Mathematics Infusion Model
ERIC Educational Resources Information Center
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Pettey, W B P; Carter, M E; Toth, D J A; Samore, M H; Gundlapalli, A V
2017-07-01
During the recent Ebola crisis in West Africa, individual person-level details of disease onset, transmissions, and outcomes such as survival or death were reported in online news media. We set out to document disease transmission chains for Ebola, with the goal of generating a timely account that could be used for surveillance, mathematical modeling, and public health decision-making. By accessing public web pages only, such as locally produced newspapers and blogs, we created a transmission chain involving two Ebola clusters in West Africa that compared favorably with other published transmission chains, and derived parameters for a mathematical model of Ebola disease transmission that were not statistically different from those derived from published sources. We present a protocol for responsibly gleaning epidemiological facts, transmission model parameters, and useful details from affected communities using mostly indigenously produced sources. After comparing our transmission parameters to published parameters, we discuss additional benefits of our method, such as gaining practical information about the affected community, its infrastructure, politics, and culture. We also briefly compare our method to similar efforts that used mostly non-indigenous online sources to generate epidemiological information.
ERIC Educational Resources Information Center
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
ERIC Educational Resources Information Center
Karagiannakis, Giannis N.; Baccaglini-Frank, Anna E.; Roussos, Petros
2016-01-01
Through a review of the literature on mathematical learning disabilities (MLD) and low achievement in mathematics (LA) we have proposed a model classifying mathematical skills involved in learning mathematics into four domains (Core number, Memory, Reasoning, and Visual-spatial). In this paper we present a new experimental computer-based battery…
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
NASA Astrophysics Data System (ADS)
Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.
2009-09-01
SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.
NASA Astrophysics Data System (ADS)
Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.
2016-02-01
This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.
A Review of Mathematical Models for Leukemia and Lymphoma
Clapp, Geoffrey; Levy, Doron
2014-01-01
Recently, there has been significant activity in the mathematical community, aimed at developing quantitative tools for studying leukemia and lymphoma. Mathematical models have been applied to evaluate existing therapies and to suggest novel therapies. This article reviews the recent contributions of mathematical modeling to leukemia and lymphoma research. These developments suggest that mathematical modeling has great potential in this field. Collaboration between mathematicians, clinicians, and experimentalists can significantly improve leukemia and lymphoma therapy. PMID:26744598
Comparison of Two Buyer-Vendor Coordination Models
NASA Astrophysics Data System (ADS)
Diar Astanti, Ririn; Ai, The Jin; Gong, Dah-Chuan; Luong, Hunyh Trung
2018-03-01
This paper develops and compares two mathematical models for describing situation in coordination of buyer and vendor. In this case the vendor which is an Original Equipment Manufacturers (OEMS) of automotive parts, are supplying different type of buyers, i.e. automotive industry, repair shop and automotive dealers. It is well known that automotive industries are operated in Just in Time (JIT) Production Environment, so that the demand behaviour from this buyer has different characteristics than the demand behaviour from other buyers. Two mathematical models are developed in order to depict two different manufacturing strategies as the vendor response dealing with different type of buyers. These strategies are dividing production lot size for each type of buyer and consolidating all buyer’s demand in to single production lot size.
Kim, Sun Bean; Yoon, Myoungho; Ku, Nam Su; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Kim, Changsoo; Kwon, Hee-Dae; Lee, Jeehyun; Smith, Davey M; Choi, Jun Yong
2014-01-01
Multiple prevention measures have the possibility of impacting HIV incidence in South Korea, including early diagnosis, early treatment, and pre-exposure prophylaxis (PrEP). We investigated how each of these interventions could impact the local HIV epidemic, especially among men who have sex with men (MSM), who have become the major risk group in South Korea. A mathematical model was used to estimate the effects of each these interventions on the HIV epidemic in South Korea over the next 40 years, as compared to the current situation. We constructed a mathematical model of HIV infection among MSM in South Korea, dividing the MSM population into seven groups, and simulated the effects of early antiretroviral therapy (ART), early diagnosis, PrEP, and combination interventions on the incidence and prevalence of HIV infection, as compared to the current situation that would be expected without any new prevention measures. Overall, the model suggested that the most effective prevention measure would be PrEP. Even though PrEP effectiveness could be lessened by increased unsafe sex behavior, PrEP use was still more beneficial than the current situation. In the model, early diagnosis of HIV infection was also effectively decreased HIV incidence. However, early ART did not show considerable effectiveness. As expected, it would be most effective if all interventions (PrEP, early diagnosis and early treatment) were implemented together. This model suggests that PrEP and early diagnosis could be a very effective way to reduce HIV incidence in South Korea among MSM.
Kim, Sun Bean; Yoon, Myoungho; Ku, Nam Su; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Kim, Changsoo; Kwon, Hee-Dae; Lee, Jeehyun; Smith, Davey M.; Choi, Jun Yong
2014-01-01
Background Multiple prevention measures have the possibility of impacting HIV incidence in South Korea, including early diagnosis, early treatment, and pre-exposure prophylaxis (PrEP). We investigated how each of these interventions could impact the local HIV epidemic, especially among men who have sex with men (MSM), who have become the major risk group in South Korea. A mathematical model was used to estimate the effects of each these interventions on the HIV epidemic in South Korea over the next 40 years, as compared to the current situation. Methods We constructed a mathematical model of HIV infection among MSM in South Korea, dividing the MSM population into seven groups, and simulated the effects of early antiretroviral therapy (ART), early diagnosis, PrEP, and combination interventions on the incidence and prevalence of HIV infection, as compared to the current situation that would be expected without any new prevention measures. Results Overall, the model suggested that the most effective prevention measure would be PrEP. Even though PrEP effectiveness could be lessened by increased unsafe sex behavior, PrEP use was still more beneficial than the current situation. In the model, early diagnosis of HIV infection was also effectively decreased HIV incidence. However, early ART did not show considerable effectiveness. As expected, it would be most effective if all interventions (PrEP, early diagnosis and early treatment) were implemented together. Conclusions This model suggests that PrEP and early diagnosis could be a very effective way to reduce HIV incidence in South Korea among MSM. PMID:24662776
ERIC Educational Resources Information Center
Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.
2015-01-01
Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…
Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills
ERIC Educational Resources Information Center
Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven
2015-01-01
How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…
NASA Astrophysics Data System (ADS)
Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.
2013-07-01
Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.
van Vugt, Marieke K; Jha, Amishi P
2011-09-01
We investigated whether mindfulness training (MT) influences information processing in a working memory task with complex visual stimuli. Participants were tested before (T1) and after (T2) participation in an intensive one-month MT retreat, and their performance was compared with that of an age- and education-matched control group. Accuracy did not differ across groups at either time point. Response times were faster and significantly less variable in the MT versus the control group at T2. Since these results could be due to changes in mnemonic processes, speed-accuracy trade-off, or nondecisional factors (e.g., motor execution), we used a mathematical modeling approach to disentangle these factors. The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, Psychonomic Bulletin & Review 14:(1), 3-22, 2007) suggested that MT leads to improved information quality and reduced response conservativeness, with no changes in nondecisional factors. The noisy exemplar model further suggested that the increase in information quality reflected a decrease in encoding noise and not an increase in forgetting. Thus, mathematical modeling may help clarify the mechanisms by which MT produces salutary effects on performance.
Saadati, Farzaneh; Ahmad Tarmizi, Rohani
2015-01-01
Because students’ ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is ‘value added’ because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students’ problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students. PMID:26132553
Mathematical modeling based on ordinary differential equations: A promising approach to vaccinology
Bonin, Carla Rezende Barbosa; Fernandes, Guilherme Cortes; dos Santos, Rodrigo Weber; Lobosco, Marcelo
2017-01-01
ABSTRACT New contributions that aim to accelerate the development or to improve the efficacy and safety of vaccines arise from many different areas of research and technology. One of these areas is computational science, which traditionally participates in the initial steps, such as the pre-screening of active substances that have the potential to become a vaccine antigen. In this work, we present another promising way to use computational science in vaccinology: mathematical and computational models of important cell and protein dynamics of the immune system. A system of Ordinary Differential Equations represents different immune system populations, such as B cells and T cells, antigen presenting cells and antibodies. In this way, it is possible to simulate, in silico, the immune response to vaccines under development or under study. Distinct scenarios can be simulated by varying parameters of the mathematical model. As a proof of concept, we developed a model of the immune response to vaccination against the yellow fever. Our simulations have shown consistent results when compared with experimental data available in the literature. The model is generic enough to represent the action of other diseases or vaccines in the human immune system, such as dengue and Zika virus. PMID:28027002
Mathematical modeling based on ordinary differential equations: A promising approach to vaccinology.
Bonin, Carla Rezende Barbosa; Fernandes, Guilherme Cortes; Dos Santos, Rodrigo Weber; Lobosco, Marcelo
2017-02-01
New contributions that aim to accelerate the development or to improve the efficacy and safety of vaccines arise from many different areas of research and technology. One of these areas is computational science, which traditionally participates in the initial steps, such as the pre-screening of active substances that have the potential to become a vaccine antigen. In this work, we present another promising way to use computational science in vaccinology: mathematical and computational models of important cell and protein dynamics of the immune system. A system of Ordinary Differential Equations represents different immune system populations, such as B cells and T cells, antigen presenting cells and antibodies. In this way, it is possible to simulate, in silico, the immune response to vaccines under development or under study. Distinct scenarios can be simulated by varying parameters of the mathematical model. As a proof of concept, we developed a model of the immune response to vaccination against the yellow fever. Our simulations have shown consistent results when compared with experimental data available in the literature. The model is generic enough to represent the action of other diseases or vaccines in the human immune system, such as dengue and Zika virus.
ERIC Educational Resources Information Center
Hale, Jane V.
2011-01-01
The purpose of this study was to see if second grade students who were taught by teachers trained in choice theory/reality therapy (CT/RT) methods had higher achievement scores in mathematics/reading compared to students who were taught by teachers who were not trained. The American School Counselor Association (ASCA) National Model suggests that…
Roberts, Greg; Bryant, Diane
2012-01-01
This study used data from the Early Childhood Longitudinal Survey, Kindergarten Class of 1998 –1999, to (a) estimate mathematics achievement trends through 5th grade in the population of students who are English-language proficient by the end of kindergarten, (b) compare trends across primary language groups within this English-language proficient group, (c) evaluate the effect of low socioeconomic status (SES) for English-language proficient students and within different primary language groups, and (d) estimate language-group trends in specific mathematics skill areas. The group of English-language proficient English-language learners (ELLs) was disaggregated into native Spanish speakers and native speakers of Asian languages, the 2 most prevalent groups of ELLs in the United States. Results of multilevel latent variable growth modeling suggest that primary language may be less salient than SES in explaining the mathematics achievement of English-language proficient ELLs. The study also found that mathematics-related school readiness is a key factor in explaining subsequent achievement differences and that the readiness gap is prevalent across the range of mathematics-related skills. PMID:21574702
Transmission Dinamics Model Of Dengue Fever
NASA Astrophysics Data System (ADS)
Debora; Rendy; Rahmi
2018-01-01
Dengue fever is an endemic disease that is transmitted through the Aedes aegypti mosquito vector. The disease is present in more than 100 countries in America, Africa, and Asia, especially tropical countries. Differential equations can be used to represent the spread of dengue virus occurring in time intervals and model in the form of mathematical models. The mathematical model in this study tries to represent the spread of dengue fever based on the data obtained and the assumptions used. The mathematical model used is a mathematical model consisting of Susceptible (S), Infected (I), Viruses (V) subpopulations. The SIV mathematical model is then analyzed to see the solution behaviour of the system.
Mathematical Modeling: Convoying Merchant Ships
ERIC Educational Resources Information Center
Mathews, Susann M.
2004-01-01
This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…
Making the Most of Modeling Tasks
ERIC Educational Resources Information Center
Wernet, Jamie L.; Lawrence, Kevin A.; Gilbertson, Nicholas J.
2015-01-01
While there is disagreement among mathematics educators about some aspects of its meaning, mathematical modeling generally involves taking a real-world scenario and translating it into the mathematical world (Niss, Blum, and Galbraith 2007). The complete modeling process involves describing situations posed in problems with mathematical concepts,…
A cellular automata model of bone formation.
Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia
2017-04-01
Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.
Dubois, F; Depresseux, J C; Bontemps, L; Demaison, L; Keriel, C; Mathieu, J P; Pernin, C; Marti-Batlle, D; Vidal, M; Cuchet, P
1986-01-01
The aim of the present study was to demonstrate that it is possible to estimate the intracellular metabolism of a fatty acid labelled with iodine using external radioactivity measurements. 123I-16-iodo-9-hexadecenoic acid (IHA) was injected close to the coronary arteries of isolated rat hearts perfused according to the Langendorff technique. The time course of the cardiac radioactivity was measured using an INa crystal coupled to an analyser. The obtained curves were analysed using a four-compartment mathematical model, with the compartments corresponding to the vascular-IHA (O), intramyocardial free-IHA (1), esterified-IHA (2) and iodide (3) pools. Curve analysis using this model demonstrated that, as compared to substrate-free perfusion, the presence of glucose (11 mM) increased IHA storage and decreased its oxidation. These changes were enhanced by the presence of insulin. A comparison of these results with measurements of the radioactivity levels within the various cellular fractions validated our proposed mathematical model. Thus, using only a mathematical analysis of a cardiac time-activity curve, it is possible to obtain quantitative information about IHA distribution in the different intracellular metabolic pathways. This technique is potentially useful for the study of metabolic effects of ischaemia or anoxia, as well as for the study of the influence of various substrates or drugs on IHA metabolism in isolated rat hearts.
Using ‘particle in a box’ models to calculate energy levels in semiconductor quantum well structures
NASA Astrophysics Data System (ADS)
Ebbens, A. T.
2018-07-01
Although infinite potential ‘particle in a box’ models are widely used to introduce quantised energy levels their predictions cannot be quantitatively compared with atomic emission spectra. Here, this problem is overcome by describing how both infinite and finite potential well models can be used to calculate the confined energy levels of semiconductor quantum wells. This is done by using physics and mathematics concepts that are accessible to pre-university students. The results of the models are compared with experimental data and their accuracy discussed.
ERIC Educational Resources Information Center
Spangenberg, Erica Dorethea; Myburgh, Chris
2017-01-01
Girls performing well in mathematics at school do not necessarily enrol for mathematics courses at South African universities. Teachers could be transferring beliefs about the nature of mathematics favouring boys. This paper compared male and female pre-service teachers' beliefs about the nature of mathematics. A quantitative, descriptive research…
ERIC Educational Resources Information Center
Calhoun, James M., Jr.
2011-01-01
Student achievement is not progressing on mathematics as measured by state, national, and international assessments. Much of the research points to mathematics curriculum and instruction as the root cause of student failure to achieve at levels comparable to other nations. Since mathematics is regarded as a gate keeper to many educational…
Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets.
Markl, Daniel; Yassin, Samy; Wilson, D Ian; Goodwin, Daniel J; Anderson, Andrew; Zeitler, J Axel
2017-06-30
Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nisa, I. M.
2018-04-01
The ability of mathematical communication is one of the goals of learning mathematics expected to be mastered by students. However, reality in the field found that the ability of mathematical communication the students of grade XI IPA SMA Negeri 14 Padang have not developed optimally. This is evident from the low test results of communication skills mathematically done. One of the factors that causes this happens is learning that has not been fully able to facilitate students to develop mathematical communication skills well. By therefore, to improve students' mathematical communication skills required a model in the learning activities. One of the models learning that can be used is Problem Based learning model Learning (PBL). The purpose of this study is to see whether the ability the students' mathematical communication using the PBL model better than the students' mathematical communication skills of the learning using conventional learning in Class XI IPA SMAN 14 Padang. This research type is quasi experiment with design Randomized Group Only Design. Population in this research that is student of class XI IPA SMAN 14 Padang with sample class XI IPA 3 and class XI IPA 4. Data retrieval is done by using communication skill test mathematically shaped essay. To test the hypothesis used U-Mann test Whitney. Based on the results of data analysis, it can be concluded that the ability mathematical communication of students whose learning apply more PBL model better than the students' mathematical communication skills of their learning apply conventional learning in class XI IPA SMA 14 Padang at α = 0.05. This indicates that the PBL learning model effect on students' mathematical communication ability.
Seasonally forced disease dynamics explored as switching between attractors
NASA Astrophysics Data System (ADS)
Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.
2001-01-01
Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2017-06-01
The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.
A Primer for Mathematical Modeling
ERIC Educational Resources Information Center
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Mathematical Modeling in the High School Curriculum
ERIC Educational Resources Information Center
Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary
2016-01-01
In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…
NASA Astrophysics Data System (ADS)
Gilev, B.; Kraev, G.; Venkov, G. I.
2007-10-01
This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
ERIC Educational Resources Information Center
Ciltas, Alper; Isik, Ahmet
2013-01-01
The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…
Removed from the List: A Comparative Longitudinal Case Study of a Reconstitution-Eligible School.
ERIC Educational Resources Information Center
Mac Iver, Douglas J.; Ruby, Allen; Balfanz, Robert; Byrnes, Vaughan
2002-01-01
Longitudinal case study of reform efforts centering on the Talent Development Middle School model at low-performing, high-poverty middle school in Philadelphia. Finds that student gains in mathematics, science, and reading achievement at subject school exceeded that of students in comparable school. (Contains 19 references.) (PKP)
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Wentworth, Susan J.; Vali, H.; Gibson, Everett K.
2000-01-01
Here we use rigorous mathematical modeling to compare ALH84001 prismatic magnetites with those produced by terrestrial magnetotactic bacteria, MV-1. We find that this subset of the Martian magnetites appears to be statistically indistinguishable from those of MV-1.
Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics
ERIC Educational Resources Information Center
Wickstrom, Megan H.
2017-01-01
This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
ERIC Educational Resources Information Center
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience
ERIC Educational Resources Information Center
Charpin, J. P. F.; O'Hara, S.; Mackey, D.
2013-01-01
In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…
Mathematical models of thermoregulation and heat transfer in mammals. A compendium of research
NASA Technical Reports Server (NTRS)
Shitzer, A.
1972-01-01
An annotated compendium on mathematical modeling of mammal thermoregulation systems is presented. Author abstracts, tables containing the more used mathematical models, solutions to these models, and each thermoregulation mechanism considered are included.
Ocular hemodynamics and glaucoma: the role of mathematical modeling.
Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A
2013-01-01
To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.
An integrated mathematical model of the human cardiopulmonary system: model development.
Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W
2016-04-01
Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.
Comparison of learning models based on mathematics logical intelligence in affective domain
NASA Astrophysics Data System (ADS)
Widayanto, Arif; Pratiwi, Hasih; Mardiyana
2018-04-01
The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.
NASA Astrophysics Data System (ADS)
Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani
2017-05-01
The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
The Effects of a Female Role Model on Academic Performance and Persistence of Women in STEM Courses
ERIC Educational Resources Information Center
Herrmann, Sarah D.; Adelman, Robert Mark; Bodford, Jessica E.; Graudejus, Oliver; Okun, Morris A.; Kwan, Virginia S. Y.
2016-01-01
Women are more likely to leave science, technology, engineering, and mathematics compared to men, in part because they lack similar role models such as peers, teaching assistants, and instructors. We examined the effect of a brief, scalable online intervention that consisted of a letter from a female role model who normalized concerns about…
Mathematical models for plant-herbivore interactions
Feng, Zhilan; DeAngelis, Donald L.
2017-01-01
Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Dealing with dissatisfaction in mathematical modelling to integrate QFD and Kano’s model
NASA Astrophysics Data System (ADS)
Retno Sari Dewi, Dian; Debora, Joana; Edy Sianto, Martinus
2017-12-01
The purpose of the study is to implement the integration of Quality Function Deployment (QFD) and Kano’s Model into mathematical model. Voice of customer data in QFD was collected using questionnaire and the questionnaire was developed based on Kano’s model. Then the operational research methodology was applied to build the objective function and constraints in the mathematical model. The relationship between voice of customer and engineering characteristics was modelled using linier regression model. Output of the mathematical model would be detail of engineering characteristics. The objective function of this model is to maximize satisfaction and minimize dissatisfaction as well. Result of this model is 62% .The major contribution of this research is to implement the existing mathematical model to integrate QFD and Kano’s Model in the case study of shoe cabinet.
Modeling the Time-Varying Nature of Student Exceptionality Classification on Achievement Growth
ERIC Educational Resources Information Center
Nese, Joseph F. T.; Stevens, Joseph J.; Schulte, Ann C.; Tindal, Gerald; Elliott, Stephen N.
2017-01-01
Our purpose was to examine different approaches to modeling the time-varying nature of exceptionality classification. Using longitudinal data from one state's mathematics achievement test for 28,829 students in Grades 3 to 8, we describe the reclassification rate within special education and between general and special education, and compare four…
Analysis of spatial thermal field in a magnetic bearing
NASA Astrophysics Data System (ADS)
Wajnert, Dawid; Tomczuk, Bronisław
2018-03-01
This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.
Flow Induced by Ex-Vivo Nasal Cilia: Developing an Index of Dyskinesis
NASA Astrophysics Data System (ADS)
Grotberg, James; Bottier, Mathieu; Pena-Fernandez, Marta; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, Andre; Escudier, Estelle; Papon, Jean-Francois; Filoche, Marcel; Louis, Bruno
2017-11-01
Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivomeasurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the steady velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. This compares well to a 2D mathematical model for ciliary fluid propulsion using an envelope model. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress is proposed as a new index for characterizing the efficiency of ciliary beating and diagnosing dyskinesis.
Striking a Balance: Students' Tendencies to Oversimplify or Overcomplicate in Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather; Wasserman, Nicholas H.
2014-01-01
With the adoption of the "Common Core State Standards for Mathematics" (CCSSM), the process of mathematical modeling has been given increased attention in mathematics education. This article reports on a study intended to inform the implementation of modeling in classroom contexts by examining students' interactions with the process of…
Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry
ERIC Educational Resources Information Center
Jacobs, Gerrie J.; Durandt, Rina
2017-01-01
This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…
Achilles and the tortoise: Some caveats to mathematical modeling in biology.
Gilbert, Scott F
2018-01-31
Mathematical modeling has recently become a much-lauded enterprise, and many funding agencies seek to prioritize this endeavor. However, there are certain dangers associated with mathematical modeling, and knowledge of these pitfalls should also be part of a biologist's training in this set of techniques. (1) Mathematical models are limited by known science; (2) Mathematical models can tell what can happen, but not what did happen; (3) A model does not have to conform to reality, even if it is logically consistent; (4) Models abstract from reality, and sometimes what they eliminate is critically important; (5) Mathematics can present a Platonic ideal to which biologically organized matter strives, rather than a trial-and-error bumbling through evolutionary processes. This "Unity of Science" approach, which sees biology as the lowest physical science and mathematics as the highest science, is part of a Western belief system, often called the Great Chain of Being (or Scala Natura), that sees knowledge emerge as one passes from biology to chemistry to physics to mathematics, in an ascending progression of reason being purification from matter. This is also an informal model for the emergence of new life. There are now other informal models for integrating development and evolution, but each has its limitations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Automatic mathematical modeling for real time simulation program (AI application)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Purinton, Steve
1989-01-01
A methodology is described for automatic mathematical modeling and generating simulation models. The major objective was to create a user friendly environment for engineers to design, maintain, and verify their models; to automatically convert the mathematical models into conventional code for computation; and finally, to document the model automatically.
Hoskinson, Anne-Marie
2010-01-01
Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity to build both content and process learning of mathematical models, the modeling process, and the cooperative process. There was little guidance from the literature on how to build such a course. Here, I describe the iterative process of developing such a course, beginning with objectives and choosing content and process competencies to fulfill the objectives. I include some inductive heuristics for instructors seeking guidance in planning and developing their own courses, and I illustrate with a description of one instructional model cycle. Students completing this class reported gains in learning of modeling content, the modeling process, and cooperative skills. Student content and process mastery increased, as assessed on several objective-driven metrics in many types of assessments.
Tveito, Aslak; Skavhaug, Ola; Lines, Glenn T; Artebrant, Robert
2011-08-01
Instabilities in the electro-chemical resting state of the heart can generate ectopic waves that in turn can initiate arrhythmias. We derive methods for computing the resting state for mathematical models of the electro-chemical process underpinning a heartbeat, and we estimate the stability of the resting state by invoking the largest real part of the eigenvalues of a linearized model. The implementation of the methods is described and a number of numerical experiments illustrate the feasibility of the methods. In particular, we test the methods for problems where we can compare the solutions with analytical results, and problems where we have solutions computed by independent software. The software is also tested for a fairly realistic 3D model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Forecasting in foodservice: model development, testing, and evaluation.
Miller, J L; Thompson, P A; Orabella, M M
1991-05-01
This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.
Chiu, Yuan-Shyi Peter; Sung, Peng-Cheng; Chiu, Singa Wang; Chou, Chung-Li
2015-01-01
This study uses mathematical modeling to examine a multi-product economic manufacturing quantity (EMQ) model with an enhanced end items issuing policy and rework failures. We assume that a multi-product EMQ model randomly generates nonconforming items. All of the defective are reworked, but a certain portion fails and becomes scraps. When rework process ends and the entire lot of each product is quality assured, a cost reduction n + 1 end items issuing policy is used to transport finished items of each product. As a result, a closed-form optimal production cycle time is obtained. A numerical example demonstrates the practical usage of our result and confirms a significant savings in stock holding and overall production costs as compared to that of a prior work (Chiu et al. in J Sci Ind Res India, 72:435-440 2013) in the literature.
Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning
NASA Astrophysics Data System (ADS)
Afthina, H.; Mardiyana; Pramudya, I.
2017-09-01
This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.
Preserving Pelicans with Models That Make Sense
ERIC Educational Resources Information Center
Moore, Tamara J.; Doerr, Helen M.; Glancy, Aran W.; Ntow, Forster D.
2015-01-01
Getting students to think deeply about mathematical concepts is not an easy job, which is why we often use problem-solving tasks to engage students in higher-level mathematical thinking. Mathematical modeling, one of the mathematical practices found in the Common Core State Standards for Mathematics (CCSSM), is a type of problem solving that can…
Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course
ERIC Educational Resources Information Center
Ludwig, Patrice; Tongen, Anthony; Walton, Brian
2018-01-01
James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…
Mathematical Rigor vs. Conceptual Change: Some Early Results
NASA Astrophysics Data System (ADS)
Alexander, W. R.
2003-05-01
Results from two different pedagogical approaches to teaching introductory astronomy at the college level will be presented. The first of these approaches is a descriptive, conceptually based approach that emphasizes conceptual change. This descriptive class is typically an elective for non-science majors. The other approach is a mathematically rigorous treatment that emphasizes problem solving and is designed to prepare students for further study in astronomy. The mathematically rigorous class is typically taken by science majors. It also fulfills an elective science requirement for these science majors. The Astronomy Diagnostic Test version 2 (ADT 2.0) was used as an assessment instrument since the validity and reliability have been investigated by previous researchers. The ADT 2.0 was administered as both a pre-test and post-test to both groups. Initial results show no significant difference between the two groups in the post-test. However, there is a slightly greater improvement for the descriptive class between the pre and post testing compared to the mathematically rigorous course. There was great care to account for variables. These variables included: selection of text, class format as well as instructor differences. Results indicate that the mathematically rigorous model, doesn't improve conceptual understanding any better than the conceptual change model. Additional results indicate that there is a similar gender bias in favor of males that has been measured by previous investigators. This research has been funded by the College of Science and Mathematics at James Madison University.
NASA Astrophysics Data System (ADS)
Everett, R. A.; Packer, A. M.; Kuang, Y.
Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.
NASA Astrophysics Data System (ADS)
Everett, R. A.; Packer, A. M.; Kuang, Y.
2014-04-01
Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.
Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur
2015-01-01
Background A nonlinear isotropic finite element (FE) model of a 29 year old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. Methods The model simulates dis-accommodation by stretching of the lens and predicts the change in the lens capsule, cortex and nucleus surface profiles at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the FE results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Results Aspects of lens shape change relative to stretch were evaluated including change in diameter (d), central thickness (T) and accommodation (A). Maximum accommodation achieved was 10.29 D. From the MRA, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5×10−3 µm, p<0.001). The results are compared with those from in vitro studies. Conclusions The FE and ray-tracing predictions are consistent with EVAS studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully-accommodated states. PMID:25727940
Mathematical models of behavior of individual animals.
Tsibulsky, Vladimir L; Norman, Andrew B
2007-01-01
This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.
Evaluation of leaf litter leaching kinetics through commonly-used mathematical models
NASA Astrophysics Data System (ADS)
Montoya, J. V.; Bastianoni, A.; Mendez, C.; Paolini, J.
2012-04-01
Leaching is defined as the abiotic process by which soluble compounds of the litter are released into the water. Most studies dealing with leaf litter breakdown and leaching kinetics apply the single exponential decay model since it corresponds well with the understanding of the biology of decomposition. However, during leaching important mass losses occur and mathematical models often fail in describing this process adequately. During the initial hours of leaching leaf litter experience high decay rates which are not properly modelled. Adjusting leaching losses to mathematical models has not been investigated thoroughly and the use of models assuming constant decay rates leads to inappropriate assessments of leaching kinetics. We aim to describe, assess, and compare different leaching kinetics models fitted to leaf litter mass losses from six Neotropical riparian forest species. Leaf litter from each species was collected in the lower reaches of San Miguel stream in Northern Venezuela. Air-dried leaves from each species were incubated in 250 ml of water in the dark at room temperature. At 1h, 6h, 1d, 2d, 4d, 8d and 15d, three jars were removed from the assay in a no-replacement experimental design. At each time leaves from each jar were removed and oven-dried. Afterwards, dried up leaves were weighed and remaining dry mass was determined and expressed as ash-free dry mass. Mass losses of leaf litter showed steep declines for the first two days followed by a steady decrease in mass loss. Data was fitted to three different models: single-exponential, power and rational. Our results showed that the mass loss predicted with the single-exponential model did not reflect the real data at any stage of the leaching process. The power model showed a better adjustment, but fails predicting successfully the behavior during leaching's early stages. To evaluate the performance of our models we used three criteria: Adj-R2, Akaike's Information Criteria (AIC), and residual distribution. Higher Adj-R2 were obtained for the power and the rational-type models. However, when AIC and residuals distribution were used, the only model that could satisfactory predict the behavior of our dataset was the rational-type. Even if the Adj-R2 was higher for some species when using the power model compared to the rational-type; our results showed that this criterion alone cannot demonstrate the predicting performance of any model. Usually Adj-R2 is used when assessing the goodness of fit for any mathematical model disregarding the fact that a good Adj-R2 could be obtained even when statistical assumptions required for the validity of the model are not satisfied. Our results showed that sampling at the initial stages of leaching is necessary to adequately describe this process. We also provided evidence that using traditional mathematical models is not the best option to evaluate leaching kinetics because of its mathematical inability to properly describe the abrupt changes that occur during the early stages of leaching. We also found useful applying different criteria to evaluate the goodness-of-fit and performance of any model considered taking into account both statistical and biological meaning of the results.
Problem Posing and Solving with Mathematical Modeling
ERIC Educational Resources Information Center
English, Lyn D.; Fox, Jillian L.; Watters, James J.
2005-01-01
Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.
Building Mathematical Models of Simple Harmonic and Damped Motion.
ERIC Educational Resources Information Center
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
ERIC Educational Resources Information Center
Muir, Carrie
2012-01-01
The purpose of this study was to compare the performance of first year college students with similar high school mathematics backgrounds in two introductory level college mathematics courses, "Fundamentals and Techniques of College Algebra and Quantitative Reasoning and Mathematical Skills," and to compare the performance of students…
Dynamic deformation of soft soil media: Experimental studies and mathematical modeling
NASA Astrophysics Data System (ADS)
Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.
2015-05-01
A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.
Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1982-01-01
One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.
NASA Astrophysics Data System (ADS)
Tyurina, E. A.; Mednikov, A. S.
2017-11-01
The paper presents the results of studies on the perspective technologies of natural gas conversion to synthetic liquid fuel (SLF) at energy-technology installations for combined production of SLF and electricity based on their detailed mathematical models. The technologies of the long-distance transport of energy of natural gas from large fields to final consumers are compared in terms of their efficiency. This work was carried out at Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences and supported by Russian Science Foundation via grant No 16-19-10174
Modeling RNA interference in mammalian cells
2011-01-01
Background RNA interference (RNAi) is a regulatory cellular process that controls post-transcriptional gene silencing. During RNAi double-stranded RNA (dsRNA) induces sequence-specific degradation of homologous mRNA via the generation of smaller dsRNA oligomers of length between 21-23nt (siRNAs). siRNAs are then loaded onto the RNA-Induced Silencing multiprotein Complex (RISC), which uses the siRNA antisense strand to specifically recognize mRNA species which exhibit a complementary sequence. Once the siRNA loaded-RISC binds the target mRNA, the mRNA is cleaved and degraded, and the siRNA loaded-RISC can degrade additional mRNA molecules. Despite the widespread use of siRNAs for gene silencing, and the importance of dosage for its efficiency and to avoid off target effects, none of the numerous mathematical models proposed in literature was validated to quantitatively capture the effects of RNAi on the target mRNA degradation for different concentrations of siRNAs. Here, we address this pressing open problem performing in vitro experiments of RNAi in mammalian cells and testing and comparing different mathematical models fitting experimental data to in-silico generated data. We performed in vitro experiments in human and hamster cell lines constitutively expressing respectively EGFP protein or tTA protein, measuring both mRNA levels, by quantitative Real-Time PCR, and protein levels, by FACS analysis, for a large range of concentrations of siRNA oligomers. Results We tested and validated four different mathematical models of RNA interference by quantitatively fitting models' parameters to best capture the in vitro experimental data. We show that a simple Hill kinetic model is the most efficient way to model RNA interference. Our experimental and modeling findings clearly show that the RNAi-mediated degradation of mRNA is subject to saturation effects. Conclusions Our model has a simple mathematical form, amenable to analytical investigations and a small set of parameters with an intuitive physical meaning, that makes it a unique and reliable mathematical tool. The findings here presented will be a useful instrument for better understanding RNAi biology and as modelling tool in Systems and Synthetic Biology. PMID:21272352
Taking the mystery out of mathematical model applications to karst aquifers—A primer
Kuniansky, Eve L.
2014-01-01
Advances in mathematical model applications toward the understanding of the complex flow, characterization, and water-supply management issues for karst aquifers have occurred in recent years. Different types of mathematical models can be applied successfully if appropriate information is available and the problems are adequately identified. The mathematical approaches discussed in this paper are divided into three major categories: 1) distributed parameter models, 2) lumped parameter models, and 3) fitting models. The modeling approaches are described conceptually with examples (but without equations) to help non-mathematicians understand the applications.
Trend Analysis on Mathematics Achievements: A Comparative Study Using TIMSS Data
ERIC Educational Resources Information Center
Ker, H. W.
2013-01-01
Research addressed the importance of mathematics education for the students' preparation to enter scientific and technological workforce. This paper utilized Trends in International Mathematics and Science Study (TIMSS) 2011 data to conduct a global comparative analysis on mathematics performance at varied International Benchmark levels. The…
ERIC Educational Resources Information Center
Al Duwairi, Ahmed
2013-01-01
This study aimed at investigating the extent to which secondary schools mathematics teachers practice to assessment models in their mathematics teaching and learning. Definitely, the study aimed at answering the following questions: (1) To what extent do secondary schools mathematics teachers practice each of the assessment models in their…
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
Mathematics Student Teachers' Modelling Approaches While Solving the Designed Esme Rug Problem
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Dede, Ayse Tekin; Ünver, Semiha Kula; Güzel, Esra Bukova
2017-01-01
The purpose of the study is to analyze the mathematics student teachers' solutions on the Esme Rug Problem through 7-stage mathematical modelling process. This problem was designed by the researchers by considering the modelling problems' main properties. The study was conducted with twenty one secondary mathematics student teachers. The data were…
The use of mathematical models in teaching wastewater treatment engineering.
Morgenroth, E; Arvin, E; Vanrolleghem, P
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.
Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches.
Wiratsudakul, Anuwat; Suparit, Parinya; Modchang, Charin
2018-01-01
The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms "dynamics," "mathematical model," "modeling," and "vector-borne" together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were "compartmental," "spatial," "metapopulation," "network," "individual-based," "agent-based" AND "Zika." All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation.
ERIC Educational Resources Information Center
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
Models of determining deformations
NASA Astrophysics Data System (ADS)
Gladilin, V. N.
2016-12-01
In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1990-01-01
A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.
ERIC Educational Resources Information Center
Bates, Alan B.; Latham, Nancy; Kim, Jin-ah
2011-01-01
This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-03-01
This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William
This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less
An Approach for a Mathematical Description of Human Root Canals by Means of Elementary Parameters.
Dannemann, Martin; Kucher, Michael; Kirsch, Jasmin; Binkowski, Alexander; Modler, Niels; Hannig, Christian; Weber, Marie-Theres
2017-04-01
Root canal geometry is an important factor for instrumentation and preparation of the canals. Curvature, length, shape, and ramifications need to be evaluated in advance to enhance the success of the treatment. Therefore, the present study aimed to design and realize a method for analyzing the geometric characteristics of human root canals. Two extracted human lower molars were radiographed in the occlusal direction using micro-computed tomographic imaging. The 3-dimensional geometry of the root canals, calculated by a self-implemented image evaluation algorithm, was described by 3 different mathematical models: the elliptical model, the 1-circle model, and the 3-circle model. The different applied mathematical models obtained similar geometric properties depending on the parametric model used. Considering more complex root canals, the differences of the results increase because of the different adaptability and the better approximation of the geometry. With the presented approach, it is possible to estimate and compare the geometry of natural root canals. Therefore, the deviation of the canal can be assessed, which is important for the choice of taper of root canal instruments. Root canals with a nearly elliptical cross section are reasonably approximated by the elliptical model, whereas the 3-circle model obtains a good agreement for curved shapes. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes
NASA Astrophysics Data System (ADS)
Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.
2018-04-01
Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.
ERIC Educational Resources Information Center
Campbell, William James
2017-01-01
This dissertation describes a mathematics curriculum and instruction design experiment involving a series of embodied mathematical activities conducted in two Colorado elementary schools Activities designed for this experiment include multi-scalar number line models focused on supporting students' understanding of elementary mathematics. Realistic…
ERIC Educational Resources Information Center
Michelsen, Claus
2015-01-01
Mathematics plays a crucial role in physics. This role is brought about predominantly through the building, employment, and assessment of mathematical models, and teachers and educators should capture this relationship in the classroom in an effort to improve students' achievement and attitude in both physics and mathematics. But although there…
Exploring Yellowstone National Park with Mathematical Modeling
ERIC Educational Resources Information Center
Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia
2017-01-01
Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…
ERIC Educational Resources Information Center
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
ERIC Educational Resources Information Center
Tasova, Halil Ibrahim; Delice, Ali
2012-01-01
Mathematical modelling involves mathematical constructions chosen to represent some real world situations and the relationships among them; it is the process of expressing a real world situation mathematically. Visualisation can play a significant role in the development of thinking or understanding mathematical concepts, and also makes abstract…
Tay, S K; Hsu, T-Y; Pavelyev, A; Walia, A; Kulkarni, A S
2018-03-01
To examine the epidemiological and economic impact of a nine-valent (nonavalent) human papillomavirus (HPV) 6/11/16/18/31/33/45/52/58 vaccine programme for young teenagers in Singapore. Mathematical modelling. Pharmaco-economic simulation projection. Singapore demography. Clinical, epidemiological and financial data from Singapore were used in a validated HPV transmission dynamic mathematical model to analyse the impact of nonavalent HPV vaccination over quadrivalent and bivalent vaccines in a school-based 2-dose vaccination for 11- to 12-year-old girls in the country. The model assumed routine cytology screening in the current rate (50%) and vaccine coverage rate of 80%. Changes over a 100-year time period in the incidence and mortality rates of cervical cancer, case load of genital warts, and incremental cost-effectiveness ratio (ICER). Compared with bivalent and quadrivalent HPV vaccination programmes, nonavalent HPV universal vaccination resulted in an additional reduction of HPV31/33/45/52/58 related CIN1 of 40.5%, CIN 2/3 of 35.4%, cervical cancer of 23.5%, and cervical cancer mortality of 20.2%. Compared with bivalent HPV vaccination, there was an additional reduction in HPV-6/11 related CIN1 of 75.7%, and genital warts of 78.9% in women and 73.4% in men. Over the 100 years, after applying a discount of 3%, disease management cost will be reduced by 32.5% (versus bivalent) and 7.5% (versus quadrivalent). The incremental cost-effectiveness ratio (ICER) per quality-adjusted life-year gained was SGD 929 compared with bivalent vaccination and SGD 9864 compared with quadrivalent vaccination. Universal two-dose nonavalent HPV vaccination for 11- to 12-year-old adolescent women is very cost-effective in Singapore. Nonavalent HPV vaccination of 11- to 12-year-old girls is cost-effective in Singapore. © 2017 Royal College of Obstetricians and Gynaecologists.
Control of Crazyflie nano quadcopter using Simulink
NASA Astrophysics Data System (ADS)
Gopabhat Madhusudhan, Meghana
This thesis focuses on developing a mathematical model in Simulink to Crazyflie, an open source platform. Attitude, altitude and position controllers of a Crazyflie are designed in the mathematical model. The mathematical model is developed based on the quadcopter system dynamics using a non-linear approach. The parameters of translational and rotational dynamics of the quadcopter system are linearized and tuned individually. The tuned attitude and altitude controllers from the mathematical model are implemented on real time Crazyflie Simulink model to achieve autonomous and controlled flight.
Physical and mathematical cochlear models
NASA Astrophysics Data System (ADS)
Lim, Kian-Meng
2000-10-01
The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity, and non-linear effects such as compression of response with stimulus level, two-tone suppression and the generation of harmonic and distortion products.
Mathematical modelling of radiotherapy strategies for early breast cancer.
Enderling, Heiko; Anderson, Alexander R A; Chaplain, Mark A J; Munro, Alastair J; Vaidya, Jayant S
2006-07-07
Targeted intraoperative radiotherapy (Targit) is a new concept of partial breast irradiation where single fraction radiotherapy is delivered directly to the tumour bed. Apart from logistic advantages, this strategy minimizes the risk of missing the tumour bed and avoids delay between surgery and radiotherapy. It is presently being compared with the standard fractionated external beam radiotherapy (EBRT) in randomized trials. In this paper we present a mathematical model for the growth and invasion of a solid tumour into a domain of tissue (in this case breast tissue), and then a model for surgery and radiation treatment of this tumour. We use the established linear-quadratic (LQ) model to compute the survival probabilities for both tumour cells and irradiated breast tissue and then simulate the effects of conventional EBRT and Targit. True local recurrence of the tumour could arise either from stray tumour cells, or the tumour bed that harbours morphologically normal cells having a predisposition to genetic changes, such as a loss of heterozygosity (LOH) in genes that are crucial for tumourigenesis, e.g. tumour suppressor genes (TSGs). Our mathematical model predicts that the single high dose of radiotherapy delivered by Targit would result in eliminating all these sources of recurrence, whereas the fractionated EBRT would eliminate stray tumour cells, but allow (by virtue of its very schedule) the cells with LOH in TSGs or cell-cycle checkpoint genes to pass on low-dose radiation-induced DNA damage and consequently mutations that may favour the development of a new tumour. The mathematical model presented here is an initial attempt to model a biologically complex phenomenon that has until now received little attention in the literature and provides a 'proof of principle' that it is possible to produce clinically testable hypotheses on the effects of different approaches of radiotherapy for breast cancer.
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.
A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca
2014-02-15
Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxelsmore » on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.« less
ERIC Educational Resources Information Center
Davidson, J. Cody
2016-01-01
Mathematics is the most common subject area of remedial need and the majority of remedial math students never pass a college-level credit-bearing math class. The majorities of studies that investigate this phenomenon are conducted at community colleges and use some type of regression model; however, none have used a continuation ratio model. The…
Using Game Theory Techniques and Concepts to Develop Proprietary Models for Use in Intelligent Games
ERIC Educational Resources Information Center
Christopher, Timothy Van
2011-01-01
This work is about analyzing games as models of systems. The goal is to understand the techniques that have been used by game designers in the past, and to compare them to the study of mathematical game theory. Through the study of a system or concept a model often emerges that can effectively educate students about making intelligent decisions…
Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling
NASA Astrophysics Data System (ADS)
Meika, I.; Suryadi, D.; Darhim
2018-01-01
This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.
NASA Astrophysics Data System (ADS)
Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny
2015-06-01
One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh.
Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J
2003-09-01
The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.
ERIC Educational Resources Information Center
Dalla Vecchia, Rodrigo
2015-01-01
This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…
On a Mathematical Model with Noncompact Boundary Conditions Describing Bacterial Population
NASA Astrophysics Data System (ADS)
Boulanouar, Mohamed
2013-04-01
In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.
What’s about Peer Tutoring Learning Model?
NASA Astrophysics Data System (ADS)
Muthma'innah, M.
2017-09-01
Mathematics learning outcomes in Indonesia in general is still far from satisfactory. One effort that could be expected to solve the problem is to apply the model of peer tutoring learning in mathematics. This study aims to determine whether the results of students’ mathematics learning can be enhanced through peer tutoring learning models. This type of research is the study of literature, so that the method used is to summarize and analyze the results of relevant research that has been done. Peer tutoring learning model is a model of learning in which students learn in small groups that are grouped with different ability levels, all group members to work together and help each other to understand the material. By paying attention to the syntax of the learning, then learning will be invaluable peer tutoring for students who served as teachers and students are taught. In mathematics, the implementation of this learning model can make students understand each other mathematical concepts and help students in solving mathematical problems that are poorly understood, due to the interaction between students in learning. Then it will be able to improve learning outcomes in mathematics. The impact, it can be applied in mathematics learning.
Westine, Carl D; Spybrook, Jessaca; Taylor, Joseph A
2013-12-01
Prior research has focused primarily on empirically estimating design parameters for cluster-randomized trials (CRTs) of mathematics and reading achievement. Little is known about how design parameters compare across other educational outcomes. This article presents empirical estimates of design parameters that can be used to appropriately power CRTs in science education and compares them to estimates using mathematics and reading. Estimates of intraclass correlations (ICCs) are computed for unconditional two-level (students in schools) and three-level (students in schools in districts) hierarchical linear models of science achievement. Relevant student- and school-level pretest and demographic covariates are then considered, and estimates of variance explained are computed. Subjects: Five consecutive years of Texas student-level data for Grades 5, 8, 10, and 11. Science, mathematics, and reading achievement raw scores as measured by the Texas Assessment of Knowledge and Skills. Results: Findings show that ICCs in science range from .172 to .196 across grades and are generally higher than comparable statistics in mathematics, .163-.172, and reading, .099-.156. When available, a 1-year lagged student-level science pretest explains the most variability in the outcome. The 1-year lagged school-level science pretest is the best alternative in the absence of a 1-year lagged student-level science pretest. Science educational researchers should utilize design parameters derived from science achievement outcomes. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Wardono; Mariani, S.; Hendikawati, P.; Ikayani
2017-04-01
Mathematizing process (MP) is the process of modeling a phenomenon mathematically or establish the concept of a phenomenon. There are two mathematizing that is Mathematizing Horizontal (MH) and Mathematizing Vertical (MV). MH as events changes contextual problems into mathematical problems, while MV is the process of formulation of the problem into a variety of settlement mathematics by using some appropriate rules. Mathematics Literacy (ML) is the ability to formulate, implement and interpret mathematics in various contexts, including the capacity to perform reasoning mathematically and using the concepts, procedures, and facts to describe, explain or predict phenomena incident. If junior high school students are conditioned continuously to conduct mathematizing activities on RCP (RME-Card Problem) learning, it will be able to improve ML that refers PISA. The purpose of this research is to know the capability of the MP grade VIII on ML content shape and space with the matter of the cube and beams with RCP learning better than the scientific learning, upgrade MP grade VIII in the issue of the cube and beams with RCP learning better than the scientific learning in terms of cognitive styles reflective and impulsive the MP grade VIII with the approach of the RCP learning in terms of cognitive styles reflective and impulsive This research is the mixed methods model concurrent embedded. The population in this study, i.e., class VIII SMPN 1 Batang with sample two class. Data were taken with the observation, interviews, and tests and analyzed with a different test average of one party the right qualitative and descriptive. The results of this study demonstrate the capability of the MP student with RCP learning better than the scientific learning, upgrade MP with RCP learning better compare with scientific learning in term cognitive style of reflective and impulsive. The subject of the reflective group top, middle, and bottom can meet all the process of MH indicators are then the subject of the reflective upper and intermediate group can meet all the MV indicators but to lower groups can only fulfill some MV indicators. The subject is impulsive upper and middle group can meet all the MH indicators but to lower groups can only meet some MH indicator, then the subject is impulsive group can meet all the MV indicators but for middle and the bottom group can only fulfill some MV indicators.
Current problems in applied mathematics and mathematical modeling
NASA Astrophysics Data System (ADS)
Alekseev, A. S.
Papers are presented on mathematical modeling noting applications to such fields as geophysics, chemistry, atmospheric optics, and immunology. Attention is also given to models of ocean current fluxes, atmospheric and marine interactions, and atmospheric pollution. The articles include studies of catalytic reactors, models of global climate phenomena, and computer-assisted atmospheric models.
ERIC Educational Resources Information Center
Johnson, Mid D.
2010-01-01
The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…
Landscape patterns from mathematical morphology on maps with contagion
Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil
2009-01-01
The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...
How Can the Relationship between Argumentation and Proof Be Analysed?
ERIC Educational Resources Information Center
Pedemonte, Bettina
2007-01-01
The paper presents a characterisation about argumentation and proof in mathematics. On the basis of contemporary linguistic theories, the hypothesis that proof is a special case of argumentation is put forward and Toulmin's model is proposed as a methodological tool to compare them. This model can be used to detect and analyse the structure of an…
Benchmarking electrophysiological models of human atrial myocytes
Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar
2013-01-01
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167
NASA Astrophysics Data System (ADS)
Guiraldello, Rafael T.; Martins, Marcelo L.; Mancera, Paulo F. A.
2016-08-01
We present a mathematical model based on partial differential equations that is applied to understand tumor development and its response to chemotherapy. Our primary aim is to evaluate comparatively the efficacies of two chemotherapeutic protocols, Maximum Tolerated Dose (MTD) and metronomic, as well as two methods of drug delivery. Concerning therapeutic outcomes, the metronomic protocol proves more effective in prolonging the patient's life than MTD. Moreover, a uniform drug delivery method combined with the metronomic protocol is the most efficient strategy to reduce tumor density.
Mathematical Simulation of Drying Process of Fibrous Material
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Raška, Jiří; Jablonská, Jana
2018-06-01
The article describes mathematical simulation of flowing air through porous zone and water vaporisation from mentioned porous area which actually represents dried fibrous material - cotton towel. Simulation is based on finite volume method. Wet towel is placed in pipe and hot air flow through the towel. Water from towel is evaporated. Simulation of airflow through porous element is described first. Eulerian multiphase model is then used for simulation of water vaporisation from porous medium. Results of simulation are compared with experiment. Ansys Fluent 13.0 was used for calculation.
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
ERIC Educational Resources Information Center
Kim, Sun Hee; Kim, Soojin
2010-01-01
What should we do to educate the mathematically gifted and how should we do it? In this research, to satisfy diverse mathematical and cognitive demands of the gifted who have excellent learning ability and task tenacity in mathematics, we sought to apply mathematical modeling. One of the objectives of the gifted education in Korea is cultivating…
NASA Astrophysics Data System (ADS)
Nugraheni, Z.; Budiyono, B.; Slamet, I.
2018-03-01
To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.
Differences in students' mathematics engagement between gender and between rural and urban schools
NASA Astrophysics Data System (ADS)
Ayub, Ahmad Fauzi Mohd; Yunus, Aida Suraya Md.; Mahmud, Rosnaini; Salim, Nur Raidah; Sulaiman, Tajularipin
2017-01-01
The purpose of this study was to explore secondary school students' mathematics engagement focusing on the cognitive, affective and behavioural engagement domains. A total of 387 students (186 male and 201 female) from the urban and rural secondary schools in Pahang, Malaysia, were randomly selected. There were 158 students from the urban schools and 229 students from the rural schools. Descriptive analyses for mathematics engagement domains revealed behavioural engagement had the highest mean (M = 3.74, SD = .63), followed by cognitive engagement (M = 3.56, SD = .43) and affective engagement (M = 3.48, SD = .47). The mean for students' overall mathematics engagement was 3.56 (SD = .46). Further analyses showed there were significant differences in each of the engagement domains in mathematics learning (affective, cognitive and behavioural), where students in the urban schools showed significantly better in the mean scores for affective, cognitive, behavioural domains and the overall mathematics engagement as compared to the students in the rural schools. Similar findings also showed there were significant differences in the overall mathematics engagement mean between the genders. The findings indicated girls were significantly better than boys in all (affective, cognitive and behavioural) of the engagement domains in mathematics learning. It was also shown girls had higher overall mathematics engagement mean as compared to boys. However, the study also indicated the overall students' mathematics engagement was at a moderate level. Besides, the rural school students did not show high mathematics engagement as compared to the urban school students. Further analyses showed girls significantly had better mathematics engagement as compared to boys. Hence, it is recommended that in order to optimize students' mathematics engagement, they should be actively engaged in more participative learning activities in mathematics classrooms. Focus should be given to rural schools and also among the boys.
ERIC Educational Resources Information Center
Toumasis, Charalampos
2004-01-01
Emphasis on problem solving and mathematical modeling has gained considerable attention in the last few years. Connecting mathematics to other subjects and to the real world outside the classroom has received increased attention in mathematics programs. This article describes an application of simple differential equations in the field of…
Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.
Uttenweiler, D; Weber, C; Fink, R H
1998-01-01
A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber. PMID:9545029
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.
Cowan, Christopher B.; Patel, Dhara A.; Good, Theresa A.
2009-01-01
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer’s disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with Alzheimer’s disease. PMID:19217912
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
NASA Astrophysics Data System (ADS)
Zhang, Jiangshan; Yang, Shufeng; Li, Jingshe; Tang, Haiyan; Jiang, Zhengyi
2018-01-01
The effect of a dissipative ladle shroud (DLS) on mixing in tundish was investigated, compared with that of a conventional ladle shroud (CLS) using mathematical and physical modelling. The tracer profiles of mathematical results, achieved using large eddy simulation, were validated by physical observations employing high-speed cinephotography. The design of a DLS dramatically changed the flow patterns and contributed the intermixing of fluid elements inside the ladle shroud. The vortex flow encouraged the turbulent mixing and was verified by tracking of physical tracer dispersion inside the DLS. Residence Time Distribution (RTD) curves were obtained in two different sized tundishes to examine the mixing behaviours. The findings indicated that the DLS benefited the tundish mixing in terms of increasing active volume. The effect seemed to be more remarkable in the smaller tundish. The DLS gave rise to a more plug-like flow pattern inside the tundish, showing potential to shorten the transition length during grade change.
Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics
ERIC Educational Resources Information Center
Wang, Youjun
2009-01-01
In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…
Near Identifiability of Dynamical Systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
How to Develop Teachers' Mathematical Molding Teaching Skills
ERIC Educational Resources Information Center
Mrayyan, Salwa
2016-01-01
This study aimed at developing some of the mathematical modelling skills necessary for the student teachers in mathematics education College. Modeling involves making genuine choices, modeling problems have many possible justifiable answers, modeling problems matter to the end-user who needs to understand something or make a decision. Modeling…
Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2016-01-01
This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…
Model Eliciting Activities: Fostering 21st Century Learners
ERIC Educational Resources Information Center
Stohlmann, Micah
2013-01-01
Real world mathematical modeling activities can develop needed and valuable 21st century skills. The knowledge and skills to become adept at mathematical modeling need to develop over time and students in the elementary grades should have experiences with mathematical modeling. For this to occur elementary teachers need to have positive…
Some Reflections on the Teaching of Mathematical Modeling
ERIC Educational Resources Information Center
Warwick, Jon
2007-01-01
This paper offers some reflections on the difficulties of teaching mathematical modeling to students taking higher education courses in which modeling plays a significant role. In the author's experience, other aspects of the model development process often cause problems rather than the use of mathematics. Since these other aspects involve…
Group investigation with scientific approach in mathematics learning
NASA Astrophysics Data System (ADS)
Indarti, D.; Mardiyana; Pramudya, I.
2018-03-01
The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.
Mathematical model of the direct reduction of dust composite pellets containing zinc and iron
NASA Astrophysics Data System (ADS)
An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo
2013-07-01
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
NASA Astrophysics Data System (ADS)
Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang
2018-05-01
Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.
NASA Astrophysics Data System (ADS)
Sapozhnikov, S. B.; Ignatova, A. V.
2013-01-01
The subcutaneous fat is considered as a structural material undergoing large inelastic deformations and failure under uniform compression. In calculation, the fat is replaced with a set of cells operating in parallel and suffering failure independently of one another. An elementary cell is considered as a closed thin-wall cylindrical shell filled with an incompressible liquid. All cells in the model are of the same size, and their material is hyperelastic, whose stiffness grows in tension. By comparing experimental data with the mathematical shell model, three parameters are determined to describe the hyperelastic behavior of the cells in transverse compression. A mathematical model with seven constants is presented for describing the deformation of subcutaneous fat under compression. The results obtained are used in a model of human thorax subjected to a local pulse action corresponding to the loading of human body under the impact of a bullet on an armor vest.
Effects of human and mosquito migrations on the dynamical behavior of the spread of malaria
NASA Astrophysics Data System (ADS)
Beay, Lazarus Kalvein; Kasbawati, Toaha, Syamsuddin
2017-03-01
Malaria is one of infectious diseases which become the main public health problem especially in Indonesia. Mathematically, the spread of malaria can be modeled to predict the outbreak of the disease. This research studies about mathematical model of the spread of malaria which takes into consideration the migration of human and mosquito populations. By determining basic reproduction number of the model, we analyze effects of migration parameter with respect to the reduction of malaria outbreak. Sensitivity analysis of basic reproduction number shows that mosquito migration has greater effect in reducing the outbreak of malaria compared with human migration. Basic reproduction number of the model is monotonically decreasing as mosquito migration increasing. We then confirm the analytic result by doing numerical simulation. The results show that migrations in human and mosquito populations have big influences in eliminating and eradicating the disease from the system.
Forecasting characteristics of flood effects
NASA Astrophysics Data System (ADS)
Khamutova, M. V.; Rezchikov, A. F.; Kushnikov, V. A.; Ivaschenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.
2018-05-01
The article presents the development of a mathematical model of the system dynamics. Mathematical model allows forecasting the characteristics of flood effects. Model is based on a causal diagram and is presented by a system of nonlinear differential equations. Simulated characteristics are the nodes of the diagram, and edges define the functional relationships between them. The numerical solution of the system of equations using the Runge-Kutta method was obtained. Computer experiments to determine the characteristics on different time interval have been made and results of experiments have been compared with real data of real flood. The obtained results make it possible to assert that the developed model is valid. The results of study are useful in development of an information system for the operating and dispatching staff of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM).
Formally verifying Ada programs which use real number types
NASA Technical Reports Server (NTRS)
Sutherland, David
1986-01-01
Formal verification is applied to programs which use real number arithmetic operations (mathematical programs). Formal verification of a program P consists of creating a mathematical model of F, stating the desired properties of P in a formal logical language, and proving that the mathematical model has the desired properties using a formal proof calculus. The development and verification of the mathematical model are discussed.
Mathematical Modeling in the Secondary School Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank, Ed.; Hartzler, J. S., Ed.
Over the past 10 years, national conferences and committees investigating the state of American mathematics education have advocated an increased emphasis on problem solving and mathematical modeling situations in the secondary school curriculum. However, little effort has been made to prepare secondary school teachers to use mathematical modeling…
ERIC Educational Resources Information Center
Toh, Tin Lam; Kaur, Berinderjeet; Koay, Phong Lee
2013-01-01
In this article, we explore the mathematical content knowledge of one entire cohort of pre-service teachers (N = 107) through analysing their performance in a Secondary Mathematics Audit that was developed for the International Comparative Studies in Mathematics Teacher Training that was initiated by the University of Plymouth. We study how their…
What can formal methods offer to digital flight control systems design
NASA Technical Reports Server (NTRS)
Good, Donald I.
1990-01-01
Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.
Study of Three-Dimensional Pressure-Driven Turbulent Boundary Layer
1990-08-31
614)-)) the flow development rate should be comparable with that of the flows used in practice. In the rest of the Chapter, first the governing...to develop these models will be briefly discussed. The available turbulence models used INTRODUCTION 2 for the mathematically closure of the of...equations, assumptions made for each model and the quantities to be measured for the further development of these models are also going to be pointed out
Two Approaches to Calibration in Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanelli, Mark
2014-04-01
Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.
NASA Technical Reports Server (NTRS)
Poole, L. R.; Huckins, E. K., III
1972-01-01
A general theory on mathematical modeling of elastic parachute suspension lines during the unfurling process was developed. Massless-spring modeling of suspension-line elasticity was evaluated in detail. For this simple model, equations which govern the motion were developed and numerically integrated. The results were compared with flight test data. In most regions, agreement was satisfactory. However, poor agreement was obtained during periods of rapid fluctuations in line tension.
ERIC Educational Resources Information Center
Aydogan Yenmez, Arzu; Erbas, Ayhan Kursat; Cakiroglu, Erdinc; Alacaci, Cengiz; Cetinkaya, Bulent
2017-01-01
Applications and modelling have gained a prominent role in mathematics education reform documents and curricula. Thus, there is a growing need for studies focusing on the effective use of mathematical modelling in classrooms. Assessment is an integral part of using modelling activities in classrooms, since it allows teachers to identify and manage…
ERIC Educational Resources Information Center
Tian, Xiaoxi
2014-01-01
In recent years, Mainland Chinese teams have been the dominant participants in the two COMAP-sponsored mathematical modeling competitions: the Mathematical Contest in Modeling (MCM) and the Interdisciplinary Contest in Modeling (ICM). This study examines five factors that lead to the Chinese teams' dramatic increase in participation rate and…
Using a Functional Model to Develop a Mathematical Formula
ERIC Educational Resources Information Center
Otto, Charlotte A.; Everett, Susan A.; Luera, Gail R.
2008-01-01
The unifying theme of models was incorporated into a required Science Capstone course for pre-service elementary teachers based on national standards in science and mathematics. A model of a teeter-totter was selected for use as an example of a functional model for gathering data as well as a visual model of a mathematical equation for developing…
A comparison of multiprocessor scheduling methods for iterative data flow architectures
NASA Technical Reports Server (NTRS)
Storch, Matthew
1993-01-01
A comparative study is made between the Algorithm to Architecture Mapping Model (ATAMM) and three other related multiprocessing models from the published literature. The primary focus of all four models is the non-preemptive scheduling of large-grain iterative data flow graphs as required in real-time systems, control applications, signal processing, and pipelined computations. Important characteristics of the models such as injection control, dynamic assignment, multiple node instantiations, static optimum unfolding, range-chart guided scheduling, and mathematical optimization are identified. The models from the literature are compared with the ATAMM for performance, scheduling methods, memory requirements, and complexity of scheduling and design procedures.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.
[Representation and mathematical analysis of human crystalline lens].
Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai
2011-01-01
The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.
Science modelling in pre-calculus: how to make mathematics problems contextually meaningful
NASA Astrophysics Data System (ADS)
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-04-01
'Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum' (National Council of Teachers of Mathematics (NCTM), Principles and Standards for School Mathematics, NCTM, Reston, VA, 2000). Commonly used pre-calculus textbooks provide a wide range of application problems. However, these problems focus students' attention on evaluating or solving pre-arranged formulas for given values. The role of scientific content is reduced to provide a background for these problems instead of being sources of data gathering for inducing mathematical tools. Students are neither required to construct mathematical models based on the contexts nor are they asked to validate or discuss the limitations of applied formulas. Using these contexts, the instructor may think that he/she is teaching problem solving, where in reality he/she is teaching algorithms of the mathematical operations (G. Kulm (ed.), New directions for mathematics assessment, in Assessing Higher Order Thinking in Mathematics, Erlbaum, Hillsdale, NJ, 1994, pp. 221-240). Without a thorough representation of the physical phenomena and the mathematical modelling processes undertaken, problem solving unintentionally appears as simple algorithmic operations. In this article, we deconstruct the representations of mathematics problems from selected pre-calculus textbooks and explicate their limitations. We argue that the structure and content of those problems limits students' coherent understanding of mathematical modelling, and this could result in weak student problem-solving skills. Simultaneously, we explore the ways to enhance representations of those mathematical problems, which we have characterized as lacking a meaningful physical context and limiting coherent student understanding. In light of our discussion, we recommend an alternative to strengthen the process of teaching mathematical modelling - utilization of computer-based science simulations. Although there are several exceptional computer-based science simulations designed for mathematics classes (see, e.g. Kinetic Book (http://www.kineticbooks.com/) or Gizmos (http://www.explorelearning.com/)), we concentrate mainly on the PhET Interactive Simulations developed at the University of Colorado at Boulder (http://phet.colorado.edu/) in generating our argument that computer simulations more accurately represent the contextual characteristics of scientific phenomena than their textual descriptions.
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.
2015-01-01
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results suggest that, in order to appropriately model early HIV/SIV dynamics, additional factors must be considered in the model development. These may include variability in monkey susceptibility to infection, within-host competition between different viruses for target cells at the initial site of virus replication in the mucosa, innate immune response, and possibly the inclusion of several different tissue compartments. The sobering news is that while an increase in model complexity is needed to explain the available experimental data, testing and rejection of more complex models may require more quantitative data than is currently available. PMID:25781919
Mathematical Manipulative Models: In Defense of “Beanbag Biology”
Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process—1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets—we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education. PMID:20810952
Mathematical manipulative models: in defense of "beanbag biology".
Jungck, John R; Gaff, Holly; Weisstein, Anton E
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.
On Fences, Forms and Mathematical Modeling
ERIC Educational Resources Information Center
Lege, Jerry
2009-01-01
The white picket fence is an integral component of the iconic American townscape. But, for mathematics students, it can be a mathematical challenge. Picket fences in a variety of styles serve as excellent sources to model constant, step, absolute value, and sinusoidal functions. "Principles and Standards for School Mathematics" (NCTM 2000)…
ERIC Educational Resources Information Center
Chavez, Oscar; Papick, Ira; Ross, Dan J.; Grouws, Douglas A.
2010-01-01
The purpose of this paper was to describe the process of development of assessment instruments for the Comparing Options in Secondary Mathematics: Investigating Curriculum (COSMIC) project. The COSMIC project was a three-year longitudinal comparative study focusing on evaluating high school students' mathematics learning from two distinct…
NASA Astrophysics Data System (ADS)
Řidký, V.; Šidlof, P.; Vlček, V.
2013-04-01
The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
Mathematical Modelling as a Professional Task
ERIC Educational Resources Information Center
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer
2011-11-21
We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work. Published by Elsevier Ltd.
Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam
2016-07-01
In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical Models for Immunology: Current State of the Art and Future Research Directions.
Eftimie, Raluca; Gillard, Joseph J; Cantrell, Doreen A
2016-10-01
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
A Mathematical Model to Predict and Maintain the Neutral Buoyancy of Suited Astronauts
NASA Technical Reports Server (NTRS)
Clowers, Kurt; Jaramillo, Marcos; Nguyen, Daniel; Sweet, Robert; Rajulu, Sudhakar
2006-01-01
A previous study reported that inadequate weigh outs of suited subjects contribute to fatigue and the risk of injury during training in the Neutral Buoyancy Laboratory (NBL). Another study suggested that shoulder injuries observed in suited subjects who train in the NBL may be attributed to excessive righting moments caused by a non-optimal weigh out. The purpose of this study was to develop a mathematical model to predict and maintain the neutral buoyancy of suited subjects during training operations at the NBL. Due to time constraints, one certified NBL support diver served as a subject (height: 66.54 in; weight: 182 lbs) for this study and only one complete test was conducted. The study was divided into two runs for which the first run required the NBL divers to perform a weigh out similar to a suited astronaut on a scuba diver wearing a mock Portable Life Support System and a Displays and Control Module. For the second run, the same subject and equipment were weighed out according to the mathematical model. The objective of each run was to achieve a neutrally buoyant subject floating 450 to the pool floor. Motion data was collected using two underwater cameras and analyzed using Dartfish video analysis software while force and moment data were recorded using an AMTI force plate. The results from the NBL divers visual run indicate that the subject was floating at an angle of 29.50 while the resultant force and moment data were 1.139 lb and 1.125 ft-lb respectively. The mathematical model s weigh out resulted in the subject floating at an angle of 37.40 and a resultant force of 0.765 lb and resultant moment of 1.248 ft-lb. The mathematical model was better able to orient the subject and reduce resultant moment and force as compared to the NBL divers.
Differential equations with applications in cancer diseases.
Ilea, M; Turnea, M; Rotariu, M
2013-01-01
Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. The cancer modeling is a highly challenging problem at the frontier of applied mathematics. A variety of modeling strategies have been developed, each focusing on one or more aspects of cancer. The vast majority of mathematical models in cancer diseases biology are formulated in terms of differential equations. We propose an original mathematical model with small parameter for the interactions between these two cancer cell sub-populations and the mathematical model of a vascular tumor. We work on the assumption that, the quiescent cells' nutrient consumption is long. One the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. MATLAB simulations obtained for transition rate from the quiescent cells' nutrient consumption is long, we show a similar asymptotic behavior for two solutions of the perturbed problem. In this system, the small parameter is an asymptotic variable, different from the independent variable. The graphical output for a mathematical model of a vascular tumor shows the differences in the evolution of the tumor populations of proliferating, quiescent and necrotic cells. The nutrient concentration decreases sharply through the viable rim and tends to a constant level in the core due to the nearly complete necrosis in this region. Many mathematical models can be quantitatively characterized by ordinary differential equations or partial differential equations. The use of MATLAB in this article illustrates the important role of informatics in research in mathematical modeling. The study of avascular tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.
2017-08-15
RESEARCH Perturbing the Hypothalamic–Pituitary–Adrenal Axis: A Mathematical Model for Interpreting PTSD Assessment Tests Lae Un Kim1, Maria R...D’Orsogna2, and Tom Chou1 1Department of Biomathematics, University of California, Los Angeles, USA 2Department of Mathematics , California State University...observed features and experimental responses can arise from a bistable mathematical model containing two steady-states, rather than relying on specific
Mathematical form models of tree trunks
Rudolfs Ozolins
2000-01-01
Assortment structure analysis of tree trunks is a characteristic and proper problem that can be solved by using mathematical modeling and standard computer programs. Mathematical form model of tree trunks consists of tapering curve equations and their parameters. Parameters for nine species were obtained by processing measurements of 2,794 model trees and studying the...
Modeling Achievement in Mathematics: The Role of Learner and Learning Environment Characteristics
ERIC Educational Resources Information Center
Nasser-Abu Alhija, Fadia; Amasha, Marcel
2012-01-01
This study examined a structural model of mathematics achievement among Druze 8th graders in Israel. The model integrates 2 psychosocial theories: goal theory and social learning theory. Variables in the model included gender, father's and mother's education, classroom mastery and performance goal orientation, mathematics self-efficacy and…
Teachers as Managers of the Modelling Process
ERIC Educational Resources Information Center
Lingefjard, Thomas; Meier, Stephanie
2010-01-01
The work in the Comenius Network project Developing Quality in Mathematics Education II (DQME II) has a main focus on development and evaluation of modelling tasks. One reason is the gap between what mathematical modelling is and what is taught in mathematical classrooms. This article deals with one modelling task and focuses on how two teachers…
NASA Astrophysics Data System (ADS)
Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran
2016-08-01
This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.
Investigation of the free flow electrophoretic process. Volume 2: Technical analysis
NASA Technical Reports Server (NTRS)
Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.
1979-01-01
The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.
NASA Astrophysics Data System (ADS)
Bak, Roman; Matyja, Tomasz
An algorithm and a computer program have been developed for calculating the strength of pressure vessels made of laminated composites. Numerical results for pressure vessels of Kevlar 49 laminates are compared with experimental data in the literature.
Competencies in Science Teaching
ERIC Educational Resources Information Center
Mathelitsch, Leopold
2013-01-01
The role of competencies is discussed with respect to science teaching. In particular, competence models from Germany, Switzerland and Austria are presented and compared. A special topical program, "Competencies in Mathematics and Science Teaching", was started in Austria three years ago. Initial experiences with this program are…
NASA Astrophysics Data System (ADS)
Nemchinova, N. V.; Tyutrin, A. A.; Salov, V. M.
2018-03-01
The silicon production process in the electric arc reduction furnaces (EAF) is studied using pelletized charge as an additive to the standard on the basis of the generated mathematical model. The results obtained due to the model will contribute to the analysis of the charge components behavior during melting with the achievement of optimum final parameters of the silicon production process. The authors proposed using technogenic waste as a raw material for the silicon production in a pelletized form using liquid glass and aluminum production dust from the electrostatic precipitators as a binder. The method of mathematical modeling with the help of the ‘Selector’ software package was used as a basis for the theoretical study. A model was simulated with the imitation of four furnace temperature zones and a crystalline silicon phase (25 °C). The main advantage of the created model is the ability to analyze the behavior of all burden materials (including pelletized charge) in the carbothermic process. The behavior analysis is based on the thermodynamic probability data of the burden materials interactions in the carbothermic process. The model accounts for 17 elements entering the furnace with raw materials, electrodes and air. The silicon melt, obtained by the modeling, contained 91.73 % wt. of the target product. The simulation results showed that in the use of the proposed combined charge, the recovery of silicon reached 69.248 %, which is in good agreement with practical data. The results of the crystalline silicon chemical composition modeling are compared with the real silicon samples of chemical analysis data, which showed the results of convergence. The efficiency of the mathematical modeling methods in the studying of the carbothermal silicon obtaining process with complex interphase transformations and the formation of numerous intermediate compounds using a pelletized charge as an additive to the traditional one is shown.
Rival approaches to mathematical modelling in immunology
NASA Astrophysics Data System (ADS)
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
Autonomous control of production networks using a pheromone approach
NASA Astrophysics Data System (ADS)
Armbruster, D.; de Beer, C.; Freitag, M.; Jagalski, T.; Ringhofer, C.
2006-04-01
The flow of parts through a production network is usually pre-planned by a central control system. Such central control fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks according to low work-in-progress and short throughput times, an autonomous control approach is proposed. Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their way to communicate with following ants. The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model with limited service rates in a general network topology is derived and compared to a discrete-event simulation model. Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g. discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.
Analysis of creative mathematical thinking ability by using model eliciting activities (MEAs)
NASA Astrophysics Data System (ADS)
Winda, A.; Sufyani, P.; Elah, N.
2018-05-01
Lack of creative mathematical thinking ability can lead to not accustomed with open ended problem. Students’ creative mathematical thinking ability in the first grade at one of junior high school in Tangerang City is not fully developed. The reason of students’ creative mathematical thinking ability is not optimally developed is so related with learning process which has done by the mathematics teacher, maybe the learning design that teacher use is unsuitable for increasing students’ activity in the learning process. This research objective is to see the differences in students’ ways of answering the problems in terms of students’ creative mathematical thinking ability during the implementation of Model Eliciting Activities (MEAs). This research use post-test experimental class design. The indicators for creative mathematical thinking ability in this research arranged in three parts, as follow: (1) Fluency to answer the problems; (2) Flexibility to solve the problems; (3) Originality of answers. The result of this research found that by using the same learning model and same instrument from Model Eliciting Activities (MEAs) there are some differences in the way students answer the problems and Model Eliciting Activities (MEAs) can be one of approach used to increase students’ creative mathematical thinking ability.
Cooperative learning model with high order thinking skills questions: an understanding on geometry
NASA Astrophysics Data System (ADS)
Sari, P. P.; Budiyono; Slamet, I.
2018-05-01
Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.
Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur
2015-03-01
A non-linear isotropic finite element (FE) model of a 29-year-old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. The model simulates dis-accommodation by stretching of the lens and predicts the change in surface profiles of the lens capsule, cortex and nucleus at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the finite element results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Aspects of lens shape change relative to stretch were evaluated, including change in diameter, central thickness and accommodation. Maximum accommodation achieved was 10.29 D. From the multiple regression analysis, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5 × 10(-3 ) μm, p < 0.001). The results are compared with those from in vitro studies. The finite element and ray-tracing predictions are consistent with Ex Vivo Accommodation Simulator (EVAS) studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully accommodated states. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
MacLean, Adam L; Harrington, Heather A; Stumpf, Michael P H; Byrne, Helen M
2016-01-01
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
ERIC Educational Resources Information Center
Ker, Hsiang-Wei
2017-01-01
Motivational constructs and students' engagements have great impacts on students' mathematics achievements, yet they have not been theoretically investigated using international large-scale assessment data. This study utilized the mathematics data of the Trends in International Mathematics and Science Study 2011 to conduct a comparative and…
ERIC Educational Resources Information Center
Dede, Yuksel
2013-01-01
This study reported the specific findings of a larger comparative study concerning Turkish and German mathematics teachers' values. The main focus was on the teaching experience of the mathematics teachers. Interactions related to nationality were also of interest. The research methodology employed in this study was a descriptive study. The…
ERIC Educational Resources Information Center
Ker, H. W.
2016-01-01
Reports from the Trends in International Mathematics and Science Study (TIMSS) consistently show that there is a substantial gap in average mathematics achievement between Singapore and the USA. This study conducts an exploratory comparative investigation on the multilevel factors influencing the mathematics achievement of students from these two…
Mathematical modeling of a process the rolling delivery
NASA Astrophysics Data System (ADS)
Stepanov, Mikhail A.; Korolev, Andrey A.
2018-03-01
An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.
NASA Astrophysics Data System (ADS)
Saleh, H.; Suryadi, D.; Dahlan, J. A.
2018-01-01
The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).
Bertsimas, Dimitris; Silberholz, John; Trikalinos, Thomas
2018-03-01
Important decisions related to human health, such as screening strategies for cancer, need to be made without a satisfactory understanding of the underlying biological and other processes. Rather, they are often informed by mathematical models that approximate reality. Often multiple models have been made to study the same phenomenon, which may lead to conflicting decisions. It is natural to seek a decision making process that identifies decisions that all models find to be effective, and we propose such a framework in this work. We apply the framework in prostate cancer screening to identify prostate-specific antigen (PSA)-based strategies that perform well under all considered models. We use heuristic search to identify strategies that trade off between optimizing the average across all models' assessments and being "conservative" by optimizing the most pessimistic model assessment. We identified three recently published mathematical models that can estimate quality-adjusted life expectancy (QALE) of PSA-based screening strategies and identified 64 strategies that trade off between maximizing the average and the most pessimistic model assessments. All prescribe PSA thresholds that increase with age, and 57 involve biennial screening. Strategies with higher assessments with the pessimistic model start screening later, stop screening earlier, and use higher PSA thresholds at earlier ages. The 64 strategies outperform 22 previously published expert-generated strategies. The 41 most "conservative" ones remained better than no screening with all models in extensive sensitivity analyses. We augment current comparative modeling approaches by identifying strategies that perform well under all models, for various degrees of decision makers' conservativeness.
Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa
2017-01-01
Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
ERIC Educational Resources Information Center
Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent
2017-01-01
The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…
The mathematical and computer modeling of the worm tool shaping
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyashkov, A. A.; Ayusheev, T. V.
2017-06-01
Traditionally mathematical profiling of the worm tool is carried out on the first T. Olivier method, known in the theory of gear gearings, with receiving an intermediate surface of the making lath. It complicates process of profiling and its realization by means of computer 3D-modeling. The purpose of the work is the improvement of mathematical model of profiling and its realization based on the methods of 3D-modeling. Research problems are: receiving of the mathematical model of profiling which excludes the presence of the making lath in it; realization of the received model by means of frame and superficial modeling; development and approbation of technology of solid-state modeling for the solution of the problem of profiling. As the basic, the kinematic method of research of the mutually envelope surfaces is accepted. Computer research is executed by means of CAD based on the methods of 3D-modeling. We have developed mathematical model of profiling of the worm tool; frame, superficial and solid-state models of shaping of the mutually enveloping surfaces of the detail and the tool are received. The offered mathematical models and the technologies of 3D-modeling of shaping represent tools for theoretical and experimental profiling of the worm tool. The results of researches can be used at design of metal-cutting tools.
ERIC Educational Resources Information Center
Rieger, Marc Oliver; Wang, Mei
2008-01-01
Comments on the article by E. Brandstatter, G. Gigerenzer, and R. Hertwig (2006). The authors discuss the priority heuristic, a recent model for decisions under risk. They reanalyze the experimental validity of this approach and discuss how these results compare with cumulative prospect theory, the currently most established model in behavioral…
Seasonal thermal energy storage in aquifers: Mathematical modeling studies in 1979
NASA Technical Reports Server (NTRS)
Tsang, C. F.
1980-01-01
A numerical model of water and heat flow in geologic media was developed, verified, and tested. The hydraulic parameters (transmittivity and storativity) and the location of a linear hydrologic barrier were simulated and compared with results from field experiments involving two injection-storage-recovery cycles. For both cycles, the initial simulated and observed temperatures agree (55c).
A Structural Equation Model Explaining 8th Grade Students' Mathematics Achievements
ERIC Educational Resources Information Center
Yurt, Eyüp; Sünbül, Ali Murat
2014-01-01
The purpose of this study is to investigate, via a model, the explanatory and predictive relationships among the following variables: Mathematical Problem Solving and Reasoning Skills, Sources of Mathematics Self-Efficacy, Spatial Ability, and Mathematics Achievements of Secondary School 8th Grade Students. The sample group of the study, itself…
ERIC Educational Resources Information Center
Soon, Wanmei; Lioe, Luis Tirtasanjaya; McInnes, Brett
2011-01-01
The teaching of mathematics in Singapore continues, in most cases, to follow a traditional model. While this traditional approach has many advantages, it does not always adequately prepare students for University-level mathematics, especially applied mathematics. In particular, it does not cultivate the ability to deal with "non-routine…
Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process
ERIC Educational Resources Information Center
Bal, Aytgen Pinar; Doganay, Ahmet
2014-01-01
The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…
Science Modelling in Pre-Calculus: How to Make Mathematics Problems Contextually Meaningful
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-01-01
"Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum" [National Council of Teachers of Mathematics (NCTM), "Principles and Standards for School Mathematics", NCTM, Reston, VA, 2000]. Commonly used pre-calculus textbooks provide a…
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
ERIC Educational Resources Information Center
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Mathematical modeling of a Ti:sapphire solid-state laser
NASA Technical Reports Server (NTRS)
Swetits, John J.
1987-01-01
The project initiated a study of a mathematical model of a tunable Ti:sapphire solid-state laser. A general mathematical model was developed for the purpose of identifying design parameters which will optimize the system, and serve as a useful predictor of the system's behavior.
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Mathematical Manipulative Models: In Defense of "Beanbag Biology"
ERIC Educational Resources Information Center
Jungck, John R.; Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…
Turbine Engine Mathematical Model Validation
1976-12-01
AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state
SU-E-T-17: A Mathematical Model for PinPoint Chamber Correction in Measuring Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Zhang, Y; Li, X
2014-06-01
Purpose: For small field dosimetry, such as measuring the cone output factor for stereotactic radiosurgery, ion chambers often result in underestimation of the dose, due to both the volume averaging effect and the lack of electron equilibrium. The purpose of this work is to develop a mathematical model, specifically for the pinpoint chamber, to calculate the correction factors corresponding to different type of small fields, including single cone-based circular field and non-standard composite fields. Methods: A PTW 0.015cc PinPoint chamber was used in the study. Its response in a certain field was modeled as the total contribution of many smallmore » beamlets, each with different response factor depending on the relative strength, radial distance to the chamber axis, and the beam angle. To get these factors, 12 cone-shaped circular fields (5mm,7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm) were irradiated and measured with the PinPoint chamber. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. These readings were then compared with the theoretical doses as obtained with Monte Carlo calculation. A penalized-least-square optimization algorithm was developed to find out the beamlet response factors. After the parameter fitting, the established mathematical model was validated with the same MC code for other non-circular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the Monte Carlo calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for the PinPoint chamber for dosimetric measurement of small fields. The current model is applicable only when the beam axis is perpendicular to the chamber axis. It can be applied to non-standard composite fields. Further validation with other type of detectors is being conducted.« less
Kinematic analysis of asymmetric folds in competent layers using mathematical modelling
NASA Astrophysics Data System (ADS)
Aller, J.; Bobillo-Ares, N. C.; Bastida, F.; Lisle, R. J.; Menéndez, C. O.
2010-08-01
Mathematical 2D modelling of asymmetric folds is carried out by applying a combination of different kinematic folding mechanisms: tangential longitudinal strain, flexural flow and homogeneous deformation. The main source of fold asymmetry is discovered to be due to the superimposition of a general homogeneous deformation on buckle folds that typically produces a migration of the hinge point. Forward modelling is performed mathematically using the software 'FoldModeler', by the superimposition of simple shear or a combination of simple shear and irrotational strain on initial buckle folds. The resulting folds are Ramsay class 1C folds, comparable to those formed by symmetric flattening, but with different length of limbs and layer thickness asymmetry. Inverse modelling is made by fitting the natural fold to a computer-simulated fold. A problem of this modelling is the search for the most appropriate homogeneous deformation to be superimposed on the initial fold. A comparative analysis of the irrotational and rotational deformations is made in order to find the deformation which best simulates the shapes and attitudes of natural folds. Modelling of recumbent folds suggests that optimal conditions for their development are: a) buckling in a simple shear regime with a sub-horizontal shear direction and layering gently dipping towards this direction; b) kinematic amplification due to superimposition of a combination of simple shear and irrotational strain with a sub-vertical maximum shortening direction for the latter component. The modelling shows that the amount of homogeneous strain necessary for the development of recumbent folds is much less when an irrotational strain component is superimposed at this stage that when the superimposed strain is only simple shear. In nature, the amount of the irrotational strain component probably increases during the development of the fold as a consequence of the increasing influence of the gravity due to the tectonic superimposition of rocks.
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Bukova Güzel, Esra
2013-01-01
The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…
ERIC Educational Resources Information Center
Dogan, Enis; Tatsuoka, Kikumi
2008-01-01
This study illustrates how a diagnostic testing model can be used to make detailed comparisons between student populations participating in international assessments. The performance of Turkish students on the TIMSS-R mathematics test was reanalyzed with a diagnostic testing model called the Rule Space Model. First, mathematical and cognitive…
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
NASA Astrophysics Data System (ADS)
Li, Zifeng
2016-12-01
This paper analyzes the mechanical and mathematical models in "Ritto et al. (2013) [1]". The results are that: (1) the mechanical model is obviously incorrect; (2) the mathematical model is not complete; (3) the differential equation is obviously incorrect; (4) the finite element equation is obviously not discretized from the corresponding mathematical model above, and is obviously incorrect. A mathematical model of dynamics should include the differential equations, the boundary conditions and the initial conditions.
Illustrations of mathematical modeling in biology: epigenetics, meiosis, and an outlook.
Richards, D; Berry, S; Howard, M
2012-01-01
In the past few years, mathematical modeling approaches in biology have begun to fulfill their promise by assisting in the dissection of complex biological systems. Here, we review two recent examples of predictive mathematical modeling in plant biology. The first involves the quantitative epigenetic silencing of the floral repressor gene FLC in Arabidopsis, mediated by a Polycomb-based system. The second involves the spatiotemporal dynamics of telomere bouquet formation in wheat-rye meiosis. Although both the biology and the modeling framework of the two systems are different, both exemplify how mathematical modeling can help to accelerate discovery of the underlying mechanisms in complex biological systems. In both cases, the models that developed were relatively minimal, including only essential features, but both nevertheless yielded fundamental insights. We also briefly review the current state of mathematical modeling in biology, difficulties inherent in its application, and its potential future development.
Exploring Differential Effects of Mathematics Courses on Mathematics Achievement
ERIC Educational Resources Information Center
Ma, Xin; McIntyre, Laureen J.
2005-01-01
Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…
Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.
Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael
2016-11-01
Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.
ERIC Educational Resources Information Center
Wilkerson, Michelle H.; Bautista, Alfredo; Tobin, Roger G.; Brizuela, Bárbara M.; Cao, Ying
2018-01-01
Modeling is a major topic of interest in mathematics education. However, the field's definition of models is diverse. Less is known about what teachers identify as mathematical models, even though it is teachers who ultimately enact modeling activities in the classroom. In this study, we asked nine middle school teachers with a variety of academic…
ERIC Educational Resources Information Center
I, Ji Yeong; Dougherty, Barbara J.; Berkaliev, Zaur
2015-01-01
Young children spend a much greater amount of time on practicing multiplication facts compared to understanding the concept of multiplication. When students have long-term, foundational concepts rather than a series of fragmented algorithms or facts, they are more likely to understand and generalize the mathematics. Using generalized models that…
Mathematical modeling and simulation of aquatic and aerial animal locomotion
NASA Astrophysics Data System (ADS)
Hou, T. Y.; Stredie, V. G.; Wu, T. Y.
2007-08-01
In this paper, we investigate the locomotion of fish and birds by applying a new unsteady, flexible wing theory that takes into account the strong nonlinear dynamics semi-analytically. We also make extensive comparative study between the new approach and the modified vortex blob method inspired from Chorin's and Krasny's work. We first implement the modified vortex blob method for two examples and then discuss the numerical implementation of the nonlinear analytical mathematical model of Wu. We will demonstrate that Wu's method can capture the nonlinear effects very well by applying it to some specific cases and by comparing with the experiments available. In particular, we apply Wu's method to analyze Wagner's result for a wing abruptly undergoing an increase in incidence angle. Moreover, we study the vorticity generated by a wing in heaving, pitching and bending motion. In both cases, we show that the new method can accurately represent the vortex structure behind a flying wing and its influence on the bound vortex sheet on the wing.
Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia
NASA Astrophysics Data System (ADS)
Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad
2016-02-01
Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.
Mathematical Models of Cobalt and Iron Ions Catalyzed Microwave Bacterial Deactivation
Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Williams, Arthur L.
2007-01-01
Time differences for Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli survival during microwave irradiation (power 130 W) in the presence of aqueous cobalt and iron ions were investigated. Measured dependencies had “bell” shape forms with maximum bacterial viability between 1 – 2 min becoming insignificant at 3 minutes. The deactivation time for E. faecalis, S. aureus and E.coli in the presence of metal ions were smaller compared to a water control (4–5 min). Although various sensitivities to the metal ions were observed, S. aureus and E. coli and were the most sensitive for cobalt and iron, respectively. The rapid reduction of viable bacteria during microwave treatment in the presence of metal ions could be explained by increased metal ion penetration into bacteria. Additionally, microwave irradiation may have increased the kinetic energy of the metal ions resulting in lower survival rates. The proposed mathematical model for microwave heating took into account the “growth” and “death” factors of the bacteria, forming second degree polynomial functions. Good relationships were found between the proposed mathematical models and the experimental data for bacterial deactivation (coefficient of correlation 0.91 – 0.99). PMID:17911658
Scaffolding Mathematical Modelling with a Solution Plan
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
An Integrated Approach to Mathematical Modeling: A Classroom Study.
ERIC Educational Resources Information Center
Doerr, Helen M.
Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…
Leading Undergraduate Research Projects in Mathematical Modeling
ERIC Educational Resources Information Center
Seshaiyer, Padmanabhan
2017-01-01
In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…
Mathematical Modeling and Computational Thinking
ERIC Educational Resources Information Center
Sanford, John F.; Naidu, Jaideep T.
2017-01-01
The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…
iSTEM: Promoting Fifth Graders' Mathematical Modeling
ERIC Educational Resources Information Center
Yanik, H. Bahadir; Karabas, Celil
2014-01-01
Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…
The mathematical research for the Kuramoto model of the describing neuronal synchrony in the brain
NASA Astrophysics Data System (ADS)
Lin, Chang; Lin, Mai-mai
2009-08-01
The Kuramoto model of the describing neuronal synchrony is mathematically investigated in the brain. A general analytical solutions (the most sententious description) for the Kuramoto model, incorporating the inclusion of a Ki,j (t) term to represent time-varying coupling strengths, have been obtained by using the precise mathematical approach. We derive an exact analytical expression, opening out the connotative and latent linear relation, for the mathematical character of the phase configurations in the Kuramoto model of the describing neuronal synchrony in the brain.
Modeling of exposure to carbon monoxide in fires
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.
1980-01-01
A mathematical model is developed to predict carboxyhemoglobin concentrations in regions of the body for short exposures to carbon monoxide levels expected during escape from aircraft fires. The model includes the respiratory and circulatory dynamics of absorption and distribution of carbon monoxide and carboxyhemoglobin. Predictions of carboxyhemoglobin concentrations are compared to experimental values obtained for human exposures to constant high carbon monoxide levels. Predictions are within 20% of experimental values. For short exposure times, transient concentration effects are predicted. The effect of stress is studied and found to increase carboxyhemoglobin levels substantially compared to a rest state.
Analytical expressions for noise and crosstalk voltages of the High Energy Silicon Particle Detector
NASA Astrophysics Data System (ADS)
Yadav, I.; Shrimali, H.; Liberali, V.; Andreazza, A.
2018-01-01
The paper presents design and implementation of a silicon particle detector array with the derived closed form equations of signal-to-noise ratio (SNR) and crosstalk voltages. The noise analysis demonstrates the effect of interpixel capacitances (IPC) between center pixel (where particle hits) and its neighbouring pixels, resulting as a capacitive crosstalk. The pixel array has been designed and simulated in a 180 nm BCD technology of STMicroelectronics. The technology uses the supply voltage (VDD) of 1.8 V and the substrate potential of -50 V. The area of unit pixel is 250×50 μm2 with the substrate resistivity of 125 Ωcm and the depletion depth of 30 μm. The mathematical model includes the effects of various types of noise viz. the shot noise, flicker noise, thermal noise and the capacitive crosstalk. This work compares the results of noise and crosstalk analysis from the proposed mathematical model with the circuit simulation results for a given simulation environment. The results show excellent agreement with the circuit simulations and the mathematical model. The average relative error (AVR) generated for the noise spectral densities with respect to the simulations and the model is 12% whereas the comparison gives the errors of 3% and 11.5% for the crosstalk voltages and the SNR results respectively.
Ruggieri, M; Fumarola, A; Straniero, A; Maiuolo, A; Coletta, I; Veltri, A; Di Fiore, A; Trimboli, P; Gargiulo, P; Genderini, M; D'Armiento, M
2008-09-01
Actually, thyroid volume >25 ml, obtained by preoperative ultrasound evaluation, is a very important exclusion criteria for minimally invasive thyroidectomy. So far, among different imaging techniques, two-dimensional ultrasonography has become the more accepted method for the assessment of thyroid volume (US-TV). The aims of this study were: (1) to estimate the preoperative thyroid volume in patients undergoing minimally invasive total thyroidectomy using a mathematical formula and (2) to verify its validity by comparing it with the postsurgical TV (PS-TV). In 53 patients who underwent minimally invasive total thyroidectomy (from January 2003 to December 2007), US-TV, obtained by ellipsoid volume formula, was compared to PS-TV determined by the Archimedes' principle. A mathematical formula able to predict the TV from the US-TV was applied in 34 cases in the last 2 years. Mean US-TV (14.4 +/- 5.9 ml) was significantly lower than mean PS-TV (21.7 +/- 10.3 ml). This underestimation was related to gland multinodularity and/or nodular involvement of the isthmus. A mathematical formula to reduce US-TV underestimation and predict the real TV was developed using a linear model. Mean predicted TV (16.8 +/- 3.7 ml) perfectly matched mean PS-TV, underestimating PS-TV in 19% of cases. We verified the accuracy of this mathematical model in patients' eligibility for minimally invasive total thyroidectomy, and we demonstrated that a predicted TV <25 ml was confirmed post-surgery in 94% of cases. We demonstrated that using a linear model, it is possible to predict from US the PS-TV with high accuracy. In fact, the mean predicted TV perfectly matched the mean PS-TV in all cases. In particular, the percentage of cases in which the predicted TV perfectly matched the PS-TV increases from 23%, estimated by US, to 43%. Moreover, the percentage of TV underestimation was reduced from 77% to 19%, as well as the range of the disagreement from up to 200% to 80%. This study shows that two-dimensional US can provide the accurate estimation of thyroid volume but that it can be improved by a mathematical model. This may contribute to a more appropriate surgical management of thyroid diseases.
Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert
2009-01-01
The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we developed for Web-based testing, included problems from 3 domains of mathematics taught as part of the UK National Curriculum. Using quantitative genetic model-fitting analyses, similar results were found for math disabilities and abilities for all 3 measures: Moderate genetic influence and environmental influence were mainly due to nonshared environmental factors that were unique to the individual, with little influence from shared environment. No sex differences were found in the etiologies of math abilities and disabilities. We conclude that low mathematical performance is the quantitative extreme of the same genetic and environmental factors responsible for variation throughout the distribution. PMID:18064980
Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches
Wiratsudakul, Anuwat; Suparit, Parinya
2018-01-01
Background The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. Survey Methodology In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms “dynamics,” “mathematical model,” “modeling,” and “vector-borne” together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were “compartmental,” “spatial,” “metapopulation,” “network,” “individual-based,” “agent-based” AND “Zika.” All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. Results We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. Discussion Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation. PMID:29593941
ERIC Educational Resources Information Center
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Linder, A
2000-03-01
A mathematical model of a new rear-end impact dummy neck was implemented using MADYMO. The main goal was to design a model with a human-like response of the first extension motion in the crash event. The new dummy neck was modelled as a series of rigid bodies (representing the seven cervical vertebrae and the uppermost thoracic element, T1) connected by pin joints, and supplemented by two muscle substitutes. The joints had non-linear stiffness characteristics and the muscle elements possessed both elastic stiffness and damping properties. The new model was compared with two neck models with the same number of vertebrae, but without muscle substitutes. The properties of the muscle substitutes and the need of these were evaluated by using three different modified neck models. The motion of T1 in the simulations was prescribed using displacement data obtained from volunteer tests. In a sensitivity analysis of the mathematical model the influence of different factors on the head-neck kinematics was evaluated. The neck model was validated against kinematics data from volunteer tests: linear displacement, angular displacement, and acceleration of the head relative to the upper torso at 7 km/h velocity change. The response of the new model was within the corridor of the volunteer tests for the main part of the time history plot. This study showed that a combination of elastic stiffness and damping in the muscle substitutes, together with a non-linear joint stiffness, resulted in a head-neck response similar to human volunteers, and superior to that of other tested neck models.
Mathematical model for rhythmic protoplasmic movement in the true slime mold.
Kobayashi, Ryo; Tero, Atsushi; Nakagaki, Toshiyuki
2006-08-01
The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays "smart" behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.
Wind tunnel tests of a free-wing/free-trimmer model
NASA Technical Reports Server (NTRS)
Sandlin, D. R.
1982-01-01
The riding qualities of an aircraft with low wing loading can be improved by freeing the wing to rotate about its spanwise axis. A trimming surface also free to rotate about its spanwise axis can be added at the wing tips to permit the use of high lift devices. Wind tunnel tests of the free wing/free trimmer model with the trimmer attached to the wing tips aft of the wing chord were conducted to validate a mathematical model developed to predict the dynamic characteristics of a free wing/free trimmer aircraft. A model consisting of a semispan wing with the trimmer mounted on with the wing on an air bearing and the trimmer on a ball bearing was displaced to various angles of attack and released. The damped oscillations of the wing and trimmer were recorded. Real and imaginary parts of the characteristic equations of motion were determined and compared to values predicted using the mathematical model.
Hill, Steven C; Pan, Yong-Le; Williamson, Chatt; Santarpia, Joshua L; Hill, Hanna H
2013-09-23
This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B₆ and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.
ERIC Educational Resources Information Center
Contreras, Jose
2007-01-01
In this article, I model how a problem-posing framework can be used to enhance our abilities to systematically generate mathematical problems by modifying the attributes of a given problem. The problem-posing model calls for the application of the following fundamental mathematical processes: proving, reversing, specializing, generalizing, and…
ERIC Educational Resources Information Center
Paolucci, Catherine; Wessels, Helena
2017-01-01
This study examined preservice teachers' (PSTs) capacity to create mathematical modeling problems (MMPs) for grades 1 to 3. PSTs created MMPs for their choice of grade level and aligned the mathematical content of their MMPs with the relevant mathematics curriculum. PSTs were given criteria adapted from Galbraith's MMP design principles to guide…
ERIC Educational Resources Information Center
Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian
2018-01-01
In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Much More than It's Cooked-up to Be: Reflections on Doing Math and Teachers' Professional Learning
ERIC Educational Resources Information Center
Taton, Joshua A.
2015-01-01
The author argues that students' persistent struggles with mathematics suggest a new form of professional development for teachers is needed. The author draws on a model of professional learning in literacy education to propose an analogous model for mathematics education: teachers of mathematics need to produce mathematical ideas, themselves, in…
A multidimensional model of the effect of gravity on the spatial orientation of the monkey
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.
1993-01-01
A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
Reinstein, Dan Z; Archer, Timothy J; Randleman, J Bradley
2013-07-01
To develop a mathematical model to estimate the relative differences in postoperative stromal tensile strength following photorefractive keratectomy (PRK), LASIK, and small incision lenticule extraction (SMILE). Using previously published data where in vitro corneal stromal tensile strength was determined as a function of depth, a mathematical model was built to calculate the relative remaining tensile strength by fitting the data with a fourth order polynomial function yielding a high correlation coefficient (R(2) = 0.930). Calculating the area under this function provided a measure of total stromal tensile strength (TTS), based only on the residual stromal layer for PRK or LASIK and the residual stromal layers above and below the lenticule interface for SMILE. Postoperative TTS was greatest after SMILE, followed by PRK, then LASIK; for example, in a 550-μm cornea after 100-μm tissue removal, postoperative TTS was 75% for SMILE (130-μm cap), 68% for PRK, and 54% for LASIK (110-μm flap). The postoperative TTS decreased for thinner corneal pachymetry for all treatment types. In LASIK, the postoperative TTS decreased with increasing flap thickness by 0.22%/μm, but increased by 0.08%/μm for greater cap thickness in SMILE. The model predicted that SMILE lenticule thickness could be approximately 100 μm greater than the LASIK ablation depth and still have equivalent corneal strength (equivalent to approximately 7.75 diopters). This mathematical model predicts that the postoperative TTS is considerably higher after SMILE than both PRK and LASIK, as expected given that the strongest anterior lamellae remain intact. Consequently, SMILE should be able to correct higher levels of myopia. Copyright 2013, SLACK Incorporated.
Characteristic Model of a Shock Absorber in an Unmanned Ground Vehicle
NASA Astrophysics Data System (ADS)
Danko, Ján; Milesich, Tomáš; Bugár, Martin; Madarás, Juraj
2012-12-01
Comparison between sparsely distributed memory and Hopfield-type neural network models
NASA Technical Reports Server (NTRS)
Keeler, James D.
1986-01-01
The Sparsely Distributed Memory (SDM) model (Kanerva, 1984) is compared to Hopfield-type neural-network models. A mathematical framework for comparing the two is developed, and the capacity of each model is investigated. The capacity of the SDM can be increased independently of the dimension of the stored vectors, whereas the Hopfield capacity is limited to a fraction of this dimension. However, the total number of stored bits per matrix element is the same in the two models, as well as for extended models with higher order interactions. The models are also compared in their ability to store sequences of patterns. The SDM is extended to include time delays so that contextual information can be used to cover sequences. Finally, it is shown how a generalization of the SDM allows storage of correlated input pattern vectors.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1980-01-01
The rigid lid model was developed to predict three dimensional temperature and velocity distributions in lakes. This model was verified at various sites (Lake Belews, Biscayne Bay, etc.) and th verification at Lake Keowee was the last of these series of verification runs. The verification at Lake Keowee included the following: (1) selecting the domain of interest, grid systems, and comparing the preliminary results with archival data; (2) obtaining actual ground truth and infrared scanner data both for summer and winter; and (3) using the model to predict the measured data for the above periods and comparing the predicted results with the actual data. The model results compared well with measured data. Thus, the model can be used as an effective predictive tool for future sites.
ERIC Educational Resources Information Center
Popovic, Gorjana; Lederman, Judith S.
2015-01-01
The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
NASA Astrophysics Data System (ADS)
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
Mathematical modeling of physiological systems: an essential tool for discovery.
Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J
2014-08-28
Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
Kobayashi, Yutaka; Ohtsuki, Hisashi
2014-03-01
Learning abilities are categorized into social (learning from others) and individual learning (learning on one's own). Despite the typically higher cost of individual learning, there are mechanisms that allow stable coexistence of both learning modes in a single population. In this paper, we investigate by means of mathematical modeling how the effect of spatial structure on evolutionary outcomes of pure social and individual learning strategies depends on the mechanisms for coexistence. We model a spatially structured population based on the infinite-island framework and consider three scenarios that differ in coexistence mechanisms. Using the inclusive-fitness method, we derive the equilibrium frequency of social learners and the genetic load of social learning (defined as average fecundity reduction caused by the presence of social learning) in terms of some summary statistics, such as relatedness, for each of the three scenarios and compare the results. This comparative analysis not only reconciles previous models that made contradictory predictions as to the effect of spatial structure on the equilibrium frequency of social learners but also derives a simple mathematical rule that determines the sign of the genetic load (i.e. whether or not social learning contributes to the mean fecundity of the population). Copyright © 2013 Elsevier Inc. All rights reserved.
Carey, Emma; Hill, Francesca; Devine, Amy; Szücs, Dénes
2015-01-01
This review considers the two possible causal directions between mathematics anxiety (MA) and poor mathematics performance. Either poor maths performance may elicit MA (referred to as the Deficit Theory), or MA may reduce future maths performance (referred to as the Debilitating Anxiety Model). The evidence is in conflict: the Deficit Theory is supported by longitudinal studies and studies of children with mathematical learning disabilities, but the Debilitating Anxiety Model is supported by research which manipulates anxiety levels and observes a change in mathematics performance. It is suggested that this mixture of evidence might indicate a bidirectional relationship between MA and mathematics performance (the Reciprocal Theory), in which MA and mathematics performance can influence one another in a vicious cycle.
Prediction of inspiratory flow shapes during sleep with a mathematic model of upper airway forces.
Aittokallio, Tero; Gyllenberg, Mats; Saaresranta, Tarja; Polo, Olli
2003-11-01
To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.
ERIC Educational Resources Information Center
Zoanetti, Nathan; Les, Magdalena; Leigh-Lancaster, David
2014-01-01
From 2011-2013 the VCAA conducted a trial aligning the use of computers in curriculum, pedagogy and assessment culminating in a group of 62 volunteer students sitting their end of Year 12 technology-active Mathematical Methods (CAS) Examination 2 as a computer-based examination. This paper reports on statistical modelling undertaken to compare the…
a Discrete Mathematical Model to Simulate Malware Spreading
NASA Astrophysics Data System (ADS)
Del Rey, A. Martin; Sánchez, G. Rodriguez
2012-10-01
With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.